
A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES

SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

Abstract. Buchberger’s algorithm for computing Gröbner bases was intro-

duced in 1965, and subsequently there have been extensive efforts in improving

its efficiency. Major algorithms include F4 (Faugère 1999), XL (Courtois et
al. 2000) and F5 (Faugère 2002). F5 is believed to be the fastest algorithm

known in the literature. Most recently, Gao, Guan and Volny (2010) intro-

duced an incremental algorithm (G2V) that is two to ten times faster than
F5. In this paper, a new algorithm is presented that matches Buchberger’s

algorithm in simplicity and yet is more flexible than G2V. Given a list of poly-

nomials, the new algorithm computes simultaneously a Gröbner basis for the
ideal generated by the polynomials and a Gröbner basis for the leading terms

of the syzygy module of the polynomials. For any term order for the ideal,
one may vary the term order for the syzygy module. Under one term order

for the syzygy module, the new algorithm specializes to the G2V algorithm,

and under another term order for the syzygy module, the new algorithm may
be several times faster than G2V, as indicated by computer experiments on

benchmark examples.

1. Introduction

Polynomial systems are ubiquitous in mathematics, science and engineering, and
Gröbner basis theory is one of the most powerful tools for solving polynomial sys-
tems. Buchberger introduced in 1965 the first algorithm for computing Gröbner
bases, and it has been implemented in most computer algebra systems (e.g., Maple,
Mathematica, Magma, Sage, Singular, Macaulay 2, CoCoA, etc). Computing
Gröbner bases is a basic routine that is essential in many computational tasks in
algebra and algebraic geometry. As time has witnessed the importance of Gröbner
bases, Bruno Buchberger was awarded the 2007 ACM Paris Kanellakis Theory and
Practice Award and the Golden Medal of Honor for his original development of
Gröbner basis theory.

There has been extensive effort in finding more efficient algorithms for computing
Gröbner bases. In Buchberger’s original algorithm (1965, [1]), one has to reduce
many “useless” S-polynomials (i.e., those that reduce to 0 via long division), and
each reduction is time consuming. It is natural to avoid useless reductions as
much as possible. Buchberger [2, 3] discovered two simple criteria for detecting
useless S-polynomials. Note that a reduction of an S-polynomial to 0 corresponds
to a syzygy (for the initial list of polynomials). Möller, Mora and Traverso (1992,
[13] go a step further to present an algorithm using the full module of syzygies,
however, their algorithm is not very efficient. Faugère (2002, [8]) introduced the

Date: October 9, 2010.
Gao and Volny were partially supported by National Science Foundation under Grants DMS-

1005369 and CCF-0830481, and Wang was partially supported by the National Science Foundation
of China under Grant 60970134 and by 973 Project under Grant 2007CB311201.

1

2 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

idea of signatures and rewriting rules that can detect many useless S-polynomials
hence saving a significant amount of time that would be used in reducing them.
In fact, for a regular sequence of polynomials, his algorithm F5 detects all useless
reductions. By computer experiments, Faugère showed that his algorithm F5 is
many times faster than previous algorithms. In fact, Faugère and Joux (2003,
[9]) solved the first Hidden Field Equation (HFE) Cryptosystem Challenge which
involves a system of 80 polynomial equations with 80 variables over the binary field
(1996, [14]). Since F5 seems difficult to both understand and implement, there have
been several papers trying to simplify and improve F5; see Eder and Perry (2009,
[6]), Sun and Wang (2009, [15]), and Hashemi and Ars (2010, [11]).

In another direction of research, one tries to speed up the reduction step. Lazard
(1983, [12]) pointed out the connection between Gröbner bases and linear algebra,
that is, a Gröbner basis can be computed by Gauss elimination of a Sylvester
matrix. The XL algorithm of Courtois et al. (2000, [4]) is an implementation of
this Sylvester matrix, which is recently improved by Ding et al. (2008, [5]). A more
clever approach is the F4 algorithm of Faugère (1999, [7]). F4 is an efficient method
for reducing several S-polynomials simultaneously where the basic idea is to apply
fast linear algebra methods to the submatrix of the Sylvester matrix consisting of
only those rows that are needed for the reductions of a given list of S-polynomials.
This method benefits from the efficiency of fast linear algebra algorithms. The main
problem with this approach, however, is that the memory usage grows too quickly,
even for medium systems of polynomials.

Our contribution in this paper is the presentation of a new algorithm that
matches Buchberger’s algorithm in simplicity yet is much faster than F5. The
main difference between our algorithm and F5 is that we don’t use rewriting rules.
In our previous work [10], we presented an algorithm (G2V) that is incremental
in the same fashion as F5 but is much simpler and 2 to 10 times faster than F5
and F5C on benchmark systems. This paper describes an extension of the G2V
algorithm. We extend the notion of a signature so that G2V is considered a special
case. We remove the necessity of running the algorithm incrementally and allow
a Gröbner basis for 〈g1, . . . , gm〉 to be computed in one-shot, incrementally, or as
a hybrid of the two. And just as reductions to zero in G2V provided more infor-
mation about the colon ideal (and thus saving further computations), the present
algorithm uses reductions to zero to discover more information about the syzygy
module in order to prevent reductions to zero. Our new algorithm provides an extra
layer of flexibility. Unless one needs to compute the syzygy module under a certain
term order, one is free to choose the term order of the syzygy module to maximize
performance. We show that under the POT order, this new algorithm is exactly
the same as G2V. But under certain other orders, this new algorithm performs 2
to 10 times faster than G2V and thus something like 4 to 20 times faster than F5
and F5C.

The paper is organized as follows. In Section 2, we introduce the basic con-
cepts and theory for our algorithm. In particular, we define signatures, regular top-
reductions, super top-reductions, and the concept of eventually super top-reducible.
We also introduce J-pairs that are in some sense similar to S-polynomials. Then we
characterize Gröbner bases in term of J-pairs in a similar fashion as Buchberger’s
characterization in term of S-polynomials. Our characterization goes a step fur-
ther, that is, it also tells us when we have a Gröbner basis for the corresponding

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 3

syzygy module. In Section 3, we present our algorithm and prove its correctness.
The problem of finite termination of our algorithm is still open. We present com-
puter experiments of our algorithm that shows how the algorithm perform under
different term orders for the syzygy module. Finally, in Section 4, we show how our
algorithm can be adapted to compute Gröbner bases for modules and for polynomi-
als over quotient rings, which would allow one to design more flexible incremental
algorithms.

2. Theory

Let R = F[x1, . . . , xn] be a polynomial ring over a field F with n variables. Given
polynomials g1, . . . , gm ∈ R, we wish to compute a Gröbner basis for the ideal

(1) I = 〈g1, . . . , gm〉 = {u1g1 + · · ·+ umgm : u1, . . . , um ∈ R} ⊆ R
with respect to some term order on R. Define

(2) H = {(u1, . . . um) ∈ Rm : u1g1 + · · ·+ umgm = 0} ,
called the syzygy module of g = (g1, . . . , gm). We would like to develop an
algorithm that computes Gröbner bases for both I and H. Note that elements of
Rm are viewed as row vectors and are denoted by bold letters say g,u etc. We
consider the following R-submodule of Rm ×R:

(3) M =
{

(u, v) ∈ Rm ×R : ugt = v
}
.

We define Ei ∈ Rm to be the ith unit vector, that is (Ei)j = δij . Note that a

monomial (or a term) in R is of the form

xα =

n∏
i=1

xaii

where α = (a1, . . . , an) ∈ Nn is any vector of non-negative integers, and a term in
Rm is of the form

xαEi

where 1 ≤ i ≤ m and α ∈ Nn. The R-module M is generated by

(4) (E1, g1), (E2, g2), . . . , (Em, gm).

Fix any term order ≺1 on R and any term order ≺2 on Rm. We emphasize that
the order ≺2 may or may not be related to ≺1 in the theory below, though ≺2 is
usually an extension of ≺1 to Rm in implementation. For the sake of convenience,
we shall use the following convention for leading terms:

lm(v) = lm≺1(v), lm(u) = lm≺2(u)

for any v ∈ R and u ∈ Rm. Note that, for v ∈ R, lm(v) is a monomial xα, while,
for u ∈ Rm, lm(u) is a term xαEi for some α ∈ Nn and 1 ≤ i ≤ m. We make the
convention that if v = 0 then lm(v) = 0; similarly for lm(u). This should not cause
any confusion, but the reader should keep the two different orders in mind.

For any (u, v) ∈ Rm ×R, we call lm(u) the signature of (u, v). This is similar
to the signature used in F5. Suppose (u1, v1), (u2, v2) ∈ Rm×R are two pairs with
v1 and v2 both nonzero. Let

t = lcm(lm(v1), lm(v2)), t1 =
t

lm(v1)
, t2 =

t

lm(v2)
.

Suppose max(t1lm(u1), t2lm(u2)) = tilm(ui) where i = 1 or 2. Then

4 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

• ti(ui, vi) = (tiui, tivi) is called a J-pair of (u1, v1) and (u2, v2);
• tilm(ui) is called the J-signature of (u1, v1) and (u2, v2);

where J means “joint” of the two pairs. When t1lm(u1) = t2lm(u2), we can pick
either t1(u1, v1) or t2(u2, v2) as a J-pair. However, the J-signature of (u1, v1) and
(u2, v2) is unique.

We should mention that the S-polynomial of v1 and v2 is t1v1 − ct2v2 where
c = lc(v1)/lc(v2). Hence the monomials t1 and t2 used in our J-pair is the same as
those used in the S-polynomial. In the case of S-polynomials, the goal is to cancel
the leading terms of v’s. In our J-pairs, the leading terms of v’s are not cancelled,
but will be cancelled in later top-reductions (for most cases). In our algorithm
below, we may produce many J-pairs that have the same J-signature, but we only
keep one per distinct signature. Note that we never calculate the J-pair of (u1, v1)
and (u2, v2) when either v1 or v2 is zero.

Next we define top-reductions in Rm × R. Let (u1, v1), (u2, v2) ∈ Rm × R be
any two pairs. When v2 is nonzero, we say (u1, v1) is top-reducible by (u2, v2) if
the following two conditions are satisfied:

(i) v1 is nonzero and lm(v2) divides lm(v1); and
(ii) lm(tu2) � lm(u1) where t = lm(v1)/lm(v2).

The corresponding top-reduction is then

(u1, v1)− ct(u2, v2) = (u1 − ctu2, v1 − ctv2),

where c = lc(v1)/lc(v2). The effect of a top-reduction is that the leading monomial
in the v-part is canceled without increasing the signature of (u1, v1). Such a top-
reduction is called regular, if

lm(u1 − ctu2) = lm(u1),

and super otherwise. So the signature of (u1, v1) remains the same under a regular
top-reduction but becomes smaller under a super top-reduction. A super top-
reduction happens if

lm(tu2) = lm(u1) and
lc(u1)

lc(u2)
=

lc(v1)

lc(v2)
.

When v2 = 0, we say that (u1, v1) is top-reducible by (u2, 0) if u1 and u2 are
both nonzero and lm(u2) divides lm(u1). In this case, we could use (u2, 0) to reduce
the signature of (u1, v1) without increasing the leading term of v1 (even if v1 = 0);
such a top-reduction is always called super. We note that a pair (u1, 0) is never
top-reducible by (u2, v2) for v2 6= 0. In our algorithm below, we only detect super
top-reductions of the two kinds defined here, but never actually perform super top-
reductions. We should mention that the top-reductions used in F5 correspond to
regular top-reductions in our sense, but some of our regular top-reductions are not
allowed in F5 (e.g. when lm(u1) = tlm(u2)).

Lemma 1. Let t be a monomial in R. If a pair t(u1, v1) is (regular) top-reducible
by (u2, v2), where both v1 and v2 are nonzero, then t1(u1, v1) is a J-pair of (u1, v1)
and (u2, v2) where

t1 =
lcm(lm(v1), lm(v2))

lm(v1)
=

lm(v2)

gcd(lm(v1), lm(v2))

and t1 is a divisor of t. Furthermore, t1(u1, v1) is (regular) top-reducible by (u2, v2).

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 5

Proof. Since t(u1, v1) is top-reducible by (u2, v2) and both v1 and v2 are nonzero,
there is a monomial s such that

(5) t lm(v1) = s lm(v2), t lm(u1) � s lm(u2).

Let

t2 =
lcm(lm(v1), lm(v2))

lm(v2)
=

lm(v1)

gcd(lm(v1), lm(v2))
.

Then (5) implies that, for some monomial w,

t =
lm(v2)

gcd(lm(v1), lm(v2))
w = t1w, and

s =
lm(v1)

gcd(lm(v1), lm(v2))
w = t2w.

Hence (5) implies that t2lm(u2) � t1lm(u1). So max(t2lm(u2), t1lm(u1)) = t1lm(u1),
thus t1(u1, v1) is a J-pair of (u1, v1) and (u2, v2). Note that by (5), we have
that t1(u1, v1) is regular top-reducible by (u2, v2) whenever t(u1, v1) is regular
top-reducible by (u2, v2). �

Now let

(6) (u1, v1), . . . , (uk, vk)

be a list of pairs in M as defined in (3). The list (6) is called a strong Gröbner
basis for M if every pair (u, v) ∈M is top-reducible by some pair in (6).

Proposition 1. Suppose that the list of pairs in (6) is a strong Gröbner basis for
M . Then

(1) G0 = {ui : vi = 0, 1 ≤ i ≤ k} is a Gröbner basis for the syzygy module of
g = (g1, . . . , gm), and

(2) G1 = {vi : 1 ≤ i ≤ k} is a Gröbner basis for I = 〈g1, . . . , gm〉.

Proof. For any u = (u1, . . . , um) in the syzygy module of g, we have (u, 0) ∈ M .
By our assumption, (u, 0) is top-reducible by some pair (ui, vi) in (6). Then we
must have vi = 0, thus ui ∈ G0 and lm(u) is reducible by lm(ui). This proves that
G0 is a Gröbner basis for the syzygy module of g.

Now suppose v ∈ I and is nonzero. Then there exists u = (u1, . . . , um) ∈ Rm so
that ugt = v, hence (u, v) ∈ M . Among all such u, we pick one so that lm(u) is
minimum. Since (u, v) ∈ M , it is top-reducible by some (ui, vi) where 1 ≤ i ≤ k.
If vi = 0, then we could use (ui, 0) to reduce (u, v) to get a u′ so that u′gt = v and
lm(u′) is smaller than lm(u), contradicting to the minimality of lm(u). So vi 6= 0
and lm(vi) divides lm(v). Hence G1 is a Gröbner basis for I. �

Remark. Note that M ⊂ Rm × R has a Gröbner basis in the usual sense as a
submodule of Rm+1 where the leading term of (u, v) is lm(v)Em+1 if v 6= 0 and
lm(u) if v = 0. The above proposition implies that a strong Gröbner basis for M
is a Gröbner basis for M as a submodule of Rm+1, but the converse may not be
true for an arbitrary submodule M of Rm+1. This is why we call our basis a strong
Gröbner basis.

Let S be any set of pairs in Rm × R. We say that a pair (u, v) ∈ Rm × R is
regular top-reducible by S if it is regular top-reducible by at least one pair in S. We
call (u, v) eventually super top-reducible by S if there is a sequence of regular
top-reductions of (u, v) by pairs in S that reduce (u, v) to a pair (u′, v′) that is no

6 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

longer regular top-reducible by S but is super top-reducible by at least one pair in
S.

Theorem 1. Suppose the list (6) satisfies the following: for any term T ∈ Rm,
there is a pair (ui, vi), 1 ≤ i ≤ k, and a monomial t such that T = t lm(ui). Then
(6) is a strong Gröbner basis for M if and only if every J-pair of the pairs from (6)
is eventually super top-reducible by (6).

Proof. The forward implication is immediate from the definition of a strong Gröbner
basis. To show the reverse, we assume that every J-pair of the pairs in (6) is
eventually super top-reducible by (6). Assume that there is a pair (u, v) ∈M that
is not top-reducible by any pair in (6). We want to get a contradiction. Among all
such pairs (u, v) we pick one with minimal signature T = lm(u). Note that T 6= 0.
Next, we select a pair (ui, vi) from (6) such that

(a) T = t lm(ui) for some monomial t, and
(b) t lm(vi) is minimal among all 1 ≤ i ≤ k satisfying (a).

We claim that t(ui, vi) is not regular top-reducible by (6). To prove this claim,
we suppose that t(ui, vi) is regular top-reducible by some (uj , vj), j 6= i, so both
vi and vj are nonzero. We want to derive a contradiction to the condition (b). By
Lemma 1, the J-pair of (ui, vi) and (uj , vj) is t1(ui, vi) and that t1(ui, vi) is still
regular top-reducible by (uj , vj), where

t1 =
lcm(lm(vi), lm(vj))

lm(vi)
, and t = t1w

for some monomial w. As t1(ui, vi) is a J-pair of two pairs from (6), t1(ui, vi) is
eventually super top-reducible by (6), say

(7) t1(ui, vi) =

d∑
r=1

mr(uir , vir) + (u′, v′),

where the first part of the sum represents a sequence of regular top-reductions of
t1(ui, vi) by (6), and (u′, v′) is not regular top-reducible by any pair in (6) but is
super top-reducible by some pair in (6). Note that d ≥ 1 as t1(ui, vi) is regular top-
reducible by (uj , vj). Also, each regular top-reduction strictly reduces the leading
monomial of vi, but the leading monomial of ui remains unchanged. Thus we have
lm(u′) = lm(t1ui) but lm(v′) ≺ t1lm(vi). Let 1 ≤ ` ≤ k be such that (u′, v′) is super
top-reducible by (u`, v`). If v` = 0, then lm(u`) divides lm(u′) = lm(t1ui), thus
divides lm(u). Hence (u, v) is top-reducible by (u`, 0), contradicting our assumption
that (u, v) is not top-reducible by (6). We may thus assume that v` 6= 0, hence
v′ 6= 0. Then

(lm(u′), lm(v′)) = t3(lm(u`), lm(v`)),

where t3 = lm(v′)/lm(v`). Let t = t3w. Then

t lm(u`) = w lm(u′) = t lm(ui) = T

and
t lm(v`) = w lm(v′) ≺ wt1lm(vi) = t lm(vi).

Thus (ui, vi) satisfies (a) but violates (b). Hence t(ui, vi) is not regular top-
reducible by (6) as claimed.

Returning to the main proof, we perform the cancellation

(8) (u, v) = (u, v)− ct(ui, vi),

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 7

where c = lc(u)/lc(ui) so that lm(u) ≺ lm(u) = T . Note that lm(v) 6= t lm(vi),
since otherwise (u, v) would be top-reducible by (ui, vi) which contradicts the mini-
mality assumption of T = lm(u). Hence v 6= 0. Also, as (u, v) ∈M and lm(u) ≺ T ,
we have that (u, v) is top-reducible by (6). If (u, v) is top-reducible by some pair
(u`, v`) from (6) with v` = 0, then we can reduce (u, v) repeatedly by such pairs to
get a new pair (ũ, v) that is not top-reducible by any pair in (6) with v-part being
zero. Note that (ũ, v) is still in M and lm(ũ) ≺ T . Hence (ũ, v) is top-reducible by
some pair (u`, v`) from (6) with v` 6= 0. As lm(v) 6= t lm(vi), we consider two cases:

(i) lm(v) ≺ t lm(vi). Then lm(v) = t lm(vi), hence t(ui, vi) is regular top-
reducible by (u`, v`) (as lm(ũ) ≺ t lm(ui)). Since t(ui, vi) is not regular
top-reducible by any pair in (6), this case is impossible.

(ii) lm(v) � t lm(vi). Then lm(v) = lm(v), and (u, v) is regular top-reducible
by (u`, v`), contradicting the fact that (u, v) is not top-reducible by any
pair in (6).

Therefore such a pair (u, v) does not exist in M , thus every pair in M is top-
reducible by (6). �

Theorem 2. In Theorem 1, the condition “every J-pair of pairs from (6) is even-
tually super top-reducible by (6)” can be replaced by “for every distinct J-signature
from (6) there is at least one J-pair from (6) with the same J-signature that is
eventually super top-reducible by (6).”

Proof. The proof is the same as that of Theorem 1, except that in the equation (7)
we can still assume that the pair (u′, v′) is not regular top-reducible by (6) but we
need to prove that it is super top-reducible by (6), which is used in the subsequent
proof. By our assumption, however, there is a J-pair, say t2(u`, v`), that has the
same signature as that of t1(ui, vi) and is eventually super top-reducible by (6).
Suppose that

t2(u`, v`) =

s∑
r=1

nr(u`r , v`r) + (u′′, v′′),

where the first part of the sum represents a sequence of regular top-reductions of
t2(u`, v`) by (6), and (u′′, v′′) is not regular top-reducible by any pair in (6) but is
super top-reducible by some pair (ue, ve) in (6). Note that

lm(u′′) = t2lm(u`) = t1lm(ui) = lm(u′) = T,

and lm(v′′) � t2lm(v`). We may assume that both u′ and u′′ are monic. We claim
that lm(v′) = lm(v′′) and their coefficients are also equal. This implies the desired
property that (u′, v′) is super top-reducible by (ue, ve), since lm(v′) = lm(v′′),
lm(u′) = lm(u′′) and (u′′, v′′) is super top-reducible by (ue, ve).

To prove the claim, suppose it is not true, that is, either lm(v′) 6= lm(v′′) or
lm(v′) = lm(v′′) but their coefficients are not equal. Then lm(v′ − v′′) = lm(v′)
or lm(v′′). Note that the signature of (u′ − u′′, v′ − v′′) is strictly smaller than
lm(u′) = lm(t1ui) � T . By the hypothesis on the minimality of T , the pair
(u′ − u′′, v′ − v′′) is top-reducible by (6). It follows that either (u′, v′) is regular
top-reducible by (6) if lm(v′ − v′′) = lm(v′) or (u′′, v′′) is regular top-reducible by
(6) if lm(v′−v′′) = lm(v′′). Both are contradicting to our assumption that they are
not regular top-reducible. Hence the claim, and thus the theorem is proved. �

8 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

Remark. Suppose a final strong Gröbner basis for M is

(9) (u1, v1), . . . , (uk, vk).

At any intermediate step of computation, we only know

(10) (u1, v1), . . . , (up, vp)

for some p < k. In general, a pair (u, v) may be eventually super top-reducible
by (10) but not by (9). How can one decide whether (u, v) is eventually super
top-reducible by (9) when only (10) is known? Our strategy is to always pick the
J-pair with minimal signature to reduce. Then a pair that is eventually super top-
reducible by an intermediate basis is always eventually super top-reducible by the
final basis. A more detailed argument will be given in the next section.

3. Algorithm, Term Orderings and Time Comparison

Algorithm and Its Correctness. Our algorithm is based on Theorems 1 and
2. The basic idea of our algorithm is as follows. Initially, we have the pairs in (4)
in our Gröbner basis. So the first condition of the theorem is satisfied. From these
pairs, we form all J-pairs, keeping only one J-pair for each J-signature. We then
take the smallest J-pair among them and repeatedly perform regular top-reductions
until it is no longer regular top-reducible, say to get (u, v). If the v part of the
resulting pair is zero, then the u part is a syzygy in H, and we store this vector. If
the v part is nonzero, then we check if (u, v) is super top-reducible. If so, then we
discard this J-pair; otherwise, we add this (u, v) pair to the current Gröbner basis,
and form new J-pairs. Repeat this process until all J-pairs are eventually super
top-reducible.

We make two improvements on this basic algorithm. First, storing and updating
syzygies u ∈ H are expensive. In our computation, we shall make all pairs (u, v)
monic, namely, the leading coefficient of u is 1. Now suppose (u1, v1) and (u2, v2)
are any two monic pairs. Then a top-reduction (regular or super) is determined
only by lm(u1), lm(u2), v1 and v2. The other terms of u1 and u2 are not used
at all. Let T1 = lm(u1) and T2 = lm(u2), the signatures of (u1, v1) and (u2, v2),
respectively. Suppose we store only (T1, v1) and (T2, v2). Then (T1, v1) is regular
top-reducible by (T2, v2) when v2 6= 0, lm(v1) is divisible by lm(v2), tT2 � T1, and
lc(v1) 6= lc(v2) if tT2 = T1. The corresponding top-reduction is

v := v1 − ctv2

where t = lm(v1)/lm(v2) and c = lc(v1)/lc(v2), and furthermore, if tT2 = T1 then
we update v as

v := v/(1− c).
Then (T1, v) is the resulting pair of the reduction, and it replaces (T1, v1). Our
algorithm below will performs regular top-reductions in this fashion.

Another improvement is to use trivial syzygies. We will store the leading terms
of known syzygies in a list called H. Let (T1, v1) and (T2, v2) be any two pairs from
the Gröbner basis computed so far, where v1 and v2 are both nonzero. Then, for
1 ≤ i ≤ 2, there are ui ∈ Rm such that lm(ui) = Ti and (ui, vi) ∈ M . Then we
have

v2(u1, v1)− v1(u2, v2) = (v2u1 − v1u2, 0) ∈M.

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 9

Hence v2u1 − v1u2 is a syzygy of (g1, . . . , gm). Its leading term is

T = max(T1lm(v2), T2lm(v1)),

provided that T1lm(v2) 6= T2lm(v1), or T1lm(v2) = T2lm(v1) but lc(v1) 6= lc(v2).
When T1lm(v2) = T2lm(v1) and lc(v1) = lc(v2), the leading terms in v2(u1, v1) and
v1(u2, v2) cancel each other. In that case, we don’t know the leading term of the
syzygy, so we just ignore such a syzygy. In all other cases, our algorithm will add T
to the list H. The benefit of H is in detecting useless reductions. That is, whenever
a J-pair has a signature that is divisible by a term in H, it is always eventually
super top-reducible and hence discarded, thus saving time.

The algorithm is described more precisely in Figure 1 below. As mentioned
above, we use H to record leading terms of syzygies. In addition to H, our algorithm
uses two more lists to store the pairs (T1, v1), (T2, v2), . . . , (Tk, vk) with vi 6= 0 for
1 ≤ i ≤ k. This list will be stored as

U = [T1, T2, . . . , Tk], V = [v1, v2, . . . , vk].

Then [U, V] represents the whole list (T1, v1), (T2, v2), . . . , (Tk, vk).

Theorem 3. If the algorithm in Figure 1 terminates, then V is a Gröbner basis for
I = 〈g1, g2, . . . , gm〉 and H is a Gröbner basis for the leading terms of the syzygy
module of (g1, g2, . . . , gm).

Proof. To prove the correctness of the algorithm, we need to show the following:

(i) One can delete J-pairs in Steps 0, 3a, and 3b whose signatures are divisible
by lm(u), where u ∈ H.

(ii) A pair that is eventually super top-reducible by an intermediate basis is
always eventually super top-reducible by the final basis.

(iii) One just needs to keep one J-pair for each signature, which follows directly
from Theorem 2.

Our current basis consists of pairs in (U, V) and (H, 0). For (i), let (u, v) be any
pair whose signature lm(u) is divisible by lm(u′) for some u′ ∈ H. Then (u, v) is
top-reducible by (u′, 0). Any regular top-reduction of (u, v) won’t change lm(u),
so the pair obtained from (u, v) by any sequence of regular top-reductions will be
super top-reducible by (u′, 0). Hence (u, v) is eventual super top-reducible by the
current basis. This means that we don’t need to reduce (u, v), and so we simply
discard it.

To see (ii), suppose the final Gröbner basis computed for M is

(11) (u1, v1), . . . , (uk, vk),

while at any intermediate step, we only know

(12) (u1, v1), . . . , (up, vp)

for some p < k. Suppose that the smallest J-pair from JP is (t, i) (i.e., t(ui, vi)). If
t(ui, vi) is eventually super top-reducible by (12), then t(ui, vi) remains eventually
super top-reducible by (11), as all (uj , vj), j > p, have strictly larger signature
than t(ui, vi). If t(ui, vi) is not eventually super top-reducible by (12), then the
basis (12) is augmented by a new pair (up+1, vp+1), which is obtained from t(ui, vi)
via regular top-reductions by (12). Hence the J-pair t(ui, vi) is eventually super
top-reducible by the new basis

(13) (u1, v1), . . . , (up, vp), (up+1, vp+1).

10 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

Algorithm for computing Gröbner bases
Input: g1, . . . , gm ∈ R = F[x1, . . . , xn],

a term order for R, and a term order on Rm

Output: A Gröbner basis for I = 〈g1, . . . , gm〉,
and a Gröbner basis for lm(H), the leading terms of the syzygy module

Variables: U a list of terms Ti = lm(ui), representing signatures for (ui, vi) ∈M ,
V a list of polynomials for vi for (ui, vi) ∈M ,
H a list for lm(u) were u ∈ Rm is a syzygy found so far,
JP a list of pairs (t, i), where t is a monomial so that t(ui, vi)

is the J-pair of (ui, vi) and (uj , vj) for some j 6= i.
We shall refer (t, i) as a J-pair of (ui, vi) and (uj , vj).

Step 0. U = [E1, . . . ,Em], and V = [g1, . . . , gm].
Find the leading terms of the principle syzygies gjEi − giEj for

1 ≤ i < j ≤ m, and add them in H.
Compute all the J-pairs of (E1, g1), . . . , (Em, gm) storing into JP all

such J-pairs whose signatures are not reducible by H (storing only
one J-pair for each distinct signature).

Step 1. Take a minimal (in signature) pair (t, i) from JP , and delete it from JP .
Step 2. Reduce the pair t(Ti, vi) repeatedly by the pairs in (U, V), using regular

top-reductions until it is not regular top-reducible, say to get (T, v).
Step 3a. If v = 0, then append T to H, and delete every J-pair (t, j) in JP whose

signature tTj is divisible by T .
Step 3b. If v 6= 0 and (T, v) is not super top-reducible by (U, V), then

i) Append T to U and v to V ,
ii) Form new J-pairs of (T, v) and (Tj , vj), 1 ≤ j ≤ |U | − 1, and
iii) Insert into JP all such J-pairs whose signatures are not reducible by

H (storing only one J-pair for each distinct signature).
iv) Add the leading terms of the principle syzygies, vTj − vjT for 1 ≤

j ≤ |U | − 1, to H.

Step 4. While JP is not empty, go to step 1.
Return: V and H.

Figure 1

Note that (up+1, vp+1) has the same signature as the J-pair t(ui, vi). All new
J-pairs formed using (up+1, vp+1) will have strictly greater signature than that
of (up+1, vp+1) (we never keep any future J-pair that has the same signature as
(up+1, vp+1)). Hence (up+1, vp+1) can not be top-reducible by any pair (uj , vj),
j > p + 1, so the J-pair t(ui, vi) remains eventually super top-reducible by (11).
Therefore, any pair that is eventually super top-reducible by our current basis
remains so by the final basis. �

Remarks on finite termination and Gröbner bases for the syzygy mod-
ule. Presently, we have been unable to show that the algorithm actually terminates
in finitely many steps. We believe that it has finite termination, but leave its proof
as an open problem. We also mention that we believe that the proof of finite ter-
mination of F5 given in [11] is not correct. The proof of finite termination seems
to be still open.

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 11

We next explain that once we have U, V and H from the above algorithm, we can
compute a Gröbner basis for the syzygy module as follows. For the first m terms of
U and V (i.e., (Ei, gi), 1 ≤ i ≤ m) are already in M . Other terms are of the form
(Ti, vi) where Ti = lm(ui) for some ui ∈ Rm such that (ui, vi) ∈M . We need to find
these ui. Suppose that (U, V) is sorted so that the terms Ti are in increasing order
(as done by the above algorithm). Suppose (Ti, vi) is the smallest pair in (U, V) that
is not in M . Find a pair (uj , vj) from (U, V) that is already in M (i.e. j < i) and
a monomial t so that T = t lm(uj) (take j so that t is minimum), perform regular
top-reductions of t(uj , vj) by (U, V) using only those pairs that are in M (both
parts of the pair are updated as in Section 2) until it’s not regular top-reducible,
say to get a pair (u, v). Then (u, v) must be super top-reducible by (Ti, vi), hence
we replace (Ti, vi) by (u, v) in (U, V), and continue with the next smallest (Tj , vj)
(j > i) if any that is not in M . After all Ti’s in U are processed, (U, V) represents
a list (u1, v1), (u2, v2), . . . , (um, vm) so that lm(ui) = Ti and (ui, vi) ∈ M for all i.
To get a Gröbner basis for the syzygy module, just do the following. For each term
T in H, first find a minimum monomial t so that there is a pair (ui, vi) in (U, V) so
that T = t lm(ui), next perform regular top-reductions of t(ui, vi) by (U, V) until
the v-part is zero, then the u-part is a syzygy with leading term equal to T . All
these syzygies form a Gröbner basis for the syzygy module. This gives an algorithm
for computing a Gröbner basis for syzygy module under any term order.

Term Orders. Now we discuss choices of term orders. We use ≺1 to represent a
term ordering on R and ≺2 to represent a term ordering on Rm. While computing
Gröbner bases for both 〈g1, . . . , gm〉 and H, one should set ≺1 and ≺2 to the
appropriate term orderings for the Gröbner bases desired. Often, however, the
Gröbner basis for H is not needed. Then we only need the leading terms of H
to speed up the computation of 〈g1, . . . , gm〉. In this case, we have tremendous
freedom in the choice of ≺2.

There are many ways that we can construct a term ordering on Rm. We consider
four extreme cases below. Let ≺ be some term order on R. We extend ≺ to Rm as
follows.

(POT) The first is called position over term ordering (POT). We say that xαEi ≺
xβEj if i < j or i = j and xα ≺ xβ .

(TOP) The second is the term over position ordering (TOP). We say that xαEi ≺
xβEj if xα ≺ xβ or xα = xβ and i < j.

(g1) Next is the g-weighted degree followed by TOP. We say that xαEi ≺ xβEj

if deg(xαgi) < deg(xβgj) or deg(xαgi) = deg(xβgj) and xαEi ≺top xβEj

where deg is for total degree.
(g2) Finally, we have g-weighted ≺ followed by POT. We say that xαEi ≺ xβEj

if lm(xαgi) ≺ lm(xβgj) or lm(xαgi) = lm(xβgj) and xαEi ≺pot xβEj .

We remark that, under the POT order, our new algorithm corresponds with the
G2V algorithm presented in [10]. The reason is that this new algorithm always first
picks J-pairs with signatures containing E1, then those with E2, etc. This means
that it computes Gröbner bases for 〈g1〉, 〈g1, g2〉, . . ., 〈g1, g2, . . . , gm〉, just like G2V
and F5. The only difference is that the intermediate bases may not be reduced and
non-leading terms are not reduced as in the computing of normal forms. Because of
this fact and other implementation choices, the running times under POT reported
here are much slower than those in [10].

12 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

Test Case (#generators) F5 F5C G2V

Katsura5 (22) 1.48 0.93 0.36
Katsura6 (41) 2.79 2.34 0.37
Katsura7 (74) 30.27 22.76 4.64
Katsura8 (143) 290.97 177.74 29.88

Schrans-Troost (128) 1180.08 299.65 21.34
F633 (76) 30.93 29.87 2.06

Cyclic6 (99) 28.44 22.06 5.65
Cyclic7 (443) 4591.20 2284.05 732.33

Table 1. Run-times in seconds comparing F5, F5C and G2V
(GVW under POT ordering) for various test cases in Singular 3110
on an Intel Core 2 Quad 2.66 GHz. This table is reproduced from
[10].

Another remark is that our algorithm under the g1 order corresponds with an
improved version of the XL algorithm [4]. In the XL algorithm, one performs row
reductions on a matrix whose rows correspond to all polynomials xαgi, 1 ≤ i ≤ m,
with total degree of xαgi smaller than some bound. Our algorithm basically works
with only some of those rows that correspond to J-signatures. So our algorithm
needs much less storage.

Comparison. For ease of exposition, we refer to our algorithm as GVW. We
implemented GVW in Singular CAS and C++ so that 〈g1, . . . , gm〉 is computed in
one-shot, that is, non-incrementally. The Singular implementation is very similar to
the that provided in [10] except that it no longer uses Singular’s “reduce” function.
Without this use of Singular’s kernel, GVW and G2V are not very comparable in
terms of runtimes. For the exact same reason, we did not compare GVW to F5 or
F5C as we did in [10] (see Table 1, reproduced here for comparison purpose). But
as mentioned earlier, GVW under POT is the G2V algorithm.

Just as in [10], various benchmark examples (from [6]) were run for comparison.
We collected data from each example under each term ordering for comparison.
Tables 2 and 3 list the runtimes in seconds of GVW for each of the four term order-
ings. One might notice that the Singular runtimes are surprisingly large (especially
compared to G2V in [10]), but that is most likely the result of relying on Singular’s
kernel routines less. In examining the timings, we find that g2 seems to be a clear
winner among the four term orders.

A more computer independent measure would be a count of J-pairs processed
and the number of extraneous generators produced. Table 4 lists the total number
of J-pairs processed for each term ordering. It’s analogous to counting the number
of S-pairs processed in F5 or Buchberger’s algorithm. As with the timings, g2
seems to be the most efficient. Finally, Table 5 lists the size of the Gröbner bases
produced by GVW with each term ordering. These are the Gröbner bases produced
by the algorithm before any interreduction occurs to produce a reduced Gröbner
basis. We believe this measure to be significant since fewer extraneous generators
means quicker reductions. Again, we see that g2 produces less redundancy than
the other orderings.

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 13

Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 1.12 1.01 1.17 0.70
Katsura6 (41) 1.60 3.25 3.76 1.92
Katsura7 (74) 24.03 18.00 19.94 9.22
Katsura8 (143) 167.40 107.97 115.89 52.45

Schrans-Troost (128) 80.08 62.19 66.34 66.26
F633 (76) 10.57 41.90 38.43 11.13

Cyclic 6 (99) 27.09 1043.36 1129.20 20.63
Cyclic 7 (443) 4194.24 - - 1835.63

Table 2. Runtime in seconds using Singular 3110 on an Intel Core
2 Quad 2.66 GHz processor

Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 0.00 0.01 0.01 0.01
Katsura6 (41) 0.02 0.04 0.04 0.04
Katsura7 (74) 0.34 0.37 0.36 0.37
Katsura8 (143) 3.26 2.92 2.97 3.16

Schrans-Troost (128) 1.78 3.65 3.64 3.81
F633 (76) 0.08 0.44 0.36 0.09

Cyclic 6 (99) 0.34 3.30 3.24 0.15
Cyclic 7 (443) 139.56 21417.40 20800.60 35.75
Cyclic 8 (1182) 107684.35 - - 5737.41

Table 3. Runtime in seconds using our C++ implementation on
an Intel Core 2 Quad 2.66 GHz processor

Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 64 61 61 36
Katsura6 (41) 72 90 90 50
Katsura7 (74) 216 181 181 93
Katsura8 (143) 439 359 359 182

Schrans-Troost (128) 475 204 204 214
F633 (76) 313 378 346 276

Cyclic 6 (99) 441 4388 4388 368
Cyclic 7 (443) 3562 69502 69502 2375
Cyclic 8 (1182) 37757 - - 12245

Table 4. A count of the J-pairs processed

One might make the observation that in [10] (or Table 1), G2V outperformed F5
and F5C by runtimes of 2 to 10 times, while with the present algorithm, GVW un-
der the g2 ordering outperforms G2V (GVW under the POT ordering) by another
factor of 2 to 10 times. This comparison shows that if GVW under g2 were imple-
mented comparably to F5 or F5C, it would compute Gröbner bases around 4 to 20
times faster.

14 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 67 64 64 27
Katsura6 (41) 75 91 91 46
Katsura7 (74) 224 175 175 80
Katsura8 (143) 448 343 343 151

Schrans-Troost (128) 402 137 137 136
F633 (76) 138 185 171 109

Cyclic 6 (99) 160 1189 1189 193
Cyclic 7 (443) 755 9237 9237 852
Cyclic 8 (1182) 3872 - - 3647
Table 5. Size of GB before any interreduction

Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 1.26 1.26 1.26 0.75
Katsura6 (41) 1.26 1.76 1.76 1.26
Katsura7 (74) 6.28 5.77 5.77 2.76
Katsura8 (143) 25.83 22.81 22.84 8.78

Schrans-Troost (128) 39.82 6.28 6.28 6.28
F633 (76) 2.28 4.28 3.28 1.78

Cyclic 6 (99) 1.28 13.50 13.56 1.79
Cyclic 7 (443) 22.24 - - 26.62

Table 6. Maximal amount of memory used (MiB) by Singular

4. Algorithm for Quotient Rings and Modules

Quotient Rings. Let F be any field and R = F[x1, . . . , xn] be a polynomial
ring. Let J be an ideal of R with Gröbner basis G = {f1, . . . , fk}. Suppose I is
an ideal of R/J generated by {g1, . . . , gm} where each gi is already in normal form
with respect to G. We wish to compute a Gröbner basis for I = 〈g1, . . . , gm〉, and
the (g1, . . . , gm)-syzygy module.

We represent polynomials in R/J in normal form modulo G. This means that,
for any g ∈ R, we have

(14) g ≡
∑̀
i=1

cix
αi (mod G)

where no term xαi is divisible by any leading term of G. This expression can be
obtained from g by long division via G. When g ∈ R is viewed as a polynomial
in R/J , the leading term of g is the maximal xαi that appears in the normal form
(14) of g. So the leading term of g is never divisible by any leading term of G.

We begin by defining a Gröbner basis for an ideal I ⊂ R/J . We say that a
generating set {g1, . . . , gm} ⊂ R/J is a Gröbner basis for I = 〈g1, . . . , gm〉 if for any
h ∈ I, the leading monomial of h is divisible by the leading monomial of one of the
generators, that is

lm(gi) | lm (h) for some 1 ≤ i ≤ m.

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 15

In other words, if {g1, . . . , gm} is a Gröbner basis for I ⊂ R/J and {f1, . . . , fk}
is a Gröbner basis for J ⊂ R, then {g1, . . . , gm, f1, . . . , fk} is a Gröbner basis for
〈g1, . . . , gm, f1, . . . , fk〉 ⊂ R.

The syzygy module for g = (g1, . . . , gm) ∈ (R/J)m is defined as

H = {(u1, . . . , um) ∈ (R/J)m : u1g1 + · · ·+ umgm = 0 in R/J}.

If viewed in the original ring R, every (g1, . . . , gm)-syzygy in (R/J)m can be ex-
tended to an (g1, . . . , gm, f1, . . . , fk)-syzygy in Rm+k, which may vary depending on
how u1g1 + · · ·+ umgm is reduced to 0 by G. In our computation, we only need to
store the leading term of (u1, . . . , um) ∈ H where no terms in the ui’s are divisible
by the leading term of G.

Figure 2 describes a slight modification to the GVW algorithm that produces a
Gröbner basis for 〈g1, . . . , gm〉 ⊂ R/J and a Gröbner basis for the leading terms
of the syzygy module H, which can be used to calculate an actual Gröbner basis
for H. Figure 2 needs little explanation beyond Figure 1. By saying a J-signature
xαEi “is not reducible by G or H”, we mean the following. Not being reducible
by G means that for any xβ ∈ lm(G), we require that xβ - xα. While not being
reducible by H means for any xβEj ∈ H, then either i 6= j or xβ - xα.

This version of GVW can be used to compute Gröbner incrementally, each time
adding m polynomials. For example, to compute a Gröbner basis for an ideal I =
〈g1, . . . , gt〉 ⊂ R, one can first compute a Gröbner basis G for J = 〈g1, . . . , gk〉 ⊂ R
where k < t. Then compute a Gröbner basis G1 for 〈gk+1, . . . , gt〉 in the quotient
ring R/J . Then G∪G1 is a Gröbner basis for I. And in the process, G is used in the
reduction of many polynomials (e.g., the v part of every J-pair). By interpreting
any polynomial in R/J as having already been reduced to normal form modulo
G, we keep the number of terms in each polynomial to a minimum, thus reducing
computational and storage requirements. Also, as the choice for k and m are
arbitrary, one can design an algorithm that can compute Gröbner bases in one-
shot, incrementally, or some hybrid of the two. This provides a flexible strategy for
computing Gröbner bases for large systems of polynomials.

Modules. Let F be a field and R = F[x1, . . . , xn] be a polynomial ring. Let
g1, . . . ,gm be elements in Rs. We define an R-linear operator T : Rm → Rs,
uniquely determined by g1, . . . ,gm, given by

(f1, . . . , fm) 7−→ (f1, . . . , fm)

g1

g2

...
gm

 .
We wish to determine the image space and kernel of T . Note that the image is the
R-submodule I generated by {g1, . . . ,gm} in Rs while the kernel of T corresponds
to the (g1, . . . ,gm)-syzygy module H in Rm.

We fix term orders ≺1 on Rs and ≺2 on Rm, and let u = (f1, . . . , fm) ∈ Rm and
v = T (u) ∈ Rs. We redefine M as an R-submodule of Rm ×Rs so that

M = {(u,v) ∈ Rm ×Rs : T (u) = v}.

We continue to use Ei, 1 ≤ i ≤ m as the ith unit vector in Rm, but to avoid
confusion we use Fj , 1 ≤ j ≤ s as the jth unit vector in Rs. And now, the

16 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

Algorithm for computing Gröbner bases in quotient rings
Input: G = [f1, . . . , fk], a Gröbner basis for an ideal J ⊂ R, g1, . . . , gm polyno-

mials in R in normal form modulo G, and term orders for R and Rm.
Output: A Gröbner basis for 〈g1, . . . , gm〉 ∈ R/J and a Gröbner basis for lm(H),

the leading terms of the syzygy module.
Variables: U a list of terms Ti = lm(ui), representing signatures for (ui, vi) ∈M .

V a list of polynomials for vi for (ui, vi) ∈M ;
H a list for lm(u) where u ∈ Rm is a syzygy found so far,
JP a list of pairs (t, i), where t is a monomial so that t(ui, vi)

is a J-pair of (ui, vi) and (uj , vj) for some j 6= i.
We shall refer (t, i) as the J-pair of (ui, vi) and (uj , vj).

Step 0. U = [0, . . . ,0] with length k, and V = [f1, . . . , fk]
(so that (ui, vi) = (0, fi), 1 ≤ i ≤ k);

JP = [] and H = [], empty lists;
Add Ei to U and gi to V for 1 ≤ i ≤ m (so that (uk+i, vk+i) = (Ei, gi));
Find the leading terms of the principle syzygies gjEi − giEj for

1 ≤ i < j ≤ m, and add them to H;
For each 1 ≤ i ≤ m, and 1 ≤ j < k + i

compute the J-pair of the two pairs (uk+i, vk+i) = (Ei, gi) and
(uj , vj), inserting it into JP whenever the J-signature is not re-
ducible reducible by G or H (storing only one J-pair for each distinct
J-signature).

Step 1. Take a minimal (in signature) pair (t, i) from JP , and delete it from JP .
Step 2. Reduce the pair t(Ti, vi) repeatedly by the pairs in (U, V), using regular

top-reductions, until it is not regular top-reducible, say to get (T, v)
Step 3a. If v = 0, then append T to H and delete every J-pair (t, j) in JP

whose signature tTj is divisible by T .
Step 3b. If v 6= 0 and (T, v) is not super top-reducible by (U, V), then

i) append T to U and v to V ,
ii) form new J-pairs of (T, v) and (Tj , vj), 1 ≤ j ≤ |U | − 1, and
iii) insert into JP all such J-pairs whose signatures are not reducible by

G or H (storing only one J-pair for each distinct J-signature).
iv) Add the leading terms of the principle syzygies vTj − vjT for 1 ≤

j ≤ |U | − 1 to H.

Step 4. While JP is not empty, go to step 1.
Return: V and H.

Figure 2. the GVW algorithm applied to quotient rings

R-module M is generated by

(E1,g1), (E2,g2), . . . , (Em,gm).

By now it should be clear that the GVW algorithm is a special case of this
situation where s = 1 and is immediately applicable. The only differences that
arise in this general case are in dealing with the leading monomials of the v part.
Suppose (u1,v1) and (u2,v2) are two pairs in Rm × Rs, with xαFj = lm(v1) and
xβFk = lm(v2). We consider (u2,v2) as a candidate to top-reduce (u1,v1) only if
j = k. Also, we only calculate the J-pair between (u1,v1) and (u2,v2) if j = k. In

A NEW ALGORITHM FOR COMPUTING GRÖBNER BASES 17

this case, assuming v1,v2 6= 0, we have

t = lcm(xα, xβ), t1 =
t

xα
, t2 =

t

xβ
,

and if tiui = max {t1u1, t2u2}, then ti(ui,vi) is a J-pair. Everything else proceeds
as before.

5. Conclusions

We have presented a simple and fast algorithm for computing Gröbner bases
for ideals and modules (including syzygy modules). Our algorithm is more flexible
than F5 and our previous algorithm G2V [10] in that we allow a Gröbner basis to be
computed incrementally, in one-shot, or a hybrid of the two. It is in this flexibility
that we achieve an efficiency boost over G2V as some monomial orderings perform
better than others.

In terms of simplicity, GVW is as simple as Buchberger’s algorithm making im-
plementation an easy matter. In terms of speed, we have shown that GVW derives
its efficiency from the use of the syzygy module in preventing future reductions
to zero and allowing GVW to outperform other known algorithms by at least a
factor of 4 to 20 times. We believe that F4 style fast reductions are possible within
the context of our algorithm, but the question remains as to how to implement it
efficiently.

References

[1] Buchberger, B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes

nach einem nulldimensionalen Polynomideal. PhD thesis, Leopold-Franzens University, 1965.
[2] Buchberger, B. A criterion for detecting unnecessary reductions in the construction of

Gröbner bases. In EUROSAM ’79: Proceedings of the International Symposiumon on Sym-
bolic and Algebraic Computation (London, UK, 1979), Springer-Verlag, pp. 3–21.

[3] Buchberger, B. Gröbner-Bases: An Algorithmic Method in Polynomial Ideal Theory. Reidel

Publishing Company, Dodrecht - Boston - Lancaster, 1985.
[4] Courtois, N., Klimov, E., Patarin, J., and Shamir, A. Efficient algorithms for solving

overdefined systems of multivariate polynomial equations. In In Advances in Cryptology,

Eurocrypt2000, LNCS 1807 (2000), Springer-Verlag, pp. 392–407.
[5] Ding, J., Buchmann, J., Mohamed, M. S. E., Mohamed, W. S. A. E., and Weinmann, R.-

P. MutantXL. In First International Conference on Symbolic Computation and Cryptography

(2008), Springer-Verlag.
[6] Eder, C., and Perry, J. F5C: A variant of Faugère’s F5 algorithm with reduced Gröbner

bases. Journal of Symbolic Computation 45, 12 (2010), 1442 – 1458. MEGA’2009.
[7] Faugère, J. C. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure

and Applied Algebra 139, 1-3 (1999), 61 – 88.

[8] Faugère, J. C. A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5). In ISSAC ’02: Proceedings of the 2002 international symposium on Symbolic and

algebraic computation (New York, NY, USA, 2002), ACM, pp. 75–83.

[9] Faugère, J. C., and Joux, A. Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using gröbner bases. In In Advances in Cryptology CRYPTO 2003 (2003),

Springer, pp. 44–60.

[10] Gao, S., Guan, Y., and Volny IV, F. A new incremental algorithm for computing Gröbner
bases. In ISSAC’10: Proceedings of the 2010 International Symposium on Symbolic and

Algebraic Computation (Munich, Germany, 2010), ACM, pp. 13–19.

[11] Hashemi, A., and Ars, G. Extended F5 criteria. Journal of Symbolic Computation 45, 12
(2010), 1330 – 1340. MEGA’2009.

[12] Lazard, D. Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equa-

tions. In EUROCAL ’83: Proceedings of the European Computer Algebra Conference on
Computer Algebra (London, UK, 1983), Springer-Verlag, pp. 146–156.

18 SHUHONG GAO, FRANK VOLNY IV, AND MINGSHENG WANG

[13] Möller, H. M., Mora, T., and Traverso, C. Gröbner bases computation using syzygies. In

ISSAC ’92: Papers from the international symposium on Symbolic and algebraic computation

(New York, NY, USA, 1992), ACM, pp. 320–328.
[14] Patarin, J. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new

families of asymmetric algorithms. In EUROCRYPT’96: Proceedings of the 15th annual

international conference on Theory and application of cryptographic techniques (Berlin, Hei-
delberg, 1996), Springer-Verlag, pp. 33–48.

[15] Sun, Y., and Wang, D. A new proof of the F5 algorithm, December 2009.

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975
USA E-mail address: sgao@clemson.edu

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975

USA E-mail address: fvolny@clemson.edu

Information Security Lab, Institute of Software, Chinese Academy of Sciences, P.O.

Box 8718, Beijing 100080, P. R. China E-mail address: mingsheng wang@yahoo.com.cn

