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Abstract.
In this article, we give an approach to the problem of entropy and codomain

reducing in a normal iterative hash function. The problem relies on the case of
effective domain reducing which causes the empty set of a approximative prob-
ability e−1 in a iteration. We will keep, hold or recover the entropies by a way
of Active Domain Expansion(ADE). ADE replaces the input message block by∑

Mi in a normal iterative hash function. A sum block
∑

Mi is a sum of the
foregoing i ”Encoded Blocks”. ADE makes the Sum Block

∑
Mi a big domain

to satisfy a surjection function, it can recover the entropy and codomain.We put
emphasis on succinct narrow-pipe hash in this paper and a normal narrow-pipe
hash function can resist this reducing.
keywords:
domain expansion, entropy, narrow -pipe hash , surjection

1 Introduction:

Most hash functions are iterative and the Merkle-Damgaard construction[3]
is the most widely used to transform a secure compression function C : {0, 1}n×
{0, 1}m → {0, 1}n into a cryptographic hash function hc(·). (through this paper
n denotes the size of the chaining value, and m denotes the block size for the
compression function.)

The construction expand the domain from {0, 1}m of a secure compression
function to the domain {0, 1}Lm of the whole message string(For simplicity, we
assume message string is L-block).

A normal compression function of MD Construction (called Narrow-pipe hash)
only transmits entropy of n-bit from a m-bit block message in each iteration, it
reduces entropy greatly , from the domain X = {0, 1}m to the codmain Y =
{0, 1}n , and this is one of the prime vulnerabilities which cause a number of
generic attacks, such as Multicollisions Attack, Second Preimage Attack, and
Herding Attack.
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The entropy and codomain reduce greatly in a normal iterative hash function,
there are some conclusions[2 ]:

A normal narrow-pipe hash function can’t resist this reducing (but a wide-pipe
hash functions can.), and generic collision attacks on narrow-pipe hash functions
are faster than birthday paradox. For given message blocks (where the message
blocks are constants and the entropies are 0) the effective entropies are only de-
pendent on the chaining values (CV s), in other words, the iteration is a mapping
of X → Y , whereX = {0, 1}n = Y , and in this case, for compression function C,
the empty set is approximately e−1, ie.,Pr{C−1(y) = ∅} ≈ e−1[4].

Then , it leads to a continuous and cumulative reducing of entropy , and at
the final there exists a huge empty set.

In this paper, we will try pass and hold the effective entropy by Active Domain
Expansion (ADE).

We can also build a composition of a compression function C, such that: C =
g∗◦C∗, where g∗ is a simple surjection function, C∗ is a normal ideal compression
function, then the codomain can be recovered completely by surjection in each
iteration firstly, the case that the continuous and cumulative reducing of entropy
doesn’t exist.

Normally the surjection form also requires a big and active domain of input,
and

∑
Mi of Active Domain Expansion has provide this condition ( big and active

domain of input).
We can do the same on MAC to avoid the reducing.

2 The Reducing And Probability of Empty Set

The reducings based on the basic mathematical facts and the cases of fixed
message-block below[4]

1. For finite narrow domain: Ideal random functions C map the domain of
n-bit strings X = {0, 1}n to itself i.e. to the domain Y = {0, 1}n.

Let FC be the family of all functions C : X → Y and let for every y ∈ Y ,
C−1(y) ⊆ X be the set of preimages of y i.e. C−1(y) = {x ∈ X|C(x) = y}. For a
function C ∈ FC chosen uniformly at random and for every y ∈ Y the probability
that the set C−1(y) is empty is approximately e−1 i.e.

Pr{C−1(y) = ∅} ≈ e−1 (1)

2. For finite wide domain: Ideal random functions W map the domain of
(n + w)-bit strings X = {0, 1}n+w to the domain Y = {0, 1}n.

Let FW be the family of all functions W : X → Y where X = {0, 1}n+wand
Y = {0, 1}n. Let for every y ∈ Y , W−1(y) ⊆ X be the set of preimages of
y i.e.W−1(y) = {x ∈ X|W (x) = y}.For a function W ∈ FW ,chosen uniformly
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at random and for every y ∈ Y ,the probability that the set W−1(y)is empty is
approximately e−2w i.e.

Pr{W−1(y) = ∅} ≈ e−2w (2)

3. Let C1 : X → Y , C2 : X → Y are two particular functions, chosen
uniformly at random (where X = Y = {0, 1}n). If we define a function C : X →
Y as a composition:

C = C1 ◦ C2,
then for every y ∈ Y the probability P2that the set C−1(y) is empty is

P2 = e−1+e−1
(3)

If C = C1 ◦ C2◦, ..., ◦Ck,then,

Pk = e−1+Pk−1 (4)

The key question is the “ effective and active” size m of domain X for input
in a iteration, and the size n of codomain Y is fixed.The Domain X is according
to the entropy namely“ the effective and active domain ”, e.g:

If the last block is a fixed addition namely the entropy is 0,then the entropy of
the last iteration only relies on the chaining value(CV), and the domain X equals
to the domain of CV.

The cases of fixed message-block quoted from Vlastimil Klima [6]:
Let us suppose that a message M is divided into two parts A and B, i.e.

M = A||B, where the part A consist of just one message block of 512 bits,
and the number of 512-bit blocks in the part B is N = 235 (in case of current
2TByte HDD). Let us denote by hA the intermediate chaining value, obtained
after hashing the part A of the message M and let us suppose that the con-
tent of the part B is never changing - so it consists of constant message blocks
const1, const2, ..., constN (note that if padding is a part of the definition, it is
also a constant block). We compute the final hash with the following iterative
procedure:

h1 = C(hA, const1)
h2 = C(h1, const2)
h3 = C(h2, const3)
...
hN = C(hN−1, constN)
H(M) = hN

For each of the N iterations, there’s only the entropy of chaining values(the
size is n) can be transfered, namely each the iteration is a mapping X → Y ,
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where the domain X ≤ {0, 1}n and Y = {0, 1}n. According to formula (1), (3)
and (4), there exists continuous and cumulative reducing of entropy, and the final
exists a huge empty set.

3 Active Domain Expansion

For the i-th iteration of a narrow-pipe hash function , define a sum block
∑

Mi:
For i from 1 to (we assume message string is L -block),∑

Mi = R(
∑

Mi−1 + CVi−1 + Mi) (5)

Where, R is a linear (or nolinear ) function.
And make the compression function C as :

C : CVi = C(CVi−1,
∑

Mi) (6)

or:
C : CVi = C(CVi−1,

∑
Mi−1,Mi) (7)

(
∑

Mi in Formula(7) is a few different from Formula(1.6),see the definition
in Section IV. )

For brevity, let : ∑
Mi =

∑
Mi−1 + CVi−1 + Mi (8)

Define
∑

M0 = M0.
We can take MD5 for example and to see what are the relevant conditions of

empty set .
MD5[5]:

CVi = C(CVi−1,Mi)

HC(M) = CVL

where Mi is made up of m0,m1, ...,m15, for ith iteration , 4 working variables
are :aj , bj , cj , dj ,( for j from 0 to 15) , and in the ending of ith iteration,a ‖ b ‖ c ‖ d
become the chaining variable CVi, the first round is:

Step1:Σ1 = a0 + F (b0, c0, d0) + m0 + 0xd76aa478 , a1 = b0 + Σ1 <<< 7;
Step2:Σ2 = d0 + F (a1, b0, c0) + m1 + 0xe8c7b756 , d1 = a1 + Σ2 <<< 12;
Step3:Σ3 = c0 + F (d1, a1, b0) + m2 + 0x242070db , c1 = d1 + Σ3 <<< 17;
Step4:Σ4 = b0 + F (c1, d1, a1) + m3 + 0xc1bdceee , b1 = c1 + Σ4 <<< 22;
.....
Step13:Σ13 = a3 + F (b3, c3, d3) + m12 + 0x6b901122 , a4 = b3 + Σ13 <<< 7;
Step14:Σ14 = d3 + F (a4, b3, c3) + m13 + 0xfd987193 , d4 = a4 + Σ14 <<< 12;
Step15:Σ15 = c3 + F (d4, a4, b3) + m14 + 0xa679438e , c4 = d4 + Σ15 <<< 17;
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Step16:Σ15 = b3 + F (c4, d4, a4) + m15 + 0x49b40821 , b4 = c4 + Σ16 <<< 22;

Let Mi be a random message block, then:
No matter how the input values of chaining variables (update a0, b0, c0, d0 ) are

prescribed arbitrarily, the output of the chaining variables a4, b4, c4, d4 can achieve
any values prescribed arbitrarily by selecting the input values of m12,m13,m14

and m15.
If we mark the first round as a function g∗, then g∗ is a surjection.
Namely for any given input of chaining variable CVi−1,the codomain is recov-

ered completely.
The rest 3 rounds of MD5 can be regarded as a function C∗ : (0, 1)n×(0, 1)m →

(0, 1)n, according to Formula(2), the probability that the set is empty set is
approximately e−2w = e−2384

where m = n + w = 512,n = 128,w = 384.
And Compression Function C of MD5 is: C = g∗ ◦ C∗.

If the last block ML hashed is a random message block , there is no problem
on entropy and codomain reducing for the final hash value HC(M) = CVL.

But if is not a random message block, and it’s in the case of Section 2 ,where
the massage is A ‖ B, the final will exist a huge empty set.

The continuous and cumulative reducing of entropy won’t exist if iterations
with the surjection g∗.

For any a normal narrow-pipe hash function with the sum block
∑

Mi , there
always exists the input variable whenever the input message is or not a constant
in a iteration, it is the case of Formula(2), where the probability Pr of empty set
is approximately e−2w .

For a 512-bit block, w ≥ 512 − 128 = 384.E.g.,for the foregone message M =
A||B, the iterations are:

h1 = C(hA, const1)... −→ h
′
1 = C(hA, const1,

∑
M1)

where
∑

M1 = A + const1 + hA. Since block A is a random message block,∑
M1 is a random message block.

h2 = C(h1, const2)... −→ h
′
2 = C(h

′
1, const2,

∑
M2)∑

M2 is also a random message block, and so is
∑

M3,...,
hN = C(hN−1, constN)... −→ h

′
i = C(h

′
i−1, constN,

∑
Mi)

So, the final block
∑

MN is a variable of a random message block. it’s in the
case of foregoing random message block of MD5, which C = g∗ ◦ C∗.∑

Mi is the simplest form, it can pass and hold the effective entropies of the
foregone iterations to a big domain of 2m , it makes a big domain in each iteration
for narrow pipe hash function, just like the wide pipe hash functions.

The mode is not a wide-pipe hash, in reality, it has the attribute of narrow-pipe
hash. A normal wide-pipe hash must make CV of 2 size big. E.g., if we make
SHA512 to be a wide-pipe hash, there must be 32 variables in stead of 16 variables,
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the added 16 variables must be uniformity and indistinguishability as the normal
16 variables strictly. So, it’s a hard work. But in the new mode, it produce 16
variables just as a normal SHA512, it needn’t the hard work of expanding 16
variables to 32 variables which of uniformity and indistinguishability.

4 For HMACs

Firstly, let’s quote to Danilo Gligoroski and Vlastimil Klima [7], and observe
the problem by using the hash function SHA256 that has the compression function
CompressSHA256().From the definition of HMAC we have that:

mac = HMAC(secret,M) = hash((secret⊕ opad)‖hash((secret⊕ ipad)‖M))

where ⊕ is the operation of xor and ‖ is the operation of string concatenation,
M is 256-bit message, and secret is also 256 bits. The size of m is 512 bit, and
the size n is 256.

Computing of mac will use four calls of the compression function
CompressSHA256() in the following sequence:

1. h1 =CompressSHA256(iv256, (secret⊕ ipad)) ≡ C1(iv256)

2. h2 =CompressSHA256(h1,M‖CONST256) ≡ C2(h1), where

CONST256 = 1000...000100000000︸ ︷︷ ︸
256bits

3. h3 =CompressSHA256(iv256, (secret⊕ opad)) ≡ C3(iv256)

4. mac = h4 =CompressSHA256(h3, h2‖CONST256) ≡ C4(h3)

Since h1 is a fixed value, then for h2, the entropy is only dependent on
M‖CONST256, it’s the case of Formula(1), in which the probability Pr of empty
set is approximately e−1.

The similar, h3 is fixed, and mac = h4 is the case of Formula(1).

Now, we use ADE Mode:
Firstly , change the input message block , define:∑

M0 = M0,
∑

Mi =
∑

Mi−1 + M∗
i , M∗

i = Mi + CVi−1

and we use Formula(7):

C : CVi = C(CVi−1,
∑

Mi−1,M
∗
i , )

i.e.
hi = C(hi−1,

∑
Mi−1,M

∗
i , )

There always exists the input variable
∑

Mi whenever the input message is or
not a constant in last iteration, we can make a surjective function g∗, whenever
the case of the last iteration is, the codomain can be recovered completely.
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Define a additive block M0, for i ≥ 1,

h
′
1 =CompressSHA256(iv256,M

∗
1 ,
∑

M0, ) ≡ C
′
1(iv256),

h
′
2 =CompressSHA256(h

′
1,M

∗
2 ,
∑

M1) ≡ C
′
2(h

′
1),

h
′
3 =CompressSHA256(h

′
2,M

∗
3 ,
∑

M2) ≡ C
′
3(iv256),

mac = h
′
4 =CompressSHA256(h

′
3,M

∗
4 ,
∑

M3) ≡ C4(h
′
3),

where

M∗
1 = (secret⊕ ipad)⊕ iv256;

∑
M0 = M0

M∗
2 = M‖CONST256⊕ h

′
1;
∑

M1 = M∗
1 +

∑
M0;

M∗
3 = (secret⊕ opad)⊕ h

′
2;
∑

M2 = M∗
2 +

∑
M1

M∗
4 = (h

′
2‖CONST256)⊕ h

′
3;
∑

M3 = M∗
3 +

∑
M2.

For mac = h
′
4, the input (of M∗

4 ,
∑

M3) is big domains of ADE, the domain
of the input is about 2512,then,it’s the case of Formula(2), where the probability
Pr of empty set is approximately e−2w , w = m − n ≥ 512 − 256 = 256,ie., the
probability Pr of empty set is approximately e−2256 . And in concrete round of
compression function, firstly the input of big domain can be a surjection round
g∗ to recover the domain of previous output.

Notice the different between h3 and h
′
3,the 4 steps of ADE are continuous.

5 Discuss And Summarize∑
Mi is the simplest form, it can pass and hold the effectiv entropies of the

foregone iterations to a big domain of 2m.
Formula (7) C : CVi = C(CVi−1,

∑
Mi−1,Mi) is one mode of the succinct

and efficient designs[1] for narrow-pipe hash functions against the main generic
attacks (such as Multicollisions Attack, Second Preimage Attack and Herding
Attack). It operates two blocks (one message block and a sum block)together
only with a compression function. It provides a additional variable of sum block.

Some views are: It fails to be secure against multicollision attacks:

To see this, group calls to F by pairs calling the result G and consider messages
of the restricted form (M1 ,−M1,M2,−M2,M3,−M3,...)
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Then , all calls to G are of the form :

G(CVi, 0,Mi) = F (F (CVi−1, 0, ),Mi,−Mi)

As a consequence, G only receives 2 arguments as in a classical Merkle-Damgard
and multicollision attacks do apply.

However,
∑

Mi =
∑

Mi−1+CVi+Mi,
∑

Mi is as a message block and contains
the sum of the foregone i CV s (not CVi itself), and one can’t simultaneously se-
lect a message and control an exact value of CVi to make the sum block

∑
Mi = 0

in a iteration.∑
Mi of ADE is a big domain({0, 1}2n), it can pass, hold and accumulate

the entropies (see Appendix).

Another question is:
ADE is a mode designed against the problem of entropy and codomain reduc-

ing, it’s substantive is entropy passing, holding and surjection, it roots in LAB
mode [1] against those generic attacks.

Then, is ADE mode (Formula (6), only block
∑

Mi ) sufficient enough for a
normal narrow-pipe hash function against those generic attacks ?

Formula (6):

C : CVi = C(CVi−1,
∑

Mi)

and Formula (8): ∑
Mi =

∑
Mi−1 + CVi + Mi

Since one can’t simultaneously select a message and control an exact value in
each a iteration, and

∑
Mi is combined tightly with each the foregone i message

block and chaining values, the adversaries cannot select the messages of same
hash values to build multicollision -pair messages (and so for Checksum Control
Sequences[1][8]).

6 Appendix

Let’s assume a message string:
The message is made up of 512 512-bit blocks, each block only contains 1

alterable bit and 511 immutable bits, e.g.:
For i from 0 to 511, the block Mi is ai ‖ cont, ai denotes the alterable bit and

cont denotes the 511 immutable bits. Then, for a normal narrow pipe hash or a
wide pipe hash:

CV1 = C(CV0, a0 ‖ cont)

CV2 = C(CV1, a1 ‖ cont)
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...

CVi = C(CVi−1, ai−1 ‖ cont)

...

CV512 = C(CV511, a511 ‖ cont)

There is little entropy in the first few iterations. Then, there is a huge empty
set in a iteration hash function, at the final the case is Formula (1), the mapping
is :

{0, 1}n → ...{0, 1}n

The probability of empty set is approximately e−1.

If we use
∑

Mi of ADE, there will be a big domain of {0, 1}2n , it can pass,
hold and accumulates the entropies.

For a wide pipe hash, the mapping is {0, 1}2n → ...{0, 1}2n in a iteration, at
the final, it’s a mapping of:

{0, 1}2n → ...{0, 1}n

The entropies of domain X = {0, 1}2n is about :

22n(1− e−1) ≈ 22n−1

So it’s the case of Formula(2).
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