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Abstract. It is well-known that affine equivalence relations keep non-
lineaerity invariant for all Boolean functions. The set of all Boolean func-
tions, Fn, over IF

n
2 , is naturally isomorphic to the 2n dimensional vector

space, IF2n

2 . Thus, while analyzing the transformations acting on Fn,
S22

n , the group of all bijective mappings, defined from IF2n

2 onto itself
should be considered. As it is shown in [1–3], there exist non-affine bijec-
tive transformations that preserve nonlinearity. In this paper, first, we
prove that the group of affine equivalence relations is isomorphic to the
automorphism group of Sylvester Hadamard matrices. Then, we show
that new nonlinearity preserving non-affine bijective mappings also ex-
ist. Moreover, we propose that the automorphism group of nonlinearity
classes, should be studied as a subgroup of S22

n , it contains transforma-
tions which are not affine equivalence relations.
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1 Introduction

A very basic mathematical way to study and analyze a large algebraic set is
to partition it into equivalent classes with an equivalence relation, and then
construct a representative for each class and analyze the reduced sized set that is
composed of representative elements. Such procedure have been very important
problem for Boolean functions due to their importance in different disciplines
such as switching theory, coding theory and cryptography.

The study of the actions of basic transformations on Boolean functions date
back to Harrison [4, 5], later [6–8] where the main concern is the switching theory.
In coding theory, affine transformations analyzed especially for the Reed-Muller
codes, [9–11].

In cryptography, one of main design criteria is nonlinearity which is defined
as the minimum Hamming distance of a function to the affine functions. Hence,



partitioning Boolean functions set into disjoint classes with respect to their non-
linearity values, enumerating highly nonlinear Boolean functions, constructing
new function types with desired properties are important, yet open problems.
Due to the previous studies and their simple structures, generally affine equiva-
lence relations are used for determining the equivalence classes. Meier and Staffel-
bach, in [12], showed that nonlinearity is invariant under affine mappings acting
on input arguments, later Preneel [13] proved affine equivalence relations also
preserve nonlinearity. Moreover, in [14], so called CCZ-equivalence is proposed,
but in [15], it is proved that two Boolean functions are CCZ-equivalent if and
only if they are affine equivalent. Further reading can be found in [16–18].

Naturally, the set of all Boolean functions is isomorphic to the 2n dimen-
sional vector space IF2n

2 over IF2. Hence, expanding the transformations set to

all bijective transformations that can be defined over IF2n

2 , namely to the S22n ,
is a reasonable extension. In [1–3], the authors analyzed such mappings, and
showed existence of non-affine mappings.

In this paper, first, we give notations and review affine equivalence relations,
then prove that the group of affine equivalence relations exactly determines, and
thus is isomorphic to, the automorphism group of Sylvester Hadamard matri-
ces. Later, we give examples of new nonlinearity preserving non-affine mappings.
Moreover, we discuss the definition of the automorphism group of Boolean func-
tions nonlinearity classes and instead of the restricting to affine equivalence
relations, we propose that it should be studied as a subgroup of S22n .

2 Preliminaries

In this section, we fix the notation and state the necessary definitions relating
to Boolean functions and nonlinearity criteria in cryptography.

Let IFn2 be the set of all n-tuples of elements belonging to IF2 (Galois field of
order two). Naturally, IFn2 possesses n-dimensional vector space structure over IF2

and assumes lexicographical ordering. Hence, it is possible to represent the vectors
of IFn2 as; α0 = (0, 0, . . . , 0) < α1 = (0, 0, . . . , 0, 1) < . . . < α2n−1 = (1, 1, . . . , 1).

A Boolean function f : IFn2 → IF2 is a mapping from binary n-tuple input
to a single binary output. Most common ways to uniquely represent a Boolean
function f : IFn2 → IF2 is either by its truth table or algebraic normal form:

– The truth table of f ,

Tf = (f(α0), f(α1), . . . , f(α2n−1))

where αi ∈ IFn2 and αi’s are in lexicographic order.
– The algebraic normal form of f ,

f(xn, xn−1, . . ., x1) = c0⊕c1x1⊕· · ·⊕cnxn⊕c12x1x2⊕· · ·⊕c12···nx1x2 · · ·xn

where c0, c1, . . . , c12···n ∈ IF2, or equivalently,

ANFf = (c0, c1, . . . , c12...n) .



The set of all Boolean functions defined on IFn2 is denoted by Fn and trivially its
cardinality |Fn| is 22

n

. Indeed, by considering truth tables or algebraic normal
form coefficients as a vector of length 2n with elements from IF2, an isomorphism
between Fn and IF2n

2 can be easily constructed.
The degree, deg(f), of the algebraic normal form a function f is called alge-

braic degree, or shortly degree, of f . A Boolean function f is called affine if its
degree is 1, i.e. it is of the form

f(xn, xn−1, . . ., x1) = c0⊕c1x1⊕· · ·⊕cnxn

or, equivalently,
f(xn, xn−1, . . ., x1) = 〈c, x〉⊕c0 .

where c0 ∈ IF2 and 〈c, x〉 = c1x1⊕· · ·⊕cnxn is the standard inner product defined
over IFn2 . The set of all affine Boolean functions on IFn2 is denoted by An.

The Hamming weight of a vector α ∈ IFn2 , denoted by w(α), is the number
of ones in α. The support of a function f ∈ Fn is defined to be the set {α ∈
IFn2 |f(α) = 1} and is denoted by Supp(f). Obviously, Hamming weight of f ,
w(Tf ) or w(f), is equal to the cardinality of the support of f , i.e. w(f) =
|Supp(f)|.

The Hamming distance between two functions f, g ∈ Fn is defined as the
number of different components in their truth tables and denoted by d(f, g) =
w(f ⊕ g). The nonlinearity, Nf , of a function f is its distance to the nearest
affine function:

Nf = min
g∈An

d(f, g)

The Walsh transform4 of a function f is defined as

Wf (ω) =
∑

x∈IFn
2

(−1)f(x)⊕〈x,ω〉

where ω ∈ IFn2 and 〈x, ω〉 being the standard inner product on IFn2 . The truth
table of the Walsh transform,

Wf = (Wf (α0),Wf (α1), . . . ,Wf (α2n−1))

is called Walsh Spectrum of f and it can also be computed by,

Wf = ζfHn

where ζf = ((−1)f(α0), (−1)f(α1), . . . , (−1)f(α2n−1)) is the truth table of the
signed function (−1)f(x) of f and Hn is the 2n× 2n Sylvester Hadamard matrix.

Nonlinearity of a function f can also be expressed with the Walsh transform
of f as

Nf = 2n−1 − max
ω∈IFn

2

|Wf (ω)| .

4 It is also called Walsh Hadamard transform, and is the discrete Fourier transform

of the function (−1)f(x).



A function f is called bent function [19, 20], if Wf (w) = ±2n/2 for any w ∈ IFn2 .
Bent functions attains maximal nonlinearity, but they only exist when n is even.
The set of bent functions is, when exists, denoted by Bn.

The n× n Hadamard matrices whose entries are only ±1, were first investi-
gated by Sylvester [21], later Hadamard [22] studied such matrices as solutions
to the problem of maximum determinant of matrices, for further reading please
refer to [23–25].

Definition 1. [23] Two n× n Hadamard matrices are equivalent if one can be
obtained from the other by performing a finite sequence of permuting the rows
or the columns and multiply a row or column by −1.

Let Sn be the group of all permutation matrices of order n and Dn be the group
of all diagonal matrices of order n with diagonal entries are equal to only ±1.
Then, the group of monomial matrices, denoted by S±

n , is the semi direct product
Sn ⋉ Dn of Sn with Dn. Hadamard equivalence, in terms of row and column
permutations and negations, is in fact, equivalent to the action of monomial
matrices on Hadamard matrices. Under this action, naturally the automorphism
group of the given matrix will be the stabilizer.

Definition 2. [23] The automorphism group of a Hadamard matrix H of order
n, Aut(H), is the group of all monomial matrix pairs (P,Q) satisfying PH = HQ
with the group operation ◦,

(P1, Q1) ◦ (P2, Q2) = (P1P2, Q1Q2) .

Hence, the automorphism group of Sylvester Hadamard matrix Hn of order 2n

is
Aut(Hn) = {(P,Q) ∈ S±

2n | PHnQ = Hn} .

3 Affine equivalence

Definition 3. [10] Denote by GLn the group of all nonsingular matrices of order
n on IF2, i.e. the general linear group. Denote by AGLn the group

{(A,α)| A ∈ GLn, α ∈ IFn2},

which is the semi direct product GLn⋉IFn2 of GLn with IFn2 . The group operation
◦ is defined by

(A,α) ◦ (B, β) = (AB, βA⊕ α)

(A,α)−1 = (A−1, αA−1)

Similarly, the group AGLn ⋉An,

{(A,α, β, a)|A ∈ GLn, α, β ∈ IFn2 , a ∈ IF2}

or, with τ : x 7→ xA⊕ α and f(x) = 〈x, β〉 ⊕ a, simply,

{(τ, f)| τ ∈ AGLn, f ∈ An}



is the semi direct product of AGLn with the affine Boolean functions An, where
the group operation ◦ is

(τ, f) ◦ (σ, g) = (τ ◦ σ, τ(g) + f)

(τ, f)−1 = (τ−1, τ−1(f))

The action of the group AGLn ⋉An is defined by

(τ, l) : Fn 7→ Fn

f(x) 7→ f(xA⊕ α)⊕ 〈x, β〉 ⊕ a

For any functions f, g ∈ Fn, f and g are called affine equivalent if there
exists an bijective mapping (τ, l) ∈ AGLn ⋉ An with τ : x 7→ xA ⊕ α and
l(x) = 〈x, β〉 ⊕ a such that

f(x) = g(xA⊕ α)⊕ 〈x, β〉 ⊕ a . (1)

Preneel, as stated below, proved that the action of an affine equivalence relation
results in a signed permutation on the Walsh spectra of the function. Under the
actions of AGLn⋉An, algebraic degree, the distribution of absolute Walsh spec-
tra, hence nonlinearity and the distribution of absolute autocorrelation spectra
remains invariant [17].

Proposition 1. [13] Let f, g ∈ Fn be two affine equivalent functions such that
f(x) = g(xA⊕α)⊕〈x, β〉⊕a, then for the Walsh transform of f and g the fol-
lowing relation holds.

Wf (ω) = (−1)〈α,(ω⊕β)(A
−1)t〉+aWg((ω ⊕ β)(A−1)t)

In [3], the authors prove that there exists a correspondence between AGLn and
Aut(Hn), such that, for any τ ∈ AGLn, (resp. A ∈ GLn), there exists a unique
(P,Q) ∈ Aut(Hn) with P ∈ S2n and Q ∈ S±

2n \S2n , (resp. Q ∈ S2n). As we state
in Theorem 1, we prove that this correspondence extends to an isomorphism
between AGLn ⋉An and Aut(Hn).

Theorem 1. For any functions f, g ∈ Fn, f and g are affine equivalent with
Equation 1 if and only if there exists a unique monomial matrix pair (P,Q) ∈
Aut(Hn) such that

WfQ =Wg

or, equivalently,
ζf = ζgP

Corollary 1. For any affine equivalent functions f, g ∈ Fn, with

f(x) = g(xA⊕α)⊕〈x, β〉⊕a

the monomial matrix pair (P,Q) ∈ Aut(Hn) satisfies the following properties:

1. P ∈ S2n if and only if β = 0, a = 0, indeed, Q ∈ S2n if and only if α = 0.
2. P,Q ∈ D2n if and only if A is the identity matrix of order n and α = 0.



4 Nonlinearity preserving bijective mappings

Since, the truth table of a function is a vector of length 2n with elements be-
longing to IF2, one can construct an isomorphism between the set of all Boolean
functions on n variables, Fn, and the vector space IF2n

2 . Hence, any map acting
on the truth table of a Boolean function can be seen as a map defined from
IF2n

2 into itself. Moreover, if a map is bijective (invertible) then obviously, it is a

permutation of IF2n

2 , and hence is an element of S22n .

Any map ψ ∈ S22n from IF2n

2 to IF2n

2 , is in fact a vectorial Boolean function5.

Any vectorial Boolean function ψ : IF2n

2 → IF2n

2 can be represented in the form
Tf 7→ ψ(Tf ), that is

ψ(x0, x1, . . . , x2n−1) = (f0(x0, x1, . . . , x2n−1), . . . , f
2n−1(x0, x1, . . . , x2n−1))

where each f i is a Boolean function from IF2n

2 to IF2 and called the coordinate
or component function of ψ and each xi being the value of the acted Boolean
function at αi ∈ IFn2 , i.e. f(αi).

Since, each f i ∈ F2n , they can be represented by their unique algebraic
normal form:

f i(x0, x2, · · · , x2n) = c
(i)
0 ⊕ c

(i)
1 x0 ⊕ . . .⊕ c

(i)
12···2nx1x2 · · ·x2n .

Hence, we have,

ψ : Tf 7−→









c
(0)
0 ⊕ c

(0)
1 f(α0)⊕ . . .⊕ c

(0)
12···2nf(α0)f(α1) · · · f(α2n−1)

c
(1)
0 ⊕ c

(1)
1 f(α0)⊕ . . .⊕ c

(1)
12···2nf(α0)f(α1) · · · f(α2n−1)
...

c
(2n−1)
0 ⊕ c

(2n−1)
1 f(α0)⊕ . . .⊕ c

(2n−1)
12···2n f(α0)f(α1) · · · f(α2n−1)









t

.

Then we get,

ψ : Tf 7−→






















c
(0)
0

c
(1)
0
...

c
(2n−1)
0









︸ ︷︷ ︸

λ0

⊕









c
(0)
1

c
(1)
1
...

c
(2n−1)
1









︸ ︷︷ ︸

λ1

f(α0)⊕ · · · ⊕









c
(0)
2n

c
(1)
2n

...

c
(2n−1)
2n









︸ ︷︷ ︸

λ2n

f(α2n−1)⊕

5 In the literature, different names are also used such (2n, 2n)-functions, multi-output
Boolean functions, Boolean maps, Substitution boxes (S-Boxes).











c
(0)
12

c
(1)
12
...

c
(2n−1)
12









︸ ︷︷ ︸

λ12

f(α0)f(α1)⊕ · · · ⊕









c
(0)
12···2n

c
(1)
12···2n

...

c
(2n−1)
12···2n









︸ ︷︷ ︸

λ12···2n

f(α0) · · · f(α2n−1)














t

,

or equivalently,

ψ : Tf 7→ (λ0 ⊕AT tf ⊕ λ12f(α0)f(α1)⊕ · · · ⊕ λ12···2nf(α0)f(α1) · · · f(α2n−1))
t,
(2)

where A is the matrix is constituted by [λ1 λ2 . . . λ2n ].
Naturally, the bijective maps can be classified with respect to their algebraic

forms, as follows.

– ψ ∈ S22n is called linear if it is of the form ψ : Tf 7→ (AT tf )
t, that is,

• λ0 = [0 0 . . . 0]t,
• λi = [0 0 . . . 0]t, for all i /∈ {0, 1, 2, . . . , 2n},
• A ∈ GL2n , i.e. A is an invertible matrix of order 2n.

– ψ ∈ S22n is called affine if it is of the form ψ : Tf 7→ (λ0 ⊕AT tf )
t, that is,

• λi = [0 0 . . . 0]t, for all i /∈ {0, 1, 2, . . . , 2n},
• A ∈ GL2n , i.e. A is an invertible matrix of order 2n.

– ψ ∈ S22n is called non-affine if it has at least one non-zero λi, for i /∈
{0, 1, 2, . . . , 2n}.

Denote by PN (Fn), the group of all nonlinearity preserving bijective maps
acting on the functions with n-variables, i.e.

PN (Fn) = {ψ ∈ S22n |Nf = Nψ(Tf ), for all f ∈ Fn} .

Note that, affine equivalence relations, reviewed in the previous section, are
in fact a small subgroup of the affine bijective transformations of the form ψ :
Tf 7→ (λ0 ⊕AT tf )

t.

Proposition 2. Any affine equivalence relation (τ, l) ∈ AGLn ⋉ An with τ :
x 7→ xA ⊕ α and l(x) = 〈x, β〉 ⊕ a, i.e. f(x) 7→ f(xA ⊕ α) ⊕ 〈x, β〉 ⊕ a, for all
f ∈ Fn, can be uniquely represented as ψ ∈ S22n , such that,

Tf 7→ (λ0 ⊕ PT tf )
t

where P ∈ S2n is a permutation matrix of order 2n and λ0 is the truth table of
the affine function l.

In [3], by giving necessary and sufficient conditions to preserve nonlinearity
(as stated in Theorem 2), the authors proved that not all of the affine bijective
transformations of the form ψ : Tf 7→ (λ0⊕AT

t
f )
t are in PN (Fn). Furthermore, as

recalled in Proposition 3, they also shown the existence of non-affine nonlinearity
preserving bijective transformations.



Theorem 2. [3] Let ψ ∈ S22n be an affine bijective transformation so that for
all f ∈ Fn,

ψ : Tf 7→ (Tl ⊕AT tf )
t,

where l ∈ Fn and A ∈ GL2n are fixed.
Then, ψ ∈ PN (Fn) if and only if l ∈ An and A = B ⊕ P , where P ∈ S2n

corresponds to an element of AGLn, and B is the matrix of order 2n over IF2

whose columns are the truth table of affine functions, not necessarily distinct.

Proposition 3. [3] Let ψ ∈ S22n be a mapping that satisfies the following con-
ditions, with respect to Equation 2,

1. λ0 is the truth table of an affine function,
2. the matrix A satisfies the conditions mentioned in Theorem 2,
3. λi’s are the truth table of some affine Boolean functions for all

i ∈ {12, 13, . . . , 12 · · · 2n} where not all are the zero affine function.

Then, ψ ∈ PN (Fn), i.e. ψ is an non-affine bijective mapping that preserves
nonlinearity.

Remark 1. Trivially, the transformations defined in Proposition 3, are non-affine.
However, instead of all Boolean functions, when their action on a fixed function
f is considered, the image of such transformations for f will be equivalent to an
affine mapping. That is to say, such mappings ψ ∈ S22n become

Tf 7→ (PT tf ⊕ Tl)
t

where the function l is the summation of some λi’s which are strictly determined
by Supp(f). Such summations will differ for different functions, therefore, when
their algebraic normal form is concerned, these transformations will be non-affine
transformations.

Table 1. |S22
n | and |PN (Fn)| values for n ≤ 5

n |S22
n | |PN (Fn)|

2 16! ≈ 244 8!× 8! ≈ 230

3 256! ≈ 21684 16!× 128!× 112! ≈ 21365

4 65536! ≈ 2954036 32!× · · · × 896! ≈ 2829564

5 232! ≈ 22
36.9

64!× · · · × 27387136! ≈ 22
36.1

Exact determination or classification of PN (Fn), the group of the nonlinearity
preserving bijective mappings, is still an open problem. However, for small values



of n, where nonlinearity distribution can be extracted by exhaustive search, the
cardinality of PN (Fn) can also be computed. Based on the nonlinearity distri-
bution given in Table 2 (in Appendix A), the number of nonlinearity preserving
bijective mappings for n ≤ 5 are presented in Table 1.

So far, the mappings defined in Proposition 3 are the most general form of
nonlinearity preserving mappings, in [3], by computer search, it is proved that
for n = 2, PN (F2) consists of only these mappings.

Fact 1. For n = 3, the number of bijective mappings defined in Proposition 3 is
strictly less than 21056 = 264×16248, since there exist at most 264 choices for the
matrix A and 16 choices for each λi for i ∈ {0, 12, 13, . . . , 12 · · · 2n}. Similarly,
for n = 4, it is strictly less than 2327856 = 2256 × 3265520. These cardinalities are
strictly less than the values of |PN (F3)| (respectively |PN (F4)|) given in Table
1. Therefore, Proposition 3 type mappings do not cover all of the nonlinearity
preserving mappings.

This simple cardinality approximation can be applied for larger values of n,
and, thus, it can be easily proved that the number of bijective mappings defined in
Proposition 3 will be strictly less than |PN (Fn)|, since as n increase, the ratio of
|An|, the number affine functions to |Fn|, the number of all Boolean functions,
will decrease.

Even if we have not classified new type of mappings algebraically yet, in
order to illustrate such mappings, we present a simple one for n = 3 in Example
1 and some examples for n = 4 in Appendix B.

Example 1. Let ψ ∈ S223 be,

ψ : Tf 7→
(
λ0 ⊕AT tf ⊕ λ123457f(α0)f(α1)f(α2)f(α3)f(α4)f(α6)⊕

λ1234578f(α0)f(α1)f(α2)f(α3)f(α4)f(α6)f(α7)⊕

λ123456f(α0)f(α1)f(α2)f(α3)f(α4)f(α5)⊕

λ1234568f(α0)f(α1)f(α2)f(α3)f(α4)f(α5)f(α7))
t

where λ0 = [00001111]t, λ123457 = λ1234578 = λ123456 = λ1234568 = [00010100]t

and A is the matrix;














1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 0















.

Trivially, ψ is not an affine mapping, indeed it does not satisfies the conditions
given in Proposition 3, since (0, 0, 0, 1, 0, 1, 0, 0) is not truth table of an affine
function. Moreover, it can be easily checked that this map is invertible and
preserves nonlinearity for all functions.



S2n

AGL2n

S22
n

AG
Ln

AGLn ⋉An

[2]

[3]

New ?

Fig. 1. Classification of nonlinearity preserving bijective transformations

Constructing and classification of such mappings algebraically is still an
unanswered problem. Up to the authors knowledge, the current state of classifica-
tion of nonlinearity preserving mappings can be represented in Figure 1 with the
shaded area. Note that in the figure, the subgroups of S22n are given exclusively,
that is AGLn⋉An represents AGLn⋉An \AGLn, [2] for ψ : Tf 7→ (λ0⊕AT

t
f )
t

type mappings, [3] for Proposition 3 type mappings, “New ?” stands for map-
pings like given in the examples.

5 Automorphism Group of Nonlinearity Classes

Definition 4. An automorphism of an mathematical object M is an isomor-
phism ϕ : M 7→ M, i.e. maps M to itself. The set of all automorphisms of M
forms a group, denoted by Aut(M) and called the automorphism group of M.

Considering the nonlinearity criteria, partition Fn, the set of all Boolean
functions, into nonlinearity classes by gathering all the functions having same
nonlinearity value in the same partition. In this way, each partition or class will
be composed of only the functions with same nonlinearity values, such as An,
the set of all affine functions, Bn, the set of all bent functions, etc. .

An interesting question would be what is the automorphism group of these
classes. Before investigating this question, definition of automorphism group
should be criticized in a cryptological perspective. That is to say, since non-
linearity is so crucial for cryptographers, one only need a bijective transforma-
tion that maps a nonlinearity class to itself. Hence, even if the truth table of
a function is an element of 2n dimensional vector space IF2n

2 , preserving vector
space structure is not the main concern. In fact, when a transformation maps a
function to another one in the same class, that transformation does not need to
map their closest affine functions to each other.



As it is proved in [26], affine equivalence relations are isometric, i.e. they
preserve the Hamming distance, i.e. d(f, g) = d(ψ(f), ψ(g)) for all f, g ∈ Fn.
This is a very strong constraint for nonlinearity, since under an action of a map,
when nonlinearity is concerned, instead of a specific affine function, minimum
distance to affine functions family will be the main concern.

There are some proposals, like [26, 27], that state the automorphism group
of Bn is the group AGLn ⋉An. Definitely, AGLn ⋉An ⊂ Aut(Bn), but as it is
demonstrated in the previous chapters, there are also other transformations that
map Bn to itself. Hence, those mappings should also be included in Aut(Bn).

Example 2. For n = 4, there are |PN (F4)| ≈ 2829564 bijective mappings that
preserve nonlinearity. Hence, all of them map B4 onto itself. However, only 896! ≈
27500 of them constitute different permutations on B4. The number of different
transformations belonging to AGL4 ⋉ A4 is (24 − 1) · (24 − 2) · (24 − 4) · (24 −
8) · 16 · 32 ≈ 223. Thus, AGL4 ⋉A4 is only a proper subgroup of Aut(B4).

Considering the nonlinearity criteria only, AGLn⋉An is a small subgroup of
the automorphism group of the nonlinearity classes of Fn. Theorem 2, Proposi-
tion 3 and examples given certainly contribute mappings for the automorphism
group of nonlinearity classes. Therefore, determination of the automorphism
group should be studied as a subgroup of S22n , and should not be restricted to
AGLn ⋉An.

6 Conclusion

Besides, the transformations belonging to AGLn ⋉ An, there are algebraically
more complex transformations that keep nonlinearity invariant for all Boolean
functions. Studying the elements S22n and trying to classify them whether they
preserve nonlinearity or not is still an open problem. Despite the fact that such
a research may seem to be expensive due to their huge cardinality, it may lead
to a deeper insight to the highly nonlinear functions. Moreover, nice construc-
tion algorithm of highly nonlinear functions with extra desirable criteria can be
implemented.

The exact determination of automorphism group of nonlinearity classes of
Fn is another interesting problem. Formerly, it is proposed that automorphism
group bents functions is AGLn ⋉ An. On the other hand, as it is investigated
in the previous chapters, there are other transformations that keep nonlinearity
invariant. Therefore, such propositions should be re-examined and instead of
restriction AGLn⋉An, these nonlinearity preserving transformations should be
also included.
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Appendix A: Nonlinearity Classes for n ≤ 5

Table 2. Nonlinearity class cardinalities for n ≤ 5

Nf n = 2 n = 3 n = 4 n = 5

0 8 16 32 64

1 8 128 512 2048

2 - 112 3840 31744

3 - - 17920 317440

4 - - 28000 2301440

5 - - 14336 12888064

6 - - 896 57996288

7 - - - 215414784

8 - - - 647666880

9 - - - 1362452480

10 - - - 1412100096

11 - - - 556408832

12 - - - 27387136

Appendix B: Examples of new transformations for n = 4

Due to the space constraints, the algebraic normal form of the nonlinearity pre-
serving transformations can not be given explicitly. However, since any transfor-
mation is an element of S22n , it is possible to represent its image by product of
disjoint cycles. To do so, the truth table Tf of a function f ∈ F4 is represented
by an integer in ZZ224 belonging to the interval [0, 65535], which is evaluated by
∑2n−1
i=0 f(αi)2

2n−1−i. For example, the truth table (0, 0, . . . , 0, 1, 0) is represented
with 2.

Based on the function representation given above, the permutations are
represented with cycle notation, for example (18, 22, 1905)(2010, 2011), which
means the transformation maps the functions 18 7→ 22, 22 7→ 1905, 1905 7→ 18,
2010 7→ 2011, 2011 7→ 2010 and the rest to themselves.



Example 3. Let ψ ∈ S224 be a mapping whose cycle notation is

(0, 27030, 65535)(51, 58, 6270, 2755)(312, 1525, 48779, 64560, 51485, 4471)

Here, for instance, ψ maps the function (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0) to
(0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0). It is easy to show that both function’s non-
linearity value is 4, however, algebraic degree of the former is 3 whereas the
latter’s is 2. Therefore, ψ can not be equivalent to an affine equivalence relation,
since affine equivalence relations also preserve algebraic degree of the functions.
Furthermore, when algebraic normal form of ψ is constructed, it can be eas-
ily seen that there exist some λi which are not truth table of a affine Boolean
function.

Example 4. Let ψ ∈ S224 be a permutation of IF24

2 whose cycle representation is

(2, 16067, 65534, 13262, 32767, 12272)

(27, 13226, 58509, 63105, 27255, 38903, 1290, 636, 26202, 4976, 65520)

(1436, 42559, 57838, 13999, 29374, 64681).

Again, when the algebraic normal form of ψ is written explicitly, there will be
some non-affine terms which are not truth table of affine functions. Furthermore,
this transformation also maps some functions of degree 2 to the functions of
degree 3, and vice versa.

Example 5. Similarly, assume ψ ∈ S224 be a permutation of IF24

2 with cycle
representation,

(0, 26265, 61680, 43690, 39321, 38550, 23205, 15555)

(129, 189, 503)(263, 3135, 61695, 2625, 24524, 48927, 11915, 593, 12495, 5075)

(1137, 65252, 1173, 9263, 27775)(1628, 36136, 2716, 17528, 7547, 12013, 56948)

(2481, 10370, 24808, 4740, 58446)(7214, 40481)(23128, 31126, 23131).

As in the previous examples, it can be easily proven that this mapping also
possesses contradictions with Proposition 3.


