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Abstract

Client puzzles are meant to act as a defense against denial of service (DoS) attacks by requiring a
client to solve some moderately hard problem before being granted access to a resource. However,
recent client puzzle difficulty definitions (Stebila and Ustaoglu, 2009; Chen et al., 2009) do not
ensure that solving n puzzles is n times harder than solving one puzzle. Motivated by examples of
puzzles where this is the case, we present stronger definitions of difficulty for client puzzles that are
meaningful in the context of adversaries with more computational power than required to solve a
single puzzle.

A protocol using strong client puzzles may still not be secure against DoS attacks if the puzzles
are not used in a secure manner. We describe a security model for analyzing the DoS resistance of
any protocol in the context of client puzzles and give a generic technique for combining any protocol
with a strong client puzzle to obtain a DoS-resistant protocol.

Keywords: client puzzles, proof of work, denial of service resistance, protocols

1 Introduction

Availability of services is an important security property in a network setting. Denial of service (DoS)
attacks aim to disrupt the availability of servers and prevent legitimate transactions from taking place.
One type of DoS attack is resource depletion: an attacker makes many requests trying to exhaust the
server’s resources, such as memory or computational power, leaving the server unavailable to service
legitimate requests.

Client pugzles, also called proofs of work, can counter resource depletion DoS attacks. Before a
server is willing to perform some expensive operation, it demands that the client commit some of its
own resources by solving a puzzle. The puzzle should be moderately hard to solve — not as hard as a
large factoring problem, for example, but perhaps requiring a few seconds of CPU time. Provided client
puzzles are easy for a server to generate and verify, this creates an asymmetry between the amount of
work done by a client and the work done by a server.

Although many client puzzle constructions have been proposed, there has been less work in rigourously
defining good client puzzles or defining DoS resistance of protocols. The first model for client puzzles
was proposed by Jakobsson and Juels [JJ99]. More recently, Stebila and Ustaoglu [SU09] described a
security model for the DoS resistance of key exchange protocols, and Chen et al. [CMSWO09a] proposed
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a formalization of client puzzles and puzzle difficulty, using a game between a single challenger and a
single adversary.

1.1 Contributions and Outline

In this work, we motivate and present stronger notions of security for client puzzles and DoS resistance
of protocols and provide several examples satisfying these new definitions.

An Attack on Previous Difficulty Definitions. The main motivation for our stronger notion of security
is that it should be hard for an adversary to solve many puzzles, not just one. The existing DoS
countermeasure models [JJ99, CMSW09a, SU09] address the ability of a runtime-bounded adversary
to solve a single puzzle, but not of solving multiple puzzles: if one puzzle takes time 22° to solve, for
example, will 22° puzzles will take time 2°° to solve? This is important in practice, for an adversary
will likely have more power than needed to solve a single puzzle.

In order to demonstrate the inadequacy of existing definitions, in Sect. 2 we examine how for some
puzzles — the generic puzzle construction of Chen et al. [CMSWO09a], the MicroMint micropayment
puzzle scheme [RS97], and number-theoretic puzzles such as the recent one of Karame-Capkun [KC10]
—itis hard to solve one instance (satisfying existing definitions [SU09, CMSW09a]), but many instances
can be solved without too much more work. This is a weakness in the context of DoS resistance, and
so a good puzzle difficulty definition should preclude this.

Stronger Client Puzzles. In Sect. 3, we propose two notions of strong difficulty for client puzzles, one
for interactive situations and one for non-interactive situations. These stronger difficulty definitions
capture the notion that solving n puzzles should cost about n times the cost of solving one puzzle. We
then provide examples of puzzles satisfying these stronger definitions.

DoS-Resistant Protocols. In Sect. 4, we define what it means for a protocol to be DoS-resistant in a
multi-user network setting. A server should not perform expensive operations unless a client has done
the required work. It should be hard for the work of a legitimate client to be stolen or redirected
(avoiding the attack of Mao and Paterson [MP02]). This generalizes the work of Stebila and Ustaoglu
[SU09] on DoS-resistant key exchange protocols, while also accommodating our stronger notion of
security for multiple puzzles as described above. Then, in Sect. 5, we present a theorem that shows
how to transform any protocol into a DoS-resistant protocol using a strongly-difficult interactive client
puzzle.

We conclude and discuss future work in Sect. 6. The appendices contain background definitions
and notation (Appendix A) and proofs of claims from the main body (Appendices B-F).

1.2 Related Work

Client Puzzles. Client puzzles were first proposed for protection against DoS attacks (in the form of
email spam) by Dwork and Naor [DN92]. Many client puzzle constructions have subsequently been
proposed. There are two main types of client puzzles: computation-bound puzzles, which depend on
a large number of CPU cycles to solve, and memory-bound puzzles [ABMWO03, DGN03a, DNWO05],
which depend on a large number of memory accesses to solve, and which offer more uniform solving
time across different CPU speeds compared to computation-bound puzzles. Many computation-bound
puzzles are based on the difficulty of inverting a hash function [Bac97, JB99, JJ99, ANLOO, Bac04,
CMSWO09a], although other techniques (for example, using number-theoretic primitives) exist as well
[DN92, WJHF04, TBFGNO6, KC10]. Puzzle-like constructions also appear in other cryptographic con-
texts [RSW96, RS97, Boy07] but with a focus on different security properties.



Difficulty of Client Puzzles. Although there have been many puzzle constructions as noted above,
only a few of these use any formal notion of security, and there has been little work in developing
formal definitions of client puzzle difficulty. The first client puzzle difficulty definition was given by
Jakobsson and Juels [JJ99], and another by Canetti et al. [CHS05]. Some memory-bound puzzles
[DGN03a, DNWO05] include proofs of amortized difficulty.

A richer difficulty definition was given by Chen et al. [CMSWO09a], using two security experiments:
unforgeability and puzzle difficulty. Importantly, the difficulty definition only addresses the ability of
an adversary to solve a single puzzle. They describe a basic generic client puzzle protocol II(CPuz).
Finally, they give a generic client puzzle construction from a pseudorandom function and a one-way
function (essentially a MAC and a hash function).

Our definition of puzzle difficulty starts from the Chen et al. [CMSW09a] definition, but with a
number of differences. First, we eliminated the unforgeability property. The unforgeability property
is important for their protocol IT(CPuz), but is not an essential feature of client puzzles. In fact, to
define non-interactive puzzles, in which the client can generate the puzzle itself, we must remove
unforgeability. Next, we strengthened the difficulty definition to consider an adversary who solves
many puzzles, motivated by our attack in Sect. 2. Our DoS resistance model and protocol is significantly
stronger than their protocol II(CPuz), accommodating multiple users in a network setting.

Multiple Puzzles. Our work is motivated by the difficulty of solving multiple puzzles which has not
been addressed adequately in previous works. Jakobsson and Juels [JJ99] considered independence
of proofs of work, but only in terms of their solvability, not their difficulty. Canetti et al. [CHSO05]
addressed hardness amplification — the difficulty of solving many instances — of weakly verifiable puzzles
(WVPs), which are puzzles that need not be publicly verifiable. The adversary for WVPs could not
see valid puzzle/solution pairs, so Dodis et al. [DIJKO9] introduced dynamic WVPs that did allow
the adversary to see solutions and gave a hardness amplification theorem showing that if solving one
dynamic WVP is hard, then solving an n-wise dynamic WVP is also hard. Still, dynamic WVPs differ
from the difficulty definition of Chen et al. [CMSWO09a] and our definition, in that dynamic WVPs
generate all puzzle challenges at once, independent of the request, whereas puzzles in the Chen et al.
model are generated in response to, and are dependent upon, client requests.

Modelling DoS Attacks on Protocols. Meadows [Mea99] presented a cost-based framework for iden-
tifying DoS attacks in network protocols (e.g., Smith et al.’s DoS attack [SGNBO6] on the JFK key
exchange protocol [ABB"04]), but can only be used to identify and quantify a DoS attack, not prove
that a protocol is DoS-resistant.

Stebila and Ustaoglu [ SU09] gave a provable security model for the DoS resistance of key agreement
protocols based on the eCK model for key agreement security [LLMO07]. The model splits key exchange
into two portions: a presession for the DoS countermeasure, and a session for the key exchange. They
give an example protocol using hash function inversions for the DoS countermeasure and building on
CMQV [Ust08] for the key exchange protocol. One of their main motivations was to avoid the DoS
attack of Mao and Paterson [MP02] which derived from an authentication failure where messages
could be redirected and accepted.

Our definition of DoS resistance for protocols shares some of these characteristics: it uses a pre-
session for the DoS countermeasure and is suitable for a multi-user network setting. It can be used to
analyze all protocols, not just key exchange protocols, and it uses a stronger notion of security, con-
sidering an adversary who solves many puzzles, not just one. By separating the definition of a puzzle
from the definition of a DoS-resistant protocol, we can perform a modular analysis of each component



separately and then combine them.

2 Weaknesses in Existing Definitions

In a public network setting, a server will be providing service to many clients at a time. A DoS counter-
measure based on client puzzles should require appropriate work to be done for each client request: it
should not be possible to solve many puzzles easily. While the existing models [JJ99, SU09, CMSW(09a]
describe the difficulty of DoS countermeasures when faced with an adversary trying to solve one puz-
zle, these models do not adequately defend against powerful adversaries who can expend more than the
effort required to solve a single puzzle.

In this section, we consider some puzzles where a single instance cannot be solved easily by an
attacker, satisfying existing difficulty definitions, but where an attacker can solve n puzzles more effi-
ciently than just n times the cost of solving a single puzzle. This motivates our stronger definition of
puzzle difficulty in Sect. 3.

While the examples in this section focus on the security definition of Chen et al. [CMSWO09a], they
can also be applied to the model of Stebila and Ustaoglu [SU09].

Generic Puzzle Construction of Chen et al. Chen et al. [CMSWO09a] proposed a generic client puzzle
construction based on a pseudorandom function F and a one-way function ¢. The challenger selects a
secret s € K with |K| = 2F and public parameters (not relevant to our discussion here), denoted by *,
to generate a puzzle. The challenger computes x < F(s, *), where x € X and |X| > |K|, and then sets
¥ < ¢(x). The solver, given the challenge (y, *), has to find a pre-image z such that ¢(z) = y.

This generic construction satisfies the puzzle unforgeability and puzzle difficulty security properties
o'Wl 1

x| = 2
that |¢ ~'(y)| <1 and |X| = 2X. Then the bounds in the generic construction are satisfied and solving
a single puzzle instance requires approximately 2% searches in X'. But to solve n puzzles, the solver
can find the value s with at most 2% searches and then obtain a solution with one application of F for
each puzzle. That is, solving n puzzles would require 2% 4 n operations rather than the desired n - 2%
computations.

provided certain bounds are met: namely, |X| > |K| and for all y. Suppose we have

MicroMint-Based Puzzle. The MicroMint micropayment scheme [RS97] is effectively a client-puzzle-
based micropayment scheme. A coin is a collision in a hash function: it is a pair of values x;, x5 such
that H(x;) = H(x,) for a given hash function H. It is easy to verify the validity of a coin.

Generating coins is harder. If H is a regular (or random) function with £-bit outputs, then to find
a collision one must rely on the “birthday paradox” (c.f. [Sti02, §4.2.2]): hash approximately 2t/2
distinct values and search for a collision. This puzzle can be shown to satisfy the puzzle difficulty
definition of the Chen et al. model [CMSWO09a] (see Appendix Bfor details).

However, many collisions can be found without too much more work: n collisions can be found
with /71 - 2¢/2 hash function calls, much less than n times the 2¢/2 cost of solving a single puzzle. We
emphasize this is not an attack on the MicroMint scheme itself: MicroMint was in fact designed so that
the amortized cost of generating multiple coins is smaller. While potentially a desirable property in a
micropayment scheme, this property is not desirable for client puzzles.

Number-Theoretic Puzzles. Many client puzzles based on number-theoretic constructions have been
presented, including the recent scheme of Karame and Capkun [KC10], which uses modular exponen-
tiation and argues for security in the Chen et al. model [CMSWO09a] based on the intractability of the
RSA problem. Given a puzzle consisting of an RSA modulus N, a challenge x, and a large integer



R >> N, the solver must compute x® mod N.

The security argument rests on the assumption that the best known algorithm for this computation
requires O(log(R)) modular operations, assuming that factoring N requires more than O(log(R)) oper-
ations. For a common puzzle difficulty level of say 22°, a 1024-bit modulus N certainly suffices. But
in fact a much smaller N would still suffice and would reduce the computational costs for the verifier,
which is important when puzzles are used at extremely low levels in the network stack, such as TCP
(e.g., as in [MPMO04]).

Even with a smaller N, say 500 bits, the cost of solving a puzzle by computing x® mod N is still
cheaper than factoring (22° compared to approximately 2*° based on the formulas in [BCC08, §6.2]).
However, if the adversary wants to solve 23° puzzles, the best technique is not to solve all these puzzles
independently (at a cost of 230 - 220 = 250 gperations) but to first factor N and then use this trapdoor
to easily generate solutions (at a cost of 24° 4 23%¢ < 2% for some small ¢ which is the cost of easily
generating solutions).

Signature forgery. In Appendix C, we present another counterexample puzzle based on signature
forgery.

3 Strong Client Puzzles

The starting point for our definition of strong client puzzles is the model of Chen et al. [CMSW09a].
The main differences are as follows.

Firstly, as motivated by Sect. 2, our definition of puzzle difficulty is more robust in that it considers
the number of puzzles solved by powerful adversaries.

Secondly, we omit the unforgeability security notion for client puzzles. Inherently, there is no need
for puzzles to be unforgeable: in a game played between a challenger and an adversary, the challenger
can keep track of all the puzzles issued to detect any forgeries. It is only when using puzzles in network
protocol that unforgeability sometimes becomes relevant. The main purpose of unforgeability in Chen
et al. [CMSWO09a] was to show the DoS resistance of their client puzzle protocol construction II(Puz).
We argue in Sect. 4 that a richer notion of DoS resistance is required for a multi-user network setting.

Thirdly, our puzzle definition ensures that the puzzle’s semantic meaning — represented by the string
str, which may identify the resource the client wishes to access — is the same for both the solver and the
verifier. In the model of Chen et al. [CMSW09a], the server’s generation of puz depended on str, but
not in a way that the client could verify: puz was an opaque data structure. Thus, a client solving puz
could not be certain that this would gain access to the str resource; and similarly, a server receiving a
solution for puz could not know that the client solving puz intended to solve a puzzle related to str.
This could allow client’s work to be stolen by an attacker [SU09] or redirected [MP02]. By making a
connection between str and puz more transparent, we can incorporate semantic meaning from other
protocols or applications into a puzzle.

Fourthly, our security experiment allows for non-publicly verifiable puzzles, as suggested in the
notion of weakly verifiable puzzles [CHS05].

Finally, in order to accommodate a variety of puzzle uses, we define two types of difficulty ex-
periments, one for interactive settings and one for non-interactive settings. This accommodates asyn-
chronous applications, such as email, where the client itself generates the puzzle [Bac97, Bac0O4]. While
the non-interactive definition is more general, it is often convenient to consider the more limited inter-
active definition because of its simplicity and its more natural use in interactive protocols. We provide
examples of puzzles satisfying each type, and interactive puzzles are at the heart of our DoS-resistant



protocol construction in Sect. 5.

3.1 Client Puzzles

Definition 1 (Client Puzzle). A client puzzle Puz is a tuple consisting of the following algorithms:
e Setup(1¥) (p.p.t. setup algorithm):
1. Choose the long-term secret key space sSpace, puzzle difficulty space diffSpace, string space
strSpace, puzzle space puzSpace, and solution space solnSpace.
2. Set s «p sSpace.
3. Set params < (sSpace, puzSpace, solnSpace, diffSpace, IT), where I1 is any additional public
information, such as a description of puzzle algorithms, required for the client puzzle.
4. Return (params,s).
o GenPuz(s € sSpace,d € diffSpace,str € strSpace) (p.p.t. puzzle generation algorithm): Return
puz € puzSpace.
e FindSoln(str € strSpace, puz € puzSpace, t € N) (probabilistic solution finding algorithm): Re-
turn a potential solution soln € solnSpace after running time at most t.*
e VerSoln(s € sSpace,str € strSpace, puz € puzSpace,soln € solnSpace) (d.p.t. puzzle solution
verification algorithm): Returns true or false.

For correctness, we require that if (params,s) < Setup(1¥) and puz < GenPuz(s,d,str), for d €
diffSpace and str € strSpace, then there exists t € N with

Pr (VerSoln(s,str, puz,soln) = true : soln < FindSoln(str,puz,t)) =1 .

3.2 Strong Puzzle Difficulty

A puzzle satisfies strong puzzle difficulty if the probability that a runtime-bounded-adversary can output
a list of n fresh, valid puzzle solutions is upper-bounded by a function of the puzzle difficulty parameter
and n. This is formalized in the following two experiments for the interactive and non-interactive
settings.

We first need to define additional helper oracles as follows:

o GetPuz(str): Set puz « GenPuz(s,d,str) and record (str, puz) in a list. Return puz.

e GetSoln(str, puz): If (str, puz) was not recorded by GetPuz, then return L. Otherwise, find soln

such that VerSoln(s, str, puz, soln) = true. Record (str, puz,soln). Return soln.?
e V(str,puz,soln): Return VerSoln(s,str, puz,soln).

3.2.1 Interactive Strong Puzzle Difficulty

In this setting, we imagine a solver interacting with a challenger: the solver submits a request for a
puzzle, the challenger issues a puzzle, the solver sends a solution to the challenger, and the challenger
checks the solution. The solver can only submit solutions to puzzles that were issued by the challenger:

!FindSoln runs in time at most t so that a client can stop searching for a puzzle after a specified amount of time; the
difficulty definitions in Sect. 3.2 yield that a client must spend at least a certain amount of time to find a valid solution.

2Note that GetSoln is only obligated to find a solution if puz was actually generated by the challenger. If A generated
puz, then A may need to employ FindSoln to find a solution. Compared to FindSoln, GetSoln has access to additional secret
information that may allow it to find a solution more easily.



this immediately rules out puzzle forgery or generation of puzzles by the solver. The challenger also
allows the solver, via queries, to see solutions to other puzzles.

Let k be a security parameter, let d be a difficulty parameter, let n > 1, and let .A be an algorithm.
The security experiment Exec'y ;57" (k) for interactive strong puzzle difficulty of a puzzle Puz is
defined as follows:

INT-STR-DIFF (..
° ExecA,n,d,Puz (k):

1. Set (params,s) < Setup(1¥).

2. Set {(str;,puz;,soln;):i=1,...,n} < AGetPuz,GetSoln,V (1, 1 ms).

3. If VerSoln(s,str;, puz;,soln;) = true, the tuple (str;, puz;) was recorded by GetPuz, and
(str;, puz;,soln;) was not recorded by GetSoln for all i = 1,...,n, then return true, other-
wise return false.

Definition 2 (Interactive Strong Puzzle Difficulty). Let €4 ,(t) be a family of functions monotonically
increasing in t, where €4y ,(t) < €4 1(t/n) for all t,n such that €4 ,(t) < 1. Fix a security parameter k
and difficulty parameter d. Let n > 1. Then Puz is an €4 ,(-)-strongly-difficult interactive client puzzle
if, for all probabilistic algorithms A running in time at most t,

Pr ((Exec’{ST (k) = true ) < €qn(t) -

In the random oracle model,® To our knowledge, this is the first formal justification for the security
of Hashcash. we can define interactive and non-interactive strong puzzle difficulty in terms of the
number of oracle queries made by the adversary instead of its running time.

Remark. The condition that €4 ,(t) < €4 1(t/n), for all t and n such that e, ,(t) < 1, captures
the property that solving n puzzles should cost n times the cost of solving one puzzle, at least until the
adversary spends enough time t to solve n puzzles with probability 1.

Remark. This bound is quite abstract; let us consider a concrete function for €4 ,(t). For example,
suppose each Puz instance should take approximately 2¢ steps to solve. Then we might aim for Puz to
be a €4 ,(-)-strongly-difficult interactive client puzzle, where €4 ,(t) ~ t/ 291 + negl(k).

Remark. In the security experiment, the adversary is allowed to request many more than n puzzles
using GetPuz. The adversary can then pick which n puzzles it submits as its allegedly solved puzzles
{(str;,puz;,soln;) : i =1,...,n}. In other words, the adversary could request many puzzles and hope
to find some easy-to-solve instances. This means, for example, that puzzles for which 1% of instances
are trivially solved could not be proven secure (with a reasonable € ; ,(t)) according to this difficulty
definition.

Relation to Examples from Sect. 2. The Chen et al. generic puzzle construction in Sect. 2 does not
satisfy our definition of strong puzzle difficulty. From Theorem 2 of [CMSW09a], we have that the
Chen et al. generic construction is €4 ;(t)-difficult, with e, (t) 5 2v,(t) + (1 + t/(2k"9))y (1), where
vi(t) is the probability of breaking the pseudorandom function family (with security parameter k) in
time t and y4(t) is the probability of breaking the one-way function (with security parameter d) in
time t. By the argument from Sect. 2, there exists an adversary that can win the strongly-difficulty
interactive puzzle game with probability at least eé’k’n(t) ~ Vi(t) + y4(t)/n, which does not satisfy

eé’k’n(t) < eé’k’l(t/n).

3In the random oracle model, a hash function is modelled as an ideal random function accessible to the adversary solely as
an oracle. [BR93c]



Similarly, the MicroMint puzzle from Sect. 2 does not satisfy Definition 2. Finding a single £-bit
collision (and thus solving a MicroMint puzzle) requires about 2¢/? hash function calls, but finding n
collisions requires only /n - 2¢/2 calls. Let €xen(q) = ﬁ. It is clear that, for n > 2, €, ,(q) >
€x,¢,1(q/n), and hence MicroMint is not an €y 4 ,(-)-strongly difficulty interactive puzzle.

Similarly, the Karame-Capkun puzzle [KC10] does not satisfy the interactive strong puzzle difficulty
definition since for sufficiently many puzzles the best approach is to factor the RSA modulus N and use
the trapdoor information to quickly solve puzzles. In other words, €4 ,(t) is not less than or equal to
€4 .k,1(t/n) for sufficiently large n.

3.2.2 Non-Interactive Strong Puzzle Difficulty

Non-interactive strong puzzle difficulty models the case of client-generated puzzles. Besides being
useful in their originally proposed setting as an email spam countermeasure [Bac97, Bac04], they can
be useful in protocols that are inherently asynchronous, such as the Internet Protocol (IP), or have a
fixed message flow, such as the Transport Layer Security (TLS) protocol.

The technical difference between interactive and non-interactive strongly difficult puzzles is whether
the adversary can return solutions only to puzzles generated by the challenger (interactive) or can also
return solutions to puzzles it generated itself (non-interactive).

The security experiment Exec’,’, "5 7" (k) for non-interactive strong puzzle difficulty is as in the

interactive case with a change to line 3 of the experiment:
NINT-STR-DIFF .
° ExecA,n,d,Puz (k)
3. If VerSoln(s,str;, puz;,soln;) = true and the tuple (str;, puz;,soln;) was not recorded by
GetSoln for all i =1,...,n, then return true, otherwise return false.
The definition of € ;. ,(+)-strongly-difficult non-interactive client puzzles follows analogously.
Remark. If Puz is an €4 ,(-)-strongly-difficult non-interactive puzzle, then it is also €4 ,(-)-

strongly-difficult interactive puzzle.

3.3 A Strongly-Difficult Interactive Client Puzzle Based on Hash Functions

In this section, we describe a client puzzle based on hash function inversion, similar to the subpuzzle
used by Juels and Brainard [JB99] or the partial inversion proof of work of Jakobsson and Juels [JJ99].
Let H : {0,1}* — {0, 1}* be a hash function. Define SPuz;; be the following tuple of algorithms:

e Setup(1¥): Set sSpace «— {1}, diffSpace «— {0,1,...,k}, strSpace — {0,1}*, puzSpace «—
{0,1}* x {0, 1}X, solnSpace < {0,1}*, and s « L.

e GenPuz(L,d,str): Set x < {0,1}¥; let x’ be the first d bits of x and x” be the remaining k — d
bits of x. Set y « H(x,d,str). Return puz < (x”, y).

e FindSoln(str,(x”, y), t): For z from 0 to max{t,2?—1}: setsoln < z (in {0,1}9); if H(soln||x"”, d,
str) =y then return soln.

e VerSoln(L,str,(x”,y),soln): If H(soln||x”,d,str) = y then return true, otherwise return false.
Theorem 1. Let H be a random oracle. Let €4 ,(q) = %)n. Then SPuzy is an €4 ,(q)-strongly-

difficult interactive client puzzle, where q is the number of distinct queries to H.

The proof follows a counting argument and appears in Appendix D.*

“Rather than proceeding directly to the random oracle model, we could aim to prove SPuz, secure when H has some
concrete hash function property. None of the standard hash function notions [RS04a] is appropriate due to (a) the partial
preimage hint x” being given and (b) the multiple nature of the task. One could extend the partial-inversion proof of work



3.4 Hashcash is a Strongly-Difficult Non-interactive Client Puzzle

In this section, we show that one of the earliest client puzzles, Hashcash [Bac97, Bac04], satisfies the
definition of a strongly-difficult non-interactive client puzzle in the random oracle model.

While Hashcash was originally proposed to reduce email spam, the current specification (stamp
format version 1 [Bac04]) can be applied to any resource. Hashcash is non-interactive: the puzzle is
generated by the same person who solves the puzzle. Hence it should be difficult for a client to generate
a puzzle that can be easily solved. Hashcash is based on the difficulty of finding a partial preimage of a
string starting with a certain number of zeros in the SHA-1 hash function.

A Hashcash stamp is a string of the form ver:bits:date:resource: [ext] :rand:counter.
The field bits denotes the “value” of the stamp (the number of zeros at the start of the output) and
counter is the solution to the puzzle. A stamp is valid if H(stamp)[;. pits] = 0...0. In the context
of real-world email applications, there may be additional restrictions on the validity of a stamp, such
as whether date is within a reasonable range and whether the email address (resource) specified is
acceptable.

Let Hashcashy; be the specification of the Hashcash puzzle using the hash function H : {0,1}" —
{0,1}* in the language of Sect. 3.1. The precise specification is omitted here and given in Appendix E,
but it proceeds in the obvious way. In particular, we note that Hashcash requires no long-term secret
key (so sSpace = {1}).

Theorem 2. Let H : {0,1}* — {0,1}*, where k > d, be a random oracle. Let €dxn(q) = %. Then
Hashcash is an €4 ,(q)-strongly-difficult non-interactive puzzle, where q is the number of queries made
by Ato H.

The proof follows a counting argument and appears in Appendix E.

4 Denial-of-Service Resistance of Protocols

Although we have defined what a good client puzzle is, it does not immediately follow that using
a good client puzzle in a protocol yields DoS resistance. In this section, we describe what it means
for a protocol to be DoS-resistant, and in the subsequent section we give a generic construction for
DoS-resistant protocols.

Our approach begins similar to that of Stebila and Ustaoglu [SU09]. We work in an adversary-
controlled multi-user communication network.” The adversary’s goal is to cause a server to commit
resources without the adversary itself having done the work to satisfy the denial of service countermea-
sure.

Protocol Execution. A protocol is a message-driven interaction, taking place among disjoint sets of
clients Clients and servers Servers, where each party is a probabilistic polynomial-time Turing machine.
An execution of the protocol is called a presession. During execution, each party U may have multiple
instances of the protocol running, with each instance indexed by a value i € Z, ; these instances are
denoted by Hl.U . A protocol consists of the following algorithms:

notion [JJ99] (which satisfies (a) but not (b)) or the ePre notion [RS04a] (which satisfies neither) as appropriate, and then
proceed to the random oracle model to heuristically justify the soundness of that new notion; the end result would be the
same.

5It is true that, in an adversary-controlled network, the adversary can deny service simply by not relaying messages. Our
concern, however, is with resource depletion attacks in which a server is overwhelmed with requests.



e GlobalSetup(1%) (p.p.t. protocol setup algorithm): Select the long-term secret key space pSpace.
Choose global public parameters IT of the scheme and return params «— (pSpace,Il); this is
assumed to be an implicit input to all remaining algorithms.
e ServerSetup(S € Servers) (p.p.t. party setup algorithm): Select p; € pSpace. Perform any
additional setup required by params.
e CActionj(C € Clients,i € Z+,m]-_1,MJ{_1), for j=1,... (p.p.t. protocol client action algorithm):
Instance i of party C produces its jth protocol message for the run of the protocol, based on
the instance’s previous private state m;_; and the received message M ){—1' The output (M, m;)
consists of its outgoing message M; and its new private state m;.
e SActionj(S € Servers,i € Z+,m;._1,Mj), for j =1,... (p.p.t. protocol server action algorithm):
Instance i of party S produces its jth protocol message for this instance, based on S’s long-
term secret, the previous private state m;._l, and the received message M;. The output (M ’ m;.)
consists of its outgoing message M J’ and its new private state m;..

The client is assumed to be the initiator. An instance records its current progress through the protocol

with the value j of the last completed action.

Presessions. After receiving some sequence of SActionj(S,i,...) calls, a server instance will either
accept or reject; if it accepts, it outputs a presession identified by a tuple of the form [C,S, ], where
C is the partner and 7 is a sequence of messages. The sequence of messages T is meant to act like a
transcript; however, since in DoS-resistant protocols a server may not store state early in the protocol,
portions of 7 could have been forged by an adversary. Accepted presessions must be unique within a
party. Additionally, since the protocol may be used for another purpose — key agreement, electronic
voting, etc. — we do not require that the protocol terminate after accepting, and indeed expect that it
may continue to perform some additional application-level functionality.

Correctness. A protocol is correct if, for all C € Clients and S € Servers who follow the protocol, there
exists a running time t for C such that, when messages are relayed faithfully between C and S, S will
accept with probability 1. In other words, clients can eventually do enough work to make connections.®

Denial of Service Countermeasure. To provide DoS resistance, a protocol will typically include some
test so the server can decide, based on the proposed presession [C,S, ] and its secret p, whether to
accept or reject based on some DoS countermeasure in the protocol. It is the adversary’s goal to cause
a server to accept without the adversary having faithfully followed the protocol.

Adversary’s Powers. The adversary controls all communication links and can send, create, modify,
delay, and erase messages to any participants. Additionally, the adversary can learn private information
from parties or cause them to perform certain actions.

The following queries model how the adversary interacts with the parties:

e Send(U,i,M): The adversary sends message M to instance i of U who performs the appropriate
protocol action (either CActionj(U,i,m, M) or SActionj(U,i,m, M) based on the instance’s last
completed action j — 1), updates its state, and returns its outgoing message, if any.

e Expose(S): The adversary obtains S’s secret value pg; mark S as exposed.

Security Definition. The basic idea of the security definition is as follows: the amount of credit the
adversary gets in terms of accepted presessions should not be greater than the amount of work the
adversary itself did. An important part of the definition below is solutions from legitimate clients.

SLimits on the amount of work done by the server come later, in Definition 3.
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An instance Hig that has accepted a presession [C,S, 7] is said to be fresh provided that § was not

exposed before S accepted this presession and there does not exist an instance H]C which has a matching
conversation [BR93a] for 7. (Intuitively, a “fresh” instance is an attackable instance, one that has not
been trivially solved by exposing the server’s private information.)

Let k be a security parameter, let n > 1, and let A be a probabilistic algorithm. The security

experiment Exec’y’; ,(k) for DoS resistance of a protocol P is defined as follows:

. Execi‘?i’P(k): Run GlobalSetup(k). For each S € Servers, run ServerSetup(S). Run A(params)
with oracle access to Send and Expose. If, summing over all servers, the number of fresh instances
accepted is n, then return true, otherwise return false.

A protocol is DoS-resistant if the probability that an adversary with bounded runtime can cause a

server to accept n fresh presessions is bounded:

Definition 3 (Denial-of-service-resistant Protocol). Let € ,,(t) be a family of functions that are monoton-
ically increasing in t, where € ,(t) < €, 1(t/n) for all t,n such that € ,(t) < 1. Fix a security parameter
k. Let n > 1. We say that a protocol P is € ,(-)-denial-of-service-resistant if

1. for all probabilistic algorithms A running in time at most t,

Pr (Execi‘?;’},(k) = true) < €x n(t) +negl(k) , and

2. no call to SActionjp(S,i, m, M) results in an expensive operation unless Hf has accepted.

Remark. This definition of DoS resistance contains two aspects. The first aspect addresses the
ability of an adversary to cause the server to accept a presession: the inequality in part 1 provides a
bound on the ability of an adversary to cause the server to accept n presessions when the adversary has
only done t operations. The requirement that €, ,(t) < €, ;(t/n) enforces the idea that the amount of
work required to cause n presessions to be accepted should be n times the amount of work required to
cause one presession to be accepted.

The second aspect addresses the idea that a server should not perform expensive operations unless
the countermeasure has been passed. As the notion of “expensive” can vary from setting to setting, we
leave it vague, but it can easily be formalized, for example by using Meadows’ cost-based framework
[Mea99].

Avoiding Client Impersonations. Though a DoS countermeasure does not provide explicit authenti-
cation, we still wish to avoid impersonations. For example, suppose a client C sends messages meant
to prove its legitimate intentions in communicating with server S. It should not be possible for an
adversary to easily use those messages to cause another server S’ to perform expensive operations, nor
should it be possible for an adversary to easily use those messages to convince S that a different client
C’ intended to communicate with S.

This is prevented by the model since party names are included in the presession identifiers. If an
adversary observed a presession [C,S, 7] and then tried to use that information to construct a preses-
sion [C’,S,1’] of another user C’ with the same server, then this new presession would be unexposed
and the adversary would be prohibited from easily causing a server to accept it by Definition 3. This in
effect requires a binding of values in the DoS countermeasure transcript 7 to the parties — € and S — in
question.
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Avoiding Replay Attacks. We follow the approach of Stebila and Ustaoglu [SU09] in dealing with
replay attacks, where replay attacks are avoided by uniqueness of presession identifiers of accepted
presessions. This does mean that the server has to store a table of presession identifiers, but this does
not constitute a vector for a DoS attack because the server only stores a presession identifier after it
accepts a presession, so it is doing an expensive operation only after the DoS countermeasure has been
passed.

5 Building DoS-resistant Protocols from Client Puzzles

In this section, we present a generic technique that transforms any protocol P into a DoS-resistant
protocol D(P). Our technique uses strongly-difficult interactive client puzzles as a DoS countermeasure
and message authentication codes for integrity of stateless connections [AN97]. We prove that the
combined protocol D(P) is a DoS-resistant protocol.

The client and server each provide nonces and construct the string str using their names, nonces,
and any additional information, such as a timestamp or information from a higher-level protocol. The
server generates a puzzle from str, authenticates the puzzle using the message authentication code (to
avoid storing state), and sends it to the client. The client solves the puzzle using its own string str and
sends the solution to the server. The server checks the message authentication code and the correctness
of the solution. Finally, the server checks that the presession is unique and accepts. The messages for
the DoS countermeasure are interleaved, where possible, with the messages of the main protocol, and
after the countermeasure has accepted the main protocol continues as needed.

Specification. Let P be a protocol such that SActionl, does not involve any expensive operations. Let
k be a security parameter. Let MAC : {0, 1} x {0,1}* — {0, 1}* be a family of secure message authenti-
cation codes (see Appendix A.2 for the full definition). Let Puz = (Setup, GenPuz, FindSoln, VerSoln)
be a strongly-difficult interactive client puzzle with long-term secret key space sSpace = {1} (there
is no long-term secret key for puzzles). Although this may seem restrictive, many puzzles satisfy this
constraint, including the hash-based puzzle in Sect. 3.3. Fix a DoS difficulty parameter d € diffSpace.

Let D(P)pyz,4,MAC,x be the protocol consisting of the following algorithms:

e GlobalSetup(1%): Set pSpace « {0,1} and NonceSpace < {0, 1}.

e ServerSetup(S € Servers): Set mkg < {0,1}* and pg « mks.

o CActionjppy(...), SActionjppy(...): As specified by the protocol in Figure 1.

Remark. The construction D(P) requires that SActionl, not involve any expensive operations,
as SActionlp is called by SActionlyp) before the server instance has accepted. If SActionlp does in
fact involve expensive operations, then P would need to be rewritten so that the expensive operation
is delayed until SAction2p. In other words, the D(P) construction may result in an additional round
being added before the P protocol is run; this should not be surprising.

Additionally, SActionl, may result in a private output mj which the server instance needs to store
until the next message is received. If state storage is considered an expensive operation (as it could be
a vector for a resource depletion DoS attack), then there are two options: use a stateless connection
[AN97] to encrypt m’1 and send it to the client who must return it in the following round, or, as above,
rewrite P so as to delay the operation until SAction2p.

Theorem 3. Let P be a protocol such that SActionlp does not involve any expensive operations. Suppose
that Puz is an €4 ,(t)-strongly-difficult interactive puzzle with long-term secret key space sSpace = { L}
and that MAC is a family of secure message authentication codes. Then D(P)p,, 4 MACk is an €}, (t)-

denial-of-service-resistant protocol, for €; (t) = €4k n(t + toqsend) + negl(k), where qseng is the number

12



D(P)py,.amack — Send(U, i, M) protocol specification

Client C Server S

long-term secret: pg = mkg

CActionlppy:
1. N¢ < NonceSpace
2. (My,m,) — CAction1,() e, SActionlgp:
3. Ng < NonceSpace
4. (M;,m}) < SAction1,(M,)
5. str —(C,S,N¢,Ng, My, M;)
6. puz «— GenPuz(Ll,d,str)

. Ng,Mj,puz,o
7. CAction2ppy: —— o0 < MAC,, (str,puz)
8.  str«—(C,5N¢,Ns,M;, M)
9.  soln < FindSoln(str, puz, t)
. ,puz,0,s0l .

10.  (M,,m,) < CAction2,(m;, M;) e SAction2;;:
11. reject if o # MAC,; (str, puz)
12. reject if “VerSoln(L,str, puz,soln)
13. T « (N¢,Ng, M,, M;, puz,soln)
14. verify no stored presession [C,S, 7]
15. accept and store presession [C,S, 7]

continue with CActionjp continue with SActionj,

Figure 1: D(P)py; 4 MACx DOS countermeasure protocol.

of Send queries issued and t is a constant depending on the protocol, assuming t € poly(k).

The proof of Theorem 3 follows by a sequence of games, first replacing the message authentication
code with a MAC challenger, and then replacing the puzzles with a Puz challenger. Fresh accepted
presessions correspond to valid solutions to the Puz challenger, yielding the bound relating the protocol
and the puzzle. The details appear in Appendix F.

6 Conclusion

Our goal in this work was to improve security definitions for client puzzles and denial-of-service-
resistant protocols. We presented a new, stronger definition of puzzle difficulty for client puzzles,
motivated by examples considering the effects of an adversary who has enough resources to solve
more than one puzzle. This definition is sufficiently general to be useful for analyzing and proving the
difficulty of a wide range of computation- and memory-bound puzzle constructions.

Whereas the client puzzle difficulty definition suffices for a simple game between a challenger and
an adversary, we need something more advanced for a multi-user network setting. Thus, we introduced
a new definition of DoS resistance for network protocols.

Our work can be viewed in part as combining the client puzzles approach of Chen et al. [CMSWO09a]
and the DoS-resistant protocols approach of Stebila and Ustaoglu, extending both to provide stronger
DoS resistance and better modularity.

To demonstrate the utility of our new definitions, we have included examples of two hash-based
client puzzles (including an analysis of the Hashcash client puzzle) and given a generic technique for
converting any protocol into a DoS-resistant protocol using an interactive client puzzle.
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Future Work. The interactive request-challenge-solution nature of client puzzles in the Chen et al.
definition [CMSWO09a] and our Definition 2 is incompatible with the definition of dynamic weakly
verifiable puzzles [DIJK09], so the hardness amplification theorem from one to many puzzles does
not apply. An important theoretical question arising is the development of a hardness amplification
theorem for client puzzles that is suitable, and avoids the counterexamples from Sect. 2 when going
from the Chen et al. definition [CMSWO09a] to our Definition 3.2.1.

Key agreement is the most widely deployed cryptographic protocol on the Internet, and, as a
computationally-expensive operation, is a possible attack vector for DoS attacks. Some Internet key
agreement protocols — such as IKEv2 [Kau05], the Host Identity Protocol (HIP) [MNJHO08], and Just
Fast Keying (JFK) [ABB"04] — have been designed with DoS attacks in mind. An important future work
to be undertaken is the formal analysis of the DoS resistance of these protocols using an approach such
as the one we have presented.
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A Background

A.1 Notation
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“p.p.t.” and “d.p.t.” stand for probabilistic and deterministic polynomial time, respectively, d refers to a
puzzle difficulty parameter, k refers to a security parameter, and s and p are secret keys. negl(k) denotes
a negligible function in k, meaning it is asymptotically smaller than the inverse of any polynomial in k.

A.2 Message Authentication Codes

Definition 4 (Secure message authentication code [BKR0O]). A family of keyed message authentication
codes is a set of functions MAC : {0,1}* x {0,1}* — {0,1}*. Let A be a probabilistic algorithm. The
experiment is the following algorithm:
o Execyyac i (A): Set mk < {0, 135 Set (m, o) — AMACO)(). If MAC,,1.(m) = o and m was not
queried to MAC,;(+), then return true, otherwise return false.
Define
Advﬁjlﬁlvé‘fk(q, t)= r}&qa)tc Pr (Execf\}fg@k(/l) = true) ,

where the maximum is taken over all probabilistic algorithms A running in time at most t and making at
most q queries to MAC . (+) in the experiment Execiyac’i (A). A family of message authentication codes

MAC is secure if Adv,‘i;f/i“gfk(q, t) is a negligible function of k when q and t are polynomial in k.

A.3 Client Puzzle Definition of Chen et al.

We now give a brief overview of the client puzzle and puzzle difficulty definitions of Chen et al.
[CMSWO09a]; they also include a puzzle unforgeability definition, but we omit this from our review
as it is not relevant to our work (which we justify at the beginning of Sect. 3).

Definition 5 (Client Puzzle [CMSWO09a]). A client puzzle is a tuple of the following algorithms:
Setup(1X): Establishes parameter spaces, public parameters params, and long-term secret s.
GenPuz(s,d,str): Generates a puzgle of difficulty d based on long-term secret s and string str.
FindSoln(puz, t): Outputs a potential solution soln for puzzle puz within running time t.
VerAuth(s, puz): Checks the authenticity of puzzle puz using long-term secret s.
VerSoln(puz,soln): Checks the correctness of solution soln for puzzle puz.

Definition 6 (Puzzle Difficulty [CMSWO09a]). Let d be a difficulty parameter and let k be a security
parameter. Let A be a probabilistic algorithm with oracle access to oracles CreatePuzSoln and Test:
o CreatePuzSoln(str): Set puz <« GenPuz(s,d,str) and find a valid solution soln for pugz; return
(puz,soln).
e Test(str): Return puz <« GenPuz(s,d,str).
Consider the following experiment for puzzle difficulty:
o Exec)'p,, 4(k): Set (params,s) < Setup(1%). Run A with params; A is allowed to make any
number of CreatePuzSoln(str) queries. At any point in time, A can make a single Test(str) query
and receives puz. A outputs soln. Return true if VerSoln(puz,soln) = true, and false otherwise.

A client puzzle Puz is said to be €4 i (-)-difficult if

Advf’f;uz’d(k) =Pr (Execi{fﬁuz’d(k) = true) <eqx(t)

for all probabilistic algorithms A running in time at most t, where €4 ;(t) is a family of functions mono-
tonically increasing in t.
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A.4 DoS Resistance Model of Stebila and Ustaoglu

We now give an overview of the definition of Stebila and Ustaoglu [SU09] for DoS resistance of key
agreement protocols. A protocol consists of a presession — which contains a DoS countermeasure —
followed by a session. An adversary interacts with a protocol by issuing Send queries (which deliver
messages to parties) and DoSExpose(S) queries, which reveal a server’s private information related to
the DoS countermeasure. A key agreement protocol is denial-of-service resilient if:

1. when DoSExpose(B) has not been called, the presession identifiers (A, B, ch, re) satisfy a puzzling

relation (this models the difficulty of solving a puzzle), and
2. no expensive operations are performed by a server before a presession accepts.

A relation R is a puzzling relation if all of its members are tuples (A, B, ch, re) for which it should
be hard to produce a new solution re to a puzzle (4, B, ch), even given access to an oracle that gives
valid puzzle solutions. (This puzzle-solving oracle plays a similar to the role of the CreatePuzSoln
query in the Chen et al. definition [CMSW09a].) It is important to note that, here, the adversary is
allowed to query the puzzle-solving oracle on the target puzzle (A, B, ch). In order to have broken the
denial-of-service resistance of the protocol, a runtime-bounded adversary must simply return a “fresh”
valid solution to (4, B, ch), thereby causing a server B to accept a presession without having done the
required work itself.

B Specification of MicroMint Counterexample Puzzle from Sect. 2

Puzzle Construction. In the model of Chen et al. [CMSWO09a, Definition 1], a client puzzle is defined as
a tuple of algorithms. Let MAC : {0, 1} x{0,1}* — {0,1}  be a family of keyed message authentication
codes and let H : {0, 1}* — {0, 1}{. The following algorithms define MMPuz, which is the puzzle from
Sect. 2 using the MicroMint scheme, in the language of Chen et al. [CMSWO09a] (as we describe in
Appendix A.3).

e Setup(1%): Let sSpace « {0, 1}, diffSpace « {£/2}, strSpace « {0, 1}*, puzSpace « strSpacex
{0,1}% x {0,1}%, and solnSpace « {0,1}* x {0,1}*. Set mk < {0,1}¢. Set params « (sSpace,
puzSpace, solnSpace, diffSpace, L). Return (params, mk).

GenPuz(mk,d = £/2,str): Set m < {0,1} and o «— MAC,;(str,m). Return (str,m, o).
FindSoln((str,m, o), t): Find two values x;, x, € {0, 1}* such that H(str||m||x;) = H(str|m||x;)
using a collision-finding algorithm (such as in [RS97, §4]). Return (x;, x5,).

VerAuth(mk, (str,m,o)): Return true if c = MAC, . (str, m) or false otherwise.

VerSoln((str,m, o), (xy,x5)): Return true if H(str||m||x;) = H(str||ml||x5), or false otherwise.

It can be seen by inspection that this puzzle satisfies the correctness requirement of Chen et al. [CMSW09a].

Security Experiment. There are two security experiments defined by Chen et al.: unforgeability of
puzzles and difficulty of solving puzzles. If MAC is a secure family of message authentication codes,
then it is straightforward to show that the puzzle defined above satisfies the unforgeability require-
ment. We focus on the difficulty of solving puzzles since that is what motivates our work on powerful
adversaries as described in Sect. 2.

For the purposes of the security experiment Execi{f,fAMPuz’ 4(k), we define the algorithm

e CreatePuzSoln(str): Set (str,m,c) < GenPuz(mk,d,str) and (x;, x,) < FindSoln((str,m, o),

00). Return ((str,m, ), (xq,x5)).

Fix d = £/2. We can see that 4 wins Execjf,f/lMPuz,d(k) for puz’ = (str’,m", ") with soln" =
(xlT,xJz") if and only if H(strTIIm"LIIXD = H(stri‘IImTIIXJZ"). Assume H(-) is a random oracle; note that
H(str'||m'||-) is also a random oracle. By the birthday paradox (c.f. [Sti02, §4.2.2]) the probability
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that an adversary .A making g hash function queries can find a collision is approximately q;;/2¢/2, and

thus

4y
Advf,f,lMPuz,d(k) < i3 + negl(k) . D

This is a monotonically increasing function of gy, so it satisfies the puzzle difficulty definition of Chen
et al. [CMSWO09a, Definition 3]. Moreover, it is of the form that one might expect for a reasonable
client puzzle: approximately t /2%, where t is the running time of the adversary and d is the difficulty
of the puzzle. The random oracle-based puzzle from Chen et al. [CMSWO09a, Appendix C] is of this
form as well.

Remark. While the challenger must also make many hash function calls for each CreatePuzSoln
query issued by the adversary, we do not need to account for these queries in (1) since the expression
counts the number of queries made by the adversary, not the total running time of the adversary and
challenger. If we were not working in the random oracle model, then we would need to make such an
accounting.

Attack by Powerful Adversaries. By the birthday paradox, making approximately /71 - 2¢/2 hash func-
tion calls results in n hash function collisions. As a result, an adversary can solve n puzzles using only
V- 282 queries, not n - 2¢/2 queries as we would like.” We note that, using this attack, the n puz-
zle solutions will all be for the same challenge string str', since we are working with random oracle
H(str'||m"||-); however, the puzzle solutions will be distinct and thus the attack remains meaningful.

C Another counterexample puzzle based on signature forgery

In this appendix, we give an additional client puzzle counterexample in which n puzzles can be solved
for less than n times the cost of solving one puzzle, similar to the MicroMint example in Section 2.
In this puzzle, a legitimate client solves a puzzle by finding a signature forgery. The difficulty of the
puzzle can be used to set the security parameter of the digital signature scheme. We typically want
puzzles that are only moderately hard to solve — requiring, say, 22° operations — which needs smaller
signature scheme security parameters than usual. For the Chen et al. model [CMSWO09a], we can use
any signature scheme that is existentially unforgeable under chosen message attack [ GMR88] suffices;
for the Stebila and Ustaoglu model [SU09], we require a signature scheme that is strongly existentially
unforgeable under chosen message attack [ADRO2]. Interestingly, signature-forgery-based puzzle was
first suggested in the paper by Dwork and Naor [DN92] that originally introduced client puzzles.

The basic idea is as follows. We employ a signature scheme by Bellare and Miner [BM99a]. To
understand the puzzle construction, we focus on the verification algorithm:

e Verify(pk,m,(Y,Z)): Set ¢;...c, «— H(Y,m). Return true if Z2 =Y - l_[f:1 Ul.ci mod N, or false

otherwise.

The important part is that an £-bit hash is computed and then a test is performed to see if this hash
satisfies a particular relation. For a client puzzle, one would typically choose ¢ sufficiently small, say,
¢ =20, so that a client could iterate through many possible c; ..., to find one that satisfies the relation,
requiring roughly 2¢~! iterations. This allows one to forge a single signature without obtaining the
private keys.

An alternative method for forging signatures is to factor the RSA modulus N, obtain the private
keys, and then use these to sign messages. The runtime of this procedure is dominated by the time
required to factor the RSA modulus N.

7And if H is an iterated hash function, we only need to hash [log, n]2¢/? values using Joux’s multicollision attack [Jou04].

20



The cost of solving a single puzzle, then, is approximately 2¢~! operations. However, an adversary
can solve n puzzles in time tg, (k) + n - tsign, where tg, (k) is the time required to factor a k-bit RSA
modulus and tg;g, is the time required for a signature. For sufficiently large n, this cost of solving n
puzzles will be less than n times the cost of solving a single puzzle. For example, this is the case with
=20, k =445, t(k) = 2%, tg, <2, and n > 2%.

C.1 Background

Definition 7 (Signature scheme). A signature scheme is a tuple S of the following algorithms:
o KeyGen(1%): (p.p.t.) Returns public key pk and private key sk.
e Sign(sk,m): (p.p.t.) Returns o, a signature of m under sk.
e Verify(pk,m,c): (d.p.t.) Returns true or false.

Definition 8 (Existential unforgeability [GMR88]). Let S be a signature scheme, A be a probabilistic
algorithm, and H : {0,1}* — {0, 1}* be a hash function. The experiment is the following algorithm:
o Execgf;MA(ﬁ,A): Set (pk,sk) «— KeyGen(1%). Set (m, o) — A®SEC)(pL). If Verify(pk,m, o) =
true and m was not queried to Sign(sk, -), return true, otherwise return false.
Define

Advg ™ (L, t) = max Pr (Execf’f}’[’*(f ,A) = true) ,

where the maximum is taken over all probabilistic algorithms A running in time at most t. A signature
scheme S is said to be existentially unforgeable under a chosen message attack if Advg},""({,t) is a
negligible function of £ for all t € poly(£).

Bellare-Miner signature scheme. The Bellare-Miner signature scheme (without forward security) Sgy
is defined as the tuple consisting of the following three algorithms [BM99a]. 8
e KeyGen(1%): Let k = k(£) be the size of an RSA modulus required for security parameter ¢. Pick
random distinct k/2-bit primes p,q =3 mod 4. Set N < pq. Fori=1,...,{, set S; < Zx,,U; <
S} mod N. Return public key pk = (N, Uy,...,Up), private key sk = (N,S2,...,5?).
e Sign(sk,m): Pick R < Zy,. Set Y « R?2 mod N, c;...c; «— H(Y,m), Z —R- ]_[f:1 Sl.zci mod N.
Return (Y, Z).
e Verify(pk,m,(Y,Z)): Set ¢;...c, «— H(Y,m). Return true if Z2 =Y - ]_[f:1 Ufi mod N, or false
otherwise.
As a corollary of Theorem 4.2 of Bellare and Miner [BM99a], we have that, for an adversary running
in time t usingat most gy calls to H and at most gs;g, calls to Sign,

AQVESA (€, 0y, dsign) < 205 (270 + /2L 0) ) + 227 gp10sign 2

where t' = 2t + O(k®) and Adv™“"(k, t) is the probability that a probabilistic algorithm running in time

t can factor a k-bit RSA modulus N = pq where p,q =3 mod 4 are random distinct k/2-bit primes. We
1/3

take Adv™T(k, ) < t/teee(K), where te, e (k) = 20 and s(k) = (%) log,(e)(kIn2)/3(In(k In 2))2/3

14 [BCC*08, §6.2].

8In fact, the Bellare-Miner scheme is a forward secure signature scheme, in which signing keys can evolve over time and
the compromise of the current signing key does not allow forging of signatures for previous time periods. We do not require
this property, but fortunately the security definition reduces to the standard one when the number of time periods is taken to
be 1, which we assume in the rest of the paper. Our main motivation for choosing this scheme as the basis of our puzzle is
that it is a Feige-Fiat-Shamir-like signature scheme with a proof of security.
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C.2 In the Chen et al. model

In this section, we specify the puzzle construction fully in the model of of Chen et al. [CMSWO09a] and
prove that it satisfies their definition of a difficult puzzle.

Puzzle construction. Let Sgy; be the Bellare-Miner signature scheme C.1. Define the following algo-
rithm:

e SBMForge(pk,m): Setc;...c; g {0,1}¢ and U « ]_[f:1 Uici mod N. Repeat the following: set
Z R 7%,Y « Z?/U mod N; until H(Y, m) = c. Return (Y, Z).

In the model of Chen et al. [CMSWO09a, Definition 1], a client puzzle is defined as a tuple of
algorithms. Let MAC : {0,1}! x {0,1}* — {0, 1} be a family of keyed message authentication codes.
The following algorithms define SBMPuz, which is the puzzle from Section 2 using the Bellare-Miner
signature scheme in the language of Chen et al. [CMSW09a] (as we describe in Appendix A.3).

e Setup(1%): Set (pk,sk) — KeyGen(1"), pk « (N,Uy,..., U,), and sk <« (N,S?,. ..,Sez). Let
sSpace «— {0, 1}¢, diffSpace — {2¢}, strSpace < {0,1}*, puzSpace « strSpace x {0,1}¢ x {0, 1}¢,
and solnSpace < Zy X Zy,. Set mk < {0, 1}¢. Set I1 «— pk and params < (sSpace, puzSpace,
solnSpace, diffSpace, IT). Return (params, (sk, mk)).

e GenPuz((sk,mk),d,str): Set m < {0,1}* and o <« MAC,,(str,m). Return (str,m,o).

e FindSoln((str,m,c),t): Run SBMForge(pk, m) until time t has elapsed or it returns a value
(Y, Z), whichever comes first. Return (Y, Z).

o VerAuth((sk, mk),(str,m,c)): Return true if 0 = MAC,,,(str,m) or false otherwise.

e VerSoln((str,m,o),(Y,Z)): Setcy...c, «— H(Y,m). Return true if Z2=7Y - l_[ff:1 Ul.ci mod N, or
false otherwise.

It can be seen by inspection that this puzzle satisfies the correctness requirement of Chen et al. [CMSW09a].

Security experiment. There are two security experiments defined by Chen et al.: unforgeability of puz-
zles and difficulty of solving puzzles. If MAC is a secure family of message authentication codes, then
it is straightforward to show that the puzzle defined above satisfies the unforgeability requirement. We
focus on the difficulty of solving puzzles since that is what motivates our work on powerful adversaries
as described in Section 2.

For the purposes of the security experiment Exec)'sgpp,, ¢(£), we define the algorithm

e CreatePuzSoln(str): Set (str,m,t) « GenPuz((sk,mk),d,str) and (Y,Z) < Sign(sk,m). Re-

turn ((str,m,t), (Y, Z)).

Fix d = 2. We can see that .4 wins ExecngMPuz,d(ﬂ) for puz’ = (str’,m', t") with soln’ =
(Y",Z") if and only if (Y',Z7) is a signature of m' in the Sgy signature scheme. Moreover, since
every m in every puzzle generated by CreatePuzSoln was generated randomly, as was m" in the call
to GenPuz(s,d,str"), we have that, except with negligible (in ¢) probability, m" was never an input to
Sign(sk, ). Thus, (Y7, Z") is a forgery for m" under chosen message attack. For an adversary A running
in time at most t, we therefore have

AdV) Spmpuz,a (0 < Advg ™y (€, t +0(qc), qu, 9c) + negl(l)
<2q;27" +2qy4 \/ZEAdVFACT(k, 2t +0(qc) + k3) + Zz_quqC + negl({) , 3

where g is the number of CreatePuzSoln queries issued and q;; is the number of hash function queries
issued by A, and k is the size of the RSA modulus. This is a monotonically increasing function of t, so
it satisfies the puzzle difficulty definition of Chen et al. [CMSWO09a, Definition 3]. Moreover, it is of the
form that one might expect for a reasonable client puzzle: approximately t/d, where t is the running
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time of the adversary and d is the difficulty of the puzzle. The random oracle-based puzzle from Chen
et al. [CMSWO09a, Appendix C] is of this form as well.

We want the expression in equation (3) to be approximately bounded by g /2¢~! + negl(¢). To do
so requires each term in equation (3) to be (approximately) less than or equal to gy /2¢~! +negl(¢). For
the first term, it follows vacuously. For the second term, it is satisfied when s(k) > 1 +log, £ + 2log, t,
where s(k) is as defined in Appendix C.1.

Attack by powerful adversaries. For an example that allows an attack by a powerful adversary, we
will choose the difficulty parameter ¢ and the size of the RSA modulus k = k(¢) such that both forging
procedures satisfy the puzzle difficulty requirement. However, an adversary who uses the factoring
approach will be able to solve many puzzles for less than the cost of solving those puzzles individually
using the algorithm SBMForge. In particular, an adversary using the factoring approach can solve n
puzzles in time roughly t¢, (k) + ntsjg,, whereas the cost to solve n puzzles individually should be
n2¢=1. When ¢ = 20, equation (2) requires s(k) > 46 and hence k > 445. This means that an adversary
can solve n puzzles in time 2 + ntsign, which, when tgjg, < 220 is less than n - 22° for n > 227,

C.3 In the Stebila and Ustaoglu model

For the Stebila and Ustaoglu model, a puzzle construction using digital signatures would require a
strongly unforgeable signature scheme [ADRO2]. A few such schemes exist [ADR02, BSW06, BS07a]
and could be used generically to construct a DoS countermeasure in which the solution to a puzzle is
a forgery of a signature on the puzzle. This would result in a countermeasure that satisfies the Stebila
and Ustaoglu definition, but for which a powerful adversary can solve n puzzles for less than n times
the cost of solving a single puzzle.

C.4 In this paper’s model

This signature-forgery-based puzzle that we constructed to demonstrate a weakness in existing puzzle
difficulty definitions does not satisfy our definition of strong puzzle difficulty from Section 3.2. Recall
that there are two strategies to solve the signature-forgery-based puzzles: (1) construct a forgery on a
single message by finding a preimage in the hash function, or (2) factor the RSA modulus to recovery
the signing key and then sign the message. Suppose we have chosen our system so that the amount
of time it takes to perform (1) is d = 22° operations, the time it takes to factor the RSA modulus is
2k = 2% operations, and the time it takes to sign a message is tsign < d = 220 Suppose A is asked
to solve n puzzles in time t. If t < 2% 4+ n- tsign, then A employs strategy (1), otherwise it employs
strategy (2). Therefore,

Pr (Execj;,sggj)slgrvlpuz(@ = tr“e) >min{L, f(t,n)} .

where

t t
t,n) = max , )
f(tn) {n220 24 4 n- tSign}

We observe that f(t,n) > f(t/n,1) for n > 27 since tg;y, < d = 22

f(t,n) ‘ ‘ LU e )
’n el I~ > = —_— = n’ .
2%+ ntgy, ntsgy  2%0n 2%

As a result, the signature-forgery-based puzzle is not an €4 ,(-)-strongly difficult interactive puzzle
according to Definition 2 for €4 ,(t) = t/dn + negl(k) (or any constant multiple thereof).
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D Difficulty of the SPuz Hash Function Inversion Client Puzzle

In this appendix, we present a proof that the SPuz hash function inversion client puzzle from Sect. 3.3
is a strongly-difficult interactive client puzzle in the random oracle model [BR93c].

Theorem 1. Let H be a random oracle. Let €4 ,(q) ~ (’%?)n. Then SPuzy is an €4 ,(q)-strongly-

difficult interactive client puzzle, where q is the number of distinct queries to H.

Proof. For the Exec™*™ P experiment, we need to specify how the GetSoln oracle obtains a solution
to a generated puzzle.

e GetSoln(str,(x”,y)): If (x”, y) was recorded by GetPuz, then return x’, where x = x’||x”" was

the random bit string chosen in GenPuz for this puzzle; otherwise, return L.

The proof proceeds using a counting argument. Fix d. Let A be a probabilistic algorithm. Clearly,
there is a strategy for A to win the experiment with probability 1, by making at most n2¢ calls to
H: for each of n puzzles puz; = (x{,y;), try all strings z of length d until one is found such that
H (zllx{' ,d,str;) = y;. In the random oracle model, this is essentially the optimal strategy.

Let Z; = {2;1,...,%i g1} € {0,1}" with |Z;| = q; + 1 (that is, the set contains no repetitions). Let
E; ; be the event that H(z; ;) = y; for j =1,...,q;. Since the output of H is independent and uniformly
random, and since x; was chosen independently and uniformly at random, we have that Pr(E; ;) < 274,
10V E;. Let
q; €1{0,...,d} be the number of queries issued to H for puzzle i =1,...,n, so that ¢ = Z?:l g;- Then

i+1 i+1
Pr (/\Ll Fi) =[To Pr(F) =]T=yPr (\/?:1 Ei,j) <IT 255, Pr(Egp)
_T" atl S (@+D\" _ rqn\n
=ITa % S(T) = (%)
We note that any adversary making g; queries to H has at best a probability of (q; + 1)/2¢ of

returning a value g; that satisfies H(z;) = y;: checking q; values using H, and, if that fails then guessing
at random one of the remaining values. Thus,

n n
+n
Pr ((Exec’iishu (k) = true ) < Pr ( A Fl-) < (q ) = eqrnlq) -
i=1

n2d

Let F; be the event that there exists z; ; € Z; such that H(z; ;) = y;; in other words, F; =

Finally it is easy to see that €5a ;. ,(q) < €54 1(q/n) for all n and q such that €4a ;. ,(q) < 1.
Thus, SPuz is an €44 ;. ,(q)-strongly-difficult interactive client puzzle. O
E Specification and Difficulty of the Hashcash Client Puzzle

In this appendix, we specify Hashcash as a client puzzle in the language of Sect. 3.1 and prove that it
is a strongly-difficult non-interactive client puzzle.
A Hashcash stamp [Bac04] is a string of the form

ver:bits:date:resource: [ext] :rand:counter

e ver is a version identifier and is fixed to 1;
e bits is the “value” of the stamp: the number of zeros at the start of the output;
e date is the date the stamp is intended for, in the format YYMMDD [hhmm [ss]];
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e resource is the name of the resource this stamp is intended for; for email, this is the recipient’s
email address, such as test@example. com,;

e ext (optional) is reserved for future extensions and is presently not supported;

e rand is a random string in Base64", chosen by the client to avoid collisions with other senders’
stamps;

e counter is a string in Base64™ that is the solution to the puzzle.

Here, Base64 = {a,...,z,A,...,Z,0,...,9,+,/,=}.

Let H : {0,1}* — {0,1}* be a hash function. Define Hashcashy to be the following tuple of

algorithms:

e Setup(1¥): Set sSpace « {1}, diffSpace «— {0,1,...}, strSpace to be the set of strings of the form
ver:bits:date:resource where ver = 1, bits € diffSpace, date is a correctly-formatted
date as specified above, and resource is a correctly-formatted email address, puzSpace «
strSpace x Base64”, and solnSpace < Base64™. Sets «— L.

e GenPuz(L,d,str): Set rand < Base64* and pug <« str:rand.

e FindSoln(str, puz, t): For i from 0 to max{t,29}: set soln « i (in Base64); if H(puz:soln)py. 41
=0...0 then return soln.

e VerSoln(L,str, puz,soln), where puz = ver:bits:date:resource: :rand: If any of the fol-
lowing checks fail, return false: check ver = 1, bits > d, date is valid, resource is valid
(for the application), puz:soln is not in the double-spend database, and H(puz:soln)[;, pits] =
0...0. Store puz:soln in the double-spend database. Return true.

Theorem 2. Let H : {0,1}* — {0, 1}*, k > d, be a random oracle. Let €dkn(q) = %. Then Hashcashy;
is an €4y ,(q)-strongly-difficult non-interactive client puzzle, where q is the number of distinct queries
made by Ato H.

Remark. Theorem 2 assumes that the hash function H behaves as a random oracle. It would
be desirable to use a more concrete hash function property [RS04a], such as preimage resistance.
However, the non-interactive nature of the definition seems to preclude such a security reduction.

Proof. Fix d. Let x4,...,x, be the g distinct queries issued by .A to H. Note that, although there is no
shortcut for the challenger to respond to CreatePuzSoln queries, we only need to count A’s queries
to H since H is a random oracle. Let E; be the binary random variable corresponding to the event
that x; is a valid Hashcash stamp — in other words, E; = 1 if and only if H(x;);;. 47 = 0...0. Then
Pr(E; = 1) < 1/2%. Since H is a random oracle and the x; are distinct, the E; are independent.

Let F = ?:1 E;. By Markov’s inequality, Pr(F > n) < E(F)/n. Since F is a binomial random
variable with parameters g and p < 2%, we have that E(F) < q/2¢, and hence Pr(F > n) < q/n2¢.

The best strategy for an adversary is to make g queries to H to attempt to find valid Hashcash
stamps, and then, if it has found less than n such stamps, to return random guesses (without checking
the oracle) for any remaining stamps; there are at most n such guesses made. Hence,

o q+n
NINT-STR-DIFF _ _
Pr (ExecA’n’d’HashcashH(k) = true) < T €dkn(q) -

Finally, we note that €4 ,(q) = % = €4x1(q/n) and thereby satisfies €, ,(q) < €44 1(q/n).
Thus, Hashcashy; is an € ; ,(q)-strongly-difficult non-interactive client puzzle. O
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F Denial of Service Resistance of D(P)p,, 4 MACk

In this section, we give a proof of Theorem 3, that D(P)p,, 4 mac « is @ DoS-resistant protocol.

Theorem 3. Let P be a protocol such that SActionly, does not involve any expensive operations. Suppose
that Puz is an ey ,(t)-strongly-difficult interactive puzzle with long-term secret key space sSpace = {1}
and that MAC is a family of secure message authentication codes. Then D(P)py, 4 MACk 1S an eé’k’ 2()-
denial-of-service-resistant protocol, for e;(’n(t) = €4 kn(t + toGsend) + negl(k), where qseng is the number
of Send queries issued and t is a constant depending on the protocol, assuming t € poly(k).

Proof. The argument for the first part of Definition 3 proceeds using a sequence of games [Sho06].
The proof idea is relatively straightforward. First, using a hybrid argument in games Gq,...,G,,, we
replace the message authentication code MAC with a private list of authenticated messages and reject
any messages not on that list; if an adversary can distinguish this from the original protocol, then we
have a forging algorithm for MAC. Next, in game G,,,,, we use the fresh accepted presessions in the
protocol as solutions to the strongly-difficult interactive client puzzle game.

Game G,. Let G, denote the original protocol D(P)p,, 4 mac k- Then

DOS _ _ DOS —_
Pr (ExecA,n,D(P)Puz,d,MAc,k(k) = true) =Pr (ExecA’n’Go(k) = true) . 4
Game G;, for i = 1,...,|Servers|. We now describe a sequence of games G,...,G,,, where m =
|Servers|. First, let S3,...,S% be a random permutation of Servers. Let Servers' = {S},...,S7 |},

and let Serversj ={S ,,...,S}}. Initialize the experiment Execﬁ}fggk with oracle MAC*(+).

We define game G;, fori =1...,m, as the same game as G;_; with the following modifications:

o ServerSetup(8): If § # S7, then set mkg < {0, 1}* and pg < mks, otherwise set pg —.L.

e Expose(S): If § # S, then return mkg, otherwise abort.

e Send(S,i,M): The following lines from Figure 1 are replaced:

7. 1f § # S}, then o « MAC .« (str,puz); otherwise, set o « MAC*(str,puz). If S e
Servers; USY, then add (str, puz, o) to MACListg.
11. If S € Servers! and (str,puz,o) & MACListg, then reject; else if S = S} and (str, puz, o)
& MACListg, then try ((str, puz),o) as a MAC* forgery; else if S € Serversj, then reject if
o # MAC,, (str, puz).

Let E; be the event that Expose(Slf“ ) is not called and Sl* receives a message in line 11 that is a valid
MAC tag but is not in MACListg-. Then, when E; does not occur, any adversary that can distinguish
the probability distribution of Iﬁessages presented in game G;_; from the distribution of messages
presented in game G; can be used as a MAC" forger. Hence,

Pr (Execiofl G-,l(k) = true) —Pr (Execiﬁfl e (k)= true)

< Pr(Ei)AdVﬁXZNg:k(qSendJ t) P (5)

where ¢genq is the number of Send queries issued in game G; and ¢ is the running time of A plus a
. . . . DOS

constant multiple of gs.,q- Note that since a valid adversary .A against Exec An,G, must leave at least

one server unexposed, we have that Pr(E;) > 1/|Servers|.

Game G, . Initialize the experiment Exechflel'PDLF; 4 (k) with oracles GetPuz(-) and GetSoln(:,-). We
define game G,,,,; as the same game as G, with the following modifications:

e Send(S,i, M): The following lines from Figure 1 are replaced:
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o

puz «— GetPuz(str).
0 «— MAC, (str, puz); add (str, puz, o) to MACListg.
. soln <« GetSoln(str, puz).

11. Reject if (str, puz,o) & MACListg.
Let {(C;,S;,7;)}, where 7; = (Ni,Ni’,...i,puzi,solnl-), be the set of n fresh presessions accepted in
Gpnt1- Then return the set {(str;, puz;,soln;)}, where str; = (C;,5;,N;,N/,...;), as the set of puzzle
solutions in Exech " S™ D (k).

Gpe1.1,Puz,d
First, we note that the probability distributions of messages in games G,, and G,,,; are identical, so

© N

Pr (Execi(”fl’Gm (k)= true) =Pr (Execi?fl’GmH(k) = true) . (6)
DOS

Asn:GrrHr
precisely when ExechflT':{gﬂi 4(k) = true, since all puzzle-solution pairs received by G,,,, correspond
1,71, Puz,

to puzzles generated by GetPuz. Hence,

Next, we need to compute Pr (Exec 1(k) = true). By the construction of G, 1, this happens

An,G +1.1,Puz,d

Pr (ExecDOS (k)= true) <Pr (Execg:'STR'DIFF (k)= true)

Since each presession in question is fresh, there is no client instance with a matching conversation.
In other words, there was no query to GetSoln with str,puz. Thus, if the solution is valid in the
presession, then it is also valid for the Puz challenger.

Let t be the running time of A, let tygsenq be the running time of G, excluding A (where ¢t
is some constant specified by the protocol), and let t’ = t + toqsenq. Then, since Puz is an €4 ,(t)-
strongly-difficulty interactive puzzle, we have that

Pr((Execi?, () =true) < eqya(t)) . 7)
Combining equations (4) through (7), we have that

Pr (Exec;‘?i’D(mpuzyd,MAc}k(k) = true) < eqxn(t’)+|Servers| -Advﬁ}fi"’é‘:k(qsend, t,

where gg.nq is the number of Send queries issued and t" = t + tygsenq, Where t is the running time of

A and t is some constant specified by the protocol. Assuming Adv’f\}f%‘?k(qsend, t") € negl(k), we have

Pr (Exec?él?rsl,D(P)puz,d,MAc,k (k)= true) = ed’k’n(t/) +negl(k) .

This shows part 1 of Defintion 3. Part 2 follows by inspection on Figure 1, under the assumption
that none of the steps on lines 3-7 and 11-14 are expensive. Thus, D(P)p,, 4 MACk 1S an € j ,(t')-DoS-
resistant protocol. O
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