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Abstract

In this paper, we consider the open problem of counting homoge-
neous rotation symmetric Boolean functions over GF (p). By using
inclusion–exclusion principle, we obtain a formula to exactly enumer-
ate such class of functions. As a consequence, the known formula
of [8, Theorem 9] in Boolean case is simplified.
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1 Introduction

Rotation symmetric(RotS) Boolean functions, introduced by Pieprzyk and
Qu [1], have received a lot of attention from a cryptographic perspective
[2–5, 8–12]. This class of functions is invariant under circular translation
of indices. Such property is highly desirable in hashing, for instance in
the implementation of MD4, MD5 or HAVAL, since one can reuse evalua-
tions from previous iterations. It has been demonstrated that the class of
RotS functions is extremely rich in terms of cryptographically significant
Boolean functions. For nonlinearity, Kavut et.al. have found Boolean func-
tions on 9-variables with nonlinearity 241, which solved an open problem
for almost three decades [2, 3]. Motivated by this study, important crypto-
graphic properties such as nonlinearity, balancedness, correlation immunity,
algebraic degree and algebraic immunity of these functions have been inves-
tigated at the same time and encouraging results have been obtained. For
detailed discussion see [5, 8, 9, 12] and the reference therein.

This work is supported by National Nature Science Foundation of China under Grant
number 60803154.
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It is important to ensure that the selected criteria for the Boolean func-
tions, supposed to be used in some cryptosystems, do not restrict the choice
of the functions too severely. Hence, the set of functions should be enumer-
ated. In [8], Maitra and Stanica presented various counting results for RotS
Boolean functions involving the number of homogenous functions. Li [6] gen-
eralized the concept of RotS function from GF (2) to GF (p) and obtained
many enumerating results about RotS functions over GF (p). In particular,
he has enumerated homogeneous RotS functions with degree no more than 3.
That how to count homogeneous RotS functions with degree greater than
3 is left an interesting problem. In this direction, Fu et al. gave a lower
bound on the number of homogeneous RotS functions in [7]. Besides, they
presented a formula to enumerate such class of functions when the greatest
common divisor of the number of input variables and the algebraic degree
of the function is a prime power. However, it remains an open problem to
enumerate homogeneous RotS functions for general n.

In this paper, we will continue to focus on this problem. We first observe
that there is an equivalence between the orbits of GFn(p) and their minimal
functions(see Remark 2). Consequently, the exact number of minimal func-
tions having fixed degree is obtained by using inclusion–exclusion principle.
As an immediate corollary, we completely solve the enumerating problem of
homogenous RotS function over GF (p).

2 Preliminaries

Let p be a prime number. Denote by GFn(p) the n-dimension vector space
over the finite fieldGF (p). An n-variable function f(x), x = (x1, x2, . . . , xn) ∈
GFn(p) is a mapping from GFn(p) to GF (p), which can be uniquely rep-
resented as multivariate polynomial over GF (p), called its algebraic normal
form(ANF):

f(x1, x2, . . . , xn) =

p−1∑
k1,k2,...,kn=0

ak1,k2,...,knx
k1
1 xk22 · · ·xknn

where each coefficient ak1,k2,...,kn is a constant in GF (p). The number k1 +

k2+ · · ·+ kn is defined as the degree of the term xk11 xk22 . . . xknn with nonzero
coefficient. The greatest degree of all the terms of f is called the algebraic
degree, denoted by deg(f). If the degrees of all the terms of f are equal, then
we say f is homogeneous. Let xi ∈ GF (p) for 1 ≤ i ≤ n. For 1 ≤ k ≤ n, we
define

ρkn(xi) =

{
xi+k if i+ k ≤ n,

xi+k−n if i+ k > n.

Then we can extend the definition of ρkn on tuples and monomials as follows:

ρkn(x1, x2, . . . , xn) = (ρkn(x1), ρ
k
n(x2), . . . , ρ

k
n(xn)),
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and
ρkn(x

k1
1 xk22 . . . xknn ) = (ρkn(x1))

k1(ρkn(x2))
k2 . . . (ρkn(xn))

kn .

Definition 1 A function f : GFn(p) → GF (p) is called rotation symmetric
if for each input (x1, x2, . . . , xn) ∈ GFn(p),

f(ρkn(x1, x2, . . . , xn)) = f(x1, x2, . . . , xn) for 0 ≤ k ≤ n− 1.

Denote

Gn(x1, x2, . . . , xn) = {ρkn(x1, x2, . . . xn), for 0 ≤ k ≤ n− 1)}

by the orbit of (x1, x2, . . . , xn) under the action of ρkn, 0 ≤ k ≤ n − 1. It
is obvious that Gn(x1, x2, . . . , xn) generates a partition of the vector space
GFn(p).

Remark 1 For any given x = (x1, x2, . . . , xn) ∈ GFn(p), where x1 + x2 +
· · · + xn = d, we can rewrite x by concatenating r copies of b, where b =
[x1, . . . , xn/r] is a minimal block of x. Then we have #Gn(x1, x2, . . . , xn) =
n/r and x1 + · · ·+ xn/r = d/r.

3 Enumeration of Homogenous RotS functions

The remainder of this paper will devote to count the number of homogenous
RotS functions over GF (p). We begin with some definitions and technical
discussion. By abuse of notation we use Gn further on the monomials defin-
ing

Gn(x
k1
1 xk22 · · ·xknn ) = {ρkn(x

k1
1 xk22 · · ·xknn ), for 0 ≤ k ≤ n− 1)}.

Then we have the following definition.

Definition 2 A function over GF (p) is called minimal function if f has
the form

f(x1, x2, . . . , xn) =
N−1∑
k=0

ρkn(x
k1
1 xk22 . . . xknn ),

where xk11 xk22 . . . xknn is a monomial of f and N = #Gn(x
k1
1 xk22 . . . xknn ).

Remark 2 Note that

ρkn(x
k1
1 xk22 . . . xknn ) = (ρkn(x1))

k1(ρkn(x2))
k2 . . . (ρkn(xn))

kn

= x
ρn−k
n (k1)

1 x
ρn−k
n (k2)

2 . . . xρ
n−k
n (kn)

n ,

then we have #Gn(x
k1
1 xk22 . . . xknn ) = #Gn(k1, k2, . . . , kn). Therefore there is

an equivalence between the orbits of GFn(p) and their corresponding minimal
functions.
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Denote by Θ(n/r, d/r, p) the set of all solutions of the following equation
system: 

y1 + y2 + · · ·+ yn/r = d/r

yi ∈ GF (p), for 1 ≤ i ≤ n/r

r|gcd(n, d)
(1)

Let θ(n/r, d/r, p) be the cardinality of the set Θ(n/r, d/r, p), then it can be
deduced by the following lemma.

Lemma 1 For any positive integer r|gcd(n, d), we have

θ(n/r, d/r, p) =
∑

ip+j=d/r

(−1)i
(
n/r

i

)(
n/r + j − 1

j

)
.

Proof. Let h(x) = (
∑p−1

i=0 xi)n/r. Then we have θ(n/r, d/r, p) is equal to
the coefficient of xd/r in the expansion of h(x). Note that

h(x) = (
∑p−1

i=0
xi)n/r

= (
1− xp

1− x
)n/r

= (1− xp)n/r(1 + x+ · · · )n/r.

By a straightforward computation, we deduce that

θ(n/r, d/r, p) =
∑

ip+j=d/r

(−1)i
(
n/r

i

)(
n/r + j − 1

j

)
.

2

For a given vector (x1, x2, . . . , xn). If x1+x2+· · ·+xn = d, thenGn(x1, x2, . . . , xn)
forms a partition of Θ(n, d, p). Let us consider the number of such partitions
gn,d(p). From Remark 2, we get gn,d(p) is equal to the number of minimal
functions with degree d. To compute it, we need to recall the well known
inclusion–exclusion principle [15].

Lemma 2 (Inclusion–Exclusion Principle) Let A1, . . . , An be sets with
finitely many elements. Then∣∣∣∣ n∪

i=1

Ai

∣∣∣∣ =
n∑

i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |

+
∑

1≤i<j<k≤n

|Ai ∩Aj ∩Ak|

− · · · + (−1)n−1 |A1 ∩ . . . ∩An| (2)
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In terms of Lemma 2, we enumerate these minimal functions having fixed
degree.

Theorem 1 We have

gn,p(d) =
∑

r|gcd(n,d)

 1

n/r

∑
s|gcd(n,d)/r

µ(s)θ(n/rs, d/rs, p)

, (3)

where µ(s) is Möbius function.

Proof. For any x ∈ Θ(n, d, p), we have observed that Gn(x) ⊆ Θ(n, d, p)
and there exists some integer r|gcd(n, d) such that #Gn(x) = n/r. Denote
Nn/r(d) by the number of such orbits which are of length n/r. Recall that
gn,p(d) is the number of partitions of Θ(n, d, p), then we have

gn,p(d) =
∑

r|gcd(n,d)

Nn/r(d).

In order to prove Theorem 1, it will suffice to calculate the value of Nn/r(d).
Let gcd(n, d)/r = pa11 . . . pall for distinct primes p1, . . . , pl and Ai =

{x ∈ Θ(n/r, d/r, p)|ρ
n

rpi (x) = x} for 1 ≤ i ≤ l. It follows that for any
x ∈ Θ(n, d, p), #Gn(x) < n/r if and only if x ∈

∪l
i=1Ai. Note that the total

number of elements belonging to Θ(n/r, d/r, p) is θ(n/r, d/r, p), and

|Ai| = θ(
n

rpi
,
d

rpi
, p),

|Aj1 ∩Aj2 ∩ . . . ∩Ajt | = θ(
n

rpj1pj2 . . . pjt
,

d

rpj1pj2 . . . pjt
, p),

for 1 ≤ j1 < j2 < · · · < jt ≤ l.

From Lemma 2, we have

Nn/r(d) =
1

n/r

[
θ(
n

r
,
d

r
, p)−

∣∣∣∣ l∪
i=1

Ai

∣∣∣∣
]

=
1

n/r

[
θ(
n

r
,
d

r
, p)−

l∑
i=1

θ(
n

rpi
,
d

rpi
, p) +

∑
1≤i<j≤l

θ(
n

rpipj
,

d

rpipj
, p)

− · · ·+ (−1)lθ(
n

rp1p2 . . . pl
,

d

rp1p2 . . . pl
, p)

]

=
1

n/r

∑
s|gcd(n,d)/r

µ(s)θ(
n

rs
,
d

rs
, p),
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which leads to

gn,p(d) =
∑

r|gcd(n,d)

Nn/r(d)

=
∑

r|gcd(n,d)

 1

n/r

∑
s|gcd(n,d)/r

µ(s)θ(n/rs, d/rs, p)

 . (4)

Hence the proof is completed. 2

Remark 3 If p = 2, then θ(n/r, d/r, 2) =
(n/r
d/r

)
with r|gcd(n, d). From

Theorem 1, we have

gn,2(d) =
∑

r|gcd(n,d)

 1

n/r

∑
s|gcd(n,d)/r

µ(s)

(
n/rs

d/rs

) . (5)

Thus the recurrence formula

gn,2(d) =
1

n

(n
d

)
−

∑
k|′gcd(n,d)

n

k
· hn/k,d/k

+
∑

k|′gcd(n,d)

h(n/k, d/k)

in [8, Theorem 9] is simplified.

As an immediate corollary of Theorem 1, we obtain the number of ho-
mogeneous RotS functions over GF (p).

Corollary 1 The number of homogeneous RotS functions over GF (p) with
degree d is pgn,p(d) − 1.

4 Conclusion

In this paper we focus on the open problem of the number of homogeneous
RotS functions over GF (p). We present complete enumeration results for
these functions by using inclusion–exclusion principle. As a direct corollary,
the known formula for counting homogeneous RotS Boolean functions in [8,
Theorem 9] is simplified.
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