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Abstract.
Recently several reports of Cryptology ePrint Archive showed the discovering

that for a normal iterative hash function the entropy and codomain would reduce
greatly,then some conclusions were given: Narrow-pipe hash functions couldn’t
resist this reducing (But wide-pipe hash functions could.),and generic collision at-
tacks on narrow-pipe hash functions would be faster than birthday paradox.The
discovering and conclusions rely on the cases of active domain reducing which
causes the empty set of a approximative probability e−1 in a iteration.However,we
can thwart the conclusions by the way of Active Domain Expansion to keep or
recover the entropy , by some amending for any a normal narrow-pipe hash func-
tion to realize it.And some hash mode such as LAB Mode[1]can more simply
do it.In this paper,we’d introduce Active Domain Expansion which includes Sur-
jection Round and the sum block ΣMi.The most important is to define a sum
block ΣMi to replace the input of a normal message block Mi in compression
function.ΣMi is a sum of the foregoing i “Encoded Blocks”.since the surjection
round has the same purport and the form is a part of Active Domain Expan-
sion,Surjections Round will be non-critical section in this paper.Besides,we can
redefine the last block of additional bits.By these,a normal narrow-pipe hash
function can resist the reducing completely. .
keywords:
narrow-pipe hash, Active Domain Expansion,Encoded Block ,entropy, recover

1 Introduction:

Most hash functions are iterative and the Merkle-Damgaard construction[3]
is the most widely used to transform a secure compression function C : {0, 1}n×
{0, 1}m → {0, 1}n into a cryptographic hash function hc(·). (through this paper
n denotes the size of the chaining value,and m denotes the block size for the
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compression function.)
The construction expand the domain from {0, 1}m of a secure compression

function to the domain {0, 1}Lm of the whole message string( For simplicity,we
assume message string is L blocks.),and try to maintain the following three prop-
erties of the cryptographic secure compression functions :

1.pre-image resistance:

2.second pre-image resistance:

3.collision resistance:

A normal compression function of MD construction only transmit entropy of
n-bit from a m-bit block message,ie.,the construction reduces the entropy greatly
in each iteration,from the domain X = {0, 1}m to a codomain Y = {0, 1}n,and
this is one of the prime vulnerabilities which cause a number of generic attacks
on the hash functions , such as Multicollisions Attack,Second Preimage Attack
and Herding Attack, and recently several reports of Cryptology ePrint Archive
showed the discovering that for a normal iterative hash function the entropy and
codomain would reduce greatly.It indicates the fact again.It’s hard to avoid kinds
of new attacks even the construction repairing are ingenious.It is that the wide-
pipe hash can easily avoid those attacks because the compression function of a
wide-pipe hash can transmit active entropy (chaining value) of 2n-bit size just as
big as of message block.

Now ,the hash designs are two types which called“wide-pipe ”and “narrow-
pipe” hash functions. A wide-pipe iterated hash produces a large-size internal
chaining value,the size of internal chaining value is two times big of the final
hash value,and for a narrow-pipe hash ,the size of internal chaining value equals
to which of hash value.In this paper,we’ll simply introduce a narrow-pipe mode
which called “LAB Mode ”. The compression function form of LAB mode is
C : CVi = (CVi−1,ΣMi−1,Mi),it’s a narrow-pipe hash,but actually it provides a
big domain of input in each iteration,namely it transmit active entropy of a big
size which is about 3n-bit,and it is not the real big CV(chaining value) size which
needs a intricate computing and large memory.

By the way,a paper is now well knownDomain Extension of Public Random
Functions:Beyond the Birthday Barrier [2] proposed by Ueli Maurer and Stefano
Tessaro in 2007,who’s theory on public random function can realize optimal se-
curity,it’s quite strange such a significant theory has been valued until 2010 and
2011.It seems that even the latter like LAB Mode (which addressed independently
on hash problems) is a small part contained by the theory,and some notions are
similar,such as domain expansion,but we put emphasis on succinct narrow-pipe
hash in this paper.

There is the discovering that for a normal iterative hash function the en-
tropy and codomain will reduce greatly,and then there are some conclusions that
narrow-pipe hash functions can’t resist this reducing (But wide-pipe hash func-
tions can.),and generic collision attacks on narrow-pipe hash functions are faster
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than birthday paradox.The conclusions are mostly based on the case that for
given message blocks the effective entropies are only dependent on the chaining
value (CV )in a iteration,in which the domain is X = (0, 1)n,in other words,the
iteration is a mapping of X → Y ,where X = (0, 1)n = Y ,and in this case,the dis-
covering based on the basic mathematical fact is :For a function C ∈ FC chosen
uniformly at random and for every y ∈ Y the probability that the set C−1(y) is
empty is approximately e−1 i.e.[4]

Pr{C−1(y) = ∅} ≈ e−1.
Namely there is a big reducing of the entropy and codomain in a iteration.
In this paper,we find the way of Active Domain Expansion by using the method

of LAB Mode to pass and hold the entropy:firstly encode the values of CVi−1

(chaining values) into Block Mi,then a sum block ΣMi is defined and added into
the input ,Such that: C : CVi = (CVi−1,ΣMi−1,Mi) (where,ΣMi−1 is a sum of
the foregoing (i− 1) “Encoded Blocks”).

Except LAB mode,for a normal narrow-pipe hash function we can use sum
block ΣMi replacing input Mi to resist the reducing(ΣMi can be the simple
Input-Restricting Functions of [2]),and can redefine the last block of additional
bits.But a narrow-pipe hash function with the simple form compression function
C : CVi = (CVi−1,ΣMi) can’t resist other generic attacks,such as Multicollisions
Attack,it needs other techniques of other mode.

We can also build a composition of a compression function C, such that:
C = g∗ ◦ C∗,Where g∗ is a simple surjective function, C∗ is a normal ideal com-
pression just as those narrow-pipe compression functions.The codomain can be
recovered completely by the surjection in each iteration firstly, the case that the
continuous and cumulative reducing of entropy does’t exist.Since normally
the surjection form is a part of Active Domain Expansion,it also requires a big
and active domain of input),and ΣMi of Active Domain Expansion has provided
the condition (big and active domain of input) and avoided the reducing almost,
Surjections will be non-critical section in this paper.

The conclusions will be not worried for narrow-pipe hash functions since the
reducing will be no more again .

2 The Probability of Empty Set

The discovering is based on the basic mathematical facts and the cases of fixed
message-block bellow [4]:

Proposition 1. For finite narrow domain: Ideal random functions C map the
domain of n-bit strings X = {0, 1}n to itself i.e. to the domain Y = {0, 1}n,

Let FC be the family of all functions C : X → Y and let for every y ∈ Y ,
C−1(y) ⊆ X be the set of preimages of y i.e. C−1(y) = {x ∈ X|C(x) = y}. For a
function C ∈ FC chosen uniformly at random and for every y ∈ Y the probability
that the set C−1(y) is empty is approximately e−1 i.e.
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Pr{C−1(y) = ∅} ≈ e−1.

Proposition 2. For finite wide domain: Ideal random functions W map the
domain of (n + w)-bit strings X = {0, 1}n+w to the domain Y = {0, 1}n,

Let FW be the family of all functions W : X → Y where X = {0, 1}n+wand
Y = {0, 1}n. Let for every y ∈ Y , W−1(y) ⊆ X be the set of preimages of y
i.e.W−1(y) = {x ∈ X|W (x) = y}.For a function W ∈ FW ,chosen uniformly at
random and for everyy ∈ Y ,the probability that the set W−1(y)is empty is ap-
proximately e−2w i.e.

Pr{W−1(y) = ∅} ≈ e−2w .

Proposition 3.

Let C1 : X → Y , C2 : X → Y are two particular functions, chosen uniformly
at random (where X = Y = {0, 1}n). If we define a function C : X → Y as a
composition:

C = C1 ◦ C2,
then for every y ∈ Y the probability P2that the set C−1(y) is empty is P2 = e−1+e−1

If C = C1 ◦ C2◦, ..., ◦Ck,then,Pk = e−1+Pk−1

The key question is the “ effective and active” size m of domain X for input
in a iteration,and the size n of codomain Y is fixed.The Domain X is according
to the entropy namely“ the effective and active domain ”,e.g:If the last block is a
fixed addition namely the entropy is 0,then the entropy of the last iteration only
relies on the chaining value(CV),and the domain X equals to the domain of CV.

The cases of fixed message-block quoted from Vlastimil Klima [6]:
Let us suppose that a message M is divided into two parts A and B, i.e.

M = A||B, where the part A consist of just one message block of 512 bits,
and the number of 512-bit blocks in the part B is N = 235 (in case of current
2TByte HDD). Let us denote by hA the intermediate chaining value, obtained
after hashing the part A of the message M and let us suppose that the con-
tent of the part B is never changing - so it consists of constant message blocks
const1, const2, ..., constN (note that if padding is a part of the definition, it is
also a constant block). We compute the final hash with the following iterative
procedure:

h1 = C(hA, const1)
h2 = C(h1, const2)
h3 = C(h2, const3)
...
hN = C(hN−1, constN)
H(M) = hN

For each of the N iterations, there’s only the entropy of chaining values can
be transfered,namely each the iteration is a mapping X → Y ,where the domain
X ≤ {0, 1}n and Y = {0, 1}n.On the basis of Proposition 3.,there exists con-

4



tinuous and cumulative reducing of entropy,and the final exists a huge empty set.

3 MD5 Structure And It’s Surjective Round

The Merkle-Damgard construction is the most common way to transform
a compression function C : {0, 1}n × {0, 1}m → {0, 1}n into a hash function
HC(.),the Message Digest is n-bit value.

C denotes the compression function. M denotes the padded and Appended
message , it is formatted as 16L words :w0, w1, ..., wi, ..., w16L−1 ie.,the message
is made up of L m-bit blocks and each the block contains 16 words,for hash code
HC :

CVi = Chaining variable ,CV0 = IV (given Initial Value),Mi = the i-th
block

CVi = C(CVi−1,Mi)
HC(M) = CVL

MD5 Algorithm [5]:
The chaining variables are initialized as: a0 = 0x67452301; d0 = 0x10325476; c0 =

0x98badcfe; b0 = 0xefcdab89;
and for the ith iteration,the chaining variables a0, b0, c0, d0 are updated by

CVi−1,i.e., ai−1, bi−1, ci−1, di−1.Copy the i-th block Mi of 16 32-bit words into
Buffer:

m[16]← w16i+j (0 ≤ j ≤ 15 )
The 1st Round :
Step1:Σ1 = a0 + F (b0, c0, d0) + m0 + 0xd76aa478 , a1 = b0 + Σ1 <<< 7;
Step2:Σ2 = d0 + F (a1, b0, c0) + m1 + 0xe8c7b756 , d1 = a1 + Σ2 <<< 12;
Step3:Σ3 = c0 + F (d1, a1, b0) + m2 + 0x242070db , c1 = d1 + Σ3 <<< 17;
Step4:Σ4 = b0 + F (c1, d1, a1) + m3 + 0xc1bdceee , b1 = c1 + Σ4 <<< 22;
.....
Step13:Σ13 = a3 + F (b3, c3, d3) + m12 + 0x6b901122 , a4 = b3 + Σ13 <<< 7;
Step14:Σ14 = d3 + F (a4, b3, c3) + m13 + 0xfd987193 , d4 = a4 + Σ14 <<< 12;
Step15:Σ15 = c3 + F (d4, a4, b3) + m14 + 0xa679438e , c4 = d4 + Σ15 <<< 17;
Step16:Σ15 = b3 + F (c4, d4, a4) + m15 + 0x49b40821 , b4 = c4 + Σ16 <<< 22;

For the First Round of the ith iteration,no matter how the input values of
chaining variables(updated a0, b0, c0, d0) are prescribed arbitrarily, the output of
the chaining variables a4, b4, c4, d4 can achieve any values prescribed arbitrarily by
selecting the input values of m12,m13,m14and m15. If we mark the first round as a
function g,then g is a surjection,g : X → Y ,i.e,g : (0, 1)n×(0, 1)m → (0, 1)n.where
X=(0, 1)m,Y = (0, 1)n,m = n + w, n = 128, w = 384.

Namely for any given input of chaining variable CVi−1,the codomain is recov-
ered completely, the mapping from the first round is a surjection, this doesn’t
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depend on the previous chaining variable CVi−1.
For g : X → Y , and let for every y ∈ Y , g−1(y) ⊆ X be the set of preimages of
y i.e. g−1

1 (y) = {x ∈ X|g(x) = y}. For a function g chosen uniformly at random
and for every y ∈ Y the probability that the set g−1(y) is empty doesn’t exist.
i.e.

Pr{g−1(y) = ∅} ≈ e−2w doesn’t exist.

The rest 3 rounds of MD5 can be regarded as a function C∗ : (0, 1)n×(0, 1)m →
(0, 1)n,then the compression function C of MD5 is: C = g ◦ C∗.

Since the codomain can be recovered completely in each iteration firstly, the
case that the continuous and cumulative reducing of entropy does’t exist.

There may be the probability that the set C−1(y) is empty is approximately
e−2w in each iteration of the compression function C of MD5 ,i.e.

Pr{C−1(y) = ∅} ≈ e−2w ,
but this is discrete and independent,it’s not cumulate,and the positions of empty
set in each iteration are different .

It is necessary to make the difference between the input of Function C∗ and of
Function g,this can avoid the specificity of the mapping, we can see the sequences
of the input(m0,m1, ...,m15) in 4 rounds of MD5 are different.

4 Ideal Compression Function

Quoted from Vlastimil Klima and Danilo Gligoroski [6]:
– hlen - the length of the chaining variable.
– mlen - the length of the message block.
– hashlen - the length of the hash function output.

If the compression function has the property, that for every value m the func-
tion C(h,m) ≡ Ch(h) is an ideal random function of the variable h, we denote it
as IRF (h).

If the compression function has the property, that for every value h the func-
tion C(h,m) ≡ Ch(m) is an ideal random function of the variable m, we denote
it as IRF (m).

The hash function is defined by a narrow-pipe compression function (NPCF), iff
hashlen = hlen = mlen

2 and the compression function is IRF (h) and IRF (m).
The hash function is defined by a wide-pipe compression function (WPCF), iff

hashlen = hlen
2 = mlen

2 and the compression function is IRF (h) and IRF (m).

Then,we can regard MD5 is a narrow-pipe approximate IRF (m) of surjection
but not a IRF (h) of surjection.

If message input M chosen is fixed and invariant,there can’t get surjection g so
that the codomain can be recovered . There are continuous sets such C−1(y) is
empty in each iteration, the entropy and the codomain will reduce greatly.We’d
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amend the function g again.
The conclusions on narrow-pipe hash functions are mostly based on the pro-

cess of last additional block in iterative hash functions.One of the key questions
is that processing the last block with additional bits in a normal iterative hash
function,there’s the entropy of CVL−1 only n bits,namely a n-bit domain X maps
to a n-bit codomain Y ,the probability of empty set is approximately e−1.

There’s already the way of adding CVi into the next iteration such as :

CVi+1 = CVi+C(CVi,Mi),the Davies-Meyer Mode ,which is also used in MD4,
MD5, SHA-1, and SHA-2,but this is not sufficient enough.

5 Active Domain Expansion

For a narrow-pipe IRF (m)( where hashlen = hlen = mlen
2 ), firstly,we amend

the input Mi as:Mi = m∗(hi−1,Mi)(This can take the mixing into each step
function of computing and it is different from the Davies-Meyer Mode ,but this
is some similar as Input-Restricting Functions of [2]),and we can mark the new
surjective function as g∗.

Then the codomain is recovered by g∗ firstly,the compression function C is
amended to be a approximate IRF (m) and IRF (h) of surjection F , such that:
F = g∗ ◦ F ∗, i.e,the entropy and value of CVi−1 can be put into each message
input Mi,and the codomain can be recovered in each iteration.

The most important is that define a sum block ΣMi and use it in each itera-
tion.

Firstly, by the surjectiong∗ ,the case that the continuous and cumulative re-
ducing of entropy won’t exist.

The second,LAB Mode increases a much big domain of input by provid-
ing additional block in each iteration,then it is in the case of Proposition
2,Pr = e−2w .(and we can define the last block M∗

L,but this step is not neces-
sary in LAB Mode. )We can avoid the case of the other hashes of Proposition
1,in which the probability Pr of empty set is approximately e−1.

The third,for any a normal narrow-pipe hash function,by the sum block ,there
always exists the input variable

∑
Mi whenever the input message is or not a

constant in each iteration,it is the case of Proposition 2,where the probability
Pr of empty set is approximately e−2w ,for a 1024-bit block,w ≥ 1024−512 = 512.

E.g,for the foregone message M = A||B ,the iterations are:
h1 = C(hA, const1)... −→ h

′
1 = C(hA, const1,

∑
M1),

where
∑

M1 = A + const1 + hA,since block A is a random message block,
∑

M1

is a random message block.
h2 = C(h1, const2)... −→ h

′
2 = C(h

′
1, const2,

∑
M2),

∑
M2 is also a

random message block,and so is
∑

M3,...,
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hN = C(hN−1, constN)... −→ h
′
i = C(h

′
i−1, constN,

∑
Mi)

6 For HMACs

Firstly, let,’s quote to Danilo Gligoroski and Vlastimil Klima [7], and observe
the problem by using the hash function SHA256 that has the compression func-
tion CompressSHA256().From the definition of HMAC we have that

mac = HMAC(secret,M) = hash((secret⊕ opad)‖hash((secret⊕ ipad)‖M))
where ⊕ is the operation of xor and ‖ is the operation of string concatena-
tion.where M is 256-bit message,and secret is also 256 bits. The size of m is
512 bit,and the size n is 256.

Computing of mac will use four calls of the compression function CompressSHA256()
in the following sequence:

1. h1 =CompressSHA256(iv256, (secret⊕ ipad)) ≡ C1(iv256)
2. h2 =CompressSHA256(h1,M‖CONST256) ≡ C2(h1), where

CONST256 = 1000...000100000000︸ ︷︷ ︸
256bits

3. h3 =CompressSHA256(iv256, (secret⊕ opad)) ≡ C3(iv256)
4. mac = h4 =CompressSHA256(h3, h2‖CONST256) ≡ C4(h3)

Since h1 is a fixed value,then it’s the case of Proposition 1,in which the prob-
ability Pr of empty set is approximately e−1.

The similar,h3 is fixed,and mac = h4 = is the case of Proposition 1.
Let’s use the technique of Active Domain Expansion(ADE)and overcome the

problem of entropy reduction.
Firstly we amend the input Mi as:Mi = m∗(hi−1,Mi),ie,mixing of the input

and CV.Secondly,there always exists the input variable
∑

Mi whenever the input
message is or not a constant in each iteration,we can make a surjective function
g∗,whenever the case of the last iteration is ,the codomain can be recovered com-
pletely. And the third,since we increase a additional variable

∑
Mi ,namely the

domain is the case of Proposition 2,where the probability Pr of empty set is
approximately e−2w :

Define a additive block M0,Define a variable
∑

Mi where
∑

Mi = Mi +hi−1 +∑
Mi−1,Define the input Mi as:Mi = m∗(hi−1⊕Mi) ,for i ≥ 1,we use LAB Mode:

h
′
1 =CompressSHA256(iv256,M1,

∑
M0, ) ≡ C

′
1(iv256),where,

M1 = (secret⊕ ipad)⊕ iv256;
∑

M0 = M0 + iv256

h
′
2 =CompressSHA256(h

′
1,M2,

∑
M1) ≡ C

′
2(h

′
1),where,

M2 = M‖CONST256⊕ h
′
1;
∑

M1 = M1 +
∑

M0;

h
′
3 =CompressSHA256(h

′
2,M3,

∑
M2) ≡ C

′
3(iv256),where,
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M3 = (secret⊕ opad)⊕ h
′
2;
∑

M2 = M2 +
∑

M1

mac = h
′
4 =CompressSHA256(h

′
3,M4,

∑
M3) ≡ C4(h

′
3),where,

M4 = (h
′
2‖CONST256)⊕ h

′
3;
∑

M3 = M3 +
∑

M2.

Firstly ,The input M4,
∑

M3 of mac = h
′
4 is a surjective function g∗;Secondly,the

domain of the input is 2512 at least,then,it’s the case of Proposition 2,where
the probability Pr of empty set is approximately e−2w ,w = m− n ≥ 512− 256 =
256,ie.,the probability Pr of empty set is approximately e−2256 .

Notice the different between h3 and h
′
3,the 4 steps of ADE are continuous.

The concrete procedure of the two blocks Mi and
∑

Mi,see LAB Mode fol-
lowed.

7 One Mode of Narrow Pipe Hash

LAB Mode is succinct and efficient for narrow-pipe hash function against
the main generic attacks,such as Multicollisions Attack,Second Preimage At-
tack and Herding Attack.It operates two blocks (one message block and a sum
block)together only with a compression function.

By providing a additional variable of sum block (some similar as Input-Restricting
Functions of [2])to expand active domain and substitute intricate functions de-
sign.
E.g.,for hashlen = hlen = 512 = mlen

2 ,mlen = 1024,amend a 512-bit r-round
compression f of MD construction into ideal compression F of LAB Form C ,and
to get a secure hash function construction .The compression F . :

CVi = F (CVi−1,
∑

Mi−1,Mi) ;
where

∑
Mi is the sum (modulo addition ) of the i blocks ,it can also be the

xor operation of the i blocks.
And for each unit Σwi,j of Block ,define :∑

Mi (Σmi,o,Σmi,1, ...,Σmi,15) (1 ≤ i ≤ L ,0 ≤ j ≤ 15),:∑
Mi = Mi +

∑
Mi−1 i.e.:

Σmi,j = mi,j + Σmi−1,j

LAB Form C :
1.Append padding bits and append length just as M-D Structure:

The message is padded with single 1-bit followed by the necessary number of 0-
bits,so that its length l congruent to 896 modulo1024 [l ≡ 896(mod1024)],append
a block of 128 bits as an unsigned 128-bit integer(most significant byte first)and
contains the length of the original message.M denotes the message after padding
bits and appending length. message. M is split to be L blocks:M1M2...ML,i.e.,M
is made up of w0, w1, ..., w16L−1.
2.Define a additive block M0,encode the size of hash value n into M0, just like
HAIFA [8].

Amend the last block as M∗
L = ML−1 +ML(But this amending is not the nec-
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essary in LAB mode.).
3.Define an initial value IV ,Set Array A[16] and Array B[16] ,for a r-round com-
pression function F ,for i from 1 to L,do the following operations of each itera-
tion,and get the hash value hF (M):

CV0 = IV ,
∑

M0 = M0

CVi = F (hi−1,
∑

Mi−1,Mi)
CVL = F (hL−1,

∑
ML−1,M

∗
L),The hash value is CVL.

4.Truncate the final chaining value if needed.

The Details (e.g.):
Define :

∑
Mi = Mi +

∑
Mi−1 (1 ≤ i ≤ L,0 ≤ j ≤ 15) i.e.:

Σmi,j = mi,j + Σmi−1,j

Define :in the 1st iteration,
∑

M0 = M0 and A[16]←
∑

M0 .
For the i-th iteration,
Split chaining variable CVi−1 into 8 words:hi−1,0, hi−1,1, ..., hi−1,7,then update

B[16].
Copy the i-th block Mi of 16 64-bit words and add the 8 chaining variables

into Buffer:
B[16]← (w16i+j+hi−1,jmod8) (where,0 ≤ j ≤ 15,and Mi = m∗(CVi−1,Mi).)

And at the ending of the i-th iteration,update A[16]:
A[16]← (B[16] + A[16]). ie.,:
A[16]←

∑
Mi−1,

On this wise,the entropy and the values of CV are completely mixed into∑
Mi−1 and Mi ,this is different from the Davies-Meyer Mode.

Amend all the nonlinearity step functions st,j(mj) (1 ≤ t ≤ r, 0 ≤ j ≤ 15).
1.For the step functions st,j(mj) of the first round,amend them ,such that:

St,j = st,j(Σmi,j) + mi,j (t = 1 ,The first round is Surjection g∗. )

2.For the rest rounds ,
St,j = st,j(mi,j) + Σmi,j (2 ≤ t ≤ r).

The input mode of the rest rounds is different from which of the first round.

In this case,for each iteration of LAB Mode C:CVi = F (hi−1,
∑

Mi−1,Mi),ideal
random compression function F maps the domain X = {0, 1}n+w of (n + w)-
bit strings (block

∑
Mi−1 and block Mi) to the domain Y = {0, 1}n,where

n = 512,m = 2× 1024 = 2048, w = m− n = 2048− 512 = 1536,
so,the probability of empty set is(According to Proposition 2.) :

Pr{F−1(y) = ∅} ≈ e−2w = e−21536

The probability of empty set can be ignored in each iteration even Function g∗

is not a surjection namely the codomain isn’t recovered completely.

The computing of the last iteration is:
CVL = F (CVL−1,

∑
ML−1,M

∗
L),

where,M∗
L = ML−1 +ML,

∑
ML−1 = ML−1 +

∑
ML−2, this avoid the simpleness

and specificity of the last block.Even the last block is fixed addition,the entropy
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of input (CVL−1,
∑

ML−1and M∗
L)is much enough for the probability of empty

set:hlen = n = 512;n + w ≥ 512 + 1024;.
The probability of empty set in the last iteration is:

Pr{F−1(y) = ∅} ≈ e−2w ≤ e−21024
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