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Abstract

In this paper we present simple but comprehensive combinatorial criteria for completeness of
finite deterministic 2-party functions with respect to information-theoretic security. We give a
general protocol construction for efficient and statistically secure reduction of oblivious transfer
to any finite deterministic 2-party function that fulfills our criteria. For the resulting protocols
we prove universal composability. Our results are tight in the sense that our criteria still are
necessary for any finite deterministic 2-party function to allow for implementation of oblivious
transfer with statistical privacy and correctness.

We unify and generalize results of Joe Kilian (1991, 2000) in two ways. Firstly, we show
that his completeness criteria also hold in the UC framework. Secondly, what is our main
contribution, our criteria also cover a wide class of primitives that are not subject of previous
criteria. We show that there are non-trivial examples of finite deterministic 2-party functions
that are neither symmetric nor asymmetric and therefore have not been covered by existing
completeness criteria so far.

As a corollary of our work, every finite deterministic 2-party function is either complete or
can be considered equivalent to a non-complete symmetric 2-party function—this assertion holds
true with respect to active adversaries as well as passive adversaries. Thereby known results on
non-complete symmetric 2-party functions are strengthened.

Keywords: oblivious transfer, complete primitives, information-theoretic security, universal
composability, secure function evaluation.
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1 Introduction

Oblivious transfer in the sense of a trusted erasure channel (Rabin-OT) was introduced in [Rab81]
and later in [Cré88] proven to be equivalent to

(
2
1

)
-OT, where a receiver Bob may learn only one

of two bits sent by Alice. Oblivious transfer turned out to be complete in the sense that every
secure multiparty computation can be implemented using OT [Kil88, GL91, CvdGT95, IPS08].
Thereby, enduring interest in OT arised in cryptography and for numerous primitives it has been
investigated, whether they allow for implementation of OT. In our work we exhaustively treat
this question for the class of “finite deterministic 2-party functions”, sometimes also referred to as
“crypto gates”. Such primitives are characterized by some finite alphabetes ΥA,ΥB,ΩA,ΩB and
some mappings fA ∈ ΩΥA×ΥB

A , fB ∈ ΩΥA×ΥB
B , such that on input x ∈ ΥA from Alice and y ∈ ΥB

from Bob the primitive outputs fA(x, y) to Alice and fB(x, y) to Bob.

1.1 Related work

In the literature one finds OT protocols for the bounded-classical-storage model [CCM98] and the
bounded-quantum-storage model [DFR+07] as well as noisy classical [CMW05, Wul09] and quantum
channels [May95, May96], the latter taking commitments for granted. Further, there are reductions
of
(

2
1

)
-OT to weaker OT versions that leak additional information [CK90, DKS99, Wul07] and to

Rabin-OT [Cré88]. OT-combiners implement OT from granted sets of OTs with faulty members
[MPW07, HIKN08]. For reversing the direction of

(
2
1

)
-OT a protocol is known with optimal number

of OT calls [WW06]. Relative to complexity assumptions all-or-nothing laws have been shown
[BMM99, HNRR06, MPR10], i.e. all non-trivial primitives are complete. Our work has several,
nowadays folklore reduction techniques in common with all the aforementioned literature.

We unify and generalize the results of [Kil91, Kil00], where completeness criteria for symmetric
(i.e. both parties receive the same output) and asymmetric (i.e. only one party learns the function
output) 2-party functions were provided with respect to information-theoretic security. We import
a main argument for the necessity of our criteria from [Kil91]. Our sufficiency proof is independent
from [Kil91, Kil00], since our results are more general and we use a very strict notion of security.

There are also results regarding whether various symmetric 2-party functions can be reduced
to each other [MPR09] and what can be implemented from scratch when there is only a passive
adversary [Kus92, KMQR09]. A corollary of our work extends all these results to non-symmetric
primitives; some results of [KMQR09] already build on an early manuscript of our work [KMQ08].

1.2 Our contribution

We expose a wide class of complete finite deterministic 2-party functions that are essentially neither
symmetric nor asymmetric and hence are not subject of statistical completeness criteria in the
literature so far. Further, by surprisingly simple combinatorial criteria to the respective function
tables we give a precise characterization of all finite deterministic 2-party functions that allow
for statistically secure implementation of OT. We provide an efficient and universally composable
protocol scheme for OT from any finite deterministic 2-party function fulfilling our criteria. Our
results are tight, as the necessity of our criteria still holds when only correctness and privacy of the
implemented OT are required.

As a remarkable corollary of our work all non-complete finite deterministic 2-party functions
turn out symmetric. This strengthens several known results for non-complete symmetric 2-party
functions [Kus92, MPR09, KMQR09].
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Functionality: F (F )
SFE

Let F be characterized by the output functions fA : ΥA×ΥB → ΩA and fB : ΥA×ΥB → ΩB, where ΥA,ΩA

are Alice’s input and output alphabet and ΥB,ΩB are Bob’s input and output alphabet.

• Upon receiving input (x, i) from Alice, verify that (x, i) ∈ ΥA×N and that there is no recorded tuple
(x̃, i, Alice); else ignore that input. Next, record (x, i, Alice) and send (processing, Alice, i) to
the adversary.

• Upon receiving input (y, i) from Bob, verify that (y, i) ∈ ΥB×N and that there is no recorded
tuple (ỹ, i, Bob); else ignore that input. Next, record (y, i, Bob) and send (processing, Bob, i) to the
adversary.

• Upon receiving a message (Delivery, Alice, i) from the adversary, verify that there are recorded
tuples (x, i, Alice) and (y, i, Bob) and the former is not marked; else ignore that input. Next, mark
the recorded tuple (x, i, Alice), compute a← fA(x, y) and output (a, i) to Alice.

• Upon receiving a message (Delivery, Bob, i) from the adversary, verify that there are recorded tuples
(x, i, Alice) and (y, i, Bob) and the latter is not marked; else ignore that input. Next, mark the
recorded tuple (y, i, Bob), compute b← fB(x, y) and output (b, i) to Bob.

When a party is corrupted, the adversary is granted unrestricted access to the channel between F (F )
SFE and

the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 1: The ideal functionality for secure evaluation of a 2-party function F . Adapted and
simplified version of the Secure Function Evaluation functionality in [Can01]. Note that via the
parameter i only the same multi-session ability is achieved as in [Can01] by multiple session IDs.

1.3 Organization of this paper

The rest of this paper is organized as follows. In Section 2 we briefly present our results. Thereto,
we first refer to the security notion that we use (Section 2.1), then introduce the notations needed
for formulation of our results (Section 2.2) and, last but not least, state our completeness criteria in
form of a Classification Theorem (Section 2.3). In Section 3 we give an intuitive exposition of how
one can prove this theorem; a formal proof is located in Section 4. To make it self-contained, all
definitions, lemmata, etc. from the rest of the paper are also restated in Section 4. In Section 5 we
give a conclusion of our work and post some open questions that we find interesting to investigate.

2 Presentation of our results

2.1 Notion of security

We prove our classification results in the UC framework [Can01] with static corruption and sta-
tistical security, i.e. the adversarial entities A,S and the environment Z are computationally un-
bounded. Nonetheless, in our case the running time of a simulator S will always be polynomial
in the running time of the according adversary A. Since we implement

(
2
1

)
-OT from given 2-party

functions, in the real model there always is a hybrid functionality that provides access to the
latter (see Figure 1). Since

(
2
1

)
-OT can be considered a special 2-party function that on input

(b0, b1) ∈ {0, 1}2 from Alice and c ∈ {0, 1} from Bob outputs bc to Bob and a special “nothing”
symbol ⊥ to Alice, we omit an explicit definition of the ideal functionality FOT.
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2.2 Basic concepts

A finite deterministic 2-party function can be characterized by its input and output alphabets and
output functions (q.v. Figure 1). By Ffin,det we denote the set of all tuples (ΥA,ΥB,ΩA,ΩB, fA, fB),
where ΥA,ΥB,ΩA,ΩB are non-empty finite alphabets and fA, fB are mappings from ΥA×ΥB to
ΩA and from ΥA×ΥB to ΩB respectively (cf. Notation 2 in Section 4.1.1). For convenience we
will not always differentiate pedantically between the mathematical object F ∈ Ffin,det and the

corresponding primitive F (F )
SFE, but from the context should be always clear what is meant.

Our notion of Ffin,det turns out a bit too detailed, since Alice and Bob can always relabel
their input-output tuples of a given 2-party function without any side effects. There is no need
for distinguishing between some F ∈ Ffin,det and any relabelled version of F . By the following
definition we can abstract from those irrelevant details (cf. Definition 33 in Section 4.5):

Definition (Consistent renamings). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and let F ′ :=
(Υ′A,Υ

′
B,Ω

′
A,Ω

′
B, f

′
A, f

′
B) ∈ Ffin,det. Then F and F ′ are consistent renamings of each other, if there

exist some injective mappings ρA : ΥA× ΩA → Υ′A× Ω′A and ρB : ΥB× ΩB → Υ′B× Ω′B and some
bijective mappings σA : ΥA → Υ′A and σB : ΥB → Υ′B, such that for all x ∈ ΥA, y ∈ ΥB it holds:

ρA

(
x, fA(x, y)

)
=

(
σA(x), f ′A(σA(x), σB(y))

)
ρB

(
y, fB(x, y)

)
=

(
σB(y), f ′B(σA(x), σB(y))

)
Moreover, there may exist input symbols that are kind of “redundant” in the sense that an

actively corrupted party can always input some corresponding “dominating” input symbols and at
the same time perfectly simulate honest behaviour. This concept plays an important role in our
proofs and results. We formally grasp it by the following definition (cf. Definition 3 in Section 4.1.1):

Definition (Redundancy). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det. Then an input symbol
y′ ∈ ΥB is redundant, if there exists some corresponding dominating input symbol y ∈ ΥB\{y′},
such that the following two conditions hold:

1. For all x ∈ ΥA we have that fA(x, y) = fA(x, y′), i.e. from her own output Alice does never
learn whether Bob did input y or y′.

2. For all x, x′ ∈ ΥA with fB(x, y′) 6= fB(x′, y′) we have that fB(x, y) 6= fB(x′, y), i.e. by inputting
y instead of y′ Bob gets exactly the same or strictly more information.

For input symbols x ∈ ΥA redundancy is defined analogously. If neither ΥA nor ΥB contains any
redundant input symbols, F is called redundancy-free.

W.l.o.g. actively corrupted parties always use dominating input symbols instead of the cor-
responding redundant ones. Also, there is no need to constrain what honest parties may learn.
Therefore, in presence of an active adversary we can consider any 2-party functions equivalent
when they only differ in some redundant input symbols (cf. Definition 36 in Section 4.5):

Definition (Equivalent 2-party functions). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and F ′ :=
(Υ′A,Υ

′
B,Ω

′
A,Ω

′
B, f

′
A, f

′
B) ∈ Ffin,det. Then F and F ′ are equivalent, if they can be transformed into

consistent renamings of each other by successive1 removal of redundant input symbols from ΥA,ΥB,
Υ′A,Υ

′
B and according adjustment of fA, fB, f

′
A, f

′
B. Let [F ] denote the resulting equivalence class.

1Note that a step-by-step removal of one symbol at a time is crucial here. There may exist distinct input symbols
that dominate each other but must not be removed both.
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0 1
0 0/0 0/0
1 0/0 0/1

0 1
0 0/0 0/0
1 0/0 1/0

0 1
0 0/0 0/0
1 0/0 1/1

Figure 2: Function tables of the three types of OT-cores (Alice’s inputs label the rows, Bob’s inputs
label the columns; outputs are denoted a/b, meaning that Alice learns a and Bob learns b). Note
that, when there are no further input symbols around, the grayed input symbols are redundant.

Given any F ∈ Ffin,det, one can show quite easily that all redundancy-free F̄ , F̄ ′ ∈ [F ] are consistent
renamings of each other, i.e. the redundancy-free version of F is unique up to consistent renaming.

2.3 Completeness criteria for all finite deterministic 2-party functions

With the definitions and notations from Section 2.2 we can now formulate our completeness criteria.
(The respective restatements in Section 4 are Definition 35, Definition 25 and Theorem 39.)

Definition (Symmetric 2-party functions). Let F ′ ∈ Ffin,det. If F ′ is a consistent renaming of some
F = (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det with ΩA = ΩB and fA = fB, then F ′ is called symmetric.

Definition (OT-cores). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det. A quadruple (x, x′, y, y′) ∈
Υ2

A×Υ2
B is an OT-core of F , if the following three conditions are met (q.v. Figure 2):

1. We have that fA(x, y) = fA(x, y′).

2. We have that fB(x, y) = fB(x′, y).

3. We have that fA(x′, y) 6= fA(x′, y′) or fB(x, y′) 6= fB(x′, y′) (or both).

Theorem (Classification theorem). For each F ∈ Ffin,det it holds:

1. For the F (F )
SFE-hybrid model there exists an OT protocol that is statistically secure against

passive adversaries, iff F has an OT-core.

2. If for the F (F )
SFE-hybrid model there does not exist any OT protocol that is statistically secure

against passive adversaries, then F is symmetric.

3. For the F (F )
SFE-hybrid model there exists an OT protocol that is statistically secure against

active adversaries, iff the redundancy-free version of F has an OT-core.

4. If for the F (F )
SFE-hybrid model there does not exist any OT protocol that is statistically secure

against active adversaries, then the redundancy-free version of F is symmetric.

Note that, when there is an active adversary, only the third function in Figure 2 is complete on
its own. The redundancy free versions of the other two functions just collapse to simple binary
channels. This collapsing can be prevented, when there are additional input symbols. In Figure 3
one can see, how OT-cores can be complemented to redundancy-free 2-party functions of minimum
size.

For symmetric and asymmetric 2-party functions our completeness criteria coincide with the
criteria from [Kil91, Kil00]. More concretely, we can directly translate the completeness criteria of
[Kil91, Kil00] to our notations as follows.
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0 1
0 0/0 0/0
1 0/0 0/1
2 0/1 0/0

0 1
0 0/0 0/0
1 0/0 0/1
2 0/1 0/2
3 0/2 0/2

0 1
0 0/0 0/0
1 0/0 0/1
2 0/1 1/2

0 1
0 0/0 0/0
1 0/0 1/1

Figure 3: Function tables of the four minimal complete 2-party functions. Up to consistent renaming
and interchanging the roles of Alice and Bob every function table of a complete 2-party function
F ∈ Ffin,det contains at least one of these examples as a submatrix.

[Kil91]: A symmetric 2-party function F is complete, iff it contains an OT-core. This holds true,
regardless whether the adversary is active or passive.

[Kil00]: Given an active adversary, an asymmetric 2-party function F ′ (with Bob being the re-
ceiver) is complete, iff for every input symbol y ∈ ΥB there exists some other input symbol
y′ ∈ ΥB that is not dominated by y; in other words, F ′ is complete, iff its redundancy-free
version is non-trivial in the sense that both input alphabets have cardinality 2 or more. Given
only a passive adversary, an asymmetric 2-party function F ′ is complete, iff it has an OT-core.

However, our criteria are much more comprehensive than that of [Kil91, Kil00], since ours also
cover 2-party functions that are neither symmetric nor asymmetric. An illustrating example is the
third function in Figure 3, which is complete but not subject of the criteria in [Kil91, Kil00].

3 How to prove the Classification Theorem

A fundamental tool in our proof strategy is the connection between presence of OT-cores and the
question whether a 2-party function is symmetric (cf. Lemma 38 in Section 4.5):

Lemma (Symmetrization lemma). Each F ∈ Ffin,det that does not have any OT-core is symmetric.

One way to proof this lemma can be sketched as follows. For F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det

we can define an equivalence relation on (ΥA×ΩA) ∪ (ΥB×ΩB) induced as follows:

(x, a) ∼ (y, b) :⇐ fA(x, y) = a ∧ fB(x, y) = b

Let the according equivalence classes be denoted by [x, a] or [y, b]. For all x, x′ ∈ ΥA, a, a′ ∈ ΩA

some simple induction yields the following implication (else F would have an OT-core):

(x, a) ∼ (x′, a′) ⇒
{
y ∈ ΥB

∣∣ fA(x, y) = a
}

=
{
y ∈ ΥB

∣∣ fA(x′, y) = a′
}

Thereby, we cannot find any x ∈ ΥA, a, a′ ∈ ΩA with a 6= a′ and (x, a) ∼ (x, a′); the analog holds
for y ∈ ΥA, b, b′ ∈ ΩA. Hence, via the mappings ρA : (x, a) 7→

(
x, [x, a]

)
and ρB : (y, b) 7→

(
y, [y, b]

)
we get a consistent renaming of F and this consistent renaming is obviously symmetric.

By the Symmetrization Lemma and some results in the literature we can already argue for the
assertions 1 and 2 of our Classification Theorem. On the one hand, when F has no OT-core, F can
be considered symmetric by our Symmetrization Lemma. However, in [Kil91] it has been shown
that no reduction of OT to a symmetric 2-party function without OT-core can yield correctness
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0 1 2 3
0 0/0 0/0 0/0 0/0
1 0/0 1/0 0/1 1/1
2 0/1 1/1 1/2 0/2

Figure 4: A complete 2-party function needing a carefully chosen, non-symmetric input distribution.

and privacy at the same time, even if there is only a passive adversary—Alice can always exactly
determine Bob’s information about her inputs to the underlying 2-party function and vice versa.

On the other hand, when F has an OT-core and there is only a passive adversary, we can trivially
implement one of the 2-party functions in Figure 2. However, each of them can be transformed
into a non-trivial noisy channel (shown to be complete in [CMW05]) by the following protocol with
expected 4 function calls. Alice first inputs a random bit b and then the inverse ¬b; Bob inputs
independent random bits in both steps. The protocol is restarted until nowhere output “1” occurs.
Afterwards Alice uses the last value of b as a one-time pad, which Bob knows with probability 2

3 .
Once assertion 1 of the Classification Theorem is shown, assertion 2 follows by the Symmetriza-

tion Lemma. Analogously assertion 4 follows from assertion 3, so all we have to do is proving as-
sertion 3. One direction, the necessity of OT-cores, already follows from the passive case. Proving
sufficiency for the active case is much more challenging and can be seen as our main contribution.

Our overall strategy for reducing OT in presence of an active adversary to a finite deterministic
2-party function having an OT-core proceeds in two steps. First, Alice and Bob generate some
amount of correlated data by repeated invocation of the 2-party function with randomized input.
Within a subsequent test step each party has to partially unveil its data, so that significant cheating
can be detected. Then, on top of the remaining data an invocation of OT is built. In Section 3.1
we examine what input distributions are adequate and how the test step has to be performed. In
Section 3.2 we construct a protocol for OT from such correlated data and we examine its security.

3.1 Secure generation of correlated data

We start our examination with some negative example (see Figure 4), which shows that choosing
an adequate input distribution is not trivial. In the first place, the example in Figure 4 shows that
letting Alice and Bob use uniformly random input is not necessarily secure. In our example there
would be an undetectable cheating strategy2 for a corrupted Bob: He picks a uniformly random
input symbol from {2, 3} instead of {0, 1, 2, 3} and after each invocation of the 2-party function with
probability 1

2 locally relabels his input-output tuple by (2, 0) 7→ (0, 0), (2, 1) 7→ (0, 0), (2, 2) 7→ (1, 1),
(3, 0) 7→ (1, 0), (3, 1) 7→ (1, 0), (3, 2) 7→ (0, 1). Thereby he can perfectly simulate honest behaviour,
but at the same time does learn all of Alice’s inputs to the 2-party function.

We circumvent this problem by more asymmetric input distributions: We pick an OT-core and
let the corresponding input symbols be input with relatively high probability, while all other input
symbols have a relatively low probability and are only needed for the test step. However, the
example in Figure 4 also shows that we must choose the OT-core carefully. E.g. the OT-core in
the upper left corner would be a bad choice, since the abovementioned cheating strategy can be
adjusted to every protocol that assigns equal probability to Bob’s input symbols “0” and “1”. Still,
significant cheating is possible for any input distribution with high probability for “0” and “1”, as
inputting “0” and “1” each once can be perfectly simulated by inputting “2” and “3” each once.

2Note that such an undetectable cheating strategy cannot exist for symmetric 2-party functions, as there Alice
will notice any change in Bob’s output distribution.
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Actually, a main part of our work consists in proving that there always exists a “good” OT-
core, if only the redundancy-free version of the considered 2-party function has any OT-core at all.
In Figure 4 one “good” OT-core corresponds to inputs {0, 1} from Alice and {1, 2} from Bob: By
occasionally inputting “2” Alice can check that Bob does not too often use other input symbols than
{1, 2} (on input “2” she must not get output “0” too often) and that he does input “1” and “2” each
with the right frequency (on input “1” she must get output “1” and “0” with according frequency),
while Bob also sees Alice’s actual input distribution (it is close to Bob’s output distribution on
input “2”). However, as the first function in Figure 3 shows, in general it will not suffice that
the participants only pay attention to their own input-output distributions. Since in this example
Alice’s output always is “0”, only by unveiling some random subset of his input-output tuples Bob
can prove that he did use a prescribed input distribution; e.g. he will be caught cheating with high
probability when he claims to have input “0” sufficiently often but can never distinguish whether
Alice did input “0” or “2”. Again, for a meaningful test it is necessary that Alice uses her complete
input alphabet.

These examples motivate that always all input symbols should be used with some non-zero prob-
ability. In the following we first state our protocol for generation of correlated data (Section 3.1.1),
then we introduce some algebraic structure that abstractly represents how a corrupted party can
deviate from the protocol (Section 3.1.2) and finally we argue that there always is an OT-core that
is “robust” against all such cheating strategies (Section 3.1.3).

3.1.1 The protocol for generating correlated data

A detailed description of the protocol with more concrete parameters can be found in Section 4.1.2
(Definition 12), it basically proceeds as follows.

1. Invocation of F : Alice and Bob call the underlying 2-party function F with randomized
input for k times (k being the security parameter) and record their respective input-output
tuples. A protocol parameter assigns what probability mass functions are to be used.

2. Control A: Alice challenges Bob on some polynomial subset of the recorded data, where
he has to reveal his input-output tuples. Alice aborts the protocol if Bob obviously lies
(i.e. his announcement is inconsistent with Alice’s recorded input-output tuples) or his input
distribution appears faulty. The test set is then removed from the recorded data.

3. Control B: This step equals the previous one with interchanged roles of Alice and Bob.

4. Output: Both parties announce where they have used input symbols that were only for test
purposes. All corresponding elements are removed from the recorded input-output tuples by
both parties. When too much of the recorded data has been deleted, the protocol is aborted;
else each party outputs its remaining string of recorded input-output tuples.

We call this scheme offline protocol, since after the protocol step Invocation of F never again
acces to F is needed.

At this point we want to emphasize that although offline protocols are not completely symmetric
in Alice and Bob, most of our arguments are—in fact solely in the proof of Lemma 17 in Section 4.2
we have to explicitely take care of this asymmetry. This convenient circumstance is predicated on
the fact that a corrupted party only can get some polynomially small advantage by adversarial
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choice of the test set in protocol step Control A or Control B respectively. Our protocol for
reduction of OT to correlated data is robust against such polynomially small advantages.

3.1.2 Algebraic idealization of cheating strategies

In this section we define and investigate a class of functions η : ΥA×Υ2
B → R≥0 that characterize

how a corrupted Bob may cheat in an offline protocol. For symmetry reasons our results will
directly carry over to the case that Alice is corrupted. Our intuition is that η(x, y, y′) quantifies
the relative frequency of events in protocol step Control A, where F was invoked with input
(x, y), but Bob successfully claims that he did input y′. We call such functions cheating situations.
For convenience we use the notation η(X,Y, Y ′) :=

∑
x∈X,y∈Y,y′∈Y ′ η(x, y, y′) for any X ⊆ ΥA,

Y, Y ′ ⊆ ΥB (cf. Notation 1 in Section 4.1.1). Also for convenience, we speak of a situation (x, y)F
when we mean that F was called with input x from Alice and input y from Bob. We have the
following six conditions to cheating situations (cf. Definition 7 in Section 4.1.1):

1. It holds that η(ΥA,ΥB,ΥB) = 1.

2. For all x ∈ ΥA it holds that η(x,ΥB,ΥB) > 0, i.e. Alice did use her complete input alphabet.

3. For all x ∈ ΥA, y ∈ ΥB it holds that η(x, y,ΥB) = η(x,ΥB,ΥB) · η(ΥA, y,ΥB), i.e. Bob’s
actual input distribution is independent of Alice’s input distribution.

4. For all x ∈ ΥA, y′ ∈ ΥB it holds that η(x,ΥB, y
′) = η(x,ΥB,ΥB) · η(ΥA,ΥB, y

′), i.e. Bob’s
claimed input distribution appears independent of Alice’s input distribution.

5. (a) For all x ∈ ΥA, y, y′ ∈ ΥB with fA(x, y) 6= fA(x, y′) it holds that η(x, y, y′) = 0; else in
the test step Control A Bob would be caught cheating immediately.

(b) For all x, x′ ∈ ΥA, y, y′ ∈ ΥB with fB(x, y) = fB(x′, y) and fB(x, y′) 6= fB(x′, y′) it holds
that η(x, y, y′) = η(x′, y, y′) = 0; else Bob would run an overwhelming risk of being
caught cheating, since he cannot distinguish between situations (x, y)F and (x′, y)F but
must perfectly distinguish between these situations in the test step Control A.

Given some 2-party function F ∈ Ffin,det, the set NF of all according cheating sitations has a very
handy algebraic structure. On the one hand, cheating situations can be considered independent of
(honest) Alice’s input distribution, since they can be rescaled canonically to every input distribution
that has non-zero probability for all x ∈ ΥA (cf. Lemma 19 and Corollary 20 in Section 4.2.2). On
the other hand, when we fix Alice’s input distribution, i.e. for all x ∈ ΥA the η(x,ΥB,ΥB) are fixed,
then our six conditions can be subsumed by a linear equation system, i.e. the set of all remaining
cheating situations is a convex and bounded polytope in the linear space RΥA×Υ2

B (q.v. Remark 8
and Remark 9 in Section 4.1.1).

Also the abovementioned conditions 5a and 5b play a fundamental role in our proofs. Therefore
we sum them up by an extra notation (cf. Notation 4 in Section 4.1.1):

Notation (Risk-free lies). For F = (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and x ∈ ΥA, y, y′ ∈ ΥB let

(x, y)
F
 (x, y′) denote that the following two conditions are fulfilled:

• It holds that fA(x, y) = fA(x, y′).

• For all x̃ ∈ ΥA with fB(x, y) = fB(x̃, y) it holds that fB(x, y′) = fB(x̃, y′).
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The intuition behind that notation is that Bob can claim a situation (x, y)F to be a situation

(x, y′)F , iff (x, y)
F
 (x, y′). At least he cannot do so too often, if (x, y) 6 F (x, y′). For all cheating

situations η and all x ∈ ΥA, y, y′ ∈ ΥB with (x, y) 6 F (x, y′) it holds that η(x, y, y′) = 0.

Note that the “
F
 ”-relation links cheating situations to redundancy matters, since an input

symbol y′ ∈ ΥB is redundant, iff there exists some y ∈ ΥB\{y′}, such that (x, y)
F
 (x, y′) for all

x ∈ ΥA. In other words, the “
F
 ”-relation describes some kind of “local redundancy”.

Given that Alice is uncorrupted, for every non-aborted run of an offline protocol with over-
whelming probability there exists some cheating situation η, such that up to some polynomially
small error the mappings (x, y) 7→ η(x,ΥB, y) and (x, y) 7→ η(x, y,ΥB) describe the prescribed and
the actual joint input distribution to the underlying 2-party function respectively (cf. Corollary 24
in Section 4.2.2). Thus we have to look for some kind of “robust” OT-cores (x̃, x̃′, ỹ, ỹ′), so that
there does not exist any essentially non-trivial cheating situation η with η(ΥA,ΥB, {ỹ, ỹ′}) = 1.
Then in the protocol step Invocation of F even a corrupted Bob’s input distribution has to be
polynomially close to honest behaviour.

3.1.3 Existence of robust OT-cores

In this section we argue that whenever a redundancy-free 2-party function F ∈ Ffin,det has any OT-
core (x̃, x̃′, ỹ, ỹ′), then F also has an OT-core (x̃, x̃′, ȳ, ȳ′), such that for every cheating situation η
with η(ΥA,ΥB, {ȳ, ȳ′}) = 1 it holds that η(ΥA,ΥB, y) = η(ΥA, y,ΥB) for all y ∈ ΥB. Intuitively,
η(ΥA,ΥB, y) and η(ΥA, y,ΥB) stand for Bob’s claimed and actual input frequency of y respectively,
i.e. we show that Bob practically cannot lie about his actual input distribution when he is demanded
to use no other input symbols than ȳ, ȳ′. Note that Alice’s input symbols x̃, x̃′ have stayed the
same; hence in a second step we can analogously find an OT-core (x̄, x̄′, ȳ, ȳ′) that is also “robust”
against all relevant cheating attempts of Alice and stays “robust” against a possibly malicious Bob.

Given an OT-core (x̃, x̃′, ỹ, ỹ′) of a redundancy-free 2-party function F ∈ Ffin,det, we can find an
OT-core with the desired “robustness” by just picking some ȳ, ȳ′ ∈ ΥB, such that (x̃, x̃′, ȳ, ȳ′) is an
OT-core and the following set has minimum size (q.v. Figure 5):

Φ(ȳ, ȳ′) :=
{
y ∈ ΥB

∣∣ ∀x ∈ ΥA : (x, y)
F
 (x, ȳ) ∨ (x, y)

F
 (x, ȳ′)

}
Intuitively spoken, within an offline protocol that assigns high input probability only to ȳ, ȳ′ Bob
cannot use any input symbol y ∈ ΥB \Φ(ȳ, ȳ′) too often; at least for some specific x ∈ ΥA he
practically cannot claim a situation (x, y)F to be (x, ȳ)F or (x, ȳ′)F without being caught cheating.
In general it will not necessarily hold that Φ(ȳ, ȳ′) = {ȳ, ȳ′}, nonetheless we can show now that
the chosen OT-core (x̃, x̃′, ȳ, ȳ′) is “robust” in the abovementioned sense. So, let some arbitrary
cheating situation η with η(ΥA,ΥB, {ȳ, ȳ′}) = 1 be given. By the following eight steps we show
that η(ΥA,ΥB, y) = η(ΥA, y,ΥB) for all y ∈ ΥB (q.v. the proof of Lemma 29 in Section 4.3).

1. Since the “
F
 ”-relation is transitive, we observe that Φ(y, y′) ⊆ Φ(ȳ, ȳ′) for all y, y′ ∈ Φ(ȳ, ȳ′).

2. We want to exploit the minimality of Φ(ȳ, ȳ′), but it yields that
∣∣Φ(ȳ, ȳ′)

∣∣ ≤ ∣∣Φ(y, y′)
∣∣ only in

case that (x̃, x̃′, y, y′) is an OT-core. However, note that fA(x̃, ȳ) = fA(x̃, ȳ′), since (x̃, x̃′, ȳ, ȳ′)

is an OT-core. Further, for all y ∈ Φ(ȳ, ȳ′) by definition of Φ we have that (x̃, y)
F
 (x̃, ȳ)

or (x̃, y)
F
 (x̃, ȳ′), what in turn implies that fA(x̃, y) = fA(x̃, ȳ) or fA(x̃, y) = fA(x̃, ȳ′).

Putting things together, we can conclude that fA(x̃, y) = fA(x̃, y′) for all y, y′ ∈ Φ(ȳ, ȳ′).
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0 1 2 3 4 5

0 0/0 0/0 0/0 0/0 0/0 1/∗
1 0/0 1/0 1/0 0/0 0/1 ∗/∗
2 0/1 0/1 0/1 0/1 0/2 ∗/∗
3 0/1 0/1 0/1 0/2 0/2 ∗/∗
4 0/2 0/1 0/1 0/2 0/2 ∗/∗
5 0/3 0/2 0/2 0/3 0/3 ∗/∗
6 0/3 0/2 0/3 0/3 0/3 ∗/∗
7 0/3 0/3 0/3 0/3 0/3 ∗/∗

Figure 5: Example for illustration of the construction of Φ and Y, Y ′. From the first two rows one can
infer that (0, 1, 0, 1) is an OT-core and Φ(0, 1) ⊆ {0, 1, 2, 3, 4}, regardless of the wildcards “∗”. The
other six rows just make the function redundancy-free, but still allow that Φ(0, 1) ⊇ {0, 1, 2, 3, 4}.
Thereby, for the OT-core in the upper left corner we have that Φ(0, 1) = {0, 1, 2, 3, 4} and Y = {0, 3}
and Y ′ = {1, 2, 4}. However, we would not pick this OT-core but (0, 1, 0, 4) or (0, 1, 3, 4) instead,
since Φ(0, 4) = Φ(3, 4) = {0, 3, 4} ( Φ(0, 1), as Alice can distinguish between {0, 3, 4} and {1, 2}
by her output in the second row. Note that analogously Φ(1, 2) = {1, 2}, but (0, 1, 1, 2) is not an
OT-core.

Therefore, by the following construction we can split Φ(ȳ, ȳ′) into disjoint subsets Y, Y ′, such
that (x̃, x̃′, y, y′) actually is an OT-core for all y ∈ Y , y′ ∈ Y ′. We define (q.v. Figure 5):

Y :=
{
y ∈ Φ(ȳ, ȳ′)

∣∣ fA(x̃′, ȳ) = fA(x̃′, y) ∧ fB(x̃, y) = fB(x̃′, y)
}

Y ′ :=
{
y′ ∈ Φ(ȳ, ȳ′)

∣∣ fA(x̃′, ȳ) 6= fA(x̃′, y′) ∨ fB(x̃, y′) 6= fB(x̃′, y′)
}

Now, by the minimality of Φ(ȳ, ȳ′) and our observation in step 1 it follows that Φ(ȳ, ȳ′) =
Φ(y, y′) for all y ∈ Y , y′ ∈ Y ′.

3. Now, for each (x, ŷ) ∈ ΥA×Φ(ȳ, ȳ′) at least one of the following assertions must hold true:

∀y ∈ Y : (x, ŷ)
F
 (x, y) ∀y′ ∈ Y ′ : (x, ŷ)

F
 (x, y′)

Otherwise we had some x ∈ ΥA, ŷ ∈ Φ(ȳ, ȳ′), y ∈ Y , y′ ∈ Y ′, such that (x, ŷ) 6 F (x, y) and

(x, ŷ) 6 F (x, y′) and thereby ŷ /∈ Φ(y, y′), what is a contradiction to ŷ ∈ Φ(ȳ, ȳ′) = Φ(y, y′)
(cf. the final sentence of step 2).

4. For every ŷ ∈ Φ(ȳ, ȳ′) \ {ȳ} we find some x ∈ ΥA, such that ∀y′ ∈ Y ′ ∪ {ŷ} : (x, y′) 6 F (x, ȳ).

This follows from step 3, F being redundancy-free and the transitivity of the “
F
 ”-relation.

Since F is redundancy-free, we find some x ∈ ΥA, such that (x, ŷ) 6 F (x, ȳ). This not only is

one part of the assertion above, but it also yields by step 3 that (x, ŷ)
F
 (x, y′) for all y′ ∈ Y ′,

since ȳ ∈ Y by construction of Y . Now, if we could find any y′ ∈ Y ′ with (x, y′)
F
 (x, ȳ), in

contradiction to our choice of x this would imply that (x, ŷ)
F
 (x, ȳ), due to the transitivity

of the “
F
 ”-relation.
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5. For all ŷ ∈ Φ(ȳ, ȳ′) \ {ȳ} we have that η(ΥA,ΥB, ȳ) ≤ η(ΥA, Y \{ŷ},ΥB), i.e. Bob’s claimed
input frequency of ȳ cannot be greater than his actual overall input frequency of symbols in
Y \{ŷ}.
Otherwise we could find some ŷ ∈ Φ(ȳ, ȳ′) \ {ȳ}, such that η(x,ΥB, ȳ) > η(x, Y \{ŷ},ΥB)
for all x ∈ ΥA (cf. the conditions 3 and 4 to cheating situations). However, by step 4 we
can choose x such that Bob cannot claim any situation (x, y′)F with y′ ∈ Y ′ ∪ {ŷ} to be a
situation (x, ȳ)F ; the same holds for y′ ∈ ΥB\Φ(ȳ, ȳ′) by definition. He may do so only for
situations (x, y′)F with y′ ∈ Y \{ŷ}, but these are too few, as η(x,ΥB, ȳ) > η(x, Y \{ŷ},ΥB).

6. We observe that η(ΥA,ΥB\Φ(ȳ, ȳ′),ΥB) = 0, since η(ΥA,ΥB\Φ(ȳ, ȳ′), {ȳ, ȳ′}) = 0 by con-
struction of Φ and η(ΥA,ΥB, {ȳ, ȳ′}) = 1, i.e. η

(
ΥA,ΥB,ΥB\{ȳ, ȳ′}

)
= 0, by assumption.

7. For all ŷ′ ∈ Φ(ȳ, ȳ′)\{ȳ′} we have that η(ΥA,ΥB, ȳ) ≥ η(ΥA, Y ∪{ŷ′},ΥB), i.e. Bob’s claimed
input frequency of ȳ cannot be less than his actual overall input frequency of symbols in
Y ∪ {ŷ′}.
Since the assertion of step 3 is symmetric in Y and Y ′, analogously to step 4 for every

ŷ′ ∈ Φ(ȳ, ȳ′)\{ȳ′} we find some x ∈ ΥA, such that ∀y ∈ Y ∪{ŷ′} : (x, y) 6 F (x, ȳ′). We can use
that to prove the analog of step 5: For all ŷ′ ∈ Φ(ȳ, ȳ′) \ {ȳ′} we have that η(ΥA,ΥB, ȳ

′) ≤
η(ΥA, Y

′\{ŷ′},ΥB). Moreover, we have that η(ΥA,ΥB, {ȳ, ȳ′}) = 1 by assumption and that
η(ΥA,Φ(ȳ, ȳ′),ΥB) = 1 by step 6. Conclusively, for every ŷ′ ∈ Φ(ȳ, ȳ′) \ {ȳ′} we get that
η(ΥA,ΥB, ȳ) = 1− η(ΥA,ΥB, ȳ

′) ≥ 1− η(ΥA, Y
′\{ŷ′},ΥB) = η(ΥA, Y ∪ {ŷ′},ΥB).

8. By combination of step 5 and step 7, for all ŷ, ŷ′ ∈ Φ(ȳ, ȳ′) with ŷ′ 6= ȳ′ and ŷ 6= ȳ we can
conclude that η(ΥA, Y ∪{ŷ′},ΥB) ≤ η(ΥA, Y \{ŷ},ΥB). This can be exploited as follows. On
the one hand, we can choose ŷ = ȳ′, i.e. Y \{ŷ} = Y , whereby for all ŷ′ ∈ Y ′\{ȳ′} it follows
that η

(
ΥA, ŷ

′,ΥB

)
≤ 0, i.e. η

(
ΥA, Y

′ \{ȳ′},ΥB

)
= 0. On the other hand, we can choose

ŷ′ = ȳ, i.e. Y ∪ {ŷ′} = Y , whereby for all ŷ ∈ Y \{ȳ} it follows that η
(
ΥA, ŷ,ΥB

)
≤ 0, i.e.

η
(
ΥA, Y \{ȳ},ΥB

)
= 0. Conclusively, using that η(ΥA,ΥB\Φ(ȳ, ȳ′),ΥB) = 0 by step 6, we get

that η
(
ΥA,ΥB\{ȳ, ȳ′},ΥB

)
= 0, i.e. η

(
ΥA, {ȳ, ȳ′},ΥB

)
= 1. Now, since η

(
ΥA,ΥB, {ȳ, ȳ′}

)
= 1

by assumption and neither ȳ nor ȳ′ is redundant, one can infer rather straightforwardly that
η(ΥA,ΥB, y) = η(ΥA, y,ΥB) for all y ∈ ΥB, as claimed.

3.2 Reduction of OT to correlated data

We now sketch a protocol that implements OT from the correlated data produced by an appropriate
offline protocol. Within this sketch we also informally argue for the protocol’s security. We refer to
Section 4.4 for a detailed protocol description and formal security proofs. Given a redundancy-free
2-party function F that has some OT-core (x̃, x̃′, ỹ, ỹ′), the protocol proceeds as follows.

0. W.l.o.g. we may assume that the OT-core (x̃, x̃′, ỹ, ỹ′) is of the first or last type in Figure 2;
else we interchange the roles of Alice and Bob. W.l.o.g. we also assume that Alice’s and Bob’s
actual input and output symbols coincide with that of Figure 2, i.e. x̃ = ỹ = 0 and so on.
Furthermore, w.l.o.g. we assume that (x̃, x̃′, ỹ, ỹ′) is a “robust” OT-core, for whose existence
we have argued in Section 3.1.3.

1. Alice and Bob execute an offline protocol (as sketched in Section 3.1.1), where the probability
mass functions nA and nB that stand for Alice’s and Bob’s prescribed input distribution
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respectively, are such that nA(0) ≈ 1
3 and nA(1) ≈ 2

3 and nB(0) ≈ nB(1) ≈ 1
2 . Note that

in general these will not be the exact input probabilities, as for meaningful tests in the
protocol steps Control A and Control B we still need all other inputs to be used with
some polynomial frequency. However, for growing security parameter the relative frequency
of the other inputs may polynomially converge to zero. Further note that even if a party is
corrupted, its actual input distribution in non-aborted protocol runs must be polynomially
close to honest behaviour, since (x̃, x̃′, ỹ, ỹ′) was chosen to be a “robust” OT-core.

2. We want to handle all possible types of OT-cores analogously, therefore we let Alice announce
where she got output “1”. All corresponding input-output tuples are deleted from the recorded
data by both parties. When Alice tries to delete too little, Bob aborts the protocol. He also
aborts the protocol when he has to delete some input output-tuple other than

(
1, fB(1, 1)

)
.

Since Alice cannot distinguish between situations (0, 0)F and (0, 1)F , this forces her to play
honestly up to some polynomially small fraction of the recorded data.

3. Now most of the remaining input-output tuples belong to situations (0, 0)F , (0, 1)F , (1, 0)F .
Since all according outputs are “0”, it suffices that Alice and Bob henceforth only keep track
of their recorded input strings. Note that at this stage about one quarter of the remaining
recorded data belongs to situations (0, 0)F , one quarter to (0, 1)F and one half to (1, 0)F .

4. Alice deletes some elements from her recorded input string, such that afterwards the string is
balanced (i.e. it contains the same number of “0”s and “1”s). She annonces the corresponding
indices to Bob, who deletes the according elements from his recorded data. If Alice tries to
delete too much, Bob aborts the protocol.

5. Alice randomly permutes her recorded input string, such that afterwards each element at
an odd possition is different from its subsequent element. She announces the permutation to
Bob, who permutes his input string accordingly. Thereby their input strings become strings of
pairs (each starting at an odd position), such that a pair “01” or “10” on Bob’s side indicates
the respective inverted pair “10” or “01” on Alice’s side and a pair “00” on Bob’s side gives
him no information about the pair on Alice’s side. If Bob finds a pair “11” (starting at an odd
position), he aborts the protocol. Note that about half of Bob’s pairs are “00”, one quarter
is “01” and one quarter is “10”.

Further note that primarily there is only one way Alice may get some additional information
about where Bob has “00”-pairs: She chooses the permutation adversarially, so that some
“11”-pairs are produced on her side. However, since her input string is roughly balanced
since the beginning of step 3, she must produce roughly as much “00”-pairs as “11”-pairs on
her side and for each “00”-pair she is caught cheating by Bob with probability 1

2 . So even a
corrupted Alice may know at most polynomially few positions where Bob has “00”-pairs.

6. Since Bob now can reconstruct about half of Alice’s input string and Alice has only few
information about where exactly Bob can do that, we can treat the recorded data like the
result of Rabin-OT calls and adapt standard reduction techniques3. To that effect we rename

3Note that due to a subtle issue we cannot directly apply the results of [CK90, DKS99, Wul07] for reduction of
OT to weak OT; e.g. in our case a corrupted Alice can choose to learn some prefix of Bob’s string. In contrast, weak
OT does not allow the adversary to influence when exactly additional information is leaked.
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Alices input string into a string of half length over the alphabet {0, 1} and accordingly for Bob
over the alphabet {0, 1,⊥}; in particular the renaming is “01” 7→“0”, “10”7→“1” on Alice’s
side and “10”7→“0”, “01” 7→“1”, “00”7→“⊥” on Bob’s side. When a party cheated, we can
represent that by a special symbol “>” in that party’s string. However, the symbol “>” may
occur only with some polynomial relative frequency, say less than k−γ . Let κ := dk1−γe.

7. Now, let b0, b1 ∈ {0, 1} be Alice’s
(

2
1

)
-OT input and let c ∈ {0, 1} be Bob’s choice bit. Alice

chooses two random bit strings b̃0, b̃1 ∈ {0, 1}κ with
⊕κ

j=1 b̃0[j] = b0 and b̃0[j]⊕ b̃1[j] = b0⊕ b1
for j = 1, . . . , κ. Bob chooses a random bit string c̃ ∈ {0, 1}κ with

⊕κ
j=1 c̃[j] = c.

8. Alice and Bob respectively partition their recorded input strings into κ consecutive substrings

of equal length l with l as large as possible; remaining elements are discarded. Let s̃
(j)
A denote

Alices j-th substring and s̃
(j)
B Bob’s j-th substring. Note that by our choice of κ at least one

of the s̃
(j)
A does not contain the symbol “>”. Further note that for each s̃

(j)
B about half of the

contained elements equal “⊥”, because of the permutation at the beginning of step 3.

For j = 1, . . . , κ now the following subprotocol is executed:

(a) Bob chooses some disjoint random sets K
(j)
0 ,K

(j)
1 ⊆ {1, . . . , l} of equal cardinality

⌈
l
3

⌉
,

such that no element of s̃
(j)
B indexed by K

(j)
c̃[j] is “⊥”. He announces

(
K

(j)
0 ,K

(j)
1

)
to Alice.

Note that Alice does not get any information about at least one of the c̃[j], since the

corresponding s̃
(j)
A does not contain the symbol “>”. Hence she stays ignorant of Bob’s

choice bit c.

(b) For i = 0, 1 Alice uses the XOR of the elements in s̃
(j)
A indexed by K

(j)
i as a one-

time pad for b̃i[j]. She sends the according cyphertexts to Bob, who learns b̃c̃[j][j] by

reconstructing the needed one-time pad from s̃
(j)
B . Note that for each j Bob cannot get

some information about both bits b̃0[j], b̃1[j] at the same time, since more than one third

of the elements in s̃
(j)
B equals “⊥”. Hence he may learn at most one of Alice’s

(
2
1

)
-OT

inputs b0, b1.

9. Alice outputs the nothing symbol “⊥” and Bob computes and outputs bc =
⊕κ

j=1 b̃c̃[j][j].

Bob’s output is correct, as by construction (cf. step 7) it holds:

κ⊕
j=1

b̃c̃[j][j] =

κ⊕
j=1

(
b̃0[j]⊕(b0[j]⊕b1[j])c̃[j]

)
=

κ⊕
j=1

(
b̃0[j]⊕(b0⊕b1)c̃[j]

)
= b0⊕(b0⊕b1)c = bc

We conclude this section with some remarks about how one can prove universal composability of
this protocol, i.e. that it is simulatable in the ideal model (q.v. Section 4.4.3 and Section 4.4.4).
Access to the underlying 2-party function F is in the ideal model only simulated, so the simulator

can compute all the s̃
(j)
A or s̃

(j)
B respectively and hence extract the OT input of a corrupted Alice

or Bob. Moreover, when Bob is corrupted, the simulator can fake a real protocol run that matches
the ideal Alice’s inputs b0, b1 as follows: Just before step 8b is entered the κ-th time, the simulator
inputs the extracted choice bit c into the ideal functionality FOT, thus learning bc, and then revises
b̃0[κ] and b̃1[κ] accordingly.
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4 Formal proof of the Classification Theorem

In this section we formally proof our Classification Theorem. We start with the basic definitions
and notations needed for our proof (Section 4.1). Then (in Section 4.2) we show that cheating
situations are a sufficiently accurate description of how a malicious party may influence the actual
joint input distributions in an offline protocol. We exploit this (in Section 4.3) to show that any
redundancy-free 2-party function F always has a “robust” OT-core, if only F has any OT-core at
all. Then (in Section 4.4) we give a protocol for reduction of OT to 2-party functions that have
such a “robust” OT-core and formally prove its security in the UC framework. Finally, we put
things together, thus obtaining a formal proof for our Classification Theorem (Section 4.5).

4.1 Basic definitions & notations

In this section we just state the definitions and notations our formal proofs are based upon (Sec-
tion 4.1.1); throughout the rest of the paper we will extensively use these concepts without ex-
plicitely referring to here each single time. We also give a detailed description of our protocol for
generating correlated data from a given 2-party function (Section 4.1.2).

4.1.1 Algebraic & combinatorial notations

Notation 1 (Finite sums of function values). For any arbitrary set T with some finite subset S ⊆ T
and any mapping g : T → R we set g(S) :=

∑
ω∈S g(ω) for convenience. For functions with more

arguments we use the canonical extension of this notation.

Notation 2 (Finite deterministic 2-party functions). Let Ffin,det denote the set of all 6-tuples
(ΥA,ΥB,ΩA,ΩB, fA, fB), where ΥA,ΥB,ΩA,ΩB are non-empty finite alphabets and fA, fB are
mappings from ΥA×ΥB to ΩA and from ΥA×ΥB to ΩB respectively, i.e. fA : ΥA×ΥB → ΩA

and fB : ΥA×ΥB → ΩB.

Definition 3 (Redundancy). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det. Then an input symbol
y′ ∈ ΥB is redundant, if there exists some corresponding dominating input symbol y ∈ ΥB\{y′},
such that the following two conditions hold:

1. For all x ∈ ΥA we have that fA(x, y) = fA(x, y′).

2. For all x, x′ ∈ ΥA with fB(x, y′) 6= fB(x′, y′) we have that fB(x, y) 6= fB(x′, y).

For input symbols x ∈ ΥA redundancy is defined analogously. If neither ΥA nor ΥB contains any
redundant input symbols, F is called redundancy-free.

Notation 4 (Risk-free lies). For F = (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and x, x′ ∈ ΥA, y, y′ ∈ ΥB

let (x, y)
F
 (x′, y′) denote that the following three conditions are fulfilled:

1. It holds that x = x′.

2. It holds that fA(x, y) = fA(x, y′).

3. For all x̃ ∈ ΥA with fB(x, y) = fB(x̃, y) it holds that fB(x, y′) = fB(x̃, y′).
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Remark 5. For every F = (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det the relation given by Notation 4 is a
quasi-order over (ΥA×ΥB), i.e. it is transitive and reflexive.

Remark 6. For F = (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det an input symbol y′ ∈ ΥB is redundant, iff

there exists some y ∈ ΥB\{y′}, such that (x, y)
F
 (x, y′) for all x ∈ ΥA.

Definition 7 (Cheating situations). For F = (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det let NF denote the
set of all mappings η : ΥA×Υ2

B → R≥0 for that hold the following five conditions:

1. We have that η(ΥA,ΥB,ΥB) = 1.

2. For all x ∈ ΥA we have that η(x,ΥB,ΥB) > 0.

3. For all x ∈ ΥA, y ∈ ΥB we have that η(x, y,ΥB) = η(x,ΥB,ΥB) · η(ΥA, y,ΥB).

4. For all x ∈ ΥA, y′ ∈ ΥB we have that η(x,ΥB, y
′) = η(x,ΥB,ΥB) · η(ΥA,ΥB, y

′).

5. For all x ∈ ΥA, y, y′ ∈ ΥB with (x, y) 6 F (x, y′) we have that η(x, y, y′) = 0.

The mappings η ∈ NF are called cheating situations for F . A cheating strategy η ∈ NF is called
normalized, if for all x ∈ ΥA it holds that η(x,ΥB,ΥB) = 1

|ΥA| . It is called harmless, if for all

y ∈ ΥB it holds that η(ΥA,ΥB, y) = η(ΥA, y,ΥB).

Remark 8. Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det. Then the set of all normalized cheating

situations for F is a convex and bounded polytope in the linear space RΥA×Υ2
B . Since this polytope

can be described by finitely many linear inequations, it is the convex hull of a finite set of vertices.

Remark 9. Let F ∈ Ffin,det and let η, η′ ∈ NF be normalized. Then for every s ∈ R the mapping
η̃ := s · η + (1− s) · η′ is a normalized cheating situation for F , if only Image(η̃) ⊆ R≥0.

4.1.2 Offline protocols

In this section we formally state the protocol scheme by which we produce correlated data from
some given 2-party function. However, before we do that, we formally introduce how we handle
strings over finite alphabets.

Notation 10. Let s be a finite string over some alphabet Ω. By |s| we denote the length of s. By |s|α
with α ∈ Ω we denote the number of appereances of α in s. We canonically extend this notation to
subalphabets T ⊆ Ω by |s|T :=

∑
α∈T |s|α. By s[i] with i ∈ {1, . . . , |s|} we denote the i-th element

of s. For n ∈ N and a given index set K = {k1, . . . , kn} ⊂ N with 0 < k1 < . . . < kn ≤ |s|, we
denote the string s[k1] s[k2] . . . s[kn] by s[k1, . . . , kn] or simply by s[K]. Further, for some given
strings sA and sB of the same length |sA| = |sB|, we define the compound string sA×sB, whose i-th
element just is the tuple

(
sA[i], sB[i]

)
.

Notation 11. For F = (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det let ΠF denote the set of all tuples
(nA, nB, α, β, γ), where nA : ΥA → R≥0 and nB : ΥB → R≥0 are some probability mass func-
tions and α, β, γ ∈ R>0, such that β < 1

2 .

Definition 12 (Offline protocols). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det. Further let
(nA, nB, α, β, γ) ∈ ΠF and let X̃ := {x ∈ ΥA | nA(x) > 0} and Ỹ := {y ∈ ΥB | nB(y) > 0}. Let k
denote the security parameter and let K := {1, . . . , k}. Then the offline protocol πF (nA, nB, α, β, γ)
proceeds as follows:
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0. Initialization: Alice initializes two empty strings sin
A, s

out
A and an index set KA ← K. Bob

analogously initializes sin
B, s

out
B ,KB. Let the probability mass functions ñA, ñB be defined by:

ñA : ΥA → R>0, x 7→


nA(x) if X̃ = ΥA

(1− k−α) · nA(x) if x ∈ X̃ and X̃ 6= ΥA

k−α · |ΥA\X̃|−1 if x ∈ ΥA\X̃

ñB : ΥB → R>0, y 7→


nB(y) if Ỹ = ΥB

(1− k−α) · nB(y) if y ∈ Ỹ and Ỹ 6= ΥB

k−α · |ΥB\Ỹ |−1 if y ∈ ΥB\Ỹ

1. Invocation of F : According to ñA Alice randomly chooses some input symbol x ∈ ΥA; Bob
randomly chooses some y ∈ ΥB according to ñB. Then F is invoked with the input tuple
(x, y), i.e. Alice learns a := fA(x, y) and Bob learns b := fB(x, y). Alice concatenates x to sin

A

and a to sout
A respectively; Bob concatenates y to sin

B and b to sout
B respectively.

This protocol step is executed for k times.

2. Control A: Alice picks some uniformly random index set K̄A ⊆ KA with4 |K̄A| = k
1
2

+β and
sends K̄A to Bob, who announces

(
ŝin

B[K̄A], ŝout
B [K̄A]

)
:=
(
sin

B[K̄A], sout
B [K̄A]

)
. Alice aborts the

protocol in the following two cases:

• Bob obviously lies, i.e. there exists some index i ∈ K̄A with sout
A [i] 6= fA

(
sin

A[i], ŝin
B[i]
)

or
ŝout

B [i] 6= fB

(
sin

A[i], ŝin
B[i]
)
.

• Bob’s input distribution significantly differs from its expected value, i.e. there exist some
X ⊆ ΥA, Y ⊆ ΥB with:∣∣∣∣∣sin

A[K̄A]× ŝin
B[K̄A]

∣∣
X×Y − ñA(X) · ñB(Y ) · k

1
2

+β
∣∣∣ > k

1
4

+β

At the end of this protocol step Alice sets KA ← KA\K̄A and Bob sets KB ← KB\K̄A.

3. Control B: This protocol step proceeds analogously to Control A with interchanged roles
of Alice and Bob.

4. Output: Alice announces the set K ′A :=
{
i ∈ KA

∣∣ sin
A[i] ∈ X̃

}
, then Bob announces

K ′B :=
{
i ∈ KB

∣∣ sin
B[i] ∈ Ỹ

}
; let K ′ := K ′A ∩ K ′B. When |K ′| < k − k1−γ , the protocol is

aborted; else Alice outputs sin
A[K ′]× sout

A [K ′] and Bob outputs sin
B[K ′]× sout

B [K ′].

4.2 Linking offline protocols to cheating situations

In this section we show that, given any 2-party function F = (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and
given that Alice is honest, there always exists some cheating strategy η ∈ NF , such that the actual
and the prescribed input distributions in the step Invocation of F of a corresponding offline
protocol are polynomially close to the mappings (x, y) 7→ η(x, y,ΥB) and (x, y′) 7→ η(x,ΥB, y

′)
respectively.

4W.l.o.g. it holds that k
1
2

+β ∈ N, since w.l.o.g. we have that β ∈ Q and k ∈ {lζ | l ∈ N} with ζ being some
constant integer, such that ζ · ( 1

2
+ β) ∈ N.
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4.2.1 Blurred cheating situations

As mentioned above, cheating situations will characterize the actual and claimed input distributions
in an offline protocol only up to some polynomial error. Therefore, in this section we define a class
of functions that fulfill the conditions to cheating situations only up to some error parameter. Then
we show that by these blurred cheating situations we can strictly bound a corrupted Bob’s deviation
from honest behaviour.

Definition 13 (Blurred cheating situations). For F = (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and
ε, δ ∈ R>0 let ÑF (ε, δ) denote the set of all mappings ν : ΥA×Υ2

B → R≥0 that meet the following
five conditions:

1. It holds that ν(ΥA,ΥB,ΥB) = 1.

2. For all x ∈ ΥA it holds that ν(x,ΥB,ΥB) ≥ δ.

3. For all x ∈ ΥA, y ∈ ΥB it holds that
∣∣ν(x, y,ΥB)− ν(x,ΥB,ΥB) · ν(ΥA, y,ΥB)

∣∣ < ε.

4. For all x ∈ ΥA, y′ ∈ ΥB it holds that
∣∣ν(x,ΥB, y

′)− ν(x,ΥB,ΥB) · ν(ΥA,ΥB, y
′)
∣∣ < ε.

5. For all x ∈ ΥA, y, y′ ∈ ΥB with (x, y) 6 F (x, y′) it holds that ν(x, y, y′) < ε.

Notation 14. Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and let π := πF (nA, nB, α, β, γ), such
that (nA, nB, α, β, γ) ∈ ΠF . Further let ε,∆ ∈ R>0. Let k denote the security parameter. Then by
ΛA(π, ε,∆) we denote the set5 of all protocol runs of π that are aborted or for that it holds:

• For K := {1, . . . , k} and every X ⊆ ΥA, Y ⊆ ΥB we have:

k∆ >
∣∣|sin

A[K]|X − k · ñA(X)
∣∣ (1)

k( 1
2

+β)∆ >
∣∣|sin

A[K̄A]× sin
B[K̄A]|X×Y − k−

1
2

+β · |sin
A[K]× sin

B[K]|X×Y
∣∣ (2)

k∆ >
∣∣|sin

A[K]× sin
B[K]|X×Y − |sin

B[K]|Y · ñA(X)
∣∣ (3)

k
1
4

+β ≥
∣∣∣∣∣sin

A[K̄A]× ŝin
B[K̄A]

∣∣
X×Y − ñA(X) · ñB(Y ) · k

1
2

+β
∣∣∣ (4)

|K ′| ≥ k − k1−γ (5)

• For all x ∈ ΥA, y, y′ ∈ ΥB with (x, y) 6 F (x, y′) we have:∣∣sin
A[K̄A]× sin

B[K̄A]× ŝin
B[K̄A]

∣∣
(x,y,y′)

< kε (6)

By ΛB(π, ε,∆) we denote the set of all protocol runs that are aborted or for that it holds:

• For K := {1, . . . , k} and every X ⊆ ΥA, Y ⊆ ΥB we have:

k∆ >
∣∣|sin

B[K]|Y − k · ñB(Y )
∣∣ (7)

k( 1
2

+β)∆ >
∣∣|sin

A[K̄B]× sin
B[K̄B]|X×Y − k−

1
2

+β|sin
A[K]× sin

B[K]|X×Y
∣∣ (8)

k∆ >
∣∣|sin

A[K]× sin
B[K]|X×Y − |sin

A[K]|X · ñB(Y )
∣∣ (9)

k
1
4

+β ≥
∣∣∣∣∣ŝin

A[K̄B]× sin
B[K̄B]

∣∣
X×Y − ñA(X) · ñB(Y ) · k

1
2

+β
∣∣∣ (10)

|K ′| ≥ k − k1−γ (11)

5Equivalently, one can consider ΛA(π, ε,∆) a predicate on protocol runs. Note that ΛA(π, ε,∆) is well-defined as
long as at least one party is honest. W.l.o.g. we assume that this is always the case.
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• For all x, x′ ∈ ΥA, y ∈ ΥB for that exists some y′ ∈ ΥA with fA(x, y) = fA(x, y′) and(
fA(x′, y), fB(x′, y)

)
6=
(
fA(x′, y′), fB(x′, y′)

)
we have:∣∣sin

A[K̄B]× ŝin
A[K̄B]× sin

B[K̄B]
∣∣
(x,x′,y)

< kε (12)

We say that some predicate P holds for almost all (non-aborted) protocol runs in ΛA(π, ε,∆),
when there exists some constant k0 ∈ N, such that P holds for all (non-aborted) protocol runs in
ΛA(π, ε,∆) with security parameter greater than k0; analogously for ΛB(π, ε,∆)

Lemma 15 (Stability of random distributions). Let (Xk)k∈N be some sequence of binomially and/or
hypergeometrically distributed random variables Xk, such that P[0 ≤Xk ≤ k] = 1 for all k ∈ N.
Further let ∆ ∈ R, such that ∆ > 1

2 . Then the probability P
[
|Xk−E(Xk)| ≥ k∆

]
is negligible in k.

Proof. Hoeffding’s inequality (Theorem 2 in [Hoe63]) implies that for all n ∈ N, c ∈ R>0 and every
binomially distributed random variable X with P[0≤X≤n] = 1 it holds:

P
[
|X −E(X)| ≥ c

]
≤ 2 · exp

(
−2c2 · n−1

)
In chapter 6 of [Hoe63] it was shown that this estimation also holds when X is distributed hyper-
geometrically. Thereby for all k ∈ N follows:

P
[
|Xk −E(Xk)| ≥ k∆

]
≤ 2 · exp

(
−2k2∆−1

)
Corollary 16. Let H be some memoryless random source that samples from some finite alphabet
Ω. Let p : Ω → R, x 7→ P[H outputs x]. Further let A be some arbitrary algorithm that on input
k ∈ N sequentially samples up to k random symbols X1, . . . , XN

r← H, i.e. N is a random variable
with P[1≤N≤k] = 1 and N may be correlated with (X1, . . . , XN ). Then for all ∆ ∈ R with ∆ > 1

2
and all S ⊆ Ω the probability P

[∣∣|X1 . . . XN |S −N · p(S)
∣∣ ≥ k∆

]
is negligible in k.

Proof. For our proof we make A a bit more powerful: A always samples exactly k random symbols
X1, . . . , Xk

r← H and then computes and outputs N .
Now, for n ∈ {1, . . . , k}, S ⊆ Ω let Xn(S) := |X1 . . . Xn|S . Analogously to the proof of Lemma 15

for all n ∈ {0, . . . , k}, S ⊆ Ω it always holds:

P
[
|Xn(S)− n · p(S)| ≥ k∆

]
≤ P

[
|Xn(S)− n · p(S)| ≥ n∆

]
≤ 2 · exp

(
−2n2∆−1

)
Further, for n < k∆ it trivially holds that P

[
|Xn(S)− n · p(S)| ≥ k∆

]
= 0. Hence follows:

P
[
|XN (S)−N · p(S)| ≥ k∆

]
≤

k∑
n=dk∆e

P
[
|Xn(S)− n · p(S)| ≥ k∆

]
≤ 2(k − k∆)

exp
(
2k∆(2∆−1)

)
Lemma 17. Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and π := πF (nA, nB, α, β, γ), such that
(nA, nB, α, β, γ) ∈ ΠF . Let ε,∆ ∈ R>0, such that α < ε and (2 − ∆)β < ∆

2 and 1
2 < ∆. Then,

when Alice is honest, a protocol run with fresh randomness for all parties lies in ΛA(π, ε,∆) with
overwhelming probability. Analogously, when Bob is honest, a protocol run with fresh randomness
for all parties lies in ΛπB(π, ε,∆) with overwhelming probability.
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Proof. When Alice is honest, then |sin
A[K]|X with X ⊆ ΥA is a binomially distributed random

variable with expected value k · ñA(X). Hence, by Lemma 15 only with negligible probability it
may happen that

∣∣|sin
A[K]|X − k · ñA(X)

∣∣ ≥ k∆. Analogously, for each X ⊆ ΥA, Y ⊆ ΥB only with

negligible probability it may happen that
∣∣|sin

A[K̄A]× sin
A[K̄B]|X×Y − k−

1
2

+β|sin
A[K]× sin

B[K]|X×Y
∣∣ ≥

k( 1
2

+β)∆, since |sin
A[K̄A] × sin

B[K̄A]|X×Y is hypergeometrically distributed and its expected value is

k−
1
2

+β|sin
A[K]× sin

B[K]|X×Y
∣∣. Thereby, inequation (1) and inequation (2) of Notation 14 are shown.

Inequation (3) follows by Corollary 16, since in the protocol step Invocation of F an honest Alice
can be seen as a memoryless random source with output distribution according to ñA, while the
behaviour of a possibly corrupted Bob can be depicted by an algorithm A that depending on the
result of previous invocations of F decides what to input into F in the current turn. Further,
when Alice is honest, by definition of π (Definition 12) the following two inequalities hold in every
non-aborted protocol run:

k
1
4

+β ≥
∣∣∣∣∣sin

A[K̄A]× ŝin
B[K̄A]

∣∣
X′×Y ′ − ñA(X ′) · ñB(Y ′) · k

1
2

+β
∣∣∣

|K ′| ≥ k − k1−γ

Now, for the case that Alice is honest only inequation (6) is left, which is a bit harder to prove. Let

x̃ ∈ ΥA, ỹ, ỹ′ ∈ ΥB, such that (x̃, ỹ) 6 F (x̃, ỹ′). In case of fA(x̃, ỹ) 6= fA(x̃, ỹ′) we clearly have that∣∣sin
A[K̄A]×sin

B[K̄A]× ŝin
B[K̄A]

∣∣
(x̃,ỹ,ỹ′)

= 0 for every non-aborted run with honest Alice, since else Alice

would have ignored an obvious lie of Bob in protocol step Control A. In case of fA(x̃, ỹ) = fA(x̃, ỹ′)
we find some x̃′ ∈ ΥA with fB(x̃, ỹ) = fB(x̃′, ỹ) and fB(x̃, ỹ′) 6= fB(x̃′, ỹ′). On the one hand, Bob
cannot distinguish situations where F was invoked with input (x̃, ỹ) from situations with input
(x̃′, ỹ) better than by guessing. On the other hand, he has to answer according challenges in
protocol step Control A differently, when he wants to simulate successfully that he did input ỹ′

instead of ỹ. Now we can adduce a simple hybrid argument. We could change the model as follows:
Whenever Bob tries to simulate that he did input ỹ′ instead of ỹ and Alice’s input to F was x̃ or
x̃′, we replace Alice’s input by some fresh random symbol x ∈ {x̃, x̃′} with P[x= x̃] = ñA(x̃)

ñA(x̃)+ñA(x̃′)

and P[x = x̃′] = ñA(x̃′)
ñA(x̃)+ñA(x̃′) and update Alice’s memory consistently. This does not change the

distribution of protocol runs in any way. So, in case of
∣∣sin

A[K̄A]× sin
B[K̄A]× ŝin

B[K̄A]
∣∣
(x̃,ỹ,ỹ′)

≥ kε we

can bound the probability p that Bob is not caught cheating as follows:

p ≤

(
max

(
ñA(x̃), ñA(x̃′)

)
ñA(x̃) + ñA(x̃′)

)kε
=

(
1−

min
(
ñA(x̃), ñA(x̃′)

)
ñA(x̃) + ñA(x̃′)

)kε

Moreover, by definition of π (Definition 12) we can estimate minx∈ΥA

(
ñA(x)

)
> k−α

|ΥA| , if only the
security parameter k is great enough. Hence, for almost all security parameters k follows:

p ≤

(
1−

minx∈ΥA

(
ñA(x)

)
ñA(x̃) + ñA(x̃′)

)kε
<

(
1− k−α

|ΥA|

)kε
≤ exp

(
−kε−α

|ΥA|

)
This is negligible, since α < ε by assumption.

When Bob is honest, we can almost analogously prove that a protocol run with fresh randomness
for all parties lies in ΛπB(π, ε,∆) with overwhelming probability. Only inequation (8) is a bit more
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intricate to prove. Here, the random variable |sin
A[K̄B] × sin

B[K̄B]|X×Y with X ⊆ ΥA, Y ⊆ ΥB has

expectation k
1
2

+β · |K\K̄A|−1 · |sin
A[K\K̄A]×sin

B[K\K̄A]|X×Y . Nonetheless, by Lemma 15 for arbitrary
but constant ∆′ ∈ R with 1

2 < ∆′ follows that only with negligible probability may happen:∣∣∣∣∣|sin
A[K̄B]× sin

B[K̄B]|X×Y −
k

1
2

+β · |sin
A[K\K̄A]× sin

B[K\K̄A]|X×Y
k − k

1
2

+β

∣∣∣∣∣ ≥ k( 1
2

+β)∆′

Furthermore, when at least one party is honest, by definition of π (Definition 12) for every non-
aborted protocol run it holds:∣∣|sin

A[K\K̄A]× sin
B[K\K̄A]|X×Y − |sin

A[K]× sin
B[K]|X×Y

∣∣ ≤ |K̄A| = k
1
2

+β

Thereby, that
∣∣|sin

A[K̄B]×sin
B[K̄B]|X×Y −k−

1
2

+β|sin
A[K]×sin

B[K]|X×Y
∣∣ ≥ k( 1

2
+β)∆′+2k2β may happen

only with negligible probability. Finally, for almost all security parameters k we can estimate
k( 1

2
+β)∆′ + 2k2β ≤ k( 1

2
+β)∆, since 2β < (1

2 + β)∆ by assumption and we can choose ∆′ < ∆.

Lemma 18. Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and π := πF (nA, nB, α, β, γ), such that
(nA, nB, α, β, γ) ∈ ΠF . Further let ε,∆, ω, ω′ ∈ R>0 and let α < ω′ < (1

2 + β)(1 − ∆) and
ω < min(1

4 , 1 −∆) and ε ≤ 1
2 + β − ω. Then for almost all non-aborted runs in ΛA(π, ε,∆) there

exists some ν ∈ ÑF (k−ω, k−ω
′
), such that for all x ∈ ΥA, y, y′ ∈ ΥB it holds:

k−ω >
∣∣ν(x,ΥB, y

′)− ñA(x) · ñB(y′)
∣∣

k−ω >
∣∣∣ν(x, y,ΥB)− k−1 ·

∣∣sin
A[K]× sin

B[K]
∣∣
(x,y)

∣∣∣
Proof. Let ν : ΥA×Υ2

B → R≥0, (x, y, y′) 7→ k−
1
2
−β∣∣sin

A[K̄A]× sin
B[K̄A]× ŝin

B[K̄A]
∣∣
(x,y,y′)

. First, let us

check that ν ∈ ÑF (k−ω, k−ω
′
), i.e. ν fulfills the five conditions of Definition 13:

1. For all non-aborted runs in ΛA(π, ε,∆) we have that ν(ΥA,ΥB,ΥB) = 1 by construction.

2. By definition (Notation 14) for all non-aborted runs in ΛA(π, ε,∆) and all x ∈ ΥA it holds:

ν(x,ΥB,ΥB) = k−
1
2
−β|sin

A[K̄A]× sin
B[K̄A]|{x}×ΥB

(2)

> k−
1
2
−β
(
k−

1
2

+β|sin
A[K]× sin

B[K]|{x}×ΥB
− k( 1

2
+β)∆

)
= k−1|sin

A[K]|x − k( 1
2

+β)(∆−1)

(1)

> k−1
(
k · ñA(x)− k∆

)
− k( 1

2
+β)(∆−1)

= ñA(x)− k∆−1 − k( 1
2

+β)(∆−1)

For almost all security parameters k we can estimate that from below by k−ω
′
, since we have

that α < ω′ < (1
2 + β)(1−∆) < 1−∆ by assumption and ñA(x) > k−α|ΥA|−1 for all x ∈ ΥA

if only k is great enough.
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3. By definition (Notation 14) for all non-aborted runs in ΛA(π, ε,∆) and all x ∈ ΥA, y ∈ ΥB it
holds: ∣∣ν(x, y,ΥB)− ν(x,ΥB,ΥB) · ν(ΥA, y,ΥB)

∣∣
=

∣∣k− 1
2
−β|sin

A[K̄A]× sin
B[K̄A]|(x,y) − k−1−2β|sin

A[K̄A]|x ·
∣∣sin

B[K̄A]
∣∣
y

∣∣
(2)

<
∣∣k−1|sin

A[K]× sin
B[K]|(x,y) − k−1−2β|sin

A[K̄A]|x · |sin
B[K̄A]|y

∣∣+ k( 1
2

+β)(∆−1)

(2)

<
∣∣k−1|sin

A[K]× sin
B[K]|(x,y) − k−

3
2
−β|sin

A[K]|x · |sin
B[K̄A]|y

∣∣+ 2k( 1
2

+β)(∆−1)

(2)

<
∣∣k−1|sin

A[K]× sin
B[K]|(x,y) − k−2|sin

A[K]|x · |sin
B[K]|y

∣∣+ 3k( 1
2

+β)(∆−1)

(1)

<
∣∣k−1|sin

A[K]× sin
B[K]|(x,y) − k−1 · ñ(x) · |sin

B[K]|y
∣∣+ 3k( 1

2
+β)(∆−1) + k∆−1

(3)

< 3k( 1
2

+β)(∆−1) + 2k∆−1

For almost all security parameters k we can estimate that from above by k−ω, since β < 1
2

by definition (Notation 11) and ∆ < 1− ω by assumption.

4. By definition (Notation 14) for all non-aborted runs in ΛA(π, ε,∆) and all x ∈ ΥA, y′ ∈ ΥB

it holds: ∣∣ν(x,ΥB, y
′)− ν(x,ΥB,ΥB) · ν(ΥA,ΥB, y

′)
∣∣

=
∣∣k− 1

2
−β|sin

A[K̄A]× ŝin
B[K̄A]|(x,y′) − k−1−2β|sin

A[K̄A]|x ·
∣∣ŝin

B[K̄A]
∣∣
y′

∣∣
(4)

≤
∣∣ñA(x) · ñB(y′)− k−1−2β|sin

A[K̄A]|x · |ŝin
B[K̄A]|y′

∣∣+ k−
1
4

(4)

≤
∣∣ñA(x) · ñB(y′)− k−

1
2
−β · ñA(x) · |ŝin

B[K̄A]|y′
∣∣+ 2k−

1
4

(4)

≤
∣∣ñA(x) · ñB(y′)− ñA(x) · ñB(y′)

∣∣+ 3k−
1
4

For almost all security parameters k we can estimate that from above by k−ω, since ω < 1
4

by assumption.

5. By definition (Notation 14) for all non-aborted runs in ΛA(π, ε,∆) and all x ∈ ΥA, y, y′ ∈ ΥB

with (x, y) 6 F (x, y′) it holds:

ν(x, y, y′) = k−
1
2
−β∣∣sin

A[K̄A]× sin
B[K̄A]× ŝin

B[K̄A]
∣∣
(x,y,y′)

(6)

< kε−
1
2
−β ≤ k−ω

So for all non-aborted protocol runs in ΛA(π, ε,∆) it holds that ν ∈ ÑF (k−ω, k−ω
′
). Still there are

two properties of ν left to be shown:

• By definition (Notation 14) for all non-aborted runs in ΛA(π, ε,∆) and all x ∈ ΥA, y′ ∈ ΥB

it holds:∣∣ν(x,ΥB, y
′)− ñA(x) · ñB(y′)

∣∣ =
∣∣k− 1

2
−β|sin

A[K̄A]× ŝin
B[K̄A]|(x,y′) − ñA(x) · ñB(y′)

∣∣
(4)

≤
∣∣ñA(x) · ñB(y′)− ñA(x) · ñB(y′)

∣∣+ k−
1
4

≤ k−ω
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• By definition (Notation 14) for all non-aborted runs in ΛA(π, ε,∆) and all x ∈ ΥA, y ∈ ΥB it
holds: ∣∣ν(x, y,ΥB)− k−1 · |sin

A[K]× sin
B[K]|(x,y)

∣∣
=

∣∣k− 1
2
−β|sin

A[K̄A]× sin
B[K̄A]|(x,y) − k−1 · |sin

A[K]× sin
B[K]|(x,y)

∣∣
(2)

<
∣∣k−1|sin

A[K]× sin
B[K]|(x,y) − k−1 · |sin

A[K]× sin
B[K]|(x,y)

∣∣+ k( 1
2

+β)(∆−1)

For almost all security parameters k we can estimate that from above by k−ω, since β < 1
2

by definition (Notation 11) and ∆ < 1− ω by assumption.

4.2.2 From blurred cheating situations to non-blurred cheating situations

Now we show that every blurred cheating situation is sufficiently close to a non-blurred cheating
situation, so that even a corrupted Bob’s actual and prescribed input distributions in a non-
aborted offline protocol will be polynomially close to the mappings (x, y) 7→ η(x, y,ΥB) and
(x, y′) 7→ η(x,ΥB, y

′) respectively with overwhelming probability, where η is a (non-blurred) cheat-
ing situation for the underlying 2-party function.

Lemma 19 (Rescalability of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and
let η ∈ NF . Further let τ : ΥA → R>0, such that

∑
x∈ΥA

τ(x) ·η(x,ΥB,ΥB) = 1. Then the mapping

η̃ : ΥA×Υ2
B → R≥0, (x, y, y′) 7→ τ(x) · η(x, y, y′) is a cheating situation for F .

Proof. We just have to check the five conditions of Definition 7:

1. We have that η̃(ΥA,ΥB,ΥB) =
∑

x∈ΥA
τ(x) · η(x,ΥB,ΥB) = 1.

2. For all x ∈ ΥA we have that η̃(x,ΥB,ΥB) > 0, since τ(x) > 0 and η(x,ΥB,ΥB) > 0.

3. For all x ∈ ΥA, y ∈ ΥB we have that η̃(x, y,ΥB) = τ(x) ·η(x,ΥB,ΥB) ·η(ΥA, y,ΥB), whereby
especially follows η̃(ΥA, y,ΥB) = η(ΥA, y,ΥB). Hence we can conclude:

η̃(x, y,ΥB) = τ(x) · η(x,ΥB,ΥB)︸ ︷︷ ︸
η̃(x,ΥB,ΥB)

· η(ΥA, y,ΥB)︸ ︷︷ ︸
η̃(ΥA,y,ΥB)

= η̃(x,ΥB,ΥB) · η̃(ΥA, y,ΥB)

4. For all x ∈ ΥA, y′ ∈ ΥB we have that η̃(x,ΥB, y
′) = τ(x)·η(x,ΥB,ΥB)·η(ΥA,ΥB, y

′), whereby
especially follows η̃(ΥA,ΥB, y

′) = η(ΥA,ΥB, y
′). Hence we can conclude:

η̃(x,ΥB, y
′) = τ(x) · η(x,ΥB,ΥB)︸ ︷︷ ︸

η̃(x,ΥB,ΥB)

· η(ΥA,ΥB, y
′)︸ ︷︷ ︸

η̃(ΥA,ΥB,y′)

= η̃(x,ΥB,ΥB) · η̃(ΥA,ΥB, y
′)

5. For all x ∈ ΥA, y, y′ ∈ ΥB with (x, y)F 6 (x, y′)F we have that η̃(x, y, y′) = 0, since
η(x, y, y′) = 0.

Corollary 20 (Normalizability of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det

and let η ∈ NF . Then there exists a unique normalized cheating situation η̃ ∈ NF , such that
η(ΥA, y,ΥB) = η̃(ΥA, y,ΥB) and η(ΥA,ΥB, y

′) = η̃(ΥA,ΥB, y
′) for all x ∈ ΥA, y, y′ ∈ ΥB.
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Proof. Let η̃ : ΥA×Υ2
B → R≥0, (x, y, y′) 7→ η(x,y,y′)

|ΥA|·η(x,ΥB,ΥB) . Note that η̃ ∈ NF by Lemma 19 and

that η̃ is normalized by construction. Moreover, by construction for all x ∈ ΥA, y, y′ ∈ ΥB it holds

that η(x,y,y′)
η(x,ΥB,ΥB) = η̃(x,y,y′)

η̃(x,ΥB,ΥB) . Now, using the conditions 3 and 4 of Definition 7 respectively, we

can conclude that η(ΥA, y,ΥB) = η̃(ΥA, y,ΥB) and η(ΥA,ΥB, y
′) = η̃(ΥA,ΥB, y

′) for all x ∈ ΥA,
y, y′ ∈ ΥB.

Lemma 21. Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and let ε, δ ∈ R>0, ν ∈ ÑF (ε, δ). Further

let ν̄ : ΥA×Υ2
B → R≥0, (x, y, y′) 7→ ν(x,y,y′)

|ΥA|·ν(x,ΥB,ΥB) . Then it holds that ν̄ ∈ ÑF ( 2ε
δ|ΥA| ,

1
|ΥA|).

Proof. We just have to check the five conditions of Definition 13:

1. By construction it holds that ν̄(ΥA,ΥB,ΥB) =
∑

x∈ΥA

ν(x,ΥB,ΥB)
|ΥA|·ν(x,ΥB,ΥB) = 1.

2. For all x ∈ ΥA it holds that ν̄(x,ΥB,ΥB) = ν(x,ΥB,ΥB)
|ΥA|·ν(x,ΥB,ΥB) = |ΥA|−1.

3. For all x ∈ ΥA, y ∈ ΥB we have:∣∣ν̄(x, y,ΥB)− ν(ΥA,y,ΥB)
|ΥA|

∣∣ =
∣∣ν̄(x, y,ΥB)− ν(x,ΥB,ΥB)·ν(ΥA,y,ΥB)

|ΥA|·ν(x,ΥB,ΥB)

∣∣
<

∣∣ν̄(x, y,ΥB)− ν(x,y,ΥB)
|ΥA|·ν(x,ΥB,ΥB)

∣∣+ ε
|ΥA|·ν(x,ΥB,ΥB)

≤ ε
δ|ΥA|

Thereby especially follows
∣∣ν̄(ΥA, y,ΥB)− ν(ΥA, y,ΥB)

∣∣ < ε
δ . Hence we can conclude:∣∣ν̄(x, y,ΥB)− ν̄(x,ΥB,ΥB) · ν̄(ΥA, y,ΥB)

∣∣ =
∣∣ν̄(x, y,ΥB)− ν̄(ΥA,y,ΥB)

|ΥA|
∣∣

<
∣∣ν(ΥA,y,ΥB)

|ΥA| − ν̄(ΥA,y,ΥB)
|ΥA|

∣∣+ ε
δ|ΥA|

<
∣∣ν(ΥA,y,ΥB)

|ΥA| − ν(ΥA,y,ΥB)
|ΥA|

∣∣+ 2ε
δ|ΥA|

4. For all x ∈ ΥA, y′ ∈ ΥB we have:∣∣ν̄(x,ΥB, y
′)− ν(ΥA,ΥB,y

′)
|ΥA|

∣∣ =
∣∣ν̄(x,ΥB, y

′)− ν(x,ΥB,ΥB)·ν(ΥA,ΥB,y
′)

|ΥA|·ν(x,ΥB,ΥB)

∣∣
<

∣∣ν̄(x,ΥB, y
′)− ν(x,ΥB,y

′)
|ΥA|·ν(x,ΥB,ΥB)

∣∣+ ε
|ΥA|·ν(x,ΥB,ΥB)

≤ ε
δ|ΥA|

Thereby especially follows
∣∣ν̄(ΥA,ΥB, y

′)− ν(ΥA,ΥB, y
′)
∣∣ < ε

δ . Hence we can conclude:∣∣ν̄(x,ΥB, y
′)− ν̄(x,ΥB,ΥB) · ν̄(ΥA,ΥB, y

′)
∣∣ =

∣∣ν̄(x,ΥB, y
′)− ν̄(ΥA,ΥB,y

′)
|ΥA|

∣∣
<

∣∣ν(ΥA,ΥB,y
′)

|ΥA| − ν̄(ΥA,ΥB,y
′)

|ΥA|
∣∣+ ε

δ|ΥA|

<
∣∣ν(ΥA,ΥB,y

′)
|ΥA| − ν(ΥA,ΥB,y

′)
|ΥA|

∣∣+ 2ε
δ|ΥA|

5. For all x ∈ ΥA, y, y′ ∈ ΥB with (x, y) 6 F (x, y′) it holds that ν̄(x, y, y′) = ν(x,y,y′)
|ΥA|·ν(x,ΥB,ΥB) <

ε
δ|ΥA| , since ν(x, y, y′) < ε and ν(x,ΥB,ΥB) ≥ δ.

23



Lemma 22. Let m,n ∈ N, A ∈ Rm×n, u ∈ Rm, such that K := {x ∈ Rn |Ax ≤ u} 6= ∅ (the
less-or-equal relation is componentwise). Then for every norm on Rn there exists some constant
C ∈ R≥0, such that for all x ∈ Rn it holds that minγ∈K ‖x− γ‖ ≤ C ·minε∈Rm,Ax≤u+ε ‖ε‖.

Proof. Since all norms on Rn are equivalent, it suffices to give a proof for the L∞-norm. However,
all our arguments and estimations in this proof hold for every Lp-norm. For technical reasons we
reformulate our Lemma, such that the original assertion is a direct corollary of the reformulation.
Let l,m, n ∈ N, A ∈ Rm×n, u ∈ Rm, B ∈ Rl×n, v ∈ Rm, such that for K := {x ∈ Rn |Ax ≤ u} and
V := {x ∈ Rn |Bx = v} it holds that K ∩ V 6= ∅. We will show that there exists some C ∈ R≥0,
such that for all x ∈ V it holds that minγ∈K∩V ‖x− γ‖ ≤ C ·minε∈Rm,Ax≤u+ε ‖ε‖.

Our proof is by induction on n − Rank(B). In case of Rank(B) = n our assertion is trivially
true. So let us consider the case Rank(B) < n. Let aT

1 , . . . , a
T
m, b

T
1 , . . . , b

T
l denote the rows of A

and B respectively. W.l.o.g. we assume that aT
1 , . . . , a

T
m /∈ Span(bT1 , . . . , b

T
l ); else we could delete

the according rows from A (and the according coefficients from u) without changing K ∩ V . For
the same reason we may assume that for each i ∈ {1, . . . ,m} there exists some x ∈ K ∩ V with
aT
i x = ui. When these assumptions yield an empty matrix A, again our assertion is trivially true.

Now, for each i ∈ {1, . . . ,m} we set Ṽi := {x ∈ V | aT
i x = ui}. For each i ∈ {1, . . . ,m}

we assumed that aT
i /∈ Span(bT1 , . . . , b

T
l ) and K ∩ Ṽi 6= ∅. So by induction hypothesis for each

i ∈ {1, . . . ,m} we find some C̃i ∈ R≥0, such that for all x ∈ Ṽi it holds:

minγ∈K∩Ṽi ‖x− γ‖ ≤ C̃i ·minε∈Rm,Ax≤u+ε ‖ε‖

Further, for each i ∈ {1, . . . ,m} we find some ẽi ∈ Kernel(B) with aT
i ẽi = 1, since by assumption

we have that aT
i /∈ Span(bT1 , . . . , b

T
l ). Let C := maxmi=1

(
‖ẽi‖+ C̃i ‖Aẽi‖+ C̃i

)
.

Thereby, on the one hand for each x ∈ V \K we find some j ∈ {1, . . . ,m} with aT
j x > uj and

we can set x̃ := x− (aT
j x− uj)ẽj . This yields that x̃ ∈ Ṽj and hence we get:

minγ∈K∩V ‖x− γ‖ ≤ ‖x− x̃‖+ minγ∈K∩V ‖x̃− γ‖
≤ ‖x− x̃‖+ minγ∈K∩Ṽj ‖x̃− γ‖

≤ ‖x− x̃‖+ C̃j ·minε∈Rm,Ax̃≤u+ε ‖ε‖
≤ ‖x− x̃‖+ C̃j

(
‖A(x− x̃)‖+ minε∈Rm,Ax≤u+ε ‖ε‖

)
= (aT

j x− uj) ‖ẽj‖+ C̃j
(
(aT
j x− uj) ‖Aẽj‖+ minε∈Rm,Ax≤u+ε ‖ε‖

)
≤

(
‖ẽj‖+ C̃j‖Aẽj‖+ C̃j

)
·minε∈Rm,Ax≤u+ε ‖ε‖

≤ C ·minε∈Rm,Ax≤u+ε ‖ε‖

On the other hand, for all x ∈ V ∩K it holds that minγ∈K∩V ‖x − γ‖ ≤ C ·minε∈Rm,Ax≤u+ε ‖ε‖,
since minγ∈K∩V ‖x− γ‖ = 0.

Lemma 23 (Linear smoothness). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det. Then there exists
some constant C ∈ R≥0, such that for all ε, δ ∈ R>0, ν ∈ ÑF (ε, δ) there exists a cheating situation
η ∈ NF with maxx∈ΥA, y,y′∈ΥB

∣∣ν(x, y, y′)− η(x, y, y′)
∣∣ < Cε

δ .

Proof. As stated in Remark 8, the set of all normalized cheating situations for F is a convex
polytope in the linear space RΥA×Υ2

B . So by Lemma 22 (instantiated with the L∞-norm) we find
some constant C̄ ∈ R≥0, such that for all γ ∈ R>0, ν̄ ∈ Ñ(γ, |ΥA|−1) there exists a normalized
cheating situation η̄ ∈ NF with

∣∣ν̄(x, y, y′)− η̄(x, y, y′)
∣∣ < C̄γ for all x ∈ ΥA, y, y′ ∈ ΥB.
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Now let ε, δ ∈ R>0, ν ∈ ÑF (ε, δ) and ν̄ : ΥA× Υ2
B → R≥0, (x, y, y′) 7→ ν(x,y,y′)

|ΥA|·ν(x,ΥB,ΥB) . By

Lemma 21 it holds that ν̄ ∈ Ñ( 2ε
δ|ΥA| ,

1
|ΥA|). So, by our choice of C̄ we find some normalized

cheating situation η̄ ∈ NF with
∣∣ν̄(x, y, y′) − η̄(x, y, y′)

∣∣ < 2C̄ε
δ|ΥA| for all x ∈ ΥA, y, y′ ∈ ΥB. Now,

we define the mapping η : ΥA×Υ2
B → R≥0, (x, y, y′) 7→ |ΥA| · ν(x,ΥB,ΥB) · η̄(x, y, y′). Note that

η ∈ NF by Lemma 19, since η̄ is normalized. Furthermore, for all x ∈ ΥA, y, y′ ∈ ΥB it follows:∣∣ν(x, y, y′)− η(x, y, y′)
∣∣ = |ΥA| · ν(x,ΥB,ΥB) ·

∣∣ν̄(x, y, y′)− η̄(x, y, y′)
∣∣ < 2C̄ε

δ

Corollary 24. Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and π := πF (nA, nB, α, β, γ), such that
(nA, nB, α, β, γ) ∈ ΠF . Further let ε,∆ ∈ R>0 and let α < min

(
1
4 , (

1
2 +β)(1−∆)

)
and ε < 1

2 +β−α.
Then there exists some constant γ′ ∈ R>0, such that for almost all non-aborted runs in ΛA(π, ε,∆)
there exists some cheating situation η ∈ NF that for all x ∈ ΥA, y, y′ ∈ ΥB fulfills the following
two conditions:

k−γ
′
>

∣∣∣η(x, y,ΥB)− k−1 ·
∣∣sin

A[K]× sin
B[K]

∣∣
(x,y)

∣∣∣
k−γ

′
>

∣∣η(x,ΥB, y
′)− nA(x) · nB(y′)

∣∣
Proof. We find some constants ω, ω′, γ′ ∈ R>0, such that it holds:

α < ω′ < ω < min
(

1
4 , (

1
2 + β)(1−∆), 1

2 + β − ε
)

and γ′ < min(α, ω − ω′)

Note that thereby ω < 1 −∆, since β < 1
2 by definition (Notation 11). Hence, by Lemma 18 for

almost all non-aborted runs in ΛA(π, ε,∆) there exists some ν ∈ ÑF (k−ω, k−ω
′
), such that for all

x ∈ ΥA, y, y′ ∈ ΥB it holds:

k−ω >
∣∣∣ν(x, y,ΥB)− k−1 ·

∣∣sin
A[K]× sin

B[K]
∣∣
(x,y)

∣∣∣
k−ω >

∣∣ν(x,ΥB, y
′)− ñA(x) · ñB(y′)

∣∣
Note that by construction (Definition 12) we can estimate

∣∣nA(x) ·nB(y)− ñA(x) · ñB(y)
∣∣ ≤ 2k−α for

all x ∈ ΥA, y ∈ ΥB. Furthermore, by Lemma 23 we find some constant C ∈ R≥0, such that for all
security parameters k and all blurred cheating situations ν ∈ ÑF (k−ω, k−ω

′
) there exists a cheating

situation η ∈ NF with maxx∈ΥA, y,y′∈ΥB

∣∣ν(x, y, y′) − η(x, y, y′)
∣∣ < Ckω

′−ω. Hence, for almost all

non-aborted runs in ΛA(π, ε,∆) there exists some η ∈ NF , such that for all x ∈ X̃, y, y′ ∈ Ỹ it
holds:

k−ω + Ckω
′−ω|ΥB| >

∣∣∣η(x, y,ΥB)− k−1 ·
∣∣sin

A[K]× sin
B[K]

∣∣
(x,y)

∣∣∣
2k−α + k−ω + Ckω

′−ω|ΥB| >
∣∣η(x,ΥB, y

′)− nA(x) · nB(y′)
∣∣

For great enough security parameter k we may estimate both left sides from above by k−γ
′
, since

we did choose γ′ < min(α, ω − ω′) right at the start of this proof.

4.3 OT-cores & robustness

In this section we restate the definition of OT-cores. Furthermore, we formally define what is meant
by a robust OT-core and we show that every redundancy-free 2-party function actually has a robust
OT-core, if only it has any OT-core at all.
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Definition 25 (OT-cores). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det. A quadruple (x, x′, y, y′) ∈
Υ2

A×Υ2
B is an OT-core of F , if the following three conditions are met:

1. We have that fA(x, y) = fA(x, y′).

2. We have that fB(x, y) = fB(x′, y).

3. We have that fA(x′, y) 6= fA(x′, y′) or fB(x, y′) 6= fB(x′, y′) (or both).

Definition 26 (Robustness). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and let γ′ ∈ R. Further
let π := πF (nA, nB, α, β, γ) with (nA, nB, α, β, γ) ∈ ΠF . Then π is called γ′-robust, if there exist
some sets ΓA, ΓB of protocol runs of π with:

• If Alice is honest, then a protocol run with fresh randomness for all parties lies in ΓA with
overwhelming probability and in all non-aborted runs in ΓA for all x ∈ ΥA, y ∈ ΥB it holds:∣∣∣nA(x) · nB(y)− |K ′|−1 ·

∣∣sin
A[K ′]× sin

B[K ′]
∣∣
(x,y)

∣∣∣ < k−γ
′

• If Bob is honest, then a protocol run with fresh randomness for all parties lies in ΓB with
overwhelming probability and in all non-aborted runs in ΓB for all x ∈ ΥA, y ∈ ΥB it holds:∣∣∣nA(x) · nB(y)− |K ′|−1 ·

∣∣sin
A[K ′]× sin

B[K ′]
∣∣
(x,y)

∣∣∣ < k−γ
′

For convenience we just call a protocol robust, if it is γ′-robust for any γ′ ∈ R>0. An OT-core
(x, x′, y, y′) ∈ Υ2

A×Υ2
B is called robust, if for all probability mass functions nA : ΥA → R and

nB : ΥB → R with nA(x, x′) = nB(y, y′) = 1 there exist α, β, γ ∈ R>0, such that β > 1
2 and the

protocol πF (nA, nB, α, β, γ) is robust.

Notation 27 (Maskable inputs). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det. For Y ⊆ ΥB we set:

ΦF (Y ) :=
{
ŷ ∈ ΥB

∣∣ ∀x ∈ ΥA ∃y ∈ Y : (x, ŷ)
F
 (x, y)

}
Given y1, . . . , yn ∈ ΥB, we write ΦF (y1, . . . , yn) instead of ΦF ({y1, . . . , yn}) for convenience.

Remark 28. Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and let Y ′ ⊆ ΥB. Then by the transitivity

of the “
F
 ”-relation (q.v. Remark 5) for all Y ⊆ ΦF (Y ′) it follows that ΦF (Y ) ⊆ ΦF (Y ′).

Lemma 29. Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det, such that F is redundancy-free. Further
let (x̃, x̃′, ỹ, ỹ′) ∈ Υ2

A×Υ2
B be an OT-core of F . Then there exist some ȳ, ȳ′ ∈ ΥB, such that

(x̃, x̃′, ȳ, ȳ′) also is an OT-core and every cheating situation η ∈ NF with η(ΥA,ΥB, {ȳ, ȳ′}) = 1 is
harmless (q.v. Definition 7).

Proof. We pick ȳ, ȳ′ ∈ ΥB, such that (x̃, x̃′, ȳ, ȳ′) is an OT-core and the set ΦF (ȳ, ȳ′) is of minimal
cardinality. Let η ∈ NF be some arbitrary cheating situation for F with η(ΥA,ΥB, {ȳ, ȳ′}) = 1.
We have to show that η is a harmless cheating situation, i.e. η(ΥA,ΥB, y) = η(ΥA, y,ΥB) for all
y ∈ ΥB (cf. Definition 7).

First we define some input sets Y, Y ′ ⊆ ΥB that form a disjoint decomposition of ΦF (ȳ, ȳ′):

Y :=
{
y ∈ ΦF (ȳ, ȳ′)

∣∣ fA(x̃′, ȳ) = fA(x̃′, y) ∧ fB(x̃, y) = fB(x̃′, y)
}

Y ′ :=
{
y′ ∈ ΦF (ȳ, ȳ′)

∣∣ fA(x̃′, ȳ) 6= fA(x̃′, y′) ∨ fB(x̃, y′) 6= fB(x̃′, y′)
}

By the following eight observations we show now that η is a harmless cheating situation.
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Observation 1: For all y ∈ Y , y′ ∈ Y ′ we have that (x̃, x̃′, y, y′) is an OT-core.

This can be shown as follows. Firstly, we have that fA(x̃, ȳ) = fA(x̃, ȳ′), since (x̃, x̃′, ȳ, ȳ′)
is an OT-core (cf. condition 1 of Definition 25). Secondly, by definition (Notation 27) we

have for each y ∈ Φ(ȳ, ȳ′) that (x̃, y)
F
 (x̃, ȳ) or (x̃, y)

F
 (x̃, ȳ′), what in turn implies

that fA(x̃, y) = fA(x̃, ȳ) or fA(x̃, y) = fA(x̃, ȳ′) (cf. condition 2 of Notation 4). Putting
things together, we can conclude that fA(x̃, y) = fA(x̃, y′) for all y, y′ ∈ ΦF (ȳ, ȳ′). Now, by
construction of Y and Y ′ directly follows that (x̃, x̃′, y, y′) is an OT-core for all y ∈ Y , y′ ∈ Y ′.

Observation 2: For each (x, ŷ) ∈ ΥA×ΦF (ȳ, ȳ′) at least one of the following assertions holds true:

∀y ∈ Y : (x, ŷ)
F
 (x, y) ∀y′ ∈ Y ′ : (x, ŷ)

F
 (x, y′)

Otherwise we had some x ∈ ΥA, ŷ ∈ ΦF (ȳ, ȳ′), y ∈ Y , y′ ∈ Y ′, such that (x, ŷ) 6 F (x, y) and

(x, ŷ) 6 F (x, y′) and thereby ŷ /∈ ΦF (y, y′). However, by observation 1 we had that (x̃, x̃′, y, y′)
would be an OT-core and by Remark 28 and the minimality of ΦF (ȳ, ȳ′) would follow that
ΦF (y, y′) = ΦF (ȳ, ȳ′). Now, we have a contradiction, as ŷ ∈ ΦF (ȳ, ȳ′) \ ΦF (y, y′).

Observation 3: For all ŷ ∈ ΦF (ȳ, ȳ′) with ŷ 6= ȳ there exists some x ∈ ΥA, such that η(x, ŷ, ȳ) =
η(x, Y ′, ȳ) = 0.

This follows by observation 2 and F being redundancy-free. Let ŷ ∈ ΦF (ȳ, ȳ′), such that ŷ 6= ȳ.

Since F is redundancy-free, by Remark 6 we find some x ∈ ΥA with (x, ŷ) 6 F (x, ȳ), what
implies two things. Firstly, by condition 5 of Definition 7 we have that η(x, ŷ, ȳ) = 0, what is

one part of what we have to show. Secondly, by observation 2 it follows that (x, ŷ)
F
 (x, y′)

for all y′ ∈ Y ′. Now, if we could find some y′ ∈ Y ′ with (x, y′)
F
 (x, ȳ), by Remark 5 this

would imply that (x, ŷ)
F
 (x, ȳ) in direct contradiction to our choice of x. So, for all y′ ∈ Y ′

it must hold that (x, y′) 6 F (x, ȳ) and thus η(x, Y ′, ȳ) = 0.

Observation 4: It holds that η(ΥA,ΥB\ΦF (ȳ, ȳ′),ΥB) = 0.

To prove this, we just have to combine that η(ΥA,ΥB, {ȳ, ȳ′}) = 1 by assumption, i.e.
η(ΥA,ΥB,ΥB\{ȳ, ȳ′}) = 0, and that η(ΥA,ΥB\ΦF (ȳ, ȳ′), {ȳ, ȳ′}) = 0 by construction of ΦF

(cf. Notation 27 and condition 5 of Definition 7).

Observation 5: For all ŷ ∈ ΦF (ȳ, ȳ′) with ŷ 6= ȳ it holds that η(ΥA,ΥB, ȳ) ≤ η(ΥA, Y \{ŷ},ΥB).

This can be shown as follows. Let ŷ ∈ ΦF (ȳ, ȳ′), such that ŷ 6= ȳ. By observation 3 we find
some x ∈ ΥA, such that η(x, Y ′ ∪ {ŷ}, ȳ) = 0. Further, note that η(x,ΥB\ΦF (ȳ, ȳ′), ȳ) = 0
by observation 4. Hence it holds:

η(x,ΥB, ȳ) = η(x,ΦF (ȳ, ȳ′), ȳ) = η(x, Y \{ŷ}, ȳ) ≤ η(x, Y \{ŷ},ΥB)

By condition 3 and condition 4 of Definition 7 now follows the claimed inequality.

Observation 6: For all ŷ′ ∈ ΦF (ȳ, ȳ′) with ŷ′ 6= ȳ′ it holds that η(ΥA,ΥB, ȳ) ≥ η(ΥA, Y ∪{ŷ′},ΥB).

The proof is mainly analogous to that of observation 5. Analogously to observation 3, for all
ŷ′ ∈ ΦF (ȳ, ȳ′) with ŷ′ 6= ȳ′ there exists some x ∈ ΥA, such that η(x, ŷ′, ȳ) = η(x, Y, ȳ) = 0.
Hence analogously to observation 5, for every ŷ′ ∈ ΦF (ȳ, ȳ′) with ŷ′ 6= ȳ′ it holds that
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η(ΥA,ΥB, ȳ
′) ≤ η(ΥA, Y

′\{ŷ′},ΥB). Now, since η(ΥA,ΥB, {ȳ, ȳ′}) = 1 by assumption and
η(ΥA,ΦF (ȳ, ȳ′),ΥB) = 1 by observation 4, we can conclude:

η(ΥA,ΥB, ȳ) = 1− η(ΥA,ΥB, ȳ
′) ≥ 1− η(ΥA, Y

′\{ŷ′},ΥB) = η(ΥA, Y ∪ {ŷ′},ΥB)

Observation 7: We have that η(ΥA, {ȳ, ȳ′}, {ȳ, ȳ′}) = 1.

By observation 5 and observation 6 for all ŷ, ŷ′ ∈ ΦF (ȳ, ȳ′) with ŷ 6= ȳ and ŷ′ 6= ȳ′ it holds:

η(ΥA, Y \{ŷ},ΥB) ≥ η(ΥA, Y ∪ {ŷ′},ΥB)

On the one hand, we can choose ŷ = ȳ′, i.e. Y \{ŷ} = Y , whereby for all ŷ′ ∈ Y ′ \{ȳ′} it
follows that η

(
ΥA, ŷ

′,ΥB

)
≤ 0. On the other hand, we can choose ŷ′ = ȳ, i.e. Y ∪ {ŷ′} = Y ,

whereby for all ŷ ∈ Y \{ȳ} it follows that η
(
ΥA, ŷ,ΥB

)
≤ 0. Conclusively, we have that

η
(
ΥA,ΦF (ȳ, ȳ′)\{ȳ, ȳ′},ΥB

)
= 0. Note that η(ΥA,ΥB,ΥB\{ȳ, ȳ′}) = 0 by assumption and

that η(ΥA,ΥB\ΦF (ȳ, ȳ′), {ȳ, ȳ′}) = 0 by observation 4. Finally, we get the claimed equality,
as η(ΥA, {ȳ, ȳ′}, {ȳ, ȳ′}) can be written as follows:

1− η(ΥA,ΥB,ΥB\{ȳ, ȳ′})− η(ΥA,ΥB\ΦF (ȳ, ȳ′), {ȳ, ȳ′})− η
(
ΥA,ΦF (ȳ, ȳ′)\{ȳ, ȳ′}, {ȳ, ȳ′}

)
Observation 8: The cheating situation η is harmless, i.e. η(ΥA,ΥB, y) = η(ΥA, y,ΥB) for all y ∈ ΥB.

Otherwise, since η(ΥA, y,ΥB) = η(ΥA,ΥB, y) = 0 for all y ∈ ΥB\{ȳ, ȳ′} by observation 7,
it must hold that either η(ΥA, ȳ,ΥB) > η(ΥA,ΥB, ȳ) or η(ΥA, ȳ

′,ΥB) > η(ΥA,ΥB, ȳ
′). We

have to show that neither can be true. For symmetry reasons it suffices to show impossibility
of the latter; so let us assume that η(ΥA, ȳ

′,ΥB) > η(ΥA,ΥB, ȳ
′). By the conditions 3 and 4

of Definition 7 we can infer that η(x, ȳ′,ΥB) > η(x,ΥB, ȳ
′) for all x ∈ ΥA. Thereby, since

η(ΥA,ΥB,ΥB\{ȳ, ȳ′}) = η(ΥA,ΥB\{ȳ, ȳ′},ΥB) = 0 by observation 7, we can conclude that
η(x, ȳ′, {ȳ, ȳ′}) > η(x, {ȳ, ȳ′}, ȳ′) for all x ∈ ΥA, or equivalently that η(x, ȳ′, ȳ) > η(x, ȳ, ȳ′).

By condition 5 of Definition 7, this especially implies that (x, ȳ′)
F
 (x, ȳ) for all x ∈ ΥA,

what is a contradiction to F being redundancy-free (q.v. Remark 6).

As our only assumption to η was that η(ΥA,ΥB, {ȳ, ȳ′}) = 1, observation 8 concludes the proof.

Lemma 30 (Quantizability of cheating situations). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det.
Then there exists some constant δF ∈ R>0, such that for all η ∈ NF , γ ∈ R≥0 with γ < 1

|ΥB| there

exists some η′ ∈ NF that fulfills the following two conditions:

1. For all y′ ∈ ΥB with η(ΥA,ΥB, y
′) ≤ γ · δF we have that η′(ΥA,ΥB, y

′) = 0.

2. For all x ∈ ΥA, y, y′ ∈ ΥB we have that
∣∣η(x, y, y′)− η′(x, y, y′)

∣∣ ≤ 2γ · |ΥA×ΥB|.

Proof. As stated in Remark 8, the set of all normalized cheating situations for F is the convex hull
of a finte set of vertices, say {η̇1, . . . , η̇n}. We define:

δF := min
{
η̇i(ΥA,ΥB, y

′)
∣∣ y′ ∈ ΥB, i ∈ {1, . . . , n}, such that η̇i(ΥA,ΥB, y

′) > 0
}

Now let some arbitrary η ∈ NF , γ ∈ R≥0 with γ < 1 be given and let η̃ denote the normalized
version of η (cf. Corollary 20). We have to find some η′ ∈ NF that fulfills the conditions 1 and 2.
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Let Y ′ := {y′ ∈ ΥB | 0 < η̃(ΥA,ΥB, y
′) ≤ γ · δF }. W.l.o.g. we assume that Y ′ 6= ∅, as else we

could just set η′ := η. Moreover, we find some a1, . . . , an ∈ R≥0, such that
∑n

i=1 ai · η̇i = η̃ and
especially

∑n
i=1 ai = 1. We set I :=

{
i ∈ {1, . . . , n}

∣∣ η̇i(ΥA,ΥB, Y
′) > 0

}
, whereby we get:

∑
i∈I

ai · δF ≤
∑
i∈I

ai · η̇i(ΥA,ΥB, Y
′) ≤

n∑
i=1

ai · η̇i(ΥA,ΥB, Y
′) = η̃(ΥA,ΥB, Y

′) ≤ γ · δF · |Y ′|

Since γ < 1
|ΥB| by assumption, this especially yields that

∑
i∈I ai ≤ γ · |Y ′| < 1. So, we can set

Ī := {1, . . . , n}\I and η̃′ := (
∑

i∈Ī ai)
−1 ·

∑
i∈Ī ai · η̇i, whereby for all x ∈ ΥA, y, y′ ∈ ΥB we get:

∣∣η̃(x, y, y′)− η̃′(x, y, y′)
∣∣ =

∣∣∣∣∣
n∑
i=1

ai · η̇i(x, y, y′)−
∑

i∈Ī ai · η̇i(x, y, y′)∑
i∈Ī ai

∣∣∣∣∣
≤

∣∣∣∣∣∑
i∈I

ai · η̇i(x, y, y′)

∣∣∣∣∣+

∣∣∣∣∣∣
(

1− 1∑
i∈Ī ai

)
·
∑
i∈Ī

ai · η̇i(x, y, y′)

∣∣∣∣∣∣
≤

∣∣∣∣∣∑
i∈I

ai

∣∣∣∣∣+

∣∣∣∣∣∣
(

1− 1∑
i∈Ī ai

)
·
∑
i∈Ī

ai

∣∣∣∣∣∣ = 2
∑
i∈I

ai ≤ 2γ · |Y ′|

Finally, let η′ : ΥA×Υ2
B → R≥0, (x, y, y′) 7→ |ΥA| · η(x,ΥB,ΥB) · η̃′(x, y, y′). Since η̃′ is normalized

(cf. Remark 9), by Lemma 19 follows that η′ ∈ NF . Now we can put things together. On the one
hand, by our choice of η̃ (q.v. Corollary 20) for every y′ ∈ ΥB with η(ΥA,ΥB, y

′) ≤ γ · δF it holds
that y′ ∈ Y ′ and hence η′(ΥA,ΥB, y

′) = η̃′(ΥA,ΥB, y
′) = 0 by construction. On the other hand,

for all x ∈ ΥA, y, y′ ∈ ΥB we have:∣∣η(x, y, y′)− η′(x, y, y′)
∣∣ = |ΥA| · η(x,ΥB,ΥB)︸ ︷︷ ︸

≤1

·
∣∣η̃(x, y, y′)− η̃′(x, y, y′)

∣∣︸ ︷︷ ︸
≤2γ·|Y ′|

≤ 2γ · |ΥA×ΥB|

Corollary 31 (Existence of robust OT-cores). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det, such
that F is redundancy-free and has an OT-core. Then F also has a robust OT-core.

Proof. Let F ′ := (ΥB,ΥA,ΩB,ΩA, fB, fA). Note that F ′ ∈ Ffin,det. Further note that any quadruple
(x, x′, y, y′) ∈ Υ2

A×Υ2
B is an OT-core of F , iff (y, y′, x, x′) is an OT-core of F ′. By assumption we

find some x̃, x̃′ ∈ ΥA, ỹ, ỹ′ ∈ ΥB, such that (x̃, x̃′, ỹ, ỹ′) is an OT-core of F . By Lemma 29 we find
some ȳ, ȳ′ ∈ ΥB, such that (x̃, x̃′, ȳ, ȳ′) is an OT-core of F and every cheating situation η ∈ NF

with η(ΥA,ΥB, {ȳ, ȳ′}) = 1 is harmless. Again by Lemma 29 we find some x̄, x̄′ ∈ ΥA, such that
(ȳ, ȳ′, x̄, x̄′) is an OT-core of F ′ and every cheating situation η ∈ NF ′ with η(ΥB,ΥA, {x̄, x̄′}) = 1
is harmless.

Now, let (nA, nB, α, β, γ) ∈ ΠF , such that nA(ΥA\{x̄, x̄′}) = nB(ΥB\{ȳ, ȳ′}) = 0 and α < 1
4 .

Further let ε,∆ ∈ R>0, such that ε < 1
2 +β−α and 1

2 < ∆ < 1− 2α
1+2β . Let π := πF (nA, nB, α, β, γ)

and ΓA := ΛA(π, ε,∆) and ΓB := ΛB(π, ε,∆). By Corollary 24 we find some constant γ′A ∈ R>0,
such that for almost all non-aborted runs in ΓA there exists some cheating situation η ∈ NF that
for all x ∈ ΥA, y, y′ ∈ ΥB fulfills the following two conditions:

k−γ
′
A >

∣∣∣η(x, y,ΥB)− k−1 ·
∣∣sin

A[K]× sin
B[K]

∣∣
(x,y)

∣∣∣
k−γ

′
A >

∣∣η(x,ΥB, y
′)− nA(x) · nB(y′)

∣∣
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Moreover, by Lemma 30 we find some constant δF ∈ R>0, such that for all η ∈ NF and almost all
security parameters k there exist some η′ ∈ NF that fulfills the following two conditions:

• For all y′ ∈ ΥB with η(ΥA,ΥB, y
′) ≤ k−γ′A we have that η′(ΥA,ΥB, y

′) = 0.

• For all x ∈ ΥA, y, y′ ∈ ΥB we have that
∣∣η(x, y, y′)− η′(x, y, y′)

∣∣ ≤ 2k−γ
′
A · |ΥA×ΥB| · δ−1

F .

Putting things together, for almost all non-aborted runs in ΓA there exists some cheating strategy
η′ ∈ NF with η′(ΥA,ΥB,ΥB \{ȳ, ȳ′}) = 0, i.e. η′(ΥA,ΥB, {ȳ, ȳ′}) = 1, and that for all x ∈ ΥA,
y, y′ ∈ ΥB fulfills the following two conditions:(

2 · |ΥA×Υ2
B| · δ−1

F + 1
)
k−γ

′
A >

∣∣∣η′(x, y,ΥB)− k−1 ·
∣∣sin

A[K]× sin
B[K]

∣∣
(x,y)

∣∣∣(
2 · |ΥA×Υ2

B| · δ−1
F + 1

)
k−γ

′
A >

∣∣η′(x,ΥB, y
′)− nA(x) · nB(y′)

∣∣
Since by our choice of ȳ, ȳ′ every cheating situation η ∈ NF with η(ΥA,ΥB, {ȳ, ȳ′}) = 1 is harmless,
i.e. η(ΥA,ΥB, y) = η(ΥA, y,ΥB) for all y ∈ ΥB, we can conclude that in almost all non-aborted
runs in ΓA for all x ∈ ΥA, y ∈ ΥB it holds:∣∣∣nA(x) · nB(y)− |K ′|−1 ·

∣∣sin
A[K ′]× sin

B[K ′]
∣∣
(x,y)

∣∣∣ < 2k−γ
′
A ·
(
2 · |ΥA×Υ2

B| · δ−1
F + 1

)
For symmetry reasons6 we anologously find some constant γ′B ∈ R>0, such that in almost all
non-aborted runs in ΓB for all x ∈ ΥA, y ∈ ΥB it holds:∣∣∣nA(x) · nB(y)− |K ′|−1 ·

∣∣sin
A[K ′]× sin

B[K ′]
∣∣
(x,y)

∣∣∣ < 2k−γ
′
B ·
(
2 · |ΥA×Υ2

B| · δ−1
F + 1

)
So we just can pick γ′ ∈ R>0, such that γ′ < min(γ′A, γ

′
B). Finally, by Lemma 17 we also have:

• If Alice is honest, then a protocol run of π with fresh randomness for all parties lies in ΓA

with overwhelming probability.

• If Bob is honest, then a protocol run of π with fresh randomness for all parties lies in ΓB with
overwhelming probability.

Conclusively, we just have to remove the protocol runs from ΓA and ΓB that have a too small
security parameter; then ΓA and ΓB fulfill all requirements of Definition 26.

4.4 Building OT from appropriate 2-party functions

In this section we show how one can reduce OT to any 2-party function F ∈ Ffin,det that has a
robust OT-core (cf. Definition 26). We give a detailed protocol description in Section 4.4.1. Then we
show that our protocol is a universally composable implementation of FOT. Thereto we separately
show simulatability when no party is corrupted (Section 4.4.2), when the receiver Bob is corrupted
(Section 4.4.3) and when the sender Alice is corrupted (Section 4.4.4). We omit an explicit proof
of simulatability when both parties are corrupted, because this is trivial.

6Although the protocol π is not symmetric in Alice and Bob, Notation 14 and all subsequent lemmata are.
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4.4.1 The reduction protocol

Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and let (x̄, x̄′, ȳ, ȳ′) ∈ Υ2
A×Υ2

B be a robust OT-core
of F . W.l.o.g. let fA(x̄′, ȳ) 6= fA(x̄′, ȳ′); else we interchange the roles of Alice and Bob. Let
α, β, γ, γ′, γ′′,∆ ∈ R>0, such that β > 1

2 and γ′ > γ′′ and 1 − γ′′ > ∆ > 1
2 and we have that

π := πF (nA, nB, α, β, γ) is γ′-robust with the mappings nA : ΥA → R≥0 and nB : ΥB → R≥0

defined as follows:

nA(x) =


1
3 if x = x̄
2
3 if x = x̄′

0 else
nB(y) =

{
1
2 if y ∈ {ȳ, ȳ′}
0 else

Let (b0, b1) ∈ {0, 1}2 denote Alice’s OT-input and let c ∈ {0, 1} denote Bob’s OT-input. Let k
denote the security parameter. Our reduction protocol proceeds as follows:

1. Alice and Bob execute the offline-protocol π; let sA and sB denote their output strings.

2. Alice announces K̃ :=
{
i ∈ {1, . . . , |sA|}

∣∣ sA[i] =
(
x̄′, fA(x̄′, ȳ′)

)}
. The protocol is aborted,

if |K̃| ≤ 1
3 |sA×sB| − k1−γ′ or Bob finds some index i ∈ K̃, such that sB[i] 6=

(
ȳ′, fB(x̄′, ȳ′)

)
;

else all elements indexed by K̃ are deleted from sA and sB.

3. Alice and Bob locally rename the elements of sA and sB respectively by:

sA[i] ←


0 if sA[i] =

(
x̄, fA(x̄, ȳ)

)
, what is equivalent to sA[i] =

(
x̄, fA(x̄, ȳ′)

)
1 if sA[i] =

(
x̄′, fA(x̄′, ȳ)

)
> else

sB[i] ←


0 if sB[i] =

(
ȳ, fB(x̄, ȳ)

)
, what is equivalent to sB[i] =

(
ȳ, fB(x̄′, ȳ)

)
1 if sB[i] =

(
ȳ′, fA(x̄, ȳ′)

)
> else

If afterwards |sA|> 6= 0 or |sB|> 6= 0, the corresponding party aborts the protocol.

4. Alice deletes
∣∣|sA|0 − |sA|1

∣∣ elements from sA, such that afterwards |sA|0 = |sA|1. She an-
nounces the corresponding indices to Bob, who deletes the according elements from sB, too.
If afterwards the length of sA and sB is not an even number or Alice announced more than
k∆ indices, the protocol is aborted.

5. Alice randomly permutes the elements of sA, such that afterwards for all i ∈
{

1, . . . , |sA|2

}
it holds that sA[2i − 1] 6= sA[2i]. She announces the permutation to Bob, who permutes sB

the same way. Bob aborts the protocol, if afterwards he finds some i ∈
{

1, . . . , |sB|2

}
with

sB[2i− 1] = sB[2i] = 1.

6. From sA and sB Alice and Bob locally generate new strings s̃A ∈ {0, 1}
|sA|

2 and s̃B ∈
{0, 1,⊥}

|sB|
2 respectively, such that for all i ∈ {1, . . . , |s̃A|} it holds:

sA[2i− 1]=0 ∧ sA[2i]=1 ⇒ s̃A[i]=0

sA[2i− 1]=1 ∧ sA[2i]=0 ⇒ s̃A[i]=1

sB[2i− 1]=0 ∧ sB[2i]=0 ⇒ s̃B[i]=⊥
sB[2i− 1]=1 ∧ sB[2i]=0 ⇒ s̃B[i]=0

sB[2i− 1]=0 ∧ sB[2i]=1 ⇒ s̃B[i]=1
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Furthermore, Alice partitions s̃A into κ := dk1−γ′′e consecutive substrings s̃
(1)
A , . . . , s̃

(κ)
A of

equal length l :=
⌊ |s̃A|

κ

⌋
. If |s̃A| > κ · l, the remaining elements of s̃A are just discarded. Bob

partitions s̃B analogously.

7. Alice chooses two random bit strings b̃0, b̃1 ∈ {0, 1}κ with b̃0[j] ⊕ b̃1[j] = b0 ⊕ b1 for all
j ∈ {1, . . . , κ} and

⊕κ
j=1 b̃0[j] = b0.

Bob chooses a random bit string c̃ ∈ {0, 1}κ with
⊕κ

j=1 c̃[j] = c.

8. For all j ∈ {1, . . . , κ} the following subprotocol is executed:

(a) Bob chooses some random sets K
(j)
0 ,K

(j)
1 ⊆ {1, . . . , l} with:∣∣K(j)

0

∣∣ =
∣∣K(j)

1

∣∣ =
⌈
l
3

⌉
K

(j)
0 ∩K

(j)
1 = ∅

∀ i ∈ K(j)
c̃[j] : s̃

(j)
B [i] 6= ⊥

He announces
(
K

(j)
0 ,K

(j)
1

)
to Alice, who aborts the protocol, if one of the first two

conditions is violated.

(b) Alice computes b̂
(j)
0 ← b̃0[j]⊕

⊕
i∈K(j)

0

s̃
(j)
A [i] and b̂

(j)
1 ← b̃1[j]⊕

⊕
i∈K(j)

1

s̃
(j)
A [i] and sends

(b̂
(j)
0 , b̂

(j)
1 ) to Bob, who reconstructs b̃c̃[j][j] = b̂

(j)
c̃[j] ⊕

⊕
i∈K(j)

c̃[j]

s̃
(j)
B [i].

9. Alice outputs ⊥. Bob computes and outputs bc =
⊕κ

j=1 b̃c̃[j][j].

Notation 32. Whenever at least one party follows the reduction protocol honestly, we can keep
track of the state of sA×sB during the protocol steps 1-5 as follows:

1. Let r′1 ∈ Υ∗A and t′1 ∈ Υ∗B denote the strings of input symbols that correspond to sA and
sB respectively directly after step 1 of the reduction protocol. Although some party may be
corrupted, r′1 ∈ Υ∗A and t′1 ∈ Υ∗B are well-defined by the invocations of F in the underlying
offline protocol π.

2. Let r′2 and t′2 denote the strings that result from r′1 and t′1 respectively by applying the deletion
announced by Alice in protocol step 2.

3. Given r′2, t
′
2 of equal length, we define r′3, t

′
3 ∈ {0, 1,>}|r

′
2×t′2| by:

r′3[i] :=


0 if r′2[i] = x̄ and fA

(
r′2[i], t′2[i]

)
= fA(x̄, ȳ) = fA(x̄, ȳ′)

1 if r′2[i] = x̄′ and fA

(
r′2[i], t′2[i]

)
= fA(x̄′, ȳ)

> else

t′3[i] :=


0 if t′2[i] = ȳ and fB

(
r′2[i], t′2[i]

)
= fB(x̄, ȳ) = fB(x̄′, ȳ)

1 if t′2[i] = ȳ′ and fB

(
r′2[i], t′2[i]

)
= fB(x̄, ȳ′)

> else

4. Let r′4 and t′4 denote the strings that result from r′3 and t′3 respectively by applying the deletion
announced by Alice in protocol step 4.

5. Let r′5 and t′5 denote the strings that result from r′4 and t′4 respectively by applying the
permutation announced by Alice in protocol step 5.
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4.4.2 Correctness of the protocol

It is not hard to verify, that the protocol from Section 4.4.1 does what it is supposed to do, as
long as no party is corrupted. From Lemma 15 and our choice of the protocol parameters quite
straightforwardly follows, that the protocol in a totally uncorrupted case is aborted only with
negligible probability. It also is straightforward to see that an uncorrupted Bob does always output
the correct value bc at the end of each non-aborted protocol run with an uncorrupted Alice:

κ⊕
j=1

b̃c̃[j][j] =

κ⊕
j=1

(
b̃0[j]⊕ (b0[j]⊕ b1[j])c̃[j]

)
=

κ⊕
j=1

(
b̃0[j]⊕ (b0 ⊕ b1)c̃[j]

)
= b0 ⊕ (b0 ⊕ b1)c = bc

4.4.3 Security against a corrupted receiver Bob

To prove security against a malicious Bob impersonated by some adversaryAB, we have to construct
a simulator S, such that the respective view of the environment Z in the ideal model is statistically
indistinguishable from its view in the real model.

Given AB, our simulator S works as follows. He internally simulates the real adversary AB and

an honest Alice and provides them access to a simulated hybrid functionality F (F )
SFE. The simulated

Alice is given random input (b0, b1) ∈ {0, 1}2, as soon as the ideal functionality FOT sent a message
(processing, Alice). All messages from AB to Z and vice versa are just forwarded by S. When
the simulated Alice enters step 8b of the simulated reduction protocol the κ-th time (i.e. j = κ), S
revises b̃0[κ] and b̃1[κ] by the following procedure:

1. From the input and output of the simulated F (F )
SFE our simulator S for every j ∈ {1, . . . , κ}

generates a string s̃
(j)
B like an honest Bob would have done. Wherever this is impossible due

to dishonest behaviour of Bob/AB, he uses a special symbol “>”.

2. The simulator choses a bit string c̃ ∈ {0, 1}κ, such that
∣∣s̃(j)

B [K
(j)
c̃[j]]
∣∣
⊥ ≤

∣∣s̃(j)
B [K

(j)
¬c̃[j]]

∣∣
⊥ for all

j ∈ {1, . . . , κ}.

3. The simulator computes c =
⊕dk∆e

j=1 c̃[j]. On behalf of the corrupted Bob S sends the bit c to
the ideal functionality FOT, receives (processing, Bob) from FOT, sends (Delivery, Bob) to
FOT and finally receives some bit b′ from the ideal functionality FOT.

4. Now S can revise b̃0[κ] and b̃1[κ] by:

b̃c̃[κ][κ] ← b′ ⊕
⊕κ−1

j=1
b̃c̃[j][j]

b̃¬c̃[κ][κ] ← b̃c̃[κ][κ]⊕ b0 ⊕ b1

Except for this revision the simulation just follows the programs of an honest Alice and AB. When
the simulated Alice produces her regular output “⊥”, the simulator sends (Delivery, Alice) to
FOT. Now, we have to see why our simulator makes the ideal model indistinguishable from the real
model.

Proof. Let (b̄0, b̄1) denote the ideal Alice’s input from Z and let (b0, b1) be the simulated Alice’s
random input. By construction after the revision step of the simulation it always holds that
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b̃1[j] ⊕ b̃0[j] = b0 ⊕ b1 for all j ∈ {1, . . . , κ} and b̄c =
⊕κ

j=1 b̃c̃[j][j]. Therefore, the simulation

perfectly matches the ideal Alice’s input, if only b0 ⊕ b1 = b̄0 ⊕ b̄1. Now, if for each j ∈ {1, . . . , κ}
the environment Z is completely unaware about the bit value of b̃¬c̃[j][j], what is equivalent to∣∣s̃(j)

B [K
(j)
¬c̃[j]]

∣∣
⊥ > 0, then Z also has no information about b0 ⊕ b1. Hence, it suffices to prove

that it may happen only with negligible probability that
∣∣s̃(j)

B [K
(j)
0 ]
∣∣
⊥ =

∣∣s̃(j)
B [K

(j)
1 ]
∣∣
⊥ = 0 for some

j ∈ {1, . . . , κ}. However,
∣∣s̃(j)

B

∣∣
⊥ ≤

l
3 is a necessary precondition for

∣∣s̃(j)
B [K

(j)
0 ]
∣∣
⊥ =

∣∣s̃(j)
B [K

(j)
1 ]
∣∣
⊥ = 0

by a simple counting argument.
Since the underlying offline protocol π is γ′-robust, by Definition 26 we find some set ΓA of

protocol runs of π, such that if Alice is honest, a protocol run of π with fresh randomness for all
parties lies in ΓA with overwhelming probability and in all non-aborted runs in ΓA for all x ∈ {x̄, x̄′},
y ∈ {ȳ, ȳ′} it holds: ∣∣∣nA(x) · nB(y)− |K ′|−1 ·

∣∣sin
A[K ′]× sin

B[K ′]
∣∣
(x,y)

∣∣∣ < k−γ
′

So, w.l.o.g. we may condition our considerations to the event that in step 1 of the simulated
reduction protocol a run λ of π is produced with λ ∈ ΓA. Under this condition we will show now

that minj∈{1,...,κ}
∣∣s̃(j)

B

∣∣
⊥ ≤

l
3 may happen only with negligible probability. For symmetry reasons it

suffices to consider s̃
(1)
B , i.e. j = 1.

Using Notation 32,
∣∣s̃(1)

B

∣∣
⊥ can be interpreted as a hypergeometrically distributed random vari-

able with expectation l ·
∣∣r′4×t′4∣∣(0,0)

·
∣∣r′4∣∣−1

0
. Hence, by Lemma 15 a non-aborted simulation with∣∣s̃(1)

B

∣∣
⊥ ≤ l ·

∣∣r′4×t′4∣∣(0,0)
·
∣∣r′4∣∣−1

0
− l∆ may happen only with negligible probability. By construction,

in every non-aborted simulation it holds that
∣∣r′4×t′4∣∣(0,0)

≥
∣∣r′1×t′1∣∣(x̄,ȳ)

−k∆ and
∣∣r′4∣∣0 ≤ ∣∣r′1∣∣x̄. Fur-

ther, since we conditioned our considerations to the event that in step 1 of the simulated reduction
protocol a run λ of π is produced with λ ∈ ΓA, for all non-aborted simulations follows:∣∣∣16 · ∣∣r′1×t′1∣∣− ∣∣r′1×t′1∣∣(x̄,ȳ)

∣∣∣ > k−γ
′ ·
∣∣r′1×t′1∣∣∣∣1

3 ·
∣∣r′1×t′1∣∣− ∣∣r′1∣∣x̄∣∣ > 2k−γ

′ ·
∣∣r′1×t′1∣∣

Hence, we can conclusively estimate:

∣∣s̃(1)
B

∣∣
⊥ > l ·

1
6 · |r

′
1×t′1| − k−γ

′ · |r′1×t′1| − k∆

1
3 · |r

′
1×t′1|+ 2k−γ′ · |r′1×t′1|

− l∆ ≥ l ·

(
1
6 − k

−γ′ − k∆ · (k − k1−γ)−1

1
3 + 2k−γ′

− l∆−1

)

Now, we can choose some arbitrary constant ε ∈ R>0 and estimate the bracket term by 1/6−ε
1/3+ε − ε

for alomst all security parameters k. For ε small enough, this especially yields
∣∣s̃(1)

B

∣∣
⊥ >

l
3 .

4.4.4 Security against a corrupted sender Alice

To prove security against a malicious Alice impersonated by some adversary AA, we have to con-
struct a simulator S, such that the respective view of the environment Z in the ideal model is
statistically indistinguishable from its view in the real model.

Given AA, our simulator S works as follows. He internally simulates the real adversary AA and

an honest Bob and provides them access to a simulated hybrid functionality F (F )
SFE. The simulated
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Bob is given random input c ∈ {0, 1}, as soon as the ideal functionality FOT sent a message
(processing, Bob). All messages from AA to Z and vice versa are just forwarded by S. When the
simulated Bob outputs some bit bc, then by the following procedure S tries to compute b¬c:

1. From the input and output of the simulated F (F )
SFE our simulator S for every j ∈ {1, . . . , κ}

generates a string s̃
(j)
A like an honest Alice would have done. Wherever this is impossible due

to dishonest behaviour of Alice/AA, he uses a special symbol “>”.

2. He chooses some j′ ∈ {1, . . . , κ}, such that s̃
(j′)
A [i] 6= > for all i ∈ {1, . . . , l}. If this is

impossible, S aborts the simulation and terminates.

3. He computes b¬c = bc ⊕
⊕

i∈K(j′)
0 ∪K(j′)

1

s
(j′)
A [i].

When S does not fail in his search for j′, he finally sends (b0, b1) on behalf of the corrupted Alice
to FOT, receives (processing, Alice) from FOT and finally sends (Delivery, Bob) to FOT. Again,
we have to show that our simulator makes the ideal model indistinguishable from the real model.

Proof. When the simulated Bob’s random input c equals the input the ideal Bob got from the
environment Z and the simultor does not fail in his search for j′, the simulation is clearly perfect.
Hence, any environment Z might distinguish between real and ideal model better than with success
rate 1

2 , only if it could gather some information about c. However, when S is successful in his search
for j′, then c̃[j′] and thereby also c are information-theoretically hidden from AA and Z.

Since the underlying offline protocol π is γ′-robust, by Definition 26 we find some set ΓB of
protocol runs of π, such that if Bob is honest then a protocol run of π with fresh randomness
for all parties lies in ΓB with overwhelming probability and in all non-aborted runs in ΓB for all
x ∈ {x̄, x̄′}, y ∈ {ȳ, ȳ′} it holds:∣∣∣nA(x) · nB(y)− |K ′|−1 ·

∣∣sin
A[K ′]× sin

B[K ′]
∣∣
(x,y)

∣∣∣ < k−γ
′

So, w.l.o.g. we may condition our considerations to the event that in step 1 of the simulated
reduction protocol a run λ of π is produced with λ ∈ ΓB. Under this condition we will show now
that the simulator S only with negligible probability fails in his search for j′.

Let m> :=
∑κ

j=1 |s̃
(j)
A |>. Note that our simulator S may fail in his search for j′, only if m> ≥ κ.

Using Notation 32, let m denote the number of indices i ∈ {1, . . . , κ · l} with r′5[2i− 1] = r′5[2i] = 0.
Further, let m′ denote the number of indices i ∈ {1, . . . , κ · l} with r′5[2i− 1] = r′5[2i] = 1. Last but
not least, let m∗ denote the number of indices i ∈ {1, . . . , κ · l} with r′5[2i − 1] = > or r′5[2i] = >.
It obviously holds that m> = m+m′ +m∗. So, it suffices to bound these three summands.

Estimation of m∗: By construction, for every non-aborted run of the simulated reduction protocol
it holds:

m∗ ≤
∣∣r′1∣∣ΥA\{x̄,x̄′}

+
∣∣r′1×t′1∣∣(x̄′,ȳ′) − ∣∣r′1[K̃]× t′1[K̃]

∣∣
(x̄′,ȳ′)

≤
∣∣r′1∣∣ΥA\{x̄,x̄′}

+
∣∣r′1×t′1∣∣(x̄′,ȳ′) − (|K̃| − ∣∣r′1[K̃]

∣∣
x̄
−
∣∣r′1∣∣ΥA\{x̄,x̄′}

)
≤ 2

∣∣r′1∣∣ΥA\{x̄,x̄′}
+
∣∣r′1×t′1∣∣(x̄′,ȳ′) − (1

3

∣∣r′1×t′1∣∣− k1−γ′ −
∣∣r′1[K̃]

∣∣
x̄

)
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Now, let m̃ :=
∣∣r′1[K̃]

∣∣
x̄
. Since Alice/AA cannot distinguish situations where F was invoked

with input (x̄, ȳ) from situations with input (x̄, ȳ′), we can estimate her overall probability
of not being caught cheating in step 2 of the reduction protocol by 2−m̃. This holds due
to the fact that for each i ∈ K̃ with

(
r′1[i], t′1[i]

)
∈
{

(x̄, ȳ), (x̄, ȳ′)
}

we could replace sB[i]
by a uniformly random symbol from {ȳ, ȳ′} and update Bob’s memory consistently without
changing the distribution of protocol runs in any way. Hence, a non-aborted protocol run with
m̃ ≥ k1−γ′ may happen only with negligible probability. Thereby, we can further estimate:

m∗ ≤ 2
∣∣r′1∣∣ΥA\{x̄,x̄′}

+
∣∣r′1×t′1∣∣(x̄′,ȳ′) − 1

3

∣∣r′1×t′1∣∣+ 2k1−γ′

Furthermore, since we conditioned our considerations to the event that in step 1 of the
simulated reduction protocol a run λ of π is produced with λ ∈ ΓB, we can conclude:

2
∣∣r′1∣∣ΥA\{x̄,x̄′}︸ ︷︷ ︸
< 4k−γ′ ·|r′1×t′1|

+
∣∣r′1×t′1∣∣(x̄′,ȳ′) − 1

3

∣∣r′1×t′1∣∣︸ ︷︷ ︸
<k−γ′ ·|r′1×t′1|

< 9k1−γ′

Thereby we have that m∗ < 11k1−γ′ .

Estimation of m: Since Alice/AA cannot distinguish situations where F was invoked with input
(x̄, ȳ) from situations with input (x̄, ȳ′), we can estimate her overall probability of not being
caught cheating in step 5 of the reduction protocol by (3/4)m. Hence, a non-aborted protocol
run with m ≥ k1−γ′ may happen only with negligible probability.

Estimation of m′: The number of “1”-entries in r′5[1, . . . , 2κ · l] can be expressed as 2m′ plus the
number of “mixed pairs”

(
r′5[2i−1], r′5[2i]

)
∈
{

(0, 1), (1, 0)
}

with i ∈ {1, . . . , κ · l}. This yields
that

∣∣r′5[1, . . . , κ · l]
∣∣
1
≥ 2m′+

∣∣r′5[1, . . . , κ · l]
∣∣
0
− 2m−m∗ for every non-aborted protocol run.

Hence, we can estimate:

2m′ ≤
∣∣r′5∣∣1 − ∣∣r′5∣∣0 + κ− 1 + 2m+m∗

=
∣∣r′4∣∣1 − ∣∣r′4∣∣0 + κ− 1 + 2m+m∗

≤
∣∣r′3∣∣1 − ∣∣r′3∣∣0 + k∆ + κ− 1 + 2m+m∗

=
∣∣r′2×t′2∣∣(x̄′,ȳ)

−
∣∣r′2∣∣x̄ + k∆ + κ− 1 + 2m+m∗

=
∣∣r′1×t′1∣∣(x̄′,ȳ)

−
∣∣r′1∣∣x̄ +

∣∣r′1[K̃]
∣∣
x̄

+ k∆ + κ− 1︸ ︷︷ ︸
<k1−γ′′

+ 2m+m∗︸ ︷︷ ︸
< 13k1−γ′

The same way as in the estimation of m∗, we can conclude that a non-aborted protocol run
with

∣∣r′1[K̃]
∣∣
x̄

= m̃ ≥ k1−γ′ may happen only with negligible probability. Thereby, we can
further estimate:

2m′ <
∣∣r′1×t′1∣∣(x̄′,ȳ)

−
∣∣r′1∣∣x̄ + k∆ + 14k1−γ′ + k1−γ′′

Furthermore, since we conditioned our considerations to the event that in step 1 of the
simulated reduction protocol a run λ of π is produced with λ ∈ ΓB, we can conclude:∣∣r′1×t′1∣∣(x̄′,ȳ)

−
∣∣r′1∣∣x̄ < 3k−γ

′ ·
∣∣r′1×t′1∣∣ < 3k1−γ′

Thereby we have that m′ < (k∆ + 17k1−γ′ + k1−γ′′)/2.
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Putting things together, we get that m> < (k∆ +41k1−γ′+k1−γ′′)/2. Since 1−γ′′ > max(1−γ′,∆)
by construction of the reduction protocol, for almost all security parameters k we can estimate
m> < k1−γ′′ ≤ κ. Thus, S fails in his search for j′ only with negligible probability.

4.5 The classification theorem

In this section we restate our Classification Theorem (and all concepts that are needed for its
formulation) and prove it formally, using all the results we precedingly showed in Section 4.

Definition 33 (Consistent renamings). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and F ′ :=
(Υ′A,Υ

′
B,Ω

′
A,Ω

′
B, f

′
A, f

′
B) ∈ Ffin,det. Then F and F ′ are consistent renamings of each other, if there

exist some injective mappings ρA : ΥA× ΩA → Υ′A× Ω′A and ρB : ΥB× ΩB → Υ′B× Ω′B and some
bijective mappings σA : ΥA → Υ′A and σB : ΥB → Υ′B, such that for all x ∈ ΥA, y ∈ ΥB it holds:

ρA

(
x, fA(x, y)

)
=

(
σA(x), f ′A(σA(x), σB(y))

)
ρB

(
y, fB(x, y)

)
=

(
σB(y), f ′B(σA(x), σB(y))

)
Remark 34. The relation given by Definition 33 is an equivalence relation.

Definition 35 (Symmetric 2-party functions). Let F ′ ∈ Ffin,det. If F ′ is a consistent renaming
of some F = (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det with ΩA = ΩB and fA = fB, then F ′ is called
symmetric.

Definition 36 (Equivalent 2-party functions). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det and
F ′ := (Υ′A,Υ

′
B,Ω

′
A,Ω

′
B, f

′
A, f

′
B) ∈ Ffin,det. Then F and F ′ are equivalent, if they can be transformed

into consistent renamings of each other by successive removal of redundant input symbols from ΥA,
ΥB,Υ

′
A,Υ

′
B and according adjustment of fA, fB, f

′
A, f

′
B. Let [F ] denote the resulting equivalence

class.

Remark 37. Let F ∈ Ffin,det and F̄ , F̄ ′ ∈ [F ], such that F̄ and F̄ ′ are redundancy-free. Then F̄
and F̄ ′ are consistent renamings of each other, i.e. the redundancy-free version of F is unique up
to consistent renaming.

Lemma 38 (Symmetrization lemma). Let F := (ΥA,ΥB,ΩA,ΩB, fA, fB) ∈ Ffin,det, such that F
does not have any OT-core. Then F is symmetric in the sense of Definition 35.

Proof. Let P(ΥA) and P(ΥB) denote the power set of ΥA and ΥB respectively. Let F ′ :=
(ΥA,ΥB,Ω

′,Ω′, f ′, f ′) ∈ Ffin,det, such that Ω′ = P(ΥB) × P(ΥA) and for all x ∈ ΥA, y ∈ ΥB

it holds that f ′(x, y) =
(
f ′A(x, y), f ′B(x, y)

)
with:

f ′A(x, y) =
{
y′ ∈ ΥB

∣∣fA(x, y′) = fA(x, y)
}

f ′B(x, y) =
{
x′ ∈ ΥA

∣∣fB(x′, y) = fB(x, y)
}

We will show now that F ′ is a consistent renaming of F . It suffices to prove that for all x, x′ ∈ ΥA,
y, y′ ∈ ΥB the following equivalences hold:

fA(x, y) = fA(x, y′) ⇔ f ′(x, y) = f ′(x, y′)

fB(x, y) = fB(x′, y) ⇔ f ′(x, y) = f ′(x′, y)
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Both equivalences can be shown analogously, so we just prove the first one. By construction it
suffices to show the following implication for all x ∈ ΥA, y, y′ ∈ ΥB:

fA(x, y) = fA(x, y′) ⇒ f ′B(x, y) = f ′B(x, y′)

We give a proof by contradiction, so let us assume that we find some x̃ ∈ ΥA, ỹ, ỹ′ ∈ ΥB with
fA(x̃, ỹ) = fA(x̃, ỹ′) and f ′B(x̃, ỹ) 6= f ′B(x̃, ỹ′), i.e. especially we find some x̃′ ∈ ΥA with:

x̃′ /∈ f ′B(x̃, ỹ) ⇔ x̃′ ∈ f ′B(x̃, ỹ′)

By construction of f ′B follows:

fB(x̃′, ỹ) 6= fB(x̃, ỹ) ⇔ fB(x̃′, ỹ′) = fB(x̃, ỹ′)

So, either (x̃, x̃′, ỹ, ỹ′) or (x̃, x̃′, ỹ′, ỹ) is an OT-core of F , what contradicts our choice of F .

Theorem 39 (Classification theorem). For each F ∈ Ffin,det it holds:

1. For the F (F )
SFE-hybrid model there exists an OT protocol that is statistically secure against

passive adversaries, iff F has an OT-core.

2. If for the F (F )
SFE-hybrid model there does not exist any OT protocol that is statistically secure

against passive adversaries, then F is symmetric in the sense of Definition 35.

3. For the F (F )
SFE-hybrid model there exists an OT protocol that is statistically secure against

active adversaries, iff the redundancy-free version of F has an OT-core.

4. If for the F (F )
SFE-hybrid model there does not exist any OT protocol that is statistically secure

against active adversaries, then the redundancy-free version of F is symmetric in the sense
of Definition 35.

Proof. Instead of proving Theorem 39 directly, we prove the following five assertions, which as a
whole imply Theorem 39. For all 2-party functions F ∈ Ffin,det we show:

1. When F does not have any OT-core, then F is symmetric.

2. When F is redundancy free and has an OT-core, then for the F (F )
SFE-hybrid model there exists

an OT protocol that is secure against active adversaries.

3. When F has an OT-core, then for the F (F )
SFE-hybrid model there exists an OT protocol that

is secure against passive adversaries.

4. When F does not have any OT-core, then for the F (F )
SFE-hybrid model there does not exist

any OT protocol that is secure against passive adversaries.

5. For the F (F )
SFE-hybrid model there exists an OT protocol that is secure against active adver-

saries, iff the same holds for each F (F ′)
SFE -hybrid model with F ′ ∈ [F ].

38



A 0 1 2 3 · · ·
0 0 0 0 0 · · ·
1 0 1 0 0 · · ·
2 0 0 1 0 · · ·
3 0 0 0 1 · · ·
...

. . .
. . .

. . .
. . .

. . .

B 0 1 2 3 · · ·
0 0 0 0 0 · · ·
1 0 1 1 1 · · ·
2 0 2 2 2 · · ·
3 0 3 3 3 · · ·
...

...
...

...
...

. . .

Figure 6: An infinite counterexample to our completeness criteria (Alice’s inputs label the rows,
Bob’s inputs label the columns; Alice gets her output from the left table, Bob from the right one).

Assertion 1 just is Lemma 38. Assertion 2 follows by Corollary 31 and the protocol and security
proofs in Section 4.4. Assertion 3 can be shown analogously to the second one, since with respect
to passive adversaries any OT-core can be considered “robust”—in fact it suffices when in step 1
of the reduction protocol even corrupted parties follow the underlying offline protocol π honestly.
Assertion 4 is proven in [Kil91], where only symmetric 2-party functions are considered and sym-
metric OT-cores are called “imbedded OR”. Although another notion of security is used there,
the arguments directly carry over. Finally, assertion 5 can be derived from the following easily
verifyable facts:

• Instead of inputting a redundant input symbol into F (F )
SFE one can always use a corresponding

dominating input symbol and will get exactly the same or strictly more information.

• Replacing F by some consistent renaming corresponds to locally relabeling the input-output

tuples of F (F )
SFE by Alice and Bob.

5 Conclusion & open questions

In this paper we showed that there is a wide class of primitives that have not been covered by
existing completeness criteria, namely all 2-party functions that are essentially neither symmetric
nor asymmetric. We solved this open problem by presenting simple but comprehensive criteria that
combinatorially classify all complete deterministic 2-party functions with finite input and output
alphabets. We proved constructively that our criteria are sufficient in the UC framework, which is
the most restrictive common notion of security we know. Our criteria also turn out necessary even
with respect to very weak notions of security. Therefore we consider them valid for virtually all
reasonable security notions.

A remarkable corollary of our work is that every non-complete deterministic 2-party function
with finite input and output alphabets is essentially symmetric. Thereby we extended the results
of [Kus92, MPR09, KMQR09] to non-symmetric 2-party functions. The questions treated there
become trivial for complete primitives and we have shown that every essentially non-symmetric
2-party function actually is complete.

However, our results are tightly bound to the case that the input alphabets are finte and of
constant size. If the input alphabets are infinte or super-polynomially growing in the security
parameter, there do exist counterexamples to our completeness criteria. E.g. in Figure 6 a 2-party
function is depicted that has an OT-core (in the upper left corner) and is redundancy-free, but not
complete. A corrupted Bob can completely go without ever inputting “0”; instead he can randomly
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use any other input symbol, what may be recognized by Alice only with negligible probability. As
Bob thereby always learns Alices input, there cannot be any polynomial-time reduction of OT
to this primitive. We consider it an interesting open problem to find combinatorial completeness
criteria for 2-party functions with (super-polynomially) growing input domain.

Another interesting direction for future research would be expanding our results to 2-party func-
tions that additionally use internal randomness. Some of our concepts, e.g. the notion of redundant
input symbols and equivalent 2-party functions (cf. Section 2.2) or the concept of offline protocols
and cheating situations (cf. Section 3.1.1 and Section 3.1.2), can be carried over to probabilistic
2-party functions rather straightforwardly. However, this does not hold for some crucial parts of our

line of argument; e.g. apparently there is no way to generalize the “
F
 ”-relation (cf. Section 3.1.2) to

the probabilistic case, as there inputting a redundant input symbol possibly can only be simulated
by choosing randomly between several other input symbols. Therefore, also our method to find
“robust” OT-cores (cf. Section 3.1.3) does not work for probabilistic 2-party functions in general.
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