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Abstract. At AFRICACRYPT 2010, a parallelized version of the block cipher Camellia,
called p-Camellia, was proposed. The high level structure of p-Camellia is MISTY-type, while
the round function is SPN-type. In this paper, some structural properties of p-Camellia are
observed. It is shown that compared with Camellia, p-Camellia seems to be more likely to
suffer from integral cryptanalysis, which has been confirmed by the existence of huge 6-round
and 7-round integrals. Following this comes an interesting result that, for any block cipher
with MISTY structure and SPN round function, if the linear transformation in the diffusion
layer is binary, then there always exists 6-round integrals. Moreover, inspired from a recent
work [10], many 5, 6, and 7 rounds impossible differentials in p-Camellia could be obtained.
It should be emphasized that, the techniques from [10] could be generalized to analyze im-
possible differentials of MISTY structure with SPN round function.
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1 Introduction

High-level structures play an essential role in designing block ciphers. There are many well-known
block cipher structures, such as Feistel structure, SPN structure, MISTY structure, Lai-Massay
structure, generalized unbalanced Feistel structure, and etc.. In [4], a kind of generalized unbalanced
Feistel structure with n sub-blocks, called n-cell GF-NLFSR, was proposed with property that
n + 1-round could provide provable security against differential cryptanalysis [3] (DC) and linear
cryptanalysis [13] (LC). This kind of structure was carefully reevaluated in [11] and [16], where
it was shown that there exist n2-round integral distinguisher and n2 + n − 2-round impossible
differential distinguisher.

When n = 2, GF-NLFSR is reduced to a classic block cipher structure, the so-called MISTY
structure [14]. MISTY structure was firstly introduced by Matsui as an alternative scheme of Feistel
structure. In [5], Gilbert and Minier formalized the MISTY structure as the L-scheme and referred
the dual structure as the R-scheme. The advantage of MISTY structure is that it can provide
provable security against DC and LC, offer pseudorandomness and superpseudorandomness, and
meanwhile allow parallel computations in the encryption direction. Due to this, MISTY structure
has been chosen as the underlying high-level structure of the block cipher MISTY2 [15], and



meanwhile, as the basic low-level structure of the round function and the component in block
ciphers MISTY1 [15], MISTY2, and KASUMI [19].

At AFRICACRYPT 2010, MISTY structure with SPN round function was shown to be practical
secure against DC and LC by using a similar approach as [9]. Based on this theory, a new block
cipher p-Camellia [20], which is a parallelized version of Camellia [1], was proposed, and its security
against many other cryptanalytic methods are also discussed.

In this paper, some observations on the structural properties of p-Camellia, or more generally,
MISTY structure with SPN round function, are observed. These structural properties include
integrals [8] and impossible differentials [2, 7]. It is known that there exist 4-round integrals [18]
and 8-round impossible differentials [17] in Camellia. We show that, compared with Camellia,
p-Camellia seems to be more likely to suffer from integral cryptanalysis, which has been confirmed
by the existence of huge 6 and 7-round integrals. Following this comes an interesting result that, for
any block cipher employing MISTY structure and SPN round function, if the linear transformation
in the diffusion layer is binary, then there always exists 6-round integrals. Moreover, inspired from a
recent work [10], we also obtain many 5, 6, and 7 rounds impossible differentials in p-Camellia. We
point out that the techniques from [10] could be generalized to analyze the impossible differentials
of MISTY structure with SPN round function.

The outline of this paper is as follows: some preliminaries are introduced in Section 2. Section
3 shows the existence of 6 and 7 rounds integrals, Section 4 presents an interesting results on
6-round integrals of MISTY structure with SPN round function that employs a binary diffusion
matrix. Section 4 studies the impossible differentials properties of MISTY structure with SPN
round function and applies the results to p-Camellia. And finally, Section 5 concludes this paper.

2 Preliminaries

2.1 MISTY Structure

Consider any block cipher that employs a MISTY structure, see Fig. 1 (Left). Let (Li−1, Ri−1) be
the 2dn-bit input in the i-th round, then the output is defined by

{
Li = Ri−1,
Ri = Ri−1 ⊕ F (Li−1,Ki),

where F (·, ·) is the round function and Ki is the round key. Note that in order to make MISTY
structure invertible, for any fixed round key Ki, F (·,Ki) must be bijective. Assume the plaintext
is P = (L0, R0), then after iterating the above round transformation r times, the ciphertext is
defined as (Rr, Lr).

Block ciphers with MISTY structure can be further categorized into different groups according
to the definition of the round function F . For instance, the round function of the block cipher
MISTY2 adopts a recursive structure, where the round function itself uses another small MISTY
structure. While, the block cipher p-Camellia employs MISTY structure with SPN round function.

In this paper, we focus on block ciphers with MISTY structure and SPN round function, see
Fig.1 (Right). More precisely, the round function consists of three layers of operations: a round
key addition layer, a substitution layer and a diffusion layer. The substitution layer is a non-linear
bijective transformation on Fn

2d defined by n parallel S-boxs on F2d , and they are not necessary
to be identical in different rounds. The diffusion layer employs an invertible linear transformation
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Fig. 1. MISTY Structure (Left) and MISTY Structure with SPN Round Function (Right)

P = (Pi,j)n×n defined over Fn×n
2d . The round key addition layer is defined simply by the exclusive

OR (XOR) of the round-key and the input.

2.2 Notations and Known Results

Let X = (x1, x2, . . . , xn) ∈ Fn
2d be an n-word state with each word being d-bit, ∆X be the difference

of X and X ′, where the difference is the XOR difference, i.e., ∆X = X ⊕X ′. Further, (α1, α2) →
(β1, β2) is used to denote a possible differential with (α1, α2) (resp. (β1, β2)) the input (resp.
output) difference. Similarly, (α1, α2) 9 (β1, β2) represents an impossible differential. Moreover,
the following definitions are needed for integral distinguishers.

Definition 1. A set {ai|ai ∈ F2b , 0 ≤ i ≤ 2b − 1} is active, if for any 0 ≤ i < j ≤ 2b − 1, ai 6= aj.
We use A to denote the active set.

Definition 2. A set {ai|ai ∈ F2b , 0 ≤ i ≤ 2b− 1} is passive or constant, if for any 0 < i ≤ 2b− 1,
ai = a0. We use C to denote the passive set.

Definition 3. A set {ai|ai ∈ F2b , 0 ≤ i ≤ 2b − 1} is balanced, if the XOR-sum of all element of
the set is 0, that is

⊕2b−1
i=0 ai = 0. We use B to denote the balanced set.

Refer to Fig. 2, due to the bijective property of the round function, for any block cipher
with MISTY structure, there always exists 4-round impossible differential (α, 0) 9 (β, β), where
α, β ∈ Fn

2d be any non-zero values and 5-round integral [8] (A,C) → (B, ?), where A, B, and
C denotes a active state, a balanced state, and a passive state. The question mark ? denotes an
unknown state, i.e., the sum of values at this position couldn’t be predicted.
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2.3 Brief Description of p-Camellia

p-Camellia1, a paralleled version of Camellia, shares the same round function and the FL/FL−1

transformation as that of Camellia, except that the high-level structure is modified from Feistel to
MISTY. One can refer Fig. 3 and Fig. 4 to compare the difference between Camellia and p-Camellia.

6-round
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Fig. 3. Description of Camellia

F

F

F

F

F

F

6-round

FL FL
-1

6-round

FL FL
-1

6-round

FL FL
-1

Fig. 4. Description of p-Camellia

The round function F of p-Camellia (Camellia) is SPN-type. It consists of three layers of
operations: a round key addition layer, a substitution layer and a diffusion layer. The substitution
layer is a non-linear transformation S on F8

28 defined by eight parallel S-boxs on F28 . The diffusion
layer is an invertible linear transformation P defined over F8×8

2 . The round key addition layer is
defined simply by the exclusive OR (XOR) of the round-key and the input.

Aided by Fig.5, some useful notations used throughout this paper are given: Let Xi and Yi be
the input and output variable of the i + 1-th round function, Ki+1 be the i + 1-th round-key, i.e.,
Yi+1 = F (Xi ⊕Ki+1). Let Zi be the intermediate variable after the confusion layer in the round
function, i.e., Zi = S(Xi ⊕Ki+1) and Yi = P (Zi).

The non-linear transformation in the confusion layer is defined by

S : F8
28 → F8

28

S(·) = (s1(·), s2(·), s3(·), s4(·), s2(·), s3(·), s4(·), s1(·))
where s1(·), s2(·), s3(·), and s4(·) are some 8× 8 S-boxes.
1 We use the same notations as in [20]. In fact, there is a slight distinction between the basic notation for

Feistel structure in [1] and as that in [20]. However, this dose not influence our analysis. Meanwhile, in
the following sections, we always assume that the left and right part of the output in the last round of
reduced-round p-Camellia are not swapped.
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The linear transformation P in the diffusion layer which provides the avalanche effect and its
inversion P−1 are defined by the following binary matrices

P =




1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0




.

In the following sections, we will use P
(r)
i to denote the i-th row vector of P . Also, as discussed

in many literatures, we only consider p-Camellia without the FL/FL−1 transformation.

3 Integrals of Reduced-Round p-Camellia

From [20], there exists 4-round integrals (A,C) → (S0, S1), where S0 ⊕ S1 is active. In fact, as
shown in [8], there always exists 5-round integrals (A,C) → (B, ?) for MISTY structure. In this
section, we demonstrate some 6 and 7-round integrals in p-Camellia. All of these distinguishers have
been verified experimentally. Note that, these integrals are found by counting methods, which has
been successfully used to find 3-round integrals [12] of the block cipher ARIA and reduced-round
higher-order differentials [6] of Camellia.

3.1 6-round Integrals in p-Camellia

We first present the following two lemmas, whose proofs can be found in the appendixes. Basing
these two lemmas, two kinds of 6-round integral distinguishers could be obtained.

Lemma 1. 2 Let (X0, X1) = ((c, c, c, c, c, c, c, c), (c, c, c, c, x, c, c, c)) be the input of p-Camellia,
where x ∈ F28 is a variable, and all c’s are constants in F28 and they are not necessary to be
identical. Assume the intermediate states after application of the non-linear transformations S in
the i + 1-th round is Zi = (Zi,1, Zi,2, . . . , Zi,8). If x takes all values in F28 , then for any 0 ≤ i ≤ 4,
1 ≤ j ≤ 8, Zi,j is a balanced byte.

Lemma 2. 3 Let (X0, X1) = ((c, c, c, c, c, c, c, c), (x, c, c, c, c, c, c, c)) be the input of p-Camellia,
where x ∈ F28 is a variable, and all c’s are constants in F28 and they are not necessary to be
identical. Assume the intermediate states after application of the non-linear transformations S in
the i + 1-th round is Zi = (Zi,1, Zi,2, . . . , Zi,8). If x takes all values in F28 , then for i = 0, 1, 2,
1 ≤ j ≤ 8, Zi,j is a balanced byte, while for i = 3, 4, and 2 ≤ j ≤ 8, Zi,j is a balanced byte.

2 A similar result could be obtained when the variable x appears at the sixth, seventh or eighth position
of the right part.

3 A similar result could also be obtained when the variable x appears at the second, third or fourth
position of the right part.
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Proposition 1. There exist the following kind of 6-round integral distinguishers in p-Camellia:

– ((C, C, C, C, C, C, C, C), (C, C, C, C, A, C, C, C)) → ((B, B, B, B, B, B, B, B), (?, ?, ?, ?, ?, ?, ?, ?))
– ((C, C, C, C, C, C, C, C), (C, C, C, C, C, A, C, C)) → ((B, B, B, B, B, B, B, B), (?, ?, ?, ?, ?, ?, ?, ?))
– ((C, C, C, C, C, C, C, C), (C, C, C, C, C, C, A, C)) → ((B, B, B, B, B, B, B, B), (?, ?, ?, ?, ?, ?, ?, ?))

– ((C, C, C, C, C, C, C, C), (C, C, C, C, C, C, C, A)) → ((B, B, B, B, B, B, B, B), (?, ?, ?, ?, ?, ?, ?, ?)).

Proof. We just give the proof for the first distinguisher, all the other proofs are similar.
Let

(X0, X1) = ((c, c, c, c, c, c, c, c), (c, c, c, c, x, c, c, c)),

then according to the encryption procedure,

X6,i = Y4,i ⊕ Y3,i ⊕ Y2,i ⊕ Y1,i ⊕ Y0,i ⊕X1,i

= P
(r)
i · (Z4 ⊕ Z3 ⊕ Z2 ⊕ Z1 ⊕ Z0)⊕X1,i.

Lemma 1 tells that each byte of Z0, Z1, Z2, Z3 and Z4 is balanced, thus X6,i is balanced. ut
Proposition 2. There exist the following kind of 6-round integral distinguishers in p-Camellia:

– ((C, C, C, C, C, C, C, C), (A, C, C, C, C, C, C, C)) → ((D, D, D, B, D, B, B, D), (?, ?, ?, ?, ?, ?, ?, ?))
– ((C, C, C, C, C, C, C, C), (C, A, C, C, C, C, C, C)) → ((B, D, D, D, D, D, B, B), (?, ?, ?, ?, ?, ?, ?, ?))
– ((C, C, C, C, C, C, C, C), (C, C, A, C, C, C, C, C)) → ((D, B, D, D, B, D, D, B), (?, ?, ?, ?, ?, ?, ?, ?))

– ((C, C, C, C, C, C, C, C), (C, C, C, A, C, C, C, C)) → ((D, D, B, D, B, B, D, D), (?, ?, ?, ?, ?, ?, ?, ?))

where, the letter “D” also represents some unknown byte, but with the property that all D’s have
the same value in each distinguisher.

Proof. Similarly, we will give the proof for the first distinguisher.
Let

(X0, X1) = ((c, c, c, c, c, c, c, c), (x, c, c, c, c, c, c, c)),

then according to the encryption procedure,

X6,i = Y4,i ⊕ Y3,i ⊕ Y2,i ⊕ Y1,i ⊕ Y0,i ⊕X1,i

= P
(r)
i · (Z4 ⊕ Z3 ⊕ Z2 ⊕ Z1 ⊕ Z0)⊕X1,i.

Lemma 2 shows that each byte of Z0, Z1 and Z2 is balanced, and meanwhile, for 2 ≤ j ≤ 8, Z3,j

and Z4,j are also balanced. Thus
⊕

x∈F28
X6,i =

⊕

x∈F28

(
P

(r)
i · (Z4 ⊕ Z3 ⊕ Z2 ⊕ Z1 ⊕ Z0)⊕X1,i

)

=
⊕

x∈F28
P

(r)
i · (Z4 ⊕ Z3)

=
⊕

x∈F28

8⊕

j=1

pi,j · (Z4,j ⊕ Z3,j)

=
⊕

x∈F28
pi,1 · (Z4,1 ⊕ Z3,1) (1)
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From the definition of P , p4,1 = p6,1 = p7,1 = 0, which implies that for these positions i = 4, 6, 7,
X6,i are balanced.

Now the case 1 ≤ i ≤ 8 with i 6= 4, 6, 7 should be considered. In these situations, pi,1 = 1, and
Eq.(1) becomes

⊕

x∈F28
X6,i =

⊕

x∈F28
(Z4,1 ⊕ Z3,1).

Thus, for any position i, the sum of X6,i are all equal to the sum of Z4,1⊕Z3,1. From the calculation
of Z4,1 and Z3,1 as described in the proof of Lemma 2, the sum of Z4,1⊕Z3,1 over x ∈ F28 is indeed
only dependent with the constants of the inputs corresponding to the passive bytes. ut

Remark 1. The above two kinds of 6-round integrals presented in Proposition 1 and Proposition 2
contains only one active byte. However, using a similar technique, other kinds of integrals, which
contains two, three or more active bytes could be obtained. For instance, consider 6-round
p-Camellia, assume the left part of the input is a constant, and the right part of the input
includes two active bytes (the active position indexes could be chosen arbitrary), then each byte
of the left part of the output is balanced.

3.2 7-round Integrals in p-Camellia

In this sub-section, we present the following 7-round integral distinguishers of p-Camellia. The
proof is also based on counting methods and the detail is omitted.

Proposition 3. There exist the following kind of 7-round integral distinguishers in p-Camellia:

– ((C, C, A3, A4, A5, C, C, C), (C, C, C, C, C, C, C, C)) → ((D, D, D, B, D, B, B, D), (?, ?, ?, ?, ?, ?, ?, ?))
– ((A1, C, C, A4, C, A6, C, C), (C, C, C, C, C, C, C, C)) → ((B, D, D, D, D, D, B, B), (?, ?, ?, ?, ?, ?, ?, ?))
– ((A1, A2, C, C, C, C, A7, C), (C, C, C, C, C, C, C, C)) → ((D, B, D, D, B, D, D, B), (?, ?, ?, ?, ?, ?, ?, ?))

– ((C, A2, A3, C, C, C, C, A8), (C, C, C, C, C, C, C, C)) → ((D, D, B, D, B, B, D, D), (?, ?, ?, ?, ?, ?, ?, ?))

where “Ai‖Aj‖Ak” denotes an active state over the corresponding three bytes (i, j, k), the letter
“D” have the same meanings as described in Proposition 2.

4 Further Results on Integrals of MISTY Structure with SPN Round
Function

This section focuses on block ciphers with MISTY structure and SPN round function as mentioned
in Section 2. Let’s further consider such block cipher with additional property that the diffusion
layer employs a binary invertible matrix P , i.e., P ∈ Fn×n

2 . The main result of this section is to
demonstrate the existence of 6-round integral distinguishers for such a kind of block cipher.

To describe these distinguishers more clearly, we simplify the notations for “balanced” and
“unknown” states. From now on, the number “0” will be used to denote a balanced state, and
“1” will be used to denote a unknown state with the property that if there are several “1”s in the
distinguishers, they are of the same value.
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Within these notations, the following 6-round integral distinguisher of p-Camellia

((C, C, C,C, C, C,C, C), (C, C, A,C, C, C,C, C)) → ((D, B, D,D, B,D, D,B), (?, ?, ?, ?, ?, ?, ?, ?))

can be simply denoted as
(LC , R3) → ((1, 0, 1, 1, 0, 1, 1, 0), ?),

where Ri represents that the i-th component of the right half of the input is active, while LC denotes
that the left half is fixed to a constant. The main convenience is to denote (D, B, D,D, B, D, D,B)
by (1, 0, 1, 1, 0, 1, 1, 0).

In general, by adopting the technique in Section 3, we have the following result:

Proposition 4. For any block cipher with MISTY structure and SPN round function, let the
diffusion matrix be a binary matrix P , then there always exists the following kind of 6-round
integral distinguisher:

(LC , Rj) → (pj,j · PT
j , ?),

where Pj is the j-th column vector of P , and PT
j denotes the transpose of Pj.

5 Impossible Differentials of MISTY Structure with SPN Round
Function with Application to p-Camellia

As shown in [20], there exists 4-round impossible differential (α, 0) 9 (β, β) in p-Camellia, where
α 6= 0 and β 6= 0. Moreover, the designers confirmed that they didn’t find impossible differentials
with more than 4 rounds.

In this section, we briefly describe how to adopt the technique from [10] to study the impossible
differential properties of any block ciphers with MISTY structure and SPN round function. And
then apply these criteria to detect reduced-round impossible differentials in p-Camellia. Now let’s
denote such a kind of block cipher by E , and further denote the diffusion matrix of E by P =
(pi,j)n×n and its inversion by P−1 = (qi,j)n×n.

As will be shown later, such process resembles at a large extent the case of SPN ciphers, and
all proofs of these criteria are similar as that of [10], thus the details are omitted. To facilitate our
analysis, we use the same notations as in [10]. Particulary, we use ej to denote an n-word state
with the j-th position being non-zero and all other positions being zero.

Assume the input difference of E is (α, 0) with α 6= 0, then according to the encryption proce-
dure, the output differences in the first h1 rounds, where h1 = 1, 2, 3, 4, can be described as

( α , 0 )
( 0 , P ◦ S(α) )
( P ◦ S(α) , P ◦ S(α) )
( P ◦ S(α) , P ◦ S ◦ P ◦ S(α)⊕ P ◦ S(α))
(P ◦ S ◦ P ◦ S(α)⊕ P ◦ S(α) , ? )

where ? denotes some unknown difference that are not considered by us.
Similarly, assume the the output difference of E is (β, β) with β 6= 0, then from the decryption

direction, the output differences in the last h2 rounds, where h2 = 1, 2, 3, can be described as

10



( S−1 ◦ P−1 ◦ S−1 ◦ P−1(β) , S−1 ◦ P−1(β))
( S−1 ◦ P−1(β) , 0 )
( 0 , β )
( β , β )

The above two evolutional properties of the differences are very useful for our study on the
impossible differential properties of MISTY structure with SPN round function.

5.1 5-round Impossible Differentials

By adopting the technique in analyzing 3-round impossible differentials as shown in [10], if we
choose h1 = 3 and h2 = 2, and let α = ei, β = ej , then we can use the following equation

P ◦ S(ei) = S−1 ◦ P−1(ej) (2)

to present a similar criterion to characterize the case of 5-round impossible differentials.

Proposition 5. If there exists a k ∈ {1, 2, . . . , n}, such that Hw(pk,i, qk,j) = 1, then (ei, 0) 9
(ej , ej) is a 5-round impossible differential of E.

5.2 6-round Impossible Differentials

If we choose h1 = 3 and h2 = 3, and let α = ei, β = ej , then the following equation

S−1 ◦ P−1 ◦ S−1 ◦ P−1(ej) = P ◦ S(ei) (3)

could be used to analyze the case of 6-round impossible differentials. The criteria can be further
divided into the following cases:

Proposition 6. For any 1 ≤ i, j ≤ n, let Ui = {r|pr,i = 0} = {r1, r2, . . . , ru}, Vj = {t|qt,j 6= 0} =
{t1, t2, . . . , tv}, and

Mi,j = (qra,tb
)u×v =




m1

m2

...
mu


 ,

where each ma is the a-th row vector of Mi,j, a = 1, 2, . . . , u. If Ui, Vj 6= ∅, and there exists an
l ∈ {1, 2, . . . , u}, such that Hw(ml) = 1, then (ei, 0) 9 (ej , ej) is a 4-round impossible differential
of E.

Proposition 7. For any 1 ≤ i, j ≤ n, let Ui = {r|pr,i = 0} = {r1, r2, . . . , ru}, Vj = {t|qt,j 6= 0} =
{t1, t2, . . . , tv} and Mi,j = (qra,tb

)u×v = (m1,m2, . . . , mv), where each mb is the b-th column vector
of Mi,j. If Ui, Vj 6= ∅, and there exists an l ∈ {1, 2, . . . , v}, such that rank{{m1,m2, . . . , mv}\{ml}} <
rank{m1,m2, . . . , mv}, then (ei, 0)9 (ej , ej) is a 6-round impossible differential of E.
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Proposition 8. For any 1 ≤ i, j ≤ n, let Ui = {r|pr,i = 0} = {r1, r2, . . . , ru}, Wi = {s|ps,i 6=
0} = {s1, s2, . . . , sw}, Vj = {t|qt,j 6= 0} = {t1, t2, . . . , tv}, and

Mi,j = (qra,tb
)u×v =




m1

m2

...
mu


 , M ′

i,j = (qsa,tb
)w×v =




m′
1

m′
2

...
m′

w


 ,

where each ma (resp. m′
a) denotes the a-th row vector of Mi,j (resp. M ′

i,j). If Ui,Wi, Vj 6= ∅, and
there exists an l ∈ {1, 2, . . . , w}, such that rank{m1,m2, . . . , mu,m′

l} = rank{m1,m2, . . . , mu},
then (ei, 0)9 (ej , ej) is a 6-round impossible differential of E.

We remind here that, if α = ei, β = P (ej), then Eq.(3) becomes the following

S−1 ◦ P−1 ◦ S−1(ej) = P ◦ S(ei) (4)

based on which, finding 6-round impossible differentials of the form (ei, ei)9 (P (ej), P (ej)) could
be degenerated into the 5-round impossible differentials.

Proposition 9. If there exists a k ∈ {1, 2, . . . , n}, such that Hw(pk,i, qk,j) = 1, then (ei, 0) 9
(P (ej), P (ej)) is a 6-round impossible differential of E.

5.3 7-Round Impossible Differentials

If we choose h1 = 4 and h2 = 3, then the following equation

P ◦ S ◦ P ◦ S(α)⊕ P ◦ S(α) = S−1 ◦ P−1 ◦ S−1 ◦ P−1(β),

which is equivalent to

P−1 ◦ S−1 ◦ P−1 ◦ S−1 ◦ P−1(β) = S ◦ P ◦ S(α)⊕ S(α), (5)

could be used to analyze 7-round impossible differentials. Let α = ei and β = P (ej), the 7-round
case could be degenerated into the 6-round case as follow

P−1 ◦ S−1 ◦ P−1 ◦ S−1(ej) = S ◦ P ◦ S(ei)⊕ S(ei), (6)

based on which, we could obtain similar results as in Section 5.2 but with slight modifications.

Proposition 10. For any 1 ≤ i, j ≤ n, let Ui = {r 6= i|pr,i = 0} = {r1, r2, . . . , ru}, Vj = {t|qt,j 6=
0} = {t1, t2, . . . , tv}, and

Mi,j = (qra,tb
)u×v =




m1

m2

...
mu


 ,

where each mi denotes the i-th row vector of Mij. If Ui, Vj 6= ∅, and there exists an l ∈ {1, 2, . . . , u},
such that Hw(ml) = 1, then (ei, 0)9 (P (ej), P (ej)) is a 7-round impossible differential of E.
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Proposition 11. For any 1 ≤ i, j ≤ n, let Ui = {r 6= i|pr,i = 0} = {r1, r2, . . . , ru}, Vj =
{t|qt,j 6= 0} = {t1, t2, . . . , tv}, and Mi,j = (qra,tb

)u×v = (m1,m2, . . . , mv), where each mi is
the i-th column vector of Mi,j. If Ui, Vj 6= ∅, and there exists an l ∈ {1, 2, . . . , v}, such that
rank{{m1,m2, . . . , mv}\{ml}} < rank{m1,m2, . . . , mv}, then (ei, 0)9 (P (ej), P (ej)) is a 7-round
impossible differential of E.
Proposition 12. For any 1 ≤ i, j ≤ n, let Ui = {r 6= i|pr,i = 0} = {r1, r2, . . . , ru}, Wi = {s 6=
i|ps,i 6= 0} ∪ {i|pi,i = 0} = {s1, s2, . . . , sw}, Vj = {t|qt,j 6= 0} = {t1, t2, . . . , tv}, and

Mi,j = (qra,tb
)u×v =




m1

m2

...
mu


 , M ′

i,j = (qra,tb
)w×v =




m′
1

m′
2

...
m′

w


 ,

where each mi (resp. m′
i) denotes the i-th row vector of Mi,j (resp. M ′

i,j). If Ui,Wi, Vj 6= ∅, and
there exists an l ∈ {1, 2, . . . , w}, such that rank{m1,m2, . . . , mu,m′

l} = rank{m1,m2, . . . , mu},
then (ei, 0)9 (P (ej), P (ej)) is a 7-round impossible differential of E.

5.4 Applications to p-Camellia

Since the linear transformation P of p-Camellia and its inversion P−1 are defined by

P =




1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0




, P−1 =




0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1




,

we can use the results from Section 5.1 ∼ 5.3 to find the following 5, 6, and 7 rounds impossible
differentials in p-Camellia.

5-round Impossible Differentials of p-Camellia From Proposition 5, for any 1 ≤ i, j ≤ 8,
(ei, 0) 9 (ej , ej) is a 5-round impossible differential of p-Camellia, since we can find a 1 ≤ k ≤ 8
such that pk,i + qk,j = 1.

6-round Impossible Differentials of p-Camellia

Case 1. From Proposition 6, we do not find 6-round impossible differentials of p-Camellia.

Case 2. Table 1 shows 6-round impossible differentials of p-Camellia found by Proposition 7.

Case 3. Table 2 shows 6-round impossible differentials of p-Camellia found by Proposition 8.
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Table 1. Case 2: 6-round impossible differentials ei 9 ej of p-Camellia

i j i j i j i j

1 1, 2, 5 2 2, 3, 6 3 3, 4, 7 4 1, 4, 8

Table 2. Case 3: 6-round impossible differentials ei 9 ej of p-Camellia

i j i j i j i j

1 1, 4, 6, 7 3 2, 3, 5, 8 5 1 7 3

2 1, 2, 7, 8 4 3, 4, 5, 6 6 2 8 4

Case 4. From Proposition 9, for any 1 ≤ i, j ≤ 8, (ei, 0) 9 (P (ej), P (ej)) is a 6-round impossible
differential of p-Camellia.

Example 1. Given i = j = 1, then U1 = {4, 6, 7}, and V1 = {2, 3, 4, 5, 8}, thus

M1,1 =




1 1 0 1 0
1 1 0 1 1
0 1 1 1 0


 , (m1,m2,m3,m4,m5).

One can verify that

rank{{m1,m2,m3,m4,m5}\{m5}} = 2 < 3 = rank{m1,m2, . . . , m5},
thus (e1, 0)9 (e1, e1) is a 6-round impossible differential of p-Camellia.

Example 2. Given i = j = 1, then U1 = {4, 6, 7}, W1 = {1, 2, 3, 5, 8}, and V1 = {2, 3, 4, 5, 8}, thus

M1,1 =




1 1 0 1 0
1 1 0 1 1
0 1 1 1 0


 =




m1

m2

m3


 , M ′

1,1 =




1 1 1 0 1
0 1 1 1 1
1 0 1 1 1
1 0 0 1 1
0 0 1 0 1




=




m′
1

m′
2

m′
3

m′
4

m′
5




.

One can see that m′
2 = m1 + m2 + m3, thus

rank{m1,m2,m3,m
′
2} = rank{m1,m2,m3},

accordingly, we obtain the same 6-round impossible differential (e1, 0)9 (e1, e1).

7-round Impossible Differentials of p-Camellia From the results in Section 5.3,
(ei, 0) 9 (P (ej), P (ej)) is a 7-round impossible differential of p-Camellia, where i, j are chosen
from Table 1 and Table 2.

6 Conclusion

This paper observes some structural properties of MISTY structure with SPN round function. And
Table 3 lists the comparison between Camellia and p-Camellia from the viewpoint of the integral
and impossible differential. The main difference is due to the underlying structure changing from
Feistel to MISTY, and meanwhile some properties of the linear transformations in the SPN round
function. This remind us that, the cryptographic properties of MISTY structure should be carefully
studied, especially when the round function is implemented with SPN-type round functions.
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Table 3. Comparisons between Camellia and p-Camellia

Integral Impossible Differential Ref.

Camellia 4-round 8-round [17, 18]

p-Camellia 4-round 4-round [20]

p-Camellia 7-round 7-round This Paper
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A Proof of Lemma 1

Proof. According to the encryption procedure as shown in Fig 5, we have

X2 = (c, c, c, c, x⊕ c, c, c, c),

from which it’s easy to show the balanced property for each byte of Z0, Z1 and Z2. Below will deal
with the cases for Z3 and Z4.

A.1 Proof for the balanced property of Z3,j.

We have

Z3 = S(X3 ⊕K4)
= S(Y1 ⊕ Y0 ⊕X1 ⊕K4)
= S(P (Z1)⊕X1 ⊕ C ′) (7)

where C ′ = Y0 ⊕K4 = P (S(X0 ⊕K1))⊕K4 is some 64-bit unknown constant.
Noting that

X1 = (c, c, c, c, x, c, c, c),

we will get

Z1 = S(X1 ⊕K2) = (c, c, c, c, s2(x⊕ k2,5), c, c, c) , (c, c, c, c, z1,4, c, c, c),

and

P (Z1) = (c, z1,4 ⊕ c, z1,4 ⊕ c, z1,4 ⊕ c, c, z1,4 ⊕ c, z1,4 ⊕ c, z1,4 ⊕ c).

Thus,

P (Z1)⊕X1 = (c, z1,4 ⊕ c, z1,4 ⊕ c, z1,4 ⊕ c, x⊕ c, z1,4 ⊕ c, z1,4 ⊕ c, z1,4 ⊕ c).

Since z1,4 = s2(x⊕ k2,5), according to Eq.(7), each byte of Z3 is balanced.
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A.2 Proof for the balanced property of Z4,j.

We have

Z4 = S(X4 ⊕K5)
= S(Y2 ⊕ Y1 ⊕ Y0 ⊕X1 ⊕K5)
= S(P (Z2)⊕ P (Z1)⊕X1 ⊕ C ′′) (8)

where C ′′ = Y0 ⊕K5 = P (S(X0 ⊕K1))⊕K5 is some 64-bit unknown constant.
Noting that

X2 = (c, c, c, c, x⊕ c, c, c, c),

we will get

Z2 = S(X2 ⊕K3) = (c, c, c, c, s2(x⊕ c⊕ k3,5), c, c, c) , (c, c, c, c, z2,4, c, c, c),

and
P (Z2) = (c, z2,4 ⊕ c, z2,4 ⊕ c, z2,4 ⊕ c, c, z2,4 ⊕ c, z2,4 ⊕ c, z2,4 ⊕ c).

Thus, P (Z2)⊕ P (Z1)⊕X1 becomes

(c, z1,4⊕ z2,4⊕ c, z1,4⊕ z2,4⊕ c, z1,4⊕ z2,4⊕ c, x⊕ c, z1,4⊕ z2,4⊕ c, z1,4⊕ z2,4⊕ c, z1,4⊕ z2,4⊕ c).

Since z1,4 ⊕ z2,4 = s2(x ⊕ c ⊕ k2,5) ⊕ s2(x ⊕ k3,5) represents the output difference of the S-box
s2(·), each possible value of z1,4 ⊕ z2,4 appears even times. According to Eq.(8), each byte of Z4 is
balanced. ut

B Proof of Lemma 2

Proof. According to the encryption procedure as shown in Fig 5, we have

X2 = (x⊕ c, c, c, c, c, c, c, c),

from which it’s also easy to show the balanced property for each byte of Z0, Z1 and Z2. Now the
case for Z3 and Z4 is a little involved.

B.1 The Case for Z3,i.

As demonstrated in Lemma 1, we have

Z3 = S(X3 ⊕K4) = S(P (Z1)⊕X1 ⊕ C ′). (9)

Noting that
X1 = (x, c, c, c, c, c, c, c),

we will get

Z1 = S(X1 ⊕K2) = (s1(x⊕ k2,1), c, c, c, c, c, c, c) , (z1,1, c, c, c, c, c, c, c),

and
P (Z1) = (z1,1 ⊕ c, z1,1 ⊕ c, z1,1 ⊕ c, c, z1,1 ⊕ c, c, c, z1,1 ⊕ c).

Thus,
P (Z1)⊕X1 = (z1,1 ⊕ x⊕ c, z1,1 ⊕ c, z1,1 ⊕ c, c, z1,1 ⊕ c, c, c, z1,1 ⊕ c).

Since z1,1 = s1(x⊕ k2,1), according to Eq.(9), each byte of Z3, except the first one, is balanced.
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B.2 The Case for Z4,i.

Similarly, we have

Z4 = S(P (Z2)⊕ P (Z1)⊕X1 ⊕ C ′′). (10)

Noting that
X2 = (x⊕ c, c, c, c, c, c, c, c),

we will get

Z2 = S(X2 ⊕K3) = (s1(x⊕ c⊕ k3,1), c, c, c, c, c, c, c) , (z2,1, c, c, c, c, c, c, c),

and
P (Z2) = (z2,1 ⊕ c, z2,1 ⊕ c, z2,1 ⊕ c, c, z2,1 ⊕ c, c, c, z2,1 ⊕ c).

Thus, P (Z2)⊕ P (Z1)⊕X1 becomes

(z1,1 ⊕ z2,1 ⊕ x⊕ c, z1,1 ⊕ z2,1 ⊕ c, z1,1 ⊕ z2,1 ⊕ c, c, z1,1 ⊕ z2,1 ⊕ c, c, c, z1,1 ⊕ z2,1 ⊕ c).

Since z1,1 ⊕ z2,1 = s1(x ⊕ k2,1) ⊕ s1(x ⊕ c ⊕ k3,1) represents the output difference of s2(·), each
possible value of z1,1 ⊕ z2,1 appears even times. According to Eq.(10), each byte of Z4, except the
first one, is balanced. ut
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