ABC - A New Framework for Block Ciphers

Uri Avraham! Eli Biham! Orr Dunkelman

LComputer Science Department,
Technion - Israel Institute of Technology,
Haifa 32000, Israel.
Email: uria@cs.technion.ac.il, biham@cs.technior.ac.i
2Computer Science Department,
The Weizmann Institute of Science,
Rehovot 76100, Israel.
Email: orr.dunkelman@weizmann.ac.il

Abstract. We suggest a new framework for block ciphers named AdvandeckECipher, or shortly ABC. ABC has
additional non-secret parameters that ensure that eatkoddle underlying block cipher uses a different pseudo-
random permutation. It therefore ensures that attackselaire more than one block encrypted under the same secret
permutation cannot apply. In particular, this frameworktpcts against dictionary attacks, and differential anddr
attacks, and eliminates weaknesses of ECB and CBC modesné&hi framework shares a common structure with
HAIFA [3], and can share the same logic with HAIFA compreadianctions. We analyze the security of several modes
of operation for ABCs block ciphers, and suggest a few ircstarof ABCs.

1 Introduction

Block ciphers are widely used in a large variety of modernliappons. Traditionally, a block cipher is an
algorithm that accepts a plaintext block and a key as in@utd, outputs a ciphertext block. To encrypt long
messagesnodes of operatioare used to iterate the block cipher operation. Several mofleperation were
designed to supply encryption with various desirable pripgse such as being stateful and disabling an adver-
sary who commits a chosen-plaintext attack from contrgltime plaintext input of the block cipher. However,
all these modes of operation, even when combined with an ldeek cipher, have their pitfalls. In particular,
the ciphetexts are usually distinguishable from randonueeces. Moreover, an adversary that obtains many
ciphertext blocks may still gain some information on theresponding plaintext, that she should not be able to
gain in an ideal situation.

In this paper we suggest a new framework for block-ciphensedito prevent such pitfalls when used
properly. Our framework introduces two additional inputgraeters to the underlying block ciphera-salt
anda counter By avoiding repeated key-salt-counter combinations, wagntee that each permutation is used
(at most) once, and thus many known attacks, such as dicfi@teack, differential attack, and linear attack
become inapplicable.

Our new frameworks also eliminates known weaknesses of E@BC8C modes. For example, in ECB,
two equal ciphertext blocks indicate two equal plaintexickk. In CBC, one can learn the XOR result of two
plaintext blocks if their corresponding ciphertext bloeke equal. These weaknesses disappear when replacing
the underlying block cipher in the mode of operation with aB\and when using the ABC properly (i.e.,
never repeating the same key-salt-counter combinatiatgrlin this paper we discuss modes of operations for
ABCs.

This work can be seen as a sibling of the HAIFA framework fasthéunctions [3], which fixes many of
the pitfalls of traditional hash functions. In our work wertmv these new parameters introduced in HAIFA
(i.e., a salt and a counter) to the world of block ciphers itheorto protect against many security pitfalls. The
ability to borrow new ideas from the world of hash functiomgldo implement them in the world of block
ciphers naturally leads to a discussion about the coroglddetween the two worlds. We discuss the possibility
of building a compression function based on an ABC, takingaathge of their similar APIs.

1.1 Related Work

Seeds for some of our new ideas can be found in [14], where uti®i@ suggest a block cipher that has
an additional input called aweak This tweak is used to provide some variability to the entioyp without
necessarily ensuring that each block uses a different gation. In [14], the authors suggest several modes
of operation for their new framework, of which one is the Thkadale Authenticated Encryption mode (TAE)
where the concatenation of a nonce and the block index isasadweak. In our work the nonce (salt) and the
index (counter) parameters are separated. This sepamtiatural due to the difference in the functionality of
these two parameters. The salt should be a fixed value ineeABTC calls that are required for an encryption
of a single message while the counter should be unique ity svmh call. The salt value can either be defined
by the protocol or chosen by the encrypting party, while thenter value in every ABC call is defined by the
protocol and the encrypting party cannot control it. Ounfeavork also has better security than the security of
tweakable block ciphers in some of the cases.

A major part of our work is investigating the security of owarhework. For this analysis we adapt some
security notions that were previously defined in [2].

1.2 Outline of This Paper

In Section 2 we describe our new ABC framework. In Section 3ineduce the notations and definitions
that we use throughout the paper. In Section 4 we define soougityenotions and provide security proofs
for various properties. In Section 5 we discuss the sintjldretween stream ciphers and encryption schemes
that are based on our new framework, and in Section 6 we digbesrelation of our new framework to hash
functions. Finally, in Section 7 we suggest several ingtarfor ABC block ciphers that conform to the new
framework and examine these implementations.

2 The Framework

2.1 The ABC Block Ciphers

Definition 1 A salt.S is a non-secret parameter that can be considered as defifanglg of block ciphers.

The salt value should be chosen by the encrypting party onetfby the protocol (e.g., increased by one
for every message).

Definition 2 A countert is a counter or a dithering, intended to introduce diversdjween blocks.

The idea is that, when using an ABC as a building block for atrygation scheme (such as a mode of
operation), the counter values for the instances of the ABbe chosen by the encryption scheme and not by
the encrypting party. This way, the counter is a parametéctwik not subjected to manipulation by any of the
parties.

Our new ABC framework introduces the use of a block countéragalt as inputs to the underlying block
cipher and defined as follows:

Definition 3 Anadvanced block ciphdor shortly anABC) is a function of the form:
E:{0,1}" x {0,1}* x {0,1}* x {0,1}¢ — {0,1}",
S—— N S S SN——
plaintext key salt counter ciphertext

such that the ciphertext block is computed®y= Ex s (M), whereE is anABC, K is the secret keys is a
salt, andt is a counter.

The ABC framework aims at avoiding attacks that take adypntd the iteration of the encryption permu-
tation by making sure that the same combination of key, saltcunter will never repeat. To achieve this, we
demand that the same key-salt combination will never refoealifferent messages, and that the same counter
value will not repeat in two different ABC calls that are madaile encrypting a single message. This demand
limits the maximal length of an encrypted messagg‘tblocks, but for sufficiently large values othis is not
expected to be a problem.

As said, the salt should be defined by the protocol or chosgheéogncrypting party in a way that ensures
that the same key-salt combination never repeats. Thisreggent allows salt values to be reused as long as
the keys are different. An even stronger requirement woekknallow a salt value repeat for two different
messages (even if the keys that are used to encrypt thesagasesze different). Such a requirement provides
an even better security.

Note that like block ciphers, or any other kind of cryptodramprimitives, ABCs are not necessarily secure,
e.g., the identity ABC defined b¥x s .(M) = M for every K, S andt, is clearly insecure. In this paper we
assume that the ABCs and the (traditional) block cipherseacere, and discuss the security features of such
primitives when combined in modes of operation.

When discussing the security of modes of operations for AB{esassume that the underlying ABCs are
ideal, and when we develop ABCs we try to make them as closesssijbe to ideal ABCs.

Definition 4 Anideal block cipheis a family of random permutations : {0, 1}* x {0,1}" — {0,1}" such
that for every keyx' € {0, 1}* the permutationf (-) is chosen uniformly at random from the set of all possible
permutations ovef0, 1}".

Definition 5 Anideal ABCis a family of random permutations such that for eveky, S,¢) combination the
permutationEx s +(-) is chosen uniformly at random from the set of all possiblempgations ovef0, 1}".

2.2 Using the New Cipher in Modes of Operation

Modes of operation are used for the encryption of long messafy mode of operation makes use of several
calls to an underlying block cipher. ABCs can also be usedades of operation, and in this section we discuss
a family of modes of operation for ABCs.

Definition 6 Anadvanced mode of operatidgar shortly AMode) is a mode of operation in which the under-
lying cipher of the mode is an ABC, and when encrypting a simglilti-block message under the mode of
operation, all the calls to the underlying ABC get the sanieisput, and each call gets a different counter.

Notation 1 Let X be a conventional mode of operation. We denote\Byk s the AMode that has the same
structure asX but in which the underlying cipher is an ABC that gétas the salt of all calls to the ABC, and
the block index as the counter of each ABC.

Example 1 AECBk g is the AMode in which théth block satisfiesC; = Ex g:(M;).

Example 2 ACBCk g is the AMode in whicl®y = IV andC; = Ek si(M;) @ C;—; for everyi = 1,...,m,
wherem is the number of blocks.

As we show in Section 4, the AECB mode is indistinguishabtenfra random permutation when the un-
derlying ABC it uses is ideal. Therefore, it looks like fordgd” ciphers, there is no security motivation to use
AModes with feedback. In particular, in the new frameworle get rid of the main pitfall of the ECB mode
— encryption of the same plaintext block under the same k&gya results with the same ciphertext block.
One might still want to use AModes with feedbacks for differpurposes. For examplaOFB might be de-
sirable for its fast online computations, aAd’BC might be desirable for those that wish to mix feedbacks
into encryption, and for transforming the cipher into a MA&e show that, in our framework, these modes of
operation are also secure.

2.3 Reasonable Modes of operation and Reasonable AModes

We are specifically interested in a family of modes of operaind a family of AModes that we ca#asonable
modesandreasonable AModes

Definition 7 Let X be a mode of operation. Lét be any block cipher. We say thatis areasonable modé
it fulfills all of the following requirements:

1. X is length preserving (the ciphertext is of the same lengthaplaintext), and both plaintext and cipher-
text have the same number of blocks, where the length of éadhibn bits (recall thatn is the block size
of E).

2. The number oF encryptions performed calculated while encrypting a mgssd underXIb; is equal
to the length ofM in blocks. In particular, there exist some functiofi§-, ..., -) and fa(-, ..., -) such that
C; = fg(EK(fl([V, i, My,...,M; Cq,..., Ci—l)), 1V i, My, ...,M;,C1, ..., Ci—l)- where:

@) fo(5IVyi, My, ..., M;,C4,...,C;—1) is a permutation ovef0, 1}" for every possible combination of
I‘/, ’i, Ml, ooy Mi, Cl, ceey Ci—l-

(b) C; is a permutation of\/;, i.e., the encryption undeKIE; is invertible and therefore the ciphertext can
be decrypted. Formally, the functién: i rvi .. v, 1.0 0y (M)
= fo(Ex(f1(IV,i, My, ..., M;,Ch,...,Ci—1)), IV, i, My, ..., M;,C1,...,C;_1) is a permutation over
{0, 1}™ for every possible combination &f, K, IV,i, My, ..., M;_1,C4, ..., Ci_1.

We associate every instanceBfwith a block numbei, and we denote the plaintext input and the ciphertext
output of thei'th instance ofE by (z;, y;), respectively.

The above definition deals with modes of operation in whiehtttock size is the same for all blocks. This
definition can be trivially extended to deal with modes ofraien in which the block size varies, as long as
|M;| = |C;| for anyi. This extended definition covers all the standard casesentherlast block can be shorter
thann bits.

The conditions in Definition 7 might seem complicated, bustraf the widely used modes of operation,
such as ECB, CBC, OFB, and CTR, fulfill these conditions ardetfore considered to be reasonable modes.

Example 3 ECB is a reasonable mode whefg 1V, i, M, ..., M;,C4, ...,C;—1) = M; and
f2(yi7 IV>i7 M17 ceey Mi> Olv ceey Ci—l) = Yi-

Example 4 CBC is a reasonable mode whefe(1V,i, M, ..., M;,C1,...,Ci—1) = Ci—1 @ M; (for i > 1)
andfg(yi, IV, i, Ml, ceny MZ', Cl, ceny Ci—l) = Y.

Example 5 OFB is a reasonable mode whefe(IV, i, My, ..., M;,C4, ...,Ci—1) = C;—1 @ M;_; and
f2(yi7 IV>i7 M17 ceey Mi> Olv ceey Ci—l) =Y @MZ

Definition 8 An AModeX is areasonable AModé it satisfies all of the conditions of Definition 7, where the
block cipherE is substituted by th&BC Ek s, for a keyK, a salt.S, and a countet.

Lemma 1 Let X be areasonable mode. Th&X is a reasonabléAMode.

The proof of Lemma 1 is given in Appendix A.

3 Notations and Definitions

Table 1 lists the notations that we use in this paper.
We define three kinds adfymmetric encryption schemes

4

K Key
k Key size in bits
S Salt
s Salt size in bits
t Counter
c Counter size in bits
M Plaintext message
m number of blocks of a messadé. (M = M||...||M,,)
C Ciphertext
M;, C; Thed'th block of the plaintext)M, or the ciphertextC
|Y'| Length in bits of the string”
X{?(M) The encryption of the messagé under the block cipheE using the keyK and the mode of operatiol
XE_I(C) The decryption of the ciphertext under the block cipheF using the keyX and the mode of operatiok
X[b;s(M) The encryption of the messagé under the ABCFE using the keyK, the saltS and the AModeX

X{?’s—l(C) The decryption of the ciphertext under the ABCFE using the keykK, the saltS and the AModeX
a L AThe operation of choosing an itesruniformly at random out of a set.

Table 1. Notations

Definition 9 A traditional symmetric encryption scherigea pair of deterministic algorithmg&€, D), that ac-
cept a key and plaintext/ciphertext as parameters. Foyrtathnd D are defined as:

EMxK—-C ; D:CxK—->M,

where/C is the key space\1 is the message space afids the ciphertext space. We demand that for &hy 1C
and M € M itholds thatDg (Ex (M)) = M.

The traditional symmetric encryption schemes discussetisnpaper are traditional block-ciphers and tradi-
tional modes of operations.

Definition 10 A salted-countered symmetric encryption schesna pair of deterministic algorithmgE, D),
that accept as parameters (on top of the key and the plaintpkertext) also a counter and a salt. Formadly
andD are defined as:

EMXKEXxSEXT —-C ; D:CxKxSEXxT —->M,

whereS is the salts space and is the counter space. We demand that for &y 1,5 € S,t € 7 and
M € M itholds thatDKs,t(SK,g,t(M)) =M.

The salted-countered symmetric encryption schemes digdLin this paper are ABCs.

Definition 11 A salted symmetric encryption schemsea pair of deterministic algorithmg&€, D), that accept
as parameters (on top of the key and the plaintext/ciphgredgo a salt but no counter. Formally andD are
defined as:

EMXKxS—C ; D:CxKx8§S— M,

We demand that for anik € £,S € SandM € M it holds thatDg s(Ek s(M)) = M.
The salted-countered symmetric encryption schemes disdlis this paper are AModes.
For each of the definitions above, we note #ghnd similarlyD) uniquely define the symmetric encryption

scheme. We will therefore usg to describe the encryption scheme — it will be apparent frbendontext
whether€ represents the encryption scheme or the encryption funitsielf.

5

4 Security

In this section we discuss the security of ABCs and AModesawdyze the security of our framework against
known generic attacks, and we measure the security of AMadesrding to some widely-used security no-
tions. In order to examine the security features of the AMo#e assume that the underlying ABC is ideal and
that any security pitfall results from the mode itself. Nitkieless, we also consider in some cases a realistic
ABC and prove that if the ABC is “secure enough” then the AMadang it is also “secure enough”.

The proofs for all the theorems that appear in this sectiergiven in Appendix A.

4.1 Security Against Generic Attacks

As discussed in the introduction, the ABC framework is se@gainst generic attacks that require many plain-
texts encrypted under the same secret permutation. Exarguleuch attacks are the dictionary attack, differ-
ential attack, linear attack and time-memory tradeoffckida

In the dictionary attack the adversary collects pairs ohpét blocks and their respective ciphertexts. She
gains information about the encryption permutation withwecessarily learning anything about the secret key.
Later on she can use the knowledge that she had gained tgotiegripertexts or to encrypt plaintexts. This
kind of attack is useless against protocols that use ABQsaply since in such protocols the proper use of the
salt and counter inputs ensures that no encryption periontet used more than once. Thus, any information
that the adversary has gained is useless for future enaryptidecryption of plaintexts/ciphertexts.

The differential and linear attacks require a large amodirdata encrypted under the secret encryption
permutationFk (-). These attacks are inapplicable for the ABC frmaework sapeoper use ensures that an
encryption permutation is never used more than once, and sirthe ideal case, the different permutations used
by the ABC for different values of salt-counter combinati@re independent. Note that for realistic underlying
ABCs, as for block ciphers, the security analysis shouldicar differential and linear attacks on the particular
design. Moreover, it should consider the possibility ofeexting these attacks using the new parameters, the
salt and the counter. In Section 7, where we suggest sonamaest of ABCs, we make this kind of analysis.

In time-memory tradeoff attacks [12], a large amount of goeiputation, equivalent to exhaustive search,
can be used for breaking the encryption many times in theduts discussed in Section 2, the salt might be
reused with different keys. If this is the case (e.g., evengtthe key is changed the salt is reset to zero) then
the pre-computation will be amortized among many instanfdse attack, and thus the time-memory tradeoff
attack will work against the framework just as they do foditianal block ciphers. On the other hand, if the salt
is never reused (not even after changing the key) then thegmputation cannot be amortized, and therefore
time-memory tradeoffs become as inefficient as an exhauséarch.

4.2 Security Notions

Goldwasser and Micali [11] were the first to formally definewity notions for encryption schemes. In [2]
security notions for symmetric encryption were defined airéned. We adapt some of these notions to ABCs
and their extra arguments while we use some of the ideasluntsal in [16].

The security notions we consider are indistinguishabfligm random bits (defined in Section 4.2.2) and
semantic security (defined in Section 4.2.3). We consideistécurity of AModes in the terms of the security
notions mentioned above, both in the chosen-plaintext (@A), where the adversary is allowed to ask for
encryption of messages and in the chosen-ciphertext m@deh)] where the adversary is allowed to ask for
decryptions of ciphertexts.

We examine the security of our model in the information-tigegense (rather than in the computational
sense). l.e., the adversaries that we consider are limjteékdebamount of information that they are allowed to
have rather than in the time complexity of their computagion

Definition 12 Let& be a symmetric encryption scheme.AGPAadversaryis an adversary that has access to
an oracle that answers queries of one of three fordg;) — if £ is a traditional symmetric encryption scheme,

6

(M, S) —if £ is a salted symmetric encryption scheme,(df, S,t) — if £ is a salted-countered symmetric
encryption scheme (wherd € M, S € S andt € 7).

Definition 13 An £-CCA adversary is an adversary that has access to an oracle that answerdegief one
of three forms:(C) — if £ is a traditional symmetric encryption schent€;, S) — if £ is a salted symmetric
encryption scheme, @, S, t) —if £ is a salted-countered symmetric encryption scheme (wiefe, S € S
andt € 7).

As stated in Section 2, the salt is chosen either by the etiogyparty or by the protocol, and the counter
is selected by the AMode. For our analysis, we let the adwetsahave more power by letting her choose the
salt as long as the same salt never repeats. Similarly, iigheks an ABC rather than an AMode, we let her
chose the salt and the counter as long as the same combinatiali-counter never repeats.

Definition 14 LetE be anABC. An E-CPAadversary is said to bgalt-counter-respectinghen no two queries
it calls have the same salt-counter combination.

Definition 15 Let E be anABC. Let X be anAMode. An X ”-CPA adversary is said to bealt-respecting
when no two queries it calls have the same salt.

We note that the above definitions hold only fmcryptionqueries and not for decryption queries. A
good practice is to make sure that every message is encrypieg a unique key-salt combination, but if for
some reason different messages were encrypted using tieeksgnsalt combination then it should be possible
to decrypt the resulting ciphertexts. Therefore, we allo®@A adversary to use the same salt for different
queries.

4.2.1 Distinguishers for ABCsAn advanced block cipher is a family of permutatidiis {0, 1}" x {0, 1}* x
{0,1}* x {0,1}¢ — {0,1}". By fixing a key K € {0,1}*, an ABC defines salted-counteredamily of
permutations of the formEx : {0,1}™ x {0,1}* x {0,1}¢ — {0,1}". By fixing a key K, a saltS and a
countert we define a single permutatidtix s : {0,1}" — {0,1}".

Let SCPerm(s,c,n) be the set of all possible salted-countered-families ofmpgations of the form:
IT: {0,1}" x {0,1}° x {0,1}¢ — {0,1}".

We adapt the definitions of the advantage of a block-ciph&tirdjuisher defined in [2] to our needs. Let
E :{0,1}" x {0,1}* x {0,1}* x {0,1}¢ — {0,1}" be an ABC. Let4 be an adversary that has access to
a salted-countered-family of permutations: {0,1}" x {0,1}* x {0,1}¢ — {0,1}". The advantage of an
adversaryA in distinguishingE from a random family of permutations is defined as:

AdviP(A4) £ Pr [AEK(""')‘K £ {0, 1}"”] —Pr [A’r(""')|7r xid SCPerm(s,c,n)| .
We denote bysech,”(¢) the maximum advantage of any salt-counter-respectingrsae that is allowed to
make queries to a salted-countered-family of permutatiand makes no more thamueries. Denote byl;"
the set of all salt-counter-respecting adversaries th&ema more thag queries. The maximum is taken over

all possible such adversaries, i$ec};”(q) 2 maxac gser AdviP(A).

Lemma 2 (given without a proof) Let E be an idealABC. Then every possible total length of queriethat
allows the adversary to be salt-counter-respecting saﬁ@féc%rp_cm(a) =0.

We later show that ifZ is an ABC for whichSec};”(¢) is small then using a reasonable AMode in which
the underlying ABC isF results with a secure encryption scheme.

7

4.2.2 Indistinguishability from Random Bits This security notion evaluates the ability of an adversary
to distinguish the encryption (decryption) of a messagenftbe encryption (decryption) of an equal length
random string of bits.

Let £ be a traditional symmetric encryption scheme. Considerfahewing two oracles, both answer
queries of the formQ = (M) with a stringC' € {0,1}/€x (M)l The first oracle is the real encryption oracle
Og,. that answers the quel® = (M) with C = Ex(M). The second is a fake encryption orack, that
answers the same quefywith a random string ofEx (M)| bits.

Theind — CPA advantage of af — CPA adversaryA is defined as:

Advird=CPA(4) 2 py [AOE»A') — 1|k & ic] —Pr [Aofz(') - 1} .

For the CCA variant of this notion, consider two other oracleoth answer queries of the fogh= (C)
with a stringM € {0, 1}/Px(©)l. The first is the real decryption oracl®p,. that answers the quely = (C)
with M = Dy (C). The second is a fake decryption oracﬂ% that answers the same qué&pywith a random
string of | Dk (C)| bits.

Theind — CCA advantage of an adversafdyagainst an encryption scherfigs defined as:

Advignd_CCA(A) £ Pr [AODIC(') = 1‘K kil IC} —Pr [AOQ(-) = 1] .

We adapt these security notions also to the salted-synurezidgryption scheme, in which the queries are
of the form@ = (M, S). Thus, if€ is a salted-symmetric encryption scheme, then

AdviPd=CPA(4) & py [Aosd'v') — 1|k & /c} _Pr [AO%M - 1} ,
Adyind=COA(4) & py [AODK(‘“) — 1|k & /c} ~Pr [AOE@') - 1} .

It is important to note that the adversaflymust not repeat the same query twice (or otherwise it will be
trivial to distinguish between the real and the random @gjcWhen discussing AModes, this demand is being
respected automatically in the CPA variant of the notiortesiwe consider only salt-respecting adversaries.
Since CCA adversaries are allowed to repeat the same satiawvesto explicitly prohibit them from repeating
the same query more than once.

We use the abbreviated notations(®f: for the oracleOg,. or Op,. with a random key', andOp, for O%
or og, where it is clear from the context whether the attack is aeheplaintext attack or a chosen-ciphertext
attack.

We denote bySecl"~CPA (¢ the maximum advantage taken over &CPA salt-respecting adversaries
that use no more than a total@blocks in their queries. Similarly, we denote $5¢24~““4 () the maximum
advantage taken over #&tCCA adversaries that use no more than a totat bfocks in their queries. Denote
by A, the set of all adversaries that use no more than a totabddcks in their queries, and denote Jy" the
set of all salt-respecting adversaries that use no moreahatal ofo blocks in their queries. Formally,

ind—CPA A ind—CPA . ind—CCA .y ind—CCA
Secg' (o) = Anel%} Advy' (A) 5 Secy (o) = max Advg' (A).

The following lemmas examine the ind-CPA security AECB arftB& AModes.

Lemma 3 Let E be an idealABC. Every possible total length of queries,that allows the adversary to be

salt-respecting (i.eq < 2°7*) satisfiesSec’?d 1% (o) = 0.

Lemma4 Let E be an idealABC. Every possible total length of queriesthat allows the adversary to be

salt-respecting satisfieec?d 14 () = 0.

The same result can be achieved for any reasonable AModésasssed in the following theorem and
conclusion.

Theorem 1 Let X be a reasonablé\Mode. Let £ be anABC. Every possible total length of queriesthat
allows the adversary to be salt-respecting satiﬁ@?%‘CPA(a) < Sech P (o).

Following Theorem 1 and Lemma 2, we conclude the followingatasion:

Conclusion 1 If E'is an idealABC, and X is a reasonableAMode, thenSec't " () = 0 for everyo that
allows the adversary to be salt-respecting.

As seen in Conclusion 1, our framework achieves perfectstmgjuishability security against chosen-
plaintext attacks when the underlying ABC is ideal. This @ the case when considering chosen-ciphertext
attacks because of the ability of the adversary who employsttack to repeat the same salt-counter combina-
tion more than once in its queries to the decryption oracl€@A adversary can simply ask for a decryption
of C = (4||Cy andC’ = (4, both with the same salt valug and return ‘1’ if and only if the corresponding
messages)/, M’ begin with the same block. This attack works for every reab&AMode.

However, we claim that the indistinguishability securigaast chosen-ciphertext attacks of our framework
is not worse than the security against chosen-ciphert¢éxtkast of the conventional framework. In particular,
the following theorem proves that the ind-CCA security of @i is not worse than the ind-CCA security of
ECB.

Theorem 2 Let & be an ideaABC and letE be an ideal block cipher. For everyit holds thatSecd- T4 () >
ind—CCA()

Sec >
AECBE

4.2.3 Semantic Security The semantic security notion was defined first in [11] and wdepsed to the
symmetric scheme in [2]. This security notion evaluatesahiity of an adversary to learn something on
a plaintext from its corresponding ciphertext. We adapt #@curity notion to the parameterized encryption
scheme. Let&, D) be a salted-symmetric encryption scheme. Adie an adversary. For the CPA variant of
the notion, we consider af+CPA adversary, and for the CCA variant we conside€aDCA adversary.

The adversary plays a game of two stages: In the first statg, Afcalls its oracle(s) with its queries,
it defines some valid distribution function over the messsjggce such that all the messages with non-zero
probability are of the same length. In the second stabés provided with a saltS* chosen uniformly at
random, from all the salts that has not used in its queries, and a cipheri€kt = Ex g-(M*) for some
plaintext M* chosen at random from the message space according to thbulish function defined byA.
The adversary then outputs a péir, f), wheref is a function, defined for all non-zero-probability message
that can be computed by the adversatyins if « = f(M*). Let M’ be a message chosen at random from the
message space, according to the distribution functionegfiy A and independently from/*. The advantage
of an adversaryl is defined in this case as:

sem—ATK S _ * *) _ /
AdEm M) & P o= f(M0)|C7) = | Pr o= F(M)],
where ATK = CPA if A employs a chosen-plaintext attack aAd K = CCA if A employs a chosen-
ciphertext attack.

We denote b)Seczom‘ATK(a) the maximum advantage taken over &l ATK adversaries that use no
more than a total of blocks in their queries. Formally,

Seczem—ATK(o_) A ﬁa}i AdVZ‘em_ATK(A).

Theorem 3 Let X be a reasonabléMode, and letE' be an idealABC. ThenSeoi?‘g‘ATK(a) = 0, where
ATK € {CPA,CCA}.

4.3 Security Pitfalls of Conventional Modes of Operation

Many of the conventional modes of operation are distingab#dh from random permutations even when the
underlying block cipher is indistinguishable from a randoenmutation. Moreover, the following distinguishers

allow an adversary who obtains a ciphertext, to gain sonw@nmdtion on the corresponding plaintext. Ideally,

the adversary should not gain such information.

4.3.1 ECB Obviously, The conventional ECB mode does not provide tHeimguishability security notion
defined in Section 4.2.2. In the simplest attack the adwerdaasks for the encryption o¥/ = M; || M, where
M, = M, and getC' = C1||Cs. Itreturns ‘1" if C; = Cy and ‘0’ otherwise. Therefore every underlying block
cipher E satisfiesAdv?d-T“*(4) = 1—27", and the adversary can achieve even a higher advantagerigy usi
longer messages. In practice, this means that an advetsarplitains a ciphertext in which two blocks are

equal learns that the two corresponding blocks of the @airdre equal as well.

4.3.2 CBC The conventional CBC mode provides no security againsteshogphertext attacks in the in-
distinguishability sense (ind-CCA). Consider the follogyiattack: The adversary asks for the decryption of
C = (||Cy and getsM = M;||M> as an answer. It returns ‘1’ 1, @ M, = C; @ IV and ‘0’ otherwise.
The advantage ofl is Advg‘SESCA(A) = 1—27", and the adversary can get even a higher advantage by using
longer ciphertexts.

The CBC mode does not provide good ind-CPA security as wdtliel\encrypting a message longer than
2n/2 plocks, it is expected (due to the birthday paradox) that ofvthe ciphertext blocks will collide (i.e.,
C; = C; for somei # j), and thus an adversary that has access only to an encryptole, can check whether
M, @ M; = C;—1 @ C;_; and distinguish between the encryption and random bits lwith probability.

4.3.3 TBC In [14], the authors suggest several modes of operatiorwfeakable block ciphers. In one of
them, called TAE, the tweak is used as a concatenation of eenfdhat has the same functionality as our salt)
and a counter. This mode is equivalent to our AECB, and thezgfrovides the same security properties. But
the tweak is not limited to this kind of usage, and when it iscldifferently the result can be an insecure mode.
An example for this is the Tweakable Block Chaining (TBC) mpsluggested in [14]. The TBC mode is illus-
trated in Figure 1. The indistinguishability security oasenable AModes is better than the indistinguishability
security of TBC in some cases, and not worse in the others.

M,y My M3 M,,
TO) EK E‘K EK — o 0o 0o — EK
4 (s Cs Cm

Fig. 1. TBC mode of operation

Let £ be an ideal tweakable block cipher, lebe an ideal ABC, and IeX be a reasonable AMode. An ind-
CPA adversary that attackS8BCF can ask for the encryption of a message= Mj]||...||M,,, where all the
message blocks are equalnif > 2n/2 it is excepted that there exist somec i < j < m such thatC; = Cj.

If the output is a result of a real TBC encryption, rather tharmndom string, then for evely < [< m — j

10

it holds thatC;;; = C;4;. If this is the case then the adversary can guess that sheing fitne real encryption
oracle. Otherwise, she is definitely facing the random eratherefore, following Conclusion 1, for every

o > 2"2 it holds thaﬁec?;E%PA(a) > Seci)r(l%_CPA(o).

An ind-CCA adversaryl that attack§’BC'” and is limited to a total of two blocks in its queries can ask fo
the decryption of the messadg|| 7y, whereTj is also the initial tweak, and obtain the oracle’s answéf =
M, |[Ms. A outputs ‘1" if My = Mo, and ‘0’ otherwise. The advantage dfis given by Advi'e"CC4(A) =
1 — 27". When an ind-CCA adversary that attacksX ” is limited to a total of two blocks in its queries, then
the two blocks must be decrypted with a different salt-ceunbmbination. Thereforeydv2d-““A(4) = 0,

. 3 XE
and thusSec;‘g;%CA@) > Secyd “A(2).

5 Comparison with Stream Ciphers and CTR Mode

A main requirement for our framework is that the same contlinaof key, salt, and counter should never
be used twice. Apparently, if this requirement is fulfilleden there is no reason that the functibi s +(-)
will be a pseudo-random permutation. It is enough to demhbatfor every combination of,¢ and M, the
function fs; s ¢ {0,1}* — {0,1}", defined byfs; »(K) = Exs:(M), is a pseudo-random function.
For example, assume that we have a pseudo-random fungtiof0, 1}* x {0,1}* x {0,1}¢ — {0,1}",
and definefs; v (K) = g(K, S,t) @ M. Thus, the AECB encryption using the underlying ABC defingd b
Eg si(M) = g(K,S,t)@ M can be viewed as a stream cipher in which the mesa#&ge XORed with the
streamg(K, S,t). Under the assumption that the sa(#é, S, ¢) combination is never used more than once,
this encryption is secure, but if these assumptions do Hdtfbo some reason then it is no longer secure since
an adversary who holds a singl&/, C) pair is able to calculate the appropriatgs’, S, t) for every block of
M and therefore can encrypt (decrypt) any message (ciptierath the sameK and S values. Therefore,
constructing an ABC which is a pseudo-random permutatioevery (X, S, t) combination provides us with
a system that is more tolerant for misuse and guarantees Sernéty even when the sani&’, S, t) is used
more than once.

A good example is the CTR mode [7]. In the CTR mode, the mess&©@Red with a stream generated by
encrypting a counter block. Formallg, = C1||...||Cy,, whereC; = M; @ Ex (ctr + i) for some numbeetr.
In [9] it is suggested that théleast significant bits of the counter block are used as a eowvitile the other
n — ¢ bits are used as a nonce. In this particular case, the CTR paydbe seen as a special case of AMode
where its encryption functio s (M) = M @ Ex (S +t), whereS is a multiply of2*,0 < ¢ < 2, and the
maximal length of a message2sblocks.

We note, however, that our framework with the explicit saefian of the salt and the counter has some
advantages over the CTR mode and other stream ciphers:

1. Tolerance for misuse — In CTR mode, just as in any streamecjpa reuse of the same stream (i.e., a
reuse of the same nonce and counter) results with an imneezbaipromise of the security. When the same
stream is used for two different messadés, M, thenM; @ M, can be calculated from the corresponding
ciphertextsCy, Cy. Moreover, an adversary who has a p@lf, C') of plaintext-ciphertext blocks for a
specific nonces and a specific countércan calculate the encryption of any other message with time sa
nonce and counter.

2. Time-memory-data tradeoffs — Time memory-data tradeafte widely discussed for stream ciphers. If
the salt values are reused every time the key is changedthbesecurity of our framework against these
attacks is the same as for stream ciphers. In the more strision in which the salt is never repeated (not
even after changing the key) then these attacks becomelicetpp.

3. The security of our framework is a little bit better thar thecurity of the CTR mode (particularly in
the indistinguishability and semantic senses). This isabse of the fact that in CTR mode, for every
message\/ = M||...||M,, and for everyl < i < j < m itis certain thatC; @ C; # M; P M. For
example, an ind-CPA adversary can take advantage of thisThe adversary asks for the encryption of

11

a messagé/ = M||...|| My > in which all of the2™/2 blocks are identical (i.e.); = M; for every

1 <i< j<2%?). Ifthe adversary receives an answer from the real enaymtiacle it is guaranteed that
C; # Cjforeveryl <i<j< 27/2_|f the adversary receives a random string as an answer tlin i
expected that there are somel i < j < 2n/2 such thatC; = Cj.

6 The Relation to Hash Functions

In [3] the HAIFA framework for cryptographic hash functiompresented. This framework introduces the idea
of salt and bits-counter for compression functions. A reltguestion to ask is how can these new compres-
sion functions and block ciphers relate. In this section vgeuss the possibility of using a single underlying
primitive to build both ABCs and compression functions. \Wefs on the well known Davies-Meyer construc-
tion [5]. Other possible constructions were studied in [25ome of them could be used for our purpose as
well.

6.1 Using Davies-Meyer Construction

The Davies-Meyer construction is used for building a coregien function,Cp,s using a block ciphel.
Given a block ciphef : {0,1}" x {0,1}* — {0,1}", the compression functiofip; : {0,1}" x {0,1}F —
{0,1}" is defined asCpas(h, M) = Ep(h) @ h. Here,k is the length of the message block for the compres-
sion function andh is the length of the chaining value.

A major drawback of the Davies-Meyer construction is thasitasy to find fixpoints. One can find a
fixpoint (h*, M*) simply by fixing a message block/* and decrypting the zero constant by = E;j*(o).
Such a fixpoint can be used for a second-preimage attack as$h¢6].

We note that with our new block cipher framework and the HAHBfAmMework, this problem is fixed.
We can use a Davies-Meyer construction to build a HAIFA cagepion functionCHAF4 + {0,137 x
{0,1}* x {0,1}* x {0,1}¢ — {0,1}" (wheren is the length of the chaining value ad= k is the
block size) using an ABCE. Such a compression function will be defined@g&:}/4(h, M, S, #bits) =
Er s, p(#bits) (h) € h, for some functionf that outputs a unique counter value for every possiiiéts value

(typically, f = {@1). The#bits parameter of the compression functierpérameter i) prevents attacks
that take advantage of the easy-to-find fixpoints. It is gtisible to find a tupléh*, M*, S*, #bits*) such that
Cpnr(h*, M*, S* #bits*) = h*, but for any#bits’ # #bits* (and specifically for the value gbits’ that
matches the next block) it holds, with a very high probagilihatCp s (h*, M*, S*, #bits’) # h*. Moreover,
itis difficult to find a message block!’ such thatCp s (h*, M', S*, #bits’) = h*. Therefore, a fixpoint cannot
be used to expand the message and create a second preimage.

It might be better, for performance reasons, to use the mgegssack of the compression function as Hadt

of the ABC and not as the key, so the key scheduling algorithmot re-executed for every block. However,

the Davies-Meyer construction might not be practical sihncemands that the key size (or salt size) of the
cipher equals the size of compression function’s messamgk lbind that the size of the compression function’s
chaining value equals the size of the cipher’s block. Thisasthe case with today’s compression functions
and symmetric block ciphers. The typical size for messagekislin hash functions today is much larger than
the typical key size of block ciphers and the typical size ofiaining value is much larger than the typical size
of ciphers’ block. The size of the chaining value of a comgis function should be large enough so finding
collisions will be difficult, and the size of the compressiomction’s message block should be large enough
for performance reasons. Increasing the lengths of thekldipher's key and message block would increase
the complexity of the block cipher’'s execution (in parteuthe key schedule), and will influence especially on
encryption of short messages.

12

7 Simple ABCs Based on AES

In this section we describe three AES-based ABCs, all of vitth 128-bit keys, 128-bit salts and 64-bit
counters.

7.1 ABCl1l
Our first ABC uses AES [17] as a black-box and is implementeflasvs:

ABClg (M) = AES-128¢/(AES-128(AES-128¢ (M) & t') & t'),
whereK’ = AES-128(S) andt’ = t||¢t.

7.2 ABC2

ABC2 modifies the key scheduling algorithm of AES-256 towlmixing of the salt and the counter. The key
scheduling algorithm is modified as follows: given a 128Kely K and a 128-bit salf, an intermediate 256-bit
key K’ is computed by’ = K||AES-128¢(S). The intermediate ke)” is then expanded using the original
AES-256 key scheduling algorithm, to the (15) round k&ys; [0], ..., RK [14]. The counter is mixed into five
of these round keys RK 2], RK[4], RK1[7], RK1[10], and RK[12]: each time the counter is mixed into a
round key it is XORed into two consecutive (cyclicly) coluswf the round key, when the counter is represented
as big endian. The counter is mixed into the following rousgik columns 0,1 oRK;[2]; 1,2 of RK1[4]; 2,3

of RK,[7]; 3,0 of RK;[10] and 0,1 of RK[12]. The result is another set of round kefg(,. Encryption is
performed using the AES-256 encryption algorithm with tesulting round keyRR K5 [0], ..., RK>[14]. Note
that an efficient implementation of ABC2 does not have to catimpghe key scheduling for every counter.
Instead, it compute& Ky once and XORs the counter into the right locations duringetiyption process.

In order to allow a full diffusion of a counter before the neguunter mixing occurs, we selected to have at
least two AES rounds between consecutive counter mixingsll Aiffusion of a counter mixing ensures that
all of the bytes of the state are influenced by the counternBxecounter mixing, changes only two of the four
columns of the state, while keeping the other two unchanged.

7.3 ABC3

ABC3 modifies the key scheduling algorithm of AES-128 towlla mixing of the salt and the counter. The
key scheduling algorithm is modified as follows: given a I#8key K and a 128-bit salt, three temporary
keys K, K5, and K5 are calculated. Each of the temporary keys is expanded bgripmal key scheduling
algorithm of AES-128 into the (11) round keys. Then, a fousth of round keys is calculated as the XOR of
the three sets of round keys. Formally,

K=K ; RK;=KS(K;)

Ky = AES-128,(S) ; RK;= KS(K,)

K3 = AES-128&, erk, (K) ; RK3 = KS(K3)
RK, = RK; ® RKy ® RK3,

whereK S is the key scheduling algorithm of AES-128. The notation AESB; ., whereRK is a set of round
keys rather than a key, refers to the AES algorithm that usesound keysR K instead of deriving them from
a 128-bit key.

The counter is then mixed into five round keys®f, — columns 0,1 and columns 2,3 &f,[1]; 1,2
of RK4[3]; 2,3 of RK4[5]; 3,0 of RK4[7]; and columns 0,1 and columns 2,3R¥[9]. The result is another
set of round keysR K5. Encryption is performed using the AES-128 encryption atgm with the round keys
RK5[0],..., RK5[10]. As in ABC2, an efficient implementation of ABC3 does not hawecompute the key
scheduling for every counter. Instead, it compui¥, once and XORs the counter into the right locations
during the encryption process.

13

7.4 Security of ABC1, ABC2 and ABC3

The main motivation behind the ABC framework is to providelséy against attacks that take advantage
of a repeating permutation. We claim that, for any of the ABGggested above, equivalent key-salt-counter
combinations do not exist and therefore these ABCs reatlyige this kind of security. We also analyze the

security of the ABCs suggested above against a variety offkradtacks.

7.4.1 Equivalent Keys In an ideal ABC it is very unlikely that two different key-saounter combinations
(K1,S1,t1) # (Ko,Ss,t2) specify the same permutation. Therefore, like in block eighthe design of an
ABC should result with permutations that do not collide.

In ABC1 the AES algorithm is used three times. Due to the us& af the middle encryption, every pair
of (K, S) generates a unique set of round keys for the triple encnypiibierefore, we claim that there are
no pairs(K, S1) # (K2, S2) and a countet for which ABCl g, s, +(M) = ABClk, s, +(M) for every M.
Moreover, we claim that there do not exist different key-salunter combination§k, S1,t1) # (K2, S, t2)
for whichABClg, g, + (M) = ABClk, s,.+, (M) for every M.

In ABC2, for two different key-salt pair¢K1,S1) # (Ka,S2) the derived keys<|, K/ are necessarily
different. Therefore, there is a difference in at least dnhe first two round keys. Such a difference diffuses
to other round keys. In case th@k;,S;1) = (K2,S2) butt; # to then there is necessarily a difference in
round keys 2, 4, 7, 10, and 12, that are influenced by the courties, every two different key-salt-counter
combinationg K, S1,t1) # (K2, S2,t2) necessarily produce a different set of round kBys,. We claim that
there are no two such different key-salt-counter comhimatithat define the same permutation.

In ABC3 every key-salt pair generates a unique set of rouyd kBK 1, RK5). We claim that every key-
salt pair generates a unique set of round k@y&;, RK»>, RK3), and thatRK, = RK; & RKy ® RK3 is
also unique for each key-salt pair. Moreover, we claim tivarekey-salt-counter combination results with a
unique set of round keyB K5, which specifies a unique permutation.

7.4.2 Security of ABC1 Against Any Known or Chosen PlaintextAttack We show a reduction from
any known/chosen plaintext attack on ABC1 to a known/chgdamtext attack on AES. We conclude that
the security of ABC1 against known/chosen plaintext adaekg., differential attack, linear attack and time-
memory tradeoff attacks) is similar to the security of AE&iagt these attacks.

Consider a known/chosen plaintext attatlon ABC1. We build an attack on AES-128 using the attack
A. WheneverA asks for the encryption of a plaintext blodk, with a saltS, and with a countet, B asks
for K’ = AES-128(S). Then B computesV; = AES-128/(M) @ t/, asks forVa = AES-128(V7), and
computes” = AES-128/ (Vo @t'), thus receiving” = ABC2g s (M). OnceA announces the recovered key
K (or any information on the key)3? announces the same ké&y (or the same information that announced).
Therefore,B learns exactly the same information on the keyladoes.

7.4.3 Security of ABC2 and ABC3 Against Linear Attacks ABC2 and ABC3 are based on the AES al-
gorithm and use its S Box. The maximal bias of a linear appnation of this S Box, as shown in [4], 573,
Using a computer program we found that the lower bound off@@ Boxes in a linear characteristic is 80
for ABC2, and 55 for ABC3. Therefore, the bias of any lineapmaximation of the full ABC2 and ABC3 is
bounded by2~240 and2716%, respectively. We note that the introduction of the coumtéght allow the ad-
versary to attack the cipher using a shorter charactenétic2 rounds in ABC2, or 9 rounds in ABC3. The
number of active S Boxes in 12 rounds of ABC2 is lower boundgd®and the number of active S Boxes
in 9 rounds of ABC is lower bounded by 51. Therefore the bias tihear approximation of 12 rounds of
ABC2 or 9 rounds of ABC3 are bounded By??> and2~ 15!, respectively. These biases would require over
2300 known plaintexts for a linear attack while there are o2l§? plaintexts in the whole block space, which
makes this attack impossible. We note that in our model asradwy can use more thai® plaintext-counter
combinations for a linear attack, but the number of encoygstirequired for such an attack is larger tBa# —

the number of encryptions required for an exhaustive searahtherefore such an attack is also unapplicable.

14

ABC1 ABC2 ABC3 AES
Key scheduling avg speed (in cpu cycles) 545.25 625.62 922.146

Key scheduling standard deviation 3.19 253 487 3.06
Key scheduling speed median (in cpu cycles) 541 627 925 162
Encryption avg speed (in cpu cycles) 825.82 385.47 326.01324

Encryption speed standard deviation 35.05 1.09 941 6.64

Encryption speed median (in cpu cycles) 808 385 322 238

Table 2. Performance of the different implementations

7.4.4 Security of ABC2 and ABC3 Against Extended Differentl Attacks Unlike traditional differential
attacks, in differential attacks on ABCs the adversary islinuted to introduce the differences through the
plaintext. She can also introduce the differences throbgtsalt or through the counter.

Definition 16 We use the ternextended differential characteristior a differential characteristic that may
include a salt difference and/or a counter difference iniidd to the plaintext difference. An attack that uses
an extended differential characteristic is callegtended differential attack

We note that using an extended differential charactetistithas a salt difference is useless when attacking
ABC2 or ABC3, since in both ABCs the salt is encrypted by theresekey before it is used. Thus, an adversary
who uses such a characteristic has no information aboutiffiesethtial that is actually in use. Therefore, we
limit our analysis to the case where there is no salt diffeee@bviously, a counter difference can partially “fix”
a plaintext difference and slow down the diffusion of thdatiénce. Therefore, we expect that the diffusion of
differences will be slightly slower in ABC2 and ABC3 than ifE&. Nevertheless, we claim that both ABCs are
still secure against extended differential attacks, adééd, a simulation that checks all possible differential
trails shows that after six rounds of ABC2 and after sevemdswof ABC3 there are always at least 25 active
S Boxes. In a full run of 14 rounds of ABC2 there are at leastd®a S Boxes, and in a full run of 10 rounds
of ABC3 there are at least 30 active boxes. Thus, ABC2 doebanat any extended differential characteristic
(without a salt-difference) that has probability highearit{2=6)53 = 2-318, Similarly, ABC3 does not have
such an extended differential characteristic that hasghitity higher than(276)30 = 2180,

7.5 Performance of Our ABCs

In order to check the performance of our suggested ABCs, wd as Intel Xeon E5540 processor with a
2.53GHz CPU and cache size of 8192KB that runs a Red Hat Eigerpinux Server release 5.5. We used
parts of the AES code of Brian Gladman [10] for our ABCs impéarations. The results are summarized in
Table 2 along with the performance results of Gladman’s AR8-code for comparison.

15

Bibliography

[1] Mihir Bellare, John Black, Philip Rogawa@®CB: A Block-Cipher Mode of OperatioACM Transactions
on Information and System Security (TISSEC), vol. 6, no.[8,365-403, August 2003. Earlier version
in Eighth ACM Conference on Computer and CommunicationsufgqCCS-8), ACM Press, 2001.

[2] Mihir Bellare, Anand. Desai, Eron Jokipii, Philip Rogaw A Concrete Security Treatment of Symmetric
Encryption, proceedings of the 38th Annual Symposium on Foundationsoohfititer Science, IEEE,
1997, pp. 394-403.

[3] Eli Biham, Orr Dunkelman,A Framework for Iterative Hash Functions - HAIF&Second NIST Crypto-
graphic Hash Workshop, 2006.

[4] Joan Daemen and Vincent RijmeAES Proposal: RijndaeNIST AES proposal, 1998.

[5] D. W. Davies and W. L. PriceThe Application of Digital Signatures Based on Public-Keypglosystems
Proceeding of Fifth International Computer CommunicaiQonference, pp. 525-530, 1980.

[6] Richard Drews Deanformal Aspects of Mobile Code Securi§h.D Dissertation, Princeton University,
January 1999.

[7] Whitfield Diffie and Martin Edward HellmanPrivacy and Authentication: An Introduction to Cryptog-
raphy, Proceedings of the IEEE, Vol. 67, No. 3, pp. 397-427, Marghdl

[8] Danny Dolev, Cynthia Dwork, Moni NaorNon-Malleable CryptographySIAM Journal on computing,
Vol. 30, No. 2, pp. 391-437, 2000.

[9] Morris Dworkin, Recommendation for Block Cipher Modes of Operation - Metheratd Techniques
NIST Special Publication 800-38A, 2001.

[10] Brian GladmanAES Source Codéttp://www.gladman.me.uk/.

[11] Shafi Goldwasser and Silvio MicalRrobabilistic Encryption,Special issue of Journal of Computer and
Systems Sciences, Vol. 28, No. 2, pp. 270-299, April 1984.

[12] Martin E.Hellman, A Cryptanalytic Time-Memory TradepffEEE Transactions on Information Theory,
Vol. 26, pp. 401-406, July 1980.

[13] John Kelsey and Bruce SchneieBecond Preimages on n-Bit Hash Functions for Much Less than 2
Work EUROCRYPT 2005, pp. 474-490.

[14] Moses Liskov, Ronald L. Rivest, David Wagnéefweakable Block CiphersAdvances in Cryptology —
CRYPTO 2002, Lecture Notes in Computer Science 2442, ppt@1Springer-Verlag, 2002.

[15] Bart Preneel, René Govaerts and Joos Vandewldbesh Functions Based on Block Ciphers: A Synthetic
Approach Crypto 1993, pp. 368-378.

[16] Philip Rogaway, Nonce-Based Symmetric EncryptioRast Software Encryption (FSE) 2004, Lecture
Notes in Computer Science vol. 3017, pp. 348-359, Sprirf4.

[17] US National Institute of Standards and Technolo§gtvanced Encryption Standaréederal Information
Processing Standards Publications No. 197, 2001.

A Security Proofs

A.1 Proof of Lemmal

Lemma 1l Let X be areasonable mode. Th&X is a reasonableA Mode.

Proof. AX is built by replacing the instances of a block cipher¥inwith instances of an ABC. LeE be an
ABC with a block size ofn bits, and letE' be a block cipher with a block size af bits. We show that\ X
fulfills all the conditions of a reasonable AMode.

1. X is a reasonable mode of operation and theretﬁ’rﬁ(-) is a length preserving encryption for every key
K. Therefore,AXE g by its definition, is also a length preserving encryptiondeery keyK and a saliS.

The number of plaintext blocks iAXE S is equal to the number of plaintext bIocksXﬁ and the number
of ciphertext blocks imXE . is equal to the number of ciphertext bIockerf. Therefore, the number of
plaintext blocks imxﬁ 5 equals the number of ciphertext blocks. Moreover, all tianpéxt and ciphertext

blocks ofAXﬁ S aren-bits blocks.
2. Letf; and f, be the functions such that

CZ' — fQ(EK(fl(IV,i,Ml, ...,Mi,Cl, ---aCi—l))7I‘/7 i,Ml, ...,]\4'2',(717 ---aCi—l)-
By its definition,AX is the AMode in which
Ci = fo(Bx s:(f1(IV,i, My, ..., M;, C1, ..., Cio1)), IV, i, My, .oy My, C1, ooy Ci).

(a) By its definition,fs(-; IV, 4, My, ..., M;,C4, ...,C;_1) is a permutation ovef0, 1}".
(b) Denoteyr k. rv,in,,.. . M;_1,Ch,o i (M)
== f2(EK(f1(IV, /l:’ Ml, ey MZ7 Cl, ey CZ—l))? IVY7 Z’, Ml, ey MZ7 Cl’ ceey CZ—1)7
and denot€js rc o rvi vyt y.Ch 0y (M)
= f2(EK,S,i(f1 (IV, i, My, ..., M;,C, ..., Ci—l))> IV i, My, ..., M;,Cq, ..., Cz'—l)- Let £(59) be the block
cipher that is defined b """ (M) = E.4(M). Now we can write:

9B,K,8,1V,i, M, M 1,C1,Ciy Mi) = 9550 1 1V My My, Oy (M)
The function on the right of the last equation is a permutatibhe function on the left side of the
equation §) equals the’th block of AXE g Thus inAX, C; is a permutation of/;.

QED.

A.2 Proof of Theorem 1

Theorem 1 Let X be a reasonablé\Mode. Let E' be anABC. Every possible total length of queriesthat
allows the adversary to be salt-respecting satisfies.s " (o) < SecyP(0).

Proof. Let A be an ind-CPA adversary againkt” that uses; queries of total length of blocks and that
achieves the maximal advantage such an adversary can echiyAdv2g "4 (4) = Sectd (o). We
build an adversary3 againstE that usesr queries and such thatdvi”(B) = Adv% "4 (A).

Let Op be the oracle that answef®s queries O can be eithelZx (-, -,-) or = (-,-,+)). B simulates an
oracleO for A. O works as follows: wheneved makes a query) = (S, M = M||...|| M) to O, B makes
m queries to its own oracl®p: Q; = (5,14, x;) for 1 <1i < m, and gets an answegy, wherez; is the plaintext
input of thes’th instance ofE in X (note thatB is able to calculate;; when necessary). From the answers it
gets for its queriesB calculatesC; = fo(y;, IV, i, My, ..., M;,C4,...,C;—1) and returng = C4||...||Cy,. B
lets A run onO and answers as.

First, we notice that whe®Wp = Ek(-,-,-) thenO = OXIEQ(-, -). This follows immediately from the

building of O. Second, we claim that whepg = (-,) thenO = OﬁE(', -). Thisis becaus€ is a reasonable

mode and as sucki;; is a permutation of;; which is a random string in that case. Therefore, for everyi <

m, C; is actually chosen uniformly at random frof, 1}" and thus('is a random string of Iengd@(ﬁ,S(M)].
Now, we can write:

Advh?(B) = Pr [BEK(""') =1|K L 1o, l}k] —Pr [B”(""') = 1| xil SC’Perm(s,c,n)]

— Pr [AOXIL;('V) —1|K £ o, 1}19] _pr [Aw(.7.) _ 1} = AdvId-CPA(4).

QED.

17

A.3 Proof of Theorem 2

Theorem 2 LetE be an idealABC and letE be an ideal block cipher. For evepyit holds thatSec'™!- G4 (o) >
Secind_cgA (o).
AECB

In order to prove Theorem 2 we need to prove the following tararhas.

Lemma 5 LetE be an idealABC. Let A be anind-CCA adversary againsti FC B¥ that uses no more than a
total of o blocks in its queries. Then there exists a deterministieCCA adversaryA’ that uses no more than

a total of o blocks in its queries and such thatlv'}9 704 (4) < Adviid CCA (A7),

Proof. Consider a representation dfas a decision tree. Letbe a state in the decision tree whet@erforms
a coin-flip. Letus, ..., u,, be the children o, so upon arriving to state, A flips a coin and, according to the
result, decides to which one 0% children it should move. Letl,, be the event in whichl reaches state. The
advantage oA can be written as

Adv™i=CGA(4) = Py [AAECBIEQ(~7A) _ 1‘K £ 1o, 1}k] Py [AOR(-’-) — 1]
—Pr [AO<"') - 1’0 - OE] —Pr [AO<"') = 1’0 = OR]
—Pr [AO<"') - 1’0 — OB A A,U] - Pr [A,U OE] +Pr [AO("') - 1‘0 =0pA ﬂAU] - Pr [—|AU OE]
—Pr [AO("') = 1‘0 =O0rA A,U] -Pr[A,|Or] — Pr [AO("') - 1‘0 = OrA —|AU} - Pr [ﬂAU OR] .
We note thaPr | A°() = 1(AU} = S0 Pr |4,] - Pr [400) = 1‘,4%.].
Define
j = arg max {Pr [AU 0= OE] -Pr [AO("') - 1‘0 = O0p A Aui] —Pr [AU 0= OR] -Pr [AO<"') - 1’0 = Onr A Au, |}

Now, consider the adversa@(“) of which decision tree is identical to the decision treedpbesides the fact
that upon reaching the state A(*) does not flip a coin, but moves 19.

For any statev, denote byO% the event in whictO = O and the adversary (which can be eithieor A()
— according to the context) reaches stat®enote byO ;" the event in whiclO = Of and the adversary does
not reach state. Similarly, denote by); andO;” the events in whicld) = Oy and the adversary reaches or
not, respectively, state.

Obviously, A®) performs one flip-coin less thetrand

18

ARG AY) = Pr [0 =10 = 0p| = Pr [4"C7 =10 = O]

=pr[4) = 1]op] - Pr [A®),|0p| +Pr [AM O = 1]0p] Pr[2A®,[0k]
_ Py [A«u)o«,) _ 1’0/%] - Pr [A<’”)U]OR] —Pr [A«u)o(.,.) _ HOEU] Pr [ﬁA(U)U‘OR]

=P [0 Z 10 P[4, |05 - Pr [4©) = 1]035] - Pr [4®), O]
P [A<,U)o<.,.) _ 1’03] - Pr [ﬂA(’”)U|OE] —Pr [A(u)o<.,.) _ 1|OBU} Pr [ﬂA‘”)U]OR]

> Z Pr [u;|4,] - (Pr[A,]0p] - Pr [4%C) = 1|03] - Pr[4,]0r] - Pr [4°C) = 1|0 = OF])
=
+Pr [0 = 1]op] Pr[2A®,]08] - Pr[A©7 = 1|05"] - Pr [2A™,|Ox]

- i Pr [ui| A,] - Pr [4,]O%] - Pr [AO<"') - 1]0};] - i Pr [ui|Ay] - Pr [Ay|Og] - Pr [AO<"') = 1|o;;:‘]
=1 i=1
P [A"”)O("') _ 1’03] Pr [ﬂA‘”)U\OE] —Pr [A(“)O<"') _ 1‘01;v:| - Pr [ﬂA(’”)UIOR]

=Pr [4%0) = 1|0}] - Pr [4,]05] + Pr [49C) = 1]05"] - Pr [+4,[0]
— Pr [4%0) = 1|0} - Pr [4,] O] = Pr [A°C) = 1]05"] - Pr [=4,]Or]

=Adv'I TSR (A).

By induction, we can create an adversarfywhich does not perform any flip-coins and for whihv';9-FCA(4") >
Advirl SR (A).

QED.

Definition 17 The sequence of queries made byisshCCA adversaryA to an oracleO, and the answers
received for them is denoted bByeam.

When discussing deterministicadversaryA, the output of the adversary in a single run depends only
on the stream generated bys run (and since this is a deterministic adversary, the uwiusigtually depends
only on the answers received by the oracle). Thus, the @otitoh of a single stream that A accepts to the
advantage ofd is the difference between the probability of gettimgvhen A runs onOg and the probability
of gettingu when A runs onOp. Formally, denote by/ the set of all streams upon whichoutputs ‘1. Then,
Advpd=OOR(A) = 3o (Pr[u]O = Op] — Pr{u|O = Og).

Lemma 6 LetX be areasonabl&Mode. LetE' be an idealABC. Let A be a deterministiind-CCA adversary
againstX” that uses no more than a total efblocks in its queries, and such thAdv'?% 9“4 (4) > 0. If
there arel < ¢ streams thatd accepts (outputs ‘1’) then there exists a deterministiceasiry B that uses

no more than a total of blocks in its queries, accep®® < ¢ streams and such thatdv'2§ ““*(B) >
Advig A (A).

Proof. If 2" < fthenB = A and we are done. If < ¢ < 2" then letu be a stream tha#l accepts and
such thatPr[u|O = Og] — Pr[u]O = Og| > 0 (obviously, there is at least one such stream). $ebe the
first salt inu and letC; be the answer to the first block of the first queryuinLet = be a permutation over
{0,1}". Consider the stream, which is identical tou accepts that every answer blocko a query block
with S = Si,t = 1in u is replaced withr(c) in u,. SinceE is an ideal ABC then for each key, the
permutationEx s, 1(-) is chosen uniformly at random. Therefoi;[u,|O = Og] = Pr[u|O = Og]. Of
course Pr[u,|O = Og] = Pr[u|O = Og] = 271*I'"", where|u| is the number of blocks in the querieswfWe
obtain thatPr[u,|O = Og] — Pr[u,|O = Og| = Pr[u|O = Og] — Pr[u|O = Og] > 0.

19

Now, letU 4 be the set of streams thataccepts. Lefr; }2", be a set o™ permutations such that(C;) #

m;(Ch) for everyi # j. LetUp = Ug Uf;l ur, and letB be the adversary that accepts the streams that are in
Up and rejects the other streani$ accepts at leagt” streams and

Adviys 9% (B) = Y (PrfulO = Op] — Pr[u|O = Oxg])
ueUp
>0

= Z (Pr[u]O = Og] — Pr[u|O = Og]) + Z (Pr[u]O = Og] — Pr[u]O = Or])

uelUa ueUp\Ua
>AdviEE 99 (A)

QED.

Now we can prove Theorem 2.

Proof. Let A be anind-CCA adversary againsﬂECBE that uses no more than a total efblocks in
its queries. W.l.g., A is deterministic (following Lemma 5). In casé does not accept any streams then

Adng‘c(;%‘* ', = 0. In case that there are streams tHaiccepts then w.l.g., there are at le2ssuch streams

(following Lemma 6).
Every sequence that accepts is generated i)z with probability of at leasR~"? and therefore, in case
that there are sequences thiaacceptsPr[A9r() = 1] > 2-(e=1) Therefore, we can write

AdvRCCA () = Pr [A%0) = 1|0 = O] = Pr [490) = 1|0 = O] <1 - 277D,

and conclude tha‘iec:;(‘jgg(a) <1 -9 nle=1),
Now, consider arind-CCA adversaryB that works againsfZC' B and is defined as follows3 asks a
single query ofr blocks, all equal and accepts (outputs ‘1’) if and only ifalblocks of the answer are equal.
Obviously,Pr[BO=() = 1] = 1 andPr[B9r() = 1] = 2-e~1)_Therefore we get

ind—CCA ind—CCA _ — -1 ind—CCA
Secihd M (o) > Advind CCA(B) =1 — 27D > Sec L5 (0).

QED.

A.4 Proof of Theorem 3

Theorem 3 Let X be a reasonablé\Mode, and letE be an idealABC. ThenSec5s 4% (o) = 0, where
ATK € {CPA, CCAY}.

In order to prove Theorem 3 we need to prove the following leram

Lemma 7 Let X be areasonable AMode. L&tbe an idealABC. Then, for every messadé = M ||...|| My,
and everyl <i < m,c € {0,1}™:!l K € {0,1}*, S € {0,1}, it holds thatPr[C; = ¢] = 27/M:| where
=X Ib; 5(M) and when the randomness results from choosing the randomutationsE s ; for different
counter values.

Proof. SinceF is an ideal ABC thenf’x ¢ ; is a random permutation chosen uniformly from the permonati
spaces. Therefore, for every possiblec {0,1}:| and for everyy € {0, 1}/M:l we get thatPr[y; = 3] =
Pr[Ek si(x;) =y] = 2~ IMi|

SinceX is a reasonable AMode in whidaf; is a permutation of; then for every: € {0, 1}/l we get that
Pr[C; = ¢] = 27 1Ml

20

QED.

Lemma 8 Let X be a reasonable AMode. L&t be an idealABC. Then, for every messagd, and every
c € {0,1}M, K € {0,1}*, S € {0,1}*, it holds thatPr[C' = ¢] = 2= M| whereC = X% ;(M) and when
the randomness results from choosing the random permotalig s ; for different counter values

Proof. According to Lemma 7Pr[C; = ¢;] = 2~ IMil for everyl < i < m, (Wherem is the number of blocks
in M) and for everye; € {0,1}/Mil. SinceX is a reasonable AMode then all the instancesdh X define
independent permutations and therefore,

Pr[C =] = HPr[C’i =q) = H2_|Mi| = 0~ Xty M — o=IM]
1=1 i=1

QED.

Lemma 9 Let X be a reasonable AMode, & be an idealABC, and letM be a message chosen at random
according to some valid distribution function(i.e., v gives non-zero probability only to messages of length
¢ = |M)|).

Then, for everyn, c € {0,1}¢, K € {0,1}*, S € {0,1}*, it holds thatPr[M = m|C = c] = vy(m), where
=X [’? 5(M) and when the randomness results from choosing the randomutationsE s ; for different
counter values.

Proof. In Lemma 8 we show thaPr[C' = ¢] = 27IM| for every messagé/, and everyc € {0, 1}MI,
K € {0,1}%, S € {0,1}*. Therefore, we can writ®r[C' = ¢|M] = 2~MI. By applying Bayes’ law, and
following thatPr[C = ¢] # 0:

PrM =m] - Pr[C=c|M=m] ~(M)-27¢

r| m|C = ¢ PriC = d 57 v(M)
QED.
Now we can prove Theorem 3.
Proof. For every(a, f) that A can output it holds that
Prla = f(M)|C*] =) Pr[m|C"] = y(m).
m:y(m)>0, m:f(m)=«a
f(m)=a
On the other hand,
Prla = f(M)]= Y ~(m)=Prla= f(M*)|C"].
m:y(m)>0,
fm)=a
QED.

21

