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Abstract: Magic square is a complex and hard permutation problem of combinatorial mathematics with a long 
history, previous research work primarily focuses on how to construct some magic squares with special 
mathematic properties, and theoretical investigations on their existence, general construction methods as well as 
count problem. Not until this paper appears, did there ever exist any technically practical applications of magic 
squares. A lot of majestic mathematic properties are to be found for magic squares. This paper gives a list of new 
properties in magic squares we have recently discovered, such as the unfinished magic squares, the modular sum 
separation of magic squares, the magic square shuffling, and the magic square encryption as well. All problems 
listed in this paper are new hard problems in combinatorial mathematics, they are both practically and 
theoretically significant. Probably, these new discoveries in magic square will greatly change the direction of 
research on magic squares.    
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1 Introduction  

Magic squares have been a popular topic in recreational mathematics for generations. Typically, a magic square 
is an arrangement of numbers in a square matrix so that the numbers in every column, row and diagonal of the 
matrix add up to the same value. The standard or normal magic square is defined as an arrangement of the first n2 
consecutive natural numbers into a square matrix so that the sum of the numbers in each column, row and 
diagonal is the same. This magic constant is determined by n and equal to n(n2+1)/2. The number n, i.e. the 
number of cells on each side of a magic square, is referred to as the order of the magic square.  

Magic squares have a rich history derived from a chinese legend He-Tu and Lo-Shu around 2200 B.C. The 
oldest magic square is the Lo-Shu, which is purported to be carried by a tortoise from Lo river on its shell. Magic 
squares in China have been traditionally used in various areas of study, including astrology, divination, and the 
interpretation of philosophy, natural phenomena, and human behavior. Magic squares also permeated other areas 
of chinese culture. Magic squares most likely traveled from China to India, then to the Arab countries. From the 
Arab countries, magic squares journeyed to Europe, then to Japan. Magic squares in India served multiple 
purposes other than the dissemination of mathematical knowledge. During the seventeenth century, serious 
consideration was given to the study of magic squares. In 1687-88, a French aristocrat, Antoine de la Loubere, 
studied the mathematical theory of constructing magic squares. In 1686, Adamas Kochansky extended magic 
squares to three dimensions. During the latter part of the nineteenth century, mathematicians applied the squares 
to problems in probability and analysis. For example, attractive patterns may be obtained by connecting 
consecutive numbers in some special classes of magic squares. Today, magic squares are studied in relation to 
factor analysis, combinatorial mathematics, matrices, modular arithmetic, and geometry. The magic, however, still 
remains in magic squares.  In the times of information technology, magic squares have found many practical 
applications in artificial intelligence, graph theory, game theory, experiment designs, industrial arts, electronic 
circuits and location analytics etc., and probably will extend to more innovated applications.  

Though it is an unsolved open problem to exactly count the number of magic squares of order greater than 5, 
researchers find the number of magic squares is very huge, and increases exponentially with the order. By 
statistical estimation, the number of magic squares of order 6 reaches around 1019, which is already an astronomic 
number, thus the magic squares of order 6 will be inexhaustive [1,2]. Although there exist some deterministic and 
predefined methods of magic square construction, they can not be used to construct magic squares in an arbitrary 
way[3,4,5]. No researches have been made on the distribution of magic squares in the permutation space ( ) of 
the consecutive natural numbers from 1 to . If this distribution is evenly and if we take magic square 
construction as a search for a solution that meets the mathematic condition of magic square, is there thus a search 
algorithm which makes evenly random sampling in the whole permutation space ( )? The author has given a 
positive answer to this question, and proposed a fast construction algorithm based on evolutionary computation, 
which can randomly generate magic squares of any order. 
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The number of magic squares is extremely huge, even the number of magic squares of order 6 is an astronomic 
number. Can magic square be used to be a fundamental mathematic problem of cryptology, formulate a new 
encryption principle and further develop some new encryption methods? As a result, we have found three 
fundamental mathematic problems, i.e. “how to fill out an unfinished magic square”, “how to separate the 
modular sum of magic squares”, and “how to restore a shuffled magic square”. No general efficient algorithms 
exist for these three mathematic problems, and they make compensations for each other and formulate a new 
mathematic principle for a two-way dynamic identity authentication, which can be widely applied in many fields, 
such as network identification and authentication, electronic tag, access control, key management and assignment, 
micro-payment, digital anti-fake technique and etc..  

2 The Fast Evolutionary Algorithm for Magic Squares  
Researches show that the number of magic squares is too huge to imagine. Even excluding those isomorphic 

magic squares obtained by rotation and reflection, the number of distinct magic squares of order 1,2,3,4,5 are 1, 0, 
1, 880, 275305224, respectively. Pinn and Wieczerkowski (1998) estimated the number of magic squares of order 
6 to be （1.7745±0.0016） ╳ 1019 using Monte Carlo simulation and methods from statistical mechanics[2], but 
the exact number is still unknown. Further statistical analysis reveals that the number of magic squares increases 
exponentially with the order, but this does not mean that, higher the order of magic square is, harder the 
construction of the magic square will be. By statistic analysis, however, the density of magic squares in the 
possible permutations of the first n2 natural numbers decreases by around one million times when the order of 
magic square increases by one, meaning that the difficulty of searching a magic square increases exponentially 
with the order. According to this rule, it can be statistically derived that the density and number of magic squares 
of order 7 is around 10-29 and 1033, the density and number of magic squares of order 8 is around 10-35 and 1054, 
the density and number of magic squares of order 9 is around 10-41 and 1079, and the density and number of magic 
squares of order 10 is around 10-47 and 10110 …… 

There exist many conventional construction methods that can generate magic squares only by deterministic 
rules. Most of the methods including the Siamese method, the “lozenge” method, the “LUX” method and etc., 
deterministically compose a magic square directly by a specific procedure, without any randomness involved. 
These deterministic methods cannot construct any other possible magic squares, say nothing of composing special 
magic squares with additional properties. A successful construction of some special classes of magic squares like 
panmagic squares, inlaid magic squares and trebly magic squares, is usually a painstaking grinding of someone’s 
wisdom and willpower, which sometimes use up one’s all life. Fundamentally differing from the deterministic 
construction methods, it will become a problem of combinatorial optimization if we take the magic square 
construction process as stochastic search for a solution in the permutation space of the first n2 consecutive natural 
numbers.  It deserves a deep study on carefully designing a good optimization algorithm so that the “shut” 
probability for any magic square is statistically the same. The author, xie tao, having worked for years along this 
direction, finally invented a fast probabilistic construction algorithm based on evolutionary computations[6]. 

The probabilistic construction algorithm of magic square based on evolutionary computations can quickly and 
randomly generate magic squares of any order. Evolutionary computations are a population-based stochastic 
learning method inspired from Darwin’s evolution mechanism of species, i.e. the natural selection theory, which 
explains the evolution of species as a process of surviving the fittest by eliminating the unfit individuals[7]. 
Evolutionary computations are often used as an adaptive global search and optimization method, if the initial 
population is set in a uniformly random way, and if all the genetic operations are in a uniformly random 
distribution, then it will be a uniformly random sampling process to search the solution in a uniformly distributed 
space. Using 2.4GHZ/256M Pentium IV PC, this algorithm can generate around 1500 magic squares of order 7 or 
1000 magic squares of order 10 in one minute, or other magic squares of high order in decreased speed. The 
magic square is generated partly depending on the initialized population, different initialized population will 
produce different magic square, each magic square obtained by the algorithm can be taken as the result of a 
uniformly random sampling process in the magic square space. Any magic square in the whole space can be shut 
in statistically the same probability in each stochastic search process, but the magic square actually shut in each 
process is completely random and can not be predicted. In addition, the probability of shutting the same magic 
square in two different processes is nearly zero. 

3 New Magic Square Problems  
Based on the probabilistic evolutionary algorithm of magic square construction, we have discovered some new 

fundamental problems in magic squares, respectively they are the unfinished magic square problem, the modular 
sum separation problem of magic squares, the magic square shuffling problem, and the magic square encryption 



problem as well [8]. These are new hard problems in combinatorics, no polynomial time algorithms exist or can 
be found in the predictable future.  

3.1 How to fill out an unfinished magic square 

magic square M 
35 31 8 3 5 29 

23 9 27 12 6 34 

19 21 11 25 33 2 

15 16 13 28 7 32 

1 20 30 26 24 10 

18 14 22 17 36 4 

half magic square M1

35 31 3

27 6 34

19 21 11 2

15 13 7

1 26 24 10

22 17

half magic square M2

 8  5 29 

23 9  12   

  25 33  

16  28  32 

20 30    

18 14   36 4 
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Fig1：complementary half magic squares 

If a randomly constructed magic square M is randomly and evenly separated into two complementary half 
magic squares M1 and M2, there exists no general efficient (polynomial time) algorithm by which one half M1 can 
be derived from the other half M2, so that the combined matrix be a magic square, and vice versa. We call this the 
unfinished magic square problem, which is an open mathematic problem, as shown in Fig 1. In general, if one half 
magic square M1 is used as a lock, the other half M2 can be its corresponding key, and vice versa. The key can not 
be computationally derived from its lock, and the lock can not be computationally derived from its key. As for 
magic square of order 7, 1034 magic square based digital locks can be constructed. For example, when we use the 
brute force attacks, the time complexity will reach 25!≈1.55×1025 even if we know the “lock”; when we use the 
associated system of equation, around 9 numbers are undetermined, and what is more is that the number of 
undetermined numbers increases very fast with the order of magic square, thus the computational complexity to 
fill a half magic square increases fast with the order of magic square. 

3.2 How to Separate the Modular Sum of Magic Squares  

If two magic squares of order  are summed modulo  element by element to get a natural number 
matrix S within , it is computationally hard to decide whether the matrix S is the addition modulo  
of two magic squares. In general, magic squares of order  are summed modulo  element by 

element to get a natural number matrix S within , it is computationally hard to decide whether the matrix S 
is the addition modulo  of  magic squares. We call this the modular sum separation problem of magic 
squares. This principle can be applied in many fields, such as key management, identification, multi-party 
identification, micro-payment and digital anti-fake technique etc., it is high in security and efficiency, easy to be 
implemented in integrated logic circuits. As shown in Fig.2, for example, it is computationally hard to separate the 
matrix in the right into the two magic squares in the left, so that the matrix in the right be equal to the modular 
sum of the two magic squares in the left. 

n 12 +n
12 +n 12 +n

( 2≥k n 12 +n
12 +n
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magic square 1 

35 31 8 3 5 29 
magic square 2 

21 2 33 15 35 5

magic square sum 
19 33 4 18 3 34  

3 

23 9 27 12 6 34 

19 21 11 25 33 2 

15 16 13 28 7 32 

1 20 30 26 24 10 

18 14 22 17 36 4 

12 14 25 4 22 34

29 16 10 32 17 7

1 36 19 24 23 8

28 13 6 27 11 26

20 30 18 9 3 31

35 23 15 16 28 31  
11 0 21 20 13 9 

 16 15 32 15 30 3 

29 33 36 16 35 36  
1 7 3 26 2 35 

   

Fig2：Modular Sum of Magic Squares 

Magic square signature can be directly derived from the modular summation principle of magic squares. 
Construct a magic square as the private signature key, any randomly generated magic square can be summed  
modulo  with the signature magic square to get a matrix, where  is the order of magic squares. Then, 
the modular difference between the matrix and the signature magic square must be a magic square. By this way, a 
matrix can be easily proved whether it is produced by the verifier who possesses the signature magic square, since 

12 +n n



any fabricated matrices without knowing the signature magic square can not pass the modular difference 
verification. Particularly, the signed matrix (modular sum matrix) is unique, since there are no two different magic 
squares, whose signed matrixes with the same signature magic square are the same.  

Based on the magic square signature, the unfinished magic square problem can be extended to an unfinished 
magic square signature problem. If an almost half number of elements are deleted from a signed magic square, it 
is computationally very hard to find a proper permutation of the deleted elements, so that the unfinished magic 
square signature problem can be filled in with the deleted elements to restore the signed matrix. The solution to 
the unfinished magic square signature problem is unique, it can be directly derived from the uniqueness of the 
signed magic square, since there are no two different permutations of the deleted elements by which the 
unfinished magic square signature problem can be filled in to form a valid signed magic square, as shown in Fig.3.  

 signed matrix  
19 33 4 18 3 34 

signed half matrix 1 
19 33 18

signed half matrix 2 
4  3 34  

 

 

 

 

Fig3: complementary half signed matrixes  
3.3 Magic Square Permutation 

Design a matrix permutation list, by which each element in a nn× original matrix is transferred to a new 
different position in a new  matrix, so that any two elements in the same column, row or diagonal, do not 
lie in the same column, row or diagonal after the permutation process is completed This process is called perfect 
permutation, the permutation list is called perfect permutation list. 

nn×

It is an unsolved problem whether there is any perfect permutation. To say the least, a perfect permutation list 
must be composed of two different Latin squares even if the diagonals are not taken into account, but not any two 
different Latin squares can certainly compose a perfect permutation list. 

For an example, the following permutation list is to map each element in a 6x6 matrix to a different position in 
another new 6x6 matrix. 

Permutation List 

(5,1) (3,4) (2,0) (5,2) (2,2) (1,2) 

(0,3) (5,4) (3,0) (4,2) (5,5) (0,4) 

(1,3) (3,5) (4,0) (1,1) (5,0) (4,3) 

(4,5) (2,5) (2,1) (1,5) (4,1) (2,3) 

(0,5) (5,3) (3,3) (1,0) (0,1) (2,4) 

(0,2) (4,4) (3,1) (0,0) (3,2) (1,4) 

The dual element indicates the new position at row  and column ( ji, ) i j  in the new matrix, where the 
corresponding element in the original matrix is to be transferred. The upper left element (5,1) in the permutation 
list is to put the corresponding element at row 5 and column 1, by this way each element is transferred to a new 
position in the new matrix without duplicates. This list is not a perfect permutation for at least two elements in the 
same row or column or diagonal are still mapped into the same row, column or diagonal. We call this permutation 
list an approximately perfect permutation, since each element except the down right one is mapped to a different 
row, column or diagonal. Being permutated by this way, the mathematical correlation of elements in a magic 
square will be obliterated.  

3.4 Magic Square Encryption 

Keep a magic square and a permutation list as the private encryption key, any randomly constructed magic 
square (plaintext) is firstly summed modulo  with the private magic square to get a signed magic square, 
this signed magic square is then permutated according to the private permutation list to get a cipher matrix 
(cryptograph). This process is called a round of magic square encryption, where  is the order of magic squares. 

12 +n

n

35 23 15 16 28 31 

11 0 21 20 13 9 

16 15 32 15 30 3 

29 33 36 16 35 36 

1 7 3 26 2 35 

15 28 31 35 23  16   

11 0 21 9  20 13  

16 32 30 15  15  3 

29 16 35 36 33 36    

3 26 1 7   2 35 



Researches show that, a prime number of rounds of magic square encryption with a specially designed 
permutation list can protect it from differential attacks, to which one round of magic square encryption may be 
subject. By using a prime number of rounds of magic square encryption, it is computationally hard to derive the 
private magic square and permutation list from the magic square and its corresponding cipher matrix, no matter 
how many you obtain. The principle of magic square encryption can be applied in the fields of network 
authentication, access control and micro-payment and etc..  
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Fig4：one round of magic square encryption 

3.5 How to Restore a Shuffled Magic Square 

Randomly construct a magic square M  of order n , and make a permutation of this magic square according 
to a fixed approximately perfect permutation list P to get a random matrix X , at the same time, generate an 
evenly random 0-1  shuffling matrix . By the shuffling matrix , the matrix nn× S S X  is cut into two 
complementary half matrices  and , which are associated with 1s and 0s in the shuffling matrix , 
respectively. Pick up the non-zero elements into a vector and delete the zero elements from the two 
complementary half matrices by the rule of “from left to right and from top to bottom”, a -sized vector is 
obtained as in Fig.5. It is very hard to restore the original magic square 

1X 2X S

2n V
M from the result vector even when 

the permutation list  is known. Equivalently, it is computationally hard to derive the 0-1 shuffling matrix 
from both the -sized vector and permutation list

V
P

S 2n V P . We call this a magic square shuffling problem. A 
reverse process to this magic square shuffling is to recover a magic square from the vector V  using its 
corresponding shuffling matrix , by which we can verify whether the shuffling matrix is just what we are 
going to look for. The vector  and its corresponding shuffling matrix make up a pair of authentication codes, 
which can be specially used in digital anti-fake technique and message authentication code hiding. 
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36  -elements Vector

24 23 1 26 25 29 19 8 16 27 30 31 7 12 15 3 20 9 

6 17 18 34 4 28 13 5 32 10 22 36 21 11 2 14 33 35 

permutation list P 

(5,1) (3,4) (2,0) (5,2) (2,2) (1,2) 

(0,3) (5,4) (3,0) (4,2) (5,5) (0,4) 

(1,3) (3,5) (4,0) (1,1) (5,0) (4,3) 

(4,5) (2,5) (2,1) (1,5) (4,1) (2,3) 

(0,5) (5,3) (3,3) (1,0) (0,1) (2,4) 

(0,2) (4,4) (3,1) (0,0) (3,2) (1,4) 

Shuffling matrix S 
0 1 0 1 0 1

1 1 1 1 0 0

1 0 0 0 0 1

1 0 0 1 1 0

0 1 1 0 0 1

0 0 1 1 1 1

 

half matrix X1 

24 23 1

26 25 29 19

8 16

27 30 31

7 12 15

3 20 9 6

half matrix X2 

17  18  34  

   4 28 

13 5 32 10  

22 36   21 

11   2 14  

33 35     

 

magic square M 
35 31 8 3 5 29

23 9 27 12 6 34

19 21 11 25 33 2

15 16 13 28 7 32

1 20 30 26 24 10

18 14 22 17 36 4

permutated matrix X 
17 24 18 23 34 1 

26 25 29 19 4 28 

8 13 5 32 10 16 

27 22 36 30 31 21 

11 7 12 2 14 15 

33 35 3 20 9 6 

private magic square 

Mod Summation  

permutation list 

Permutation 

matrix magic square 

 
 

Fig.5: an example of magic square shuffling  



3.6 How to Restore a Shuffled Complementary Half Matrix  

Assume a  matrix nn× M  is evenly and randomly cut into two complementary half matrixes and 

, let vector V  have  elements and be initialized to a 0 vector , the evenly random shuffling matrix 
1M

2M 2n
[ ]

nnijbB
×

= ，b . { }1,0∈ij

Firstly, the non-zero elements associated with 1s in B of the half matrix  are transferred into the vector  

from the beginning in sequence, then the left non-zero elements associated with 0s in
2M V

B of the half matrix  are 
transferred into V  at the next consecutive positions in sequence. In this way, is obtained as the shuffled 
result.  

2M
V

 

Fig6: to shuffle a half matrix M2 

 

 

 

 

 

 

 

 

Fig7: to restore the matrix M 

For example, assume a 5×5 matrix be cut into two half matrixes  and . Beginning from the 

upper left element and by the rule of “from left to right and from top to bottom”, the non-zero elements in  
which are associated with 1s in 

M 1M 2M

2M
B  are recorded into the vector V in sequence, we get 

( )0,,0,0,0,8,2,11,4,24,13 ⋅⋅⋅=V ; then, beginning from the upper left element and by the rule of “from left to 

right and from top to bottom”, the non-zero elements associated with the 0s in B of the half matrix  are 
recorded in sequence into  at the next consecutive positions. Finally, we obtain a shuffled vector as shown 
in Fig.6.   

2M
V V

It is a reverse process to restore the original half matrix from the shuffled vector V , in which the 

complementary half matrix is needed and can be taken as the key of the reverse operation.  is restored 
2M

1M 2M

half matrix M1 

15 0 6 18 0 

0 11 1 0 9 

0 0 0 8 5 

0 4 0 12 0 

7 23 19 0 0 

 

shuf matrix B 
1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

0 1 0 1 0

0 1 0 1 1

 

Shuffled result : the vector V 
16 20 21 14 3 13 10 24 17 2 25 22 0 0 0 0 0 0 0 0 0 0 0 0 0 

matrix M 
15 10 6 18 16 

20 11 1 24 9 

 21 17 14 8 5 

2 4 25 12 22 

7 23 19 3 13 

 

half matrix M2

0 10 0 0 16 

20 0 0 24 0 

21 17 14 0 0 

2 0 25 0 22 

0 0 0 3 13 

 

shuf matrix B 
1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

0 1 0 1 0

0 1 0 1 1

 

Shuffled result : the vector V 
16 20 21 14 3 13 10 24 17 2 25 22 0 0 0 0 0 0 0 0 0 0 0 0 0



using the shuffled result V , the shuffling matrix B and the corresponding complementary half matrix  
together, as a result, the original matrix

1M
M is also restored. The restoration process is represented as 

. MBV M⎯→⎯+ 1

The restoration process is separated into two procedures. In the first procedure, the elements in matrix M  
with respect to 1s in B  are restored. Beginning from the upper left element of the matrix , and proceeding by 
the rule of “from left to right and from top to bottom”, the element in matrix

1M
M  is set to the corresponding 

element in if the element of  associated with 1s in 1M 1M B  is not zero, otherwise, the element in the vector 
at the current position, and the position of vector steps forward by one element. In the second procedure, the 

elements in matrix 
V V

M with respect to 0s in B are restored. In the same way, beginning from the upper left 
element of the matrix , and proceeding by the rule of “from left to right and from top to bottom”, the element 
in matrix

1M
M  is set to the corresponding element in if the element of  associated with 0s in1M 1M B is not zero, 

otherwise, the element in the vector at the current position, and the position of vector steps forward by one 
element. By these two procedures, the matrix

V V
M is completely restored as shown in Fig.7. 

When the matrix M is a random magic square, two complementary half magic squares  and  can be 
used as a technique of dynamic authentication. 

1M 2M

4 A Paradigm of Magic Square Application in Identity Authentication 
Identity authentication is a pre-requisite technique in network information security, it is also the foundation of 

electronic business and government affairs. A general principle of identity authentication is to make a comparison 
between the specific information or some special computation capability provided by the party to be verified and 
that possessed by the verifier. The technique of challenge-response is a type of dynamic secure identity 
authentication method. In a challenge-response way, a client possesses a special function, which is  usually 
embedded in an identification card, and a copy of the corresponding function is kept in the authentication server. 
When a client is logging in a distant web server, the web server asks the authentication server for the way to 
identify the client, and the authentication server responses with a challenge-response type of authentication and a 
corresponding random challenge number to the web server. The web server sends this challenge number to the 
client, the client makes use of the special function to compute a response number with this challenge number and 
sends it back to the web server. The web server sends the response number to the authentication server, and the 
authentication server makes a comparison between the response number and the number obtained by its special 
function using the challenge number as input. The customer can be validated if these two numbers are equal. 
Usually, one-way hash functions and some encryption algorithms like DES and RSA are used as special functions 
in the challenge-response type of identity authentication.    

A new type of two-way challenge-response identity authentication can be designed if the three principles are 
applied in a composite way[8,9], including the unfinished magic square problem, the modular sum separation 
problem of magic squares and the magic square shuffling problem. Assume a two-way identity authentication is 
necessary between the web server and the client called Alice. Alice’s identification information can be derived 
from the magic square , which is generated specifically for Alice. (Alice)M ( )AliceM  is randomly separated 

into two complementary half magic squares ( )AliceM1 and ( )AliceM 2 , ( )AliceM1  is firstly signed by a 

fixed magic square and then permuted by a fixed permutation list to obtain an encrypted matrix ( )AliceW1 , 

where the fixed magic square and permutation list is taken as the private encryption key.  is kept in 
the data bank of the web server as Alice’s registered information, 

(AliceW1 )
( )AliceM 2  is directly stored in the 

identification card as Alice’s private identification information. The identification card is also protected with a 
personal identity number in case of peculation. The verification card in the web server is integrated with the 
encryption key (the signature magic square and permutation list) as well as their corresponding processing logic, 
both the verification and identification cards are embedded with the shuffling and restoring algorithms as well as 
the magic square verification algorithms, and a soft module is kept both in the web server and the client side, 
which is used to generate evenly random shuffling matrixes. The two-way identity authentication process involves 
two independent procedures, one is to verify Alice’s identity by the web server’s verification card, the other is to 
verify the web server by Alice’s identification card.  
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Fig8：the server verifies Alice. 
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Fig9：Alice verifies the server 
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The procedure to verify Alice’s identity is as follows: 
1) Alice is logging in the web server; 
2) An evenly random shuffling matrix ( )Web,tB  is generated by the web server and sent to Alice; 

3) Alice sends the shuffling matrix  to her identification card; (Web,tB )
4) According to the shuffling matrix ( )Web,tB , the half magic square ( )Alice2M  is shuffled into an 

authentication vector  by the shuffling algorithm (see 3.6 for details) embedded in the 
identification card, and sent back to Alice; 

( tAliceV , )

)5) Alice sends the vector  to the web server; ( tAliceV ,
6) The web server sends ,  and ( )AliceW1 ( )tAliceV , ( )Web,tB  together to its verification card; 

7) By the permutation list and signature magic square, ( )AliceW1  is decrypted into the half magic 

square ,  and ( )AliceM1 (AliceM1 ) ( )tAliceV ,  are used in a combined way with to restore 
a matrix 

(Web,tB )
M , a verification is made to ensure if M  is a magic square, and the verification result is sent to 

the web server. 
 
The procedure to verify the web server is as follows: 
1) The web server sends a signal to Alice for its authentication, Alice is required to generate an evenly random 

shuffling matrix  and sends it to the web server; (Alice,tB )
2) Alice generates an evenly random shuffling matrix ( )Alice,tB  and sends it to the web server as an 

response; 
3) The web server sends Alice’s registered information ( )AliceW1  and the shuffling matrix to 

its verification card; 
( )Alice,tB

4) In the verification card, the  is decrypted into the half magic square  by using the 

signature magic square and the permutation list, and 

(AliceW1 ) )(AliceM1

( )AliceM1  is shuffled into a vector ( )tWebV ,  
according to the shuffling matrix , then ( )Alice,tB ( )tWebV ,  is sent back to the web server; 

5) The web server sends the shuffled vector ( )tWebV ,  to Alice; 

6) Alice sends the vector  and the shuffling matrix ( tWebV , ) ( )Alice,tB  into her identification card; 

7) In the identification card, and ( )Alice2M ( )tWebV ,  are used in a combined way with the shuffling 

matrix  to restore a matrix (Alice,tB ) M , and a verification is made to ensure if M  is a magic square, 
then the verification result is sent to Alice. 

The shuffling matrix [ ]
nnijbB

×
= used in the dynamic identity authentication is generated by a 0-1 cellular 

automata machine or pseudo-random number generator in such an evenly random way that the global state of 
[ ]

nnijbB
×

= is actually not repeated and can not be predicted, and the number of 1s in [ ]
nnijbB

×
= is statistically 

equal to that of 0s. Most of cellular automata machines are irreversible, i.e., it can not go backwards to its original 



(global state step by step[10]. To prevent the half magic square )Alice2M

)

from the chosen text attacks, a 
specially designed cellular automata machine can be embedded in the verification card and Alice’s identification 
card so that the shuffling matrix for  can not be pre-designed for cryptanalysis. (Alice2M

When verifying magic square within both the authentication and verification cards, the consecutive natural 
numbers from 1 to  in matrix2n M must be checked for their uniqueness before each row, column and diagonal 
are verified for their sum, respectively. 

5 Conclusion and Some Discussion 
Many fantastic properties exist in natural numbers, scientists from different disciplines make every endeavors 

to discover these pretty mathematical properties and try to make uses of them. Magic square is the earliest 
mathematical problem found by China which indicates the great law of consecutive natural numbers, but no more 
discoveries has been made in thousands of years that is practical and applicable till this paper appears. The 
discoveries made in this paper, including the unfinished magic square problem, the modular sum separation 
problem of magic squares, the magic square shuffling problem as well as the magic square encryption problem, 
are multi-discipline research results in intelligent computations, combinatorics and cryptography, their practical 
applications can be widely found in many fields, such as network authentication, electronic tag, access control, 
key management and assignment, micro-payment, digital anti-fake technique and etc.. Based on these new magic 
square problems, several invention patents have been applied and some of them have been put into use, among 
which a two-way magic square based dynamic identity authentication protocol has been depicted in this paper.  

The unfinished magic square problem, the modular sum separation problem of magic squares, the magic 
square shuffling problem as well as the magic square encryption problem, are new combinatorial problems 
brought forward in this paper with respect to random magic squares. Do there exist any polynomial time 
algorithms that solve these problems, or whether these problems are computationally decidable[11]? It is 
theoretically significant both in the theory of computation and combinatorics, thus deserving further study and 
discussions. 
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