The new SHA-3 software shootout

Daniel J. Bernstein! and Tanja Lange?

! Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607-7045, USA
djb@cr.yp.to
2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org

1 Introduction

This paper introduces a new graphing mechanism to allow easy comparison of software
performance of the SHA-3 candidates. The new mechanism concisely captures a large amount
of performance data without oversimplifying the data.

We have integrated this graphing mechanism into our eBASH (ECRYPT Benchmark-
ing of All Submitted Hashes) project. New graphs are automatically posted at the top
of http://bench.cr.yp.to/results-sha3.html whenever the eBASH performance results
are updated. This paper includes snapshots of these graphs, but readers are advised to check
the web page for the latest updates. See http://bench.cr.yp.to for more information
regarding eBASH.

For each function there is also a similar graph online comparing implementations of that
function, showing in a concise way which implementations are slow or non-functional. Im-
plementors can follow links from http://bench.cr.yp.to/primitives-sha3.html to find
these graphs. Of course, users concerned about performance will reject slower implemen-
tations in favor of faster implementations, so the shootout graphs reflect only the fastest
implementations.

2 Understanding the graphs

It is tempting to report the software performance of a SHA-3 candidate as a single number:
the time to hash a message. One could then summarize the performance of SHA-2 and the
5 SHA-3 candidates as 6 points in a one-dimensional graph.

However, as discussed in this section, the time to hash a message depends heavily on the
message length and on the CPU used for hashing. A graph showing these dependencies is
naturally three-dimensional: one axis shows message length, one axis shows the CPU, and
one axis shows time. Furthermore, on the time axis there are actually 10 points rather than
6, as explained below.

The graphs in this paper put time on the horizontal axis and the platform on the vertical
axis. Message length is on the page axis: the first, second, third, fourth, fifth, and sixth

This work was supported in part by the European Commission under Contract ICT-2007-216676 ECRYPT II and
in part by NIST grant 60NANB10D263. Permanent ID of this document: e04ab717clbalbe3eb5e2fe4c6£8568a3.
Date: 2012.01.03.

http://bench.cr.yp.to/results-sha3.html
http://bench.cr.yp.to
http://bench.cr.yp.to/primitives-sha3.html

2 Daniel J. Bernstein and Tanja Lange

pages show long messages, 4096-byte messages, 1536-byte messages, 576-byte messages, 64-
byte messages, and 8-byte messages respectively.

The graphs are longer horizontally than vertically, with a 4 x 3 format to fit typical
projector screens. This document has a format that is higher than long, to fit typical printers,
so we rotated the graphs 90 degrees to the right. In the following description we continue
to say “horizontal” and “vertical” as if this rotation had not occurred: we expect readers to
undo the rotation, turning the graphs 90 degrees to the left to look at them, so that the text
inside the graphs is horizontal.

2.1 Vertical axis: architecture/microarchitecture/CPU /machine

An Apple iPhone 4 contains an Apple A4 CPU with a single ARM Cortex A8 core running
at 1GHz (10° CPU cycles per second). A desktop computer bought at the same time might
contain an AMD Phenom IT X6 1100T CPU with six cores running at 3.3GHz (3.3-10° CPU
cycles per second on each core, for a total of 19.8 - 10° CPU cycles per second). It is not
surprising that the second CPU can hash an order of magnitude more data per second than
the first.

SUPERCOP measures cryptographic software on a single CPU core. Most hash functions,
and in particular all SHA-3 candidates, fit within a single core, so hashing N separate
messages on N cores scales in the obvious way. SUPERCOP also reports timings in CPU
cycles, rather than microseconds or nanoseconds.

These steps drastically reduce the variability in measurements across CPUs. However,
they do not eliminate the variability. Different CPUs have different “microarchitectures”
carrying out different amounts of work in a cycle: CPUs vary in the number of fast arithmetic
operations per cycle (typically between 1 and 3), the maximum size of those arithmetic
operations (typically 32 bits or 64 bits), the availability of vector operations, the availability
of AES arithmetic, etc. The impact varies from one hash function to another.

Our new graphs sort benchmarked machines according to their CPU microarchitecture.
Each microarchitecture is given the same amount of vertical space; that space is partitioned
evenly between the machines with that microarchitecture (but leaving slightly more space at
the top and bottom of each microarchitecture). The obvious presumption is that machines
with the same CPU microarchitecture will have the same hashing performance, so the points
within a microarchitecture will be aligned vertically; this indeed happens in most cases, and
the occasional deviations are immediately visible. The most common reasons for deviations
are the following:

— The performance of C implementations is often compromised by compiler stupidity. The
level of stupidity varies with the compiler version, which in turn varies from one machine
to another. This effect is generally reduced for implementations that include assembly
language or other microarchitecture-specific optimizations; an extreme defense against
compiler stupidity is to submit a complete assembly-language implementation produced
by a better compiler. All of the SHA-3 finalist teams have submitted microarchitecture-
specific implementations, although not always for all architectures of interest. JH deserves
special note because at this point the JH designer has submitted only round-2 JH imple-
mentations, not round-3 JH implementations; most of the round-3 JH speeds currently re-

The new SHA-3 software shootout 3

ported are from a slow third-party implementation that has no microarchitecture-specific
optimizations.

— Sometimes a hash function has to wait because CPU resources are being consumed by
another process. Occasional interruptions are automatically filtered out (they do not affect
the quartiles), but “hyperthreading” interruptions produce a pervasive, hard-to-analyze
slowdown. Machines known to have hyperthreading are marked with “threads” in red.

— Sometimes a hash function runs more slowly because a machine does not have the latest
implementations. SUPERCOP versions more than six months old are marked in red.

— Sometimes a hash function runs more quickly because a CPU is dynamically overclocked
(while the cycle counter is not). Machines known to have dynamic overclocking are marked
with “boost” in red.

Machines are labelled on the right side of each graph, and microarchitectures are labelled
in a larger font on the left side of each graph. Microarchitectures are sorted according to a
particular metric of overall performance (fewest cycles on top, most cycles on the bottom),
giving each graph a general rightwards slope. Machines within one microarchitecture are
sorted according to the same metric. The metric is a prototype; the order of microarchitec-
tures may change later, with the goal of bringing similar microarchitectures together and
reducing “jumps” in the graph.

2.2 Page axis: message length

It is not surprising that long messages take more time to process than short messages.
These graphs report cycles per message byte, rather than cycles. This reduces the variability
among different message lengths but does not eliminate it: all hash functions have overheads
that become severe for short messages. The impact of these overheads varies from one hash
function to another.

The selection of message lengths for these graphs matches the selection used for the
ECRYPT Stream Cipher Project (eSTREAM). Long-message performance is currently de-
fined as the difference between 4096-byte cycles and 2048-byte cycles, divided by 2048.

We are investigating ways for readers to view similar graphs for many more message
lengths. Consider, for example, two hash functions that each use 20 cycles per byte for 64-
byte messages, and 80 cycles per byte for 8-byte messages. One cannot safely interpolate
between these figures to predict the performance of an application hashing 40-byte messages
with either hash function. Perhaps the first function handles messages in 32-byte blocks,
and thus uses 32 cycles per byte for 40-byte messages. Perhaps the second function handles
messages in 8-byte blocks but adds 6 blocks of finalization to each message, and thus uses
only about 25 cycles per byte for 40-byte messages. The most common block size among
SHA-3 finalists is 64 bytes, but there are several exceptions: blake512 and groest1512 (like
shab12) use 128 bytes; keccakc512 uses 136 bytes; keccakc1024 uses 72 bytes.

2.3 Horizontal axis: time

The time axis is cycles per byte, as explained above. The fastest SHA-3 candidates are on
the left: fewest cycles per byte. The slowest SHA-3 candidates are on the right: most cycles

4 Daniel J. Bernstein and Tanja Lange

per byte. The scale is logarithmic, so a constant horizontal distance means a constant ratio
in performance; powers of 2 are marked at equal intervals on the bottom of each graph.

Color, either on a display or on a printout, is important for the readability of these graphs.
We use dark blue for Skein, red for BLAKE, purple for Keccak, green for Grgstl, light blue
for JH, and black for SHA-2.

Normally there are 10 points marked on each horizontal line. These points consist of 6
crosses (connected by single lines) for SHA-256 and the five SHA-3-256 candidates, and 6 dots
(connected by double lines) for SHA-512 and the five SHA-3-512 candidates. The JH propos-
als for SHA-3-256 and SHA-3-512, namely round3jh256 and round3jh512, have identical
performance. The Skein proposals for SHA-3-256 and SHA-3-512, namely skein512256 and
skeinb512512, also have identical performance to each other. This is why there are normally
only 10 points visible rather than 12.

Other candidates vary in performance between 256 bits and 512 bits. The Keccak propos-
als for SHA-3-256 and SHA-3-512, namely keccakc512 and keccakc1024, are similar to Skein
and JH in having essentially the same processing for each block, but keccakc1024 handles
fewer message bytes per block, making it approximately 1.9 times slower than keccakc512.
The Grgstl proposals, namely groest1256 and groest1512, have different state sizes, mak-
ing the performance harder to predict; groest1512 is consistently slower than groest1256
but the ratio depends on the CPU. The BLAKE proposals, namely blake256 and blake512,
have different state sizes and different internal word sizes (similar to SHA-256 and SHA-512);
blakeb12 is consistently slower than blake256 on 32-bit CPUs, but blake256 is slower than
blake512 on most 64-bit CPUs.

Some of the points in the graphs are surrounded by horizontal lines. Each measurement
is repeated many times; the line stretches from the first quartile of these measurements to
the third quartile, and the point is plotted at the median. The lines are actually plotted
around each point, but are usually not visible. Long horizontal lines should thus be taken
as a warning: they indicate high variations in measurements. Don’t trust any benchmarking
system that fails to report variations in its measurements!

2.4 Alternate functions

All of the submissions have also specified 224-bit and 384-bit functions. There is no evidence
of any interest in the performance of these functions. In all cases except for Keccak the
224-bit function has the same speed as the 256-bit function, and the 384-bit function has
the same speed as the 512-bit function.

The Keccak documentation defines, and recommends, two more functions with the 256-
bit and 512-bit output sizes, namely keccak truncated to 256 or 512 bits. These functions
have the same performance as each other, about 6% slower than the keccakc512 proposal
for SHA-3-256.

The Skein documentation defines another function with 256-bit output size, namely
skein256256. The Skein team has pressured ASIC implementors, FPGA implementors, and
microcontroller implementors to report area measurements for skein256256 and omit area
measurements for skein512256, since skein512256 consumes about twice as much space.
However, the Skein submission to NIST clearly proposes skein512256 for SHA-3-256 and
skein512512 for SHA-3-512, and includes corresponding test vectors.

The new SHA-3 software shootout 5

The graphs in this document focus solely on the proposals for SHA-3-256 and SHA-3-512,
and omit alternate functions defined in the same documents.

3 A brief survey of architectures and microarchitectures

Four different architectures are included in the graphs: armeabi, ppc32, x86, and amd64.
Software written in assembly language (by hand or by a compiler) is written for only one of
these architectures and will not work on the others. (Note regarding names: AMD introduced
the amd64 architecture; Intel copied the architecture and now refers to it as “Intel 64”; some
operating systems refer to amd64 as “x86-64".)

Many more microarchitectures are included in the graphs. In some cases there are large
performance differences between microarchitectures sharing the same architecture. Some-
times one microarchitecture includes useful additional instructions that will not work on
other microarchitectures: for example, Westmere and Sandy Bridge (and the very new Ivy
Bridge and Bulldozer, not yet benchmarked) all support AES instructions that are useful
for Grgstl, while other amd64 microarchitectures do not. Furthermore, even when the same
instructions work on all amd64 microarchitectures, they usually work at different speeds on
different microarchitectures. Software can be written so that it will work on, e.g., all of the
amd64 microarchitectures, but the best results are usually obtained by separate software
optimized for each microarchitecture.

The best-known line of microarchitectures is Intel’s series of high-power microarchitec-
tures:

— amd64 C2 65nm. CPU examples: 2006 Intel Core 2 Duo E6300; 2007 Intel Core 2 Duo
E4600.

amd64 C2 45nm. CPU examples: 2007 Intel Xeon E5420; 2008 Intel Core 2 Duo E8400.
amd64 Nehalem. CPU examples: 2008 Intel Core i7 920; 2010 Intel Xeon X7560.

amd64 Westmere. CPU examples: 2010 Intel Core i5 M 520; 2010 Intel Xeon X5680. The
Westmere microarchitecture introduced AES instructions.

— amd64 Sandy Bridge. CPU example: 2011 Intel Core i5-2500K.

At the moment the graphs also include some of Intel’s older P4 (Pentium 4) microarchi-
tectures, but we have lost access to most of those machines and will soon exclude those
benchmark reports as being out of date.

AMD has a competing series of high-power 64-bit microarchitectures:

— amd64 K8. CPU examples: 2005 AMD Opteron 875; 2006 AMD Athlon 64 X2.

— amd64 K10 65nm. CPU examples: 2008 AMD Opteron 8354; 2008 AMD Phenom 9550.

— amd64 K10 45nm. CPU examples: 2008 AMD Opteron 2376; 2010 AMD Phenom II X6
1100T.

— amd64 K10 32nm. CPU example: 2011 AMD A8-3850.

Both Intel and AMD also have low-power microarchitectures:

— x86 Atom. CPU examples: 2008 Intel Atom 7520 (2 watts); 2009 Intel Atom N280 (2.5
watts); 2011 Intel Atom Z670 (3 watts).

6 Daniel J. Bernstein and Tanja Lange

— amd64 Atom. CPU examples: 2009 Intel Atom D510 (13 watts); 2010 Intel Atom N455
(6.5 watts).
— amd64 Bobcat. CPU examples: 2011 AMD E-450 (18 watts).

Note that Intel is continuing to sell new 32-bit (x86) Atom CPUs, presumably because the
64-bit (amd64) architecture is more difficult to fit into very low power. See Figure 3.1 for
the power consumption of Intel’s 32-bit and 64-bit Atom CPUs.

T
14 .
D525
12 + .
10 + D425 D2500 .
g 330 N550 N570 i
N455
6 - _
4 L N
2 L a
0 | | I 1 |

2008 2009 2010 2011 2012

Fig. 3.1. Vertical axis: Thermal design power (TDP) of Intel Atom processors, in watts. Horizontal axis: Release
date. Green curve (lower) shows 32-bit Atom processors. Red curve (higher) shows 64-bit Atom processors.

The remaining microarchitectures in the shootout graphs are low-power microarchitec-
tures from other CPU manufacturers:

— armeabi v6. CPU example: 2006 TT OMAP 2420 used in a Nokia N280 tablet.

— armeabi Tegra 2. CPU example: 2010 NVIDIA Tegra 2 used in a Samsung Galaxy Tab
10.1.

— armeabi Cortex A. CPU example: 2009 Freescale i.MX515. The Cortex A is the most
common microarchitecture in low-power tablets and smartphones; for example, the Apple
A5 CPU used in the iPad 2 has two Cortex A9 cores, and the Apple A4 CPU used in the
original iPad has one Cortex A8 core, in both cases with a Cortex A microarchitecture.

The new SHA-3 software shootout 7

— x86 Eden. CPU example: 2006 Via Eden ULV.

— ppc32 G4. CPU examples: 2001 Motorola PowerPC G4 7410 used in the Apple PowerMac
G4; 2005 Motorola PowerPC G4 7447a. The current Freescale e600 line of embedded
CPUs reportedly uses the same microarchitecture.

Anecdotal evidence suggests that 32-bit PowerPC and 32-bit MIPS are more common than
ARM in many embedded applications, such as car CPUs and router CPUs. Many other
embedded applications use lower-cost 16-bit and 8-bit CPUs.

There are several other CPU architectures of interest. Examples: Fujitsu’s K Computer,
one of the largest supercomputers in the world, uses sparc64 CPUs. The PlayStation 3, the
Xbox 360, and many supercomputers use ppc64 CPUs. ARM has announced future 64-bit
ARM CPUs aimed at servers, although we expect that lower-power 32-bit ARMs will remain
dominant in smartphones.

Daniel J. Bernstein and Tanja Lange

3 finalists for long messages

4 Comparison of SHA

crypto_sha3 skein512512 blake512 sha512 keccakc1024 groestl512 round3jh512 http://bench.cr.yp.to

Long messages i EW\\W 20111223
\

amd64 Sandy Bridge

armeabi v6 NS
Cycles per byte 4 8 16 32 64 128 256 512 1024

The new SHA-3 software shootout

crypto_sha3 skein512512 blake512 shab12 keccakcl024 groest1512 round3jh512 http://bench.cr.yp.to

4096 bytes * \\ x\ \ 20111223
skeinb122 blakgZ56 keccgKcbl2 sha groest1256 rotind3jh256
\ /

amd64 Sandy Bridge

-3 finalists for 4096 bytes

armeabi v6

5 Comparison of SHA

Cycles per byte 4 8 16 32 64 128 256 512 1024

Daniel J. Bernstein and Tanja Lange

10

crypto_sha3 skein512512 blake512 sha512 keccakc1024 groest1512 round3jh512 http://bench.cr.yp.to

1536 bytes \% \w\
skeinb122H6 blakegZ56
-
L

amd64 Sandy Bridge

KX 20111223
keccgKcb12 sha2 groest1256 rgind3jh256
¢ < ¢ ore 17-2600K; amdsa; Sandy Bridge (20647

sandz0; 4 x 3400MHz; threads; 2011 Intel C
L \\\/\N\ \\\\\\\\\ o
i — &z %
— - giansa; 8
cryptog

3 finalists for 1536 bytes

armeabi v6

Cycles per byte 4 8 16 32 64 128 256 512 1024

6 Comparison of SHA

11

The new SHA-3 software shootout

crypto_sha3 skein512512 blake512 sha512 keccakc1024 groest1512 round3jh512 http://bench.cr.yp.to

576 bytes 20111223
skeinb122H6 blakg256 keccgkc512 sha2 groestl256 rgidind3jh256
|

amd64 Sandy Bridge

-3 finalists for 576 bytes

7 Comparison of SHA

armeabi v6 S /
Cycles per byte 4 8 16 32 64 128 256 512 1024

Daniel J. Bernstein and Tanja Lange

12

ts for 64 bytes

1S

ison of SHA-3 final

8 Compar

crypto_sha3
64 bytes

skeinb12512 blake512 keccakc1024 shab12

round3jh512 groest1l512

mrwﬁmwommwuwk &&wmm

http://bench.cr.yp.to
20111223

skeinf12256 m\kkmwmm WM\\\nWanHm

amd64 Sandy Bridge

armeabi v6

it

i mmm%w

slie; 1 x 1667M ntel Atom N280; x86; Atom (10¢

3aton; 1 x 133 6 Intel Atom 2520; x86; Atom (10t

nmsovogFx

nstep @20 1000M@e: 2010 NVIDIA Tegra 2; armeabi (v7-A, Tegra 2); supsrcop-20111120

Cycles per byte 4

13

The new SHA-3 software shootout

ts for 8 bytes

1S

-3 final

f SHA

9 Comparison o

crypto_sha3 skein512512 blake512vkeccakc1024_ shabi

8 bytes /a/ /%/
blake256~skel 2256 sha2 /WH,@WmHm/

amd64 Sandy Bridge S <N 0

T X 3293MHz; 2011 Intel Core i

amd64 Westmere e
amd64 Nehalem =
\\\ s & > o o

amd64 C2 45nm .ﬁw‘ %

amd64 K10 45nm .

amd64 K10 32nm

hydras; 4 x

amd64; K10 32rfI30010); superco

amd64; K10 32rgeER00T10); supsrco

2, 2009 Intel ATONEN280; x86; Atom 120

iz; 2008 Intel Ate g6 Atom (

x86 P4 Prescott T -

héaxsise; 1 x 80

x86 Eden v R 2006 v v . e oM
armeabi v6 s s 20067 1 M Supr e (6, 1569 e 21
Cycles per byte 4 8 16 32 64 128 256 512 1024

