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Abstract

We propose a general construction of deterministic encryption schemes that unifies prior work and
gives novel schemes. Specifically, its instantiations provide:

• A construction from any trapdoor function that has sufficiently many hardcore bits.

• A construction that provides “bounded” multi-message security from lossy trapdoor functions.

The security proofs for these schemes are enabled by three tools that are of broader interest:

• A weaker and more precise sufficient condition for semantic security on a high-entropy message
distribution. Namely, we show that to establish semantic security on a distribution M of messages,
it suffices to establish indistinguishability for all conditional distribution M |E, where E is an event
of probability at least 1/4. (Prior work required indistinguishability on all distributions of a given
entropy.)

• A result about computational entropy of conditional distributions. Namely, we show that condition-
ing on an event E of probability p reduces the quality of computational entropy by a factor of p and
its quantity by log2 1/p.

• A generalization of leftover hash lemma to correlated distributions.

We also extend our result about computational entropy to the average case, which is useful in reasoning
about leakage-resilient cryptography: leaking λ bits of information reduces the quality of computational
entropy by a factor of 2λ and its quantity by λ.
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1 Introduction

Public-key cryptosystems require randomness: indeed, if the encryption operation is deterministic, the
adversary can simply use the public key to verify that the ciphertext c corresponds to its guess of the
plaintext m by encrypting m. However, such an attack requires the adversary to have a reasonably likely
guess for m in the first place. Recent results on deterministic public-key encryption (DE) (building on
previous work in the one-time, information-theoretic symmetric-key setting [43, 18, 14]) have studied how
to achieve security when the randomness comes only from m itself [3, 5, 7, 28, 8, 46]. DE has a number of
practical applications, such as efficient search on encrypted data and securing legacy protocols (cf. [3]). It is
also interesting from a foundational standpoint; indeed, its study has proven useful in other contexts: Bellare
et al. [4] showed how it extends to a notion of “hedged” public-key encryption that reduces dependence on
external randomness for probabilistic encryption more generally, and Dent et al. [13] adapted its notion of
privacy to a notion of confidentiality for digital signatures.

However, our current understanding of DE is somewhat lacking. The constructions of [3, 5, 7, 28], as
well as their analysis techniques, are rather disparate, and some natural questions arise from them. Namely,
does the scheme of [5] inherently require using the Goldreich-Levin hardcore bit? Can it be made to work
with trapdoor functions rather than permutations? Is the single-message security achieved by [5, 7, 28] an
inherent limitation of standard model (i.e., non-random-oracle) schemes? In this work our main goal is to
provide a unified framework for the construction of DE and to shed light on these questions.

1.1 Our Results

A scheme based on trapdoor functions. We propose a general Encrypt-with-Hardcore (EwHCore)
construction of DE from trapdoor functions (TDFs), which generalizes the basic idea behind the schemes
of [3, 5] and leads to a unified framework for the construction of DE. Let f be a TDF with a hardcore
function hc, and let E be any probabilistic public-key encryption algorithm. Our construction EwHCore
encrypts an input message x as follows: it computes y = f(x) and then encrypts y using E with hc(x) as
the coins; that is, the encryption of x is E(f(x); hc(x)).

Intuitively, this scheme requires that the output of hc be sufficiently long to provide enough random
coins for E (in fact, it need only be sufficiently long to be used as a seed for a psuedorandom generator),
and that it not reveal any partial information about x (because E does not necessarily protect the privacy
of its random coins). There are two nontrivial technical steps needed to make intuition precise. First, we
define a condition required of hc (which we call “robustness”) and show that it is sufficient for security of
the resulting DE. Second, through a computational entropy argument, we show how to make any sufficiently
long hc robust by applying a randomness extractor.

This general scheme admits a number of instantiations depending of f and hc. For example, when f is
any trapdoor function and hc is a random oracle (RO), we obtain the construction of [3]1. When f is an
iterated trapdoor permutation (TDP) and hc is a collection Goldreich-Levin (GL) [24] bits extracted at each
iteration, we obtain the construction of [5]. When f is a lossy trapdoor function (LTDF) [38] and hc is a
pairwise-independent hash, we get a variant of the construction of [7] (which is less efficient but has a more
straightforward analysis). We also obtain a variant of the construction of Hemenway et al. [28] under the
same assumption as they use (see Section 5.2 for details). Note that in all but the last of these cases, the
hardcore function is already robust (without requiring an extractor), which shows that in prior work this
notion played an implicit role.

Moreover, this general scheme not only explains past constructions, but also gives us new ones. Specifi-
cally, if f is a trapdoor function with enough hardcore bits, we obtain:

1Technically, this construction does not even need a TDF because of the random oracle model; however, it may be prudent
to use a TDF because then it seems more likely that the instantiation of the random oracle will be secure as it may be hardcore
for the TDF.
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• DE that works on the uniform distribution of messages;
• DE that works on any distribution of messages whose min-entropy is at most logarithmically smaller

than maximum possible;
• assuming sufficient hardness distinguishing the output of hc from uniform (so in particular of inverting

f), DE that works on even-lower entropy message distributions.

Prior results require more specific assumptions on the trapdoor function (such as assuming that it is a
permutation or that it is lossy—both of which imply enough hardcore bits) in order to get constructions that
work even just on the uniform distribution of messages. Furthermore, our results yield more efficient schemes
(though sometimes under stronger assumptions) even in the permutation case, by avoiding iteration.

Notably, we obtain the first DE scheme without random oracles based on the hardness of syndrome
decoding using the Niederreiter trapdoor function [35], which was shown to have linearly many hardcore
bits by Freeman et al. [21] (and moreover to be secure under correlated products, as defined by Rosen
and Segev [42]) but is not known to be lossy. (A scheme in the random oracle model follows from [3].)
Additionally, the RSA [41] and Paillier [37] trapdoor permutations have linearly many hardcore bits under
certain computational assumptions (the “Small Solutions RSA” [45] and “Bounded Computational Compos-
ite Residuosity” [9] assumptions respectively). Therefore, we can use these TDPs to instantiate our scheme
efficiently under the same computational assumptions. Before our work, DE schemes from RSA and Paillier
either required many iterations [5] or decisional assumptions that imply lossiness of these TDPs [31, 21, 7].

Security for multiple messages: definition and construction. An important caveat is that, as
in [5, 7], we can prove the above standard-model DE schemes secure only for the encryption of a single
high-entropy plaintext, or, what was shown equivalent in [7], an unbounded number of messages drawn from
a block source [10], where each subsequent message brings “fresh” entropy. On the other hand, the strongest
and most practical security model for DE introduced by [3] considers the encryption of an unbounded
number of plaintexts that have individual high entropy but may not have any conditional entropy. In
order for EwHCore to achieve this, the hardcore function hc must also be robust on correlated inputs. (A
general study of correlated-input security for the case of hash functions rather than hardcore functions was
concurrently initiated in [26].) In particular, it follows from the techniques of [3] that a RO hash satisfies
such a notion. This leads to a multi-message secure scheme in the RO model (as obtained in [3]). We thus
have a large gap between what is (known to be) achievable with random oracles versus in the standard
model.

To help bridge this gap, we propose a notion of “q-bounded” security for DE, where up to q high-
entropy but arbitrarily correlated messages may be encrypted under the same public key (whose size may
depend polynomially on q). We feel that if one is limited to the standard model, this notion is useful.
Indeed, it seems that the requirement of previous results in the standard model—that messages come from
a block source—may be difficult to guarantee: all that’s needed to violate it is a single message that has
low conditional entropy. Following [7], we also extend our security definition to unbounded multi-message
security where messages are drawn from what we call a “q-block source” (essentially, a block source where
each “block” consists of q messages which may be arbitrarily correlated but have individual high entropy);
Theorem 4.2 of [7] extends to show that q-bounded multi-message security and unbounded multi-message
security for q-block sources are equivalent for a given min-entropy.

Using our EwHCore construction and a generalization of the leftover hash lemma discussed below, we
show q-bounded DE schemes (for long enough messages), for any polynomial q, based on LTDFs losing an
1−O(1/q) fraction of the input. It is known how to build such LTDFs rom the decisional Diffie-Hellman [38],
d-linear [21], and decisional composite residuosity [7, 21] assumptions.

1.2 Our Tools

Our results are enabled by three tools that we believe to be of more general applicability.
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A more precise condition for security of DE. We revisit the definitional equivalences for DE proven
by [5] and [7]. At a high level, they showed that the semantic security style definition for DE (called PRIV)
introduced in the initial work of [3], which asks that a scheme hides all public-key independent2 functions of
messages drawn from some distribution is in some sense equivalent to an indistinguishability based notion
for DE, which asks that it is hard to distinguish ciphertexts of messages drawn from one of two possible
distributions. Notice that while PRIV can be meaningfully said to hold for a given message distribution, IND
inherently talks of pairs of distributions. The works of [5, 7] compensated for this by giving an equivalences
in terms of min-entropy. That is, they showed that PRIV for all message distributions of min-entropy µ is
implied by indistinguishability with respect to all pairs of plaintext distributions of min-entropy slightly less
than µ.

We demonstrate a more precise equivalence that, for a fixed distribution M, identifies a class of pairs of
distributions such that if IND holds on those pairs, then PRIV holds on M. By re-examining the equivalence
proof of [5], we show that PRIV on M is implied by IND on all pairs of “slightly induced” distributions of
M | E, where E is an arbitrary event of probability at least 1/4.

This first tool is needed to argue that “robustness” of hc is sufficient for security EwHCore (essentially,
a robust hardcore function is one that remains hardcore on a slightly induced distribution3).

Conditional computational entropy. We investigate how conditioning reduces computational entropy
of a random variable X. Suppose you have a distribution that has computational entropy (such as the pair
f(r), hc(r) for a random r). Suppose you condition that distribution on an event E of probability p. How
much computational entropy is left?

To make this question more precise, we should note that computational entropy is parameterized by
quality (how distinguishable is X from a variable Z that has true entropy) and quantity (how much true
entropy is there in Z).

We prove an intuitively natural result: conditioning on an event of probability p reduces the quality of
metric entropy by a factor of p and the quantity of metric entropy by log2 1/p (note that this means that the
reduction in quantity and quality is the same, because the quantity of entropy is measured on logarithmic
scale).

Naturally, the answer becomes so simple only once the correct notion of entropy is in place. Our
result holds for Metric∗ entropy (defined in [2, 19]). This entropy is convertible (with some loss) to HILL
entropy [27, 2] using the techniques of [2], which can then be used with randomness extractors to get
pseudorandom bits.

Our result improves previous bounds of Dziembowski and Pietrzak [19, Lemma 3], where the loss in the
quantity of entropy was related to its original quality. The use of metric entropy simplifies the analogous
result of Reingold et al. [39, Theorem 1.3] for HILL entropy. (As detailed in Appendix B, other recent
work [23, Lemma 3.1], [11, Lemma 16] also addresses the question of conditional computational entropy.)

We use this result to show that randomness extractors can be used to convert a hardcore function into
a robust one, through a computational entropy argument for slightly induced distributions. The result is
also applicable to leakage-resilient cryptography, as demonstrated by [19]. To make the result useful in more
contexts, we also provide an average-case entropy formulation, which can be helpful in situations in which
not all leakage is equally informative. (For instance, in case the leakage is equal to the Hamming weight of
a uniformly distributed string, sometimes—if the value of the leakage is 0 or the length of the string—the
entropy of the string gets reduced to nothing, but most of the time it stays high.) For the information-
theoretic case, it is known that leakage of λ bits reduces the average entropy by at most λ (Lemma 2.1
from [16]). We show essentially the same4 for the computational case: if λ bits of information are leaked,

2As shown in [3], the restriction to public-key independent functions is inherent here.
3One could alternatively define robustness as one that remains hardcore on inputs of slightly lower entropy; however, in our

proofs of robustness we would then need to go through an additional argument that distributions of lower entropy are induced
by distributions of higher entropy.

4In case of randomized leakage, the information-theoretic result of [16, Lemma 2.2(b)] gives better bounds.
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then the amount of computational Metric∗ entropy decreases by at most λ and its quality decreases by at
most 2λ (again, this entropy can be converted to HILL entropy and be used in randomness extractors [16, 29]).

(Crooked) Leftover hash lemma for correlated distributions. We show that the leftover hash
lemma (LHL) [27, Lemma 4.8], as well its generalized form [16, Lemma 2.4] and the “crooked” LHL [17])
extend in a natural way to “correlated” distributions. That is, suppose we have t random variables (sources)
X1, . . . , Xt, where each Xi individually has high min-entropy but may be fully determined by the outcome
of some other Xj (though we assume Xi 6= Xj for all i 6= j). We would like to apply a hash function H
such that H(X1), . . . ,H(Xt) is indistinguishable from t independent copies of the uniform distribution on
the range of H (also over the choice of the key for H, which is made public). We show that this is the case
assuming H is 2t-wise independent. (The standard LHL is thus t = 1; previously, Kiltz et al. [32] showed
this for t = 2.) Naturally, this requires the output size of H to be about a 1/t fraction of its input size, so
there is enough entropy to extract.

2 Preliminaries

2.1 Notation and Background

Unless otherwise indicated, an algorithm may be randomized and must run in probabilistic polynomial-time
(PPT) in its input size. An adversary is a non-uniform algorithm (or tuple of algorithms). We make the
convention that the running-time of an adversary includes its program (i.e., circuit) size and the time to
run any overlying experiment. The security parameter is denoted by k, and 1k denotes the string of k ones.
We often suppress dependence of variables on k for readability. A function f : N → [0, 1] is negligible if
f = o(k−c) for all constants c ≥ 0.

If A is an algorithm then x
$←A(. . .) denotes that x is assigned the output of running A on the elided

inputs and a fresh random tape, while x← A(. . . ; r) denotes the same but with the random tape fixed to r.
If S is a finite set then s

$← S denotes that s is assigned a uniformly random element of S. We let A(. . .)⇒y

denote the event that A outputs y in the above experiment. We use the abbreviation x1, . . . , xn
$←A(. . .)

for x1
$←A(. . .) ; . . . ; xn

$←A(. . .). If A is deterministic then we drop the dollar sign above the arrow. We
denote by {0, 1}∗ the set of all (binary) strings, and by {0, 1}n the set of strings of length n. By x1‖ · · · ‖xm

we denote an encoding of strings x1, . . . , xm from which x1, . . . , xm are uniquely recoverable. We denote
by x⊕ y the bitwise exclusive-or (xor) of equal-length strings x, y. For two n-bit strings x, y we denote by
〈x, y〉 the inner-product of x and y when interpreted as vectors over GF (2). Vectors are denoted in boldface,
for example x. If x is a vector then |x| denotes the number of components of x and x[i] denotes its ith
component, for 1 ≤ i ≤ |x|. For convenience, we extend algorithmic notation to operate on each vector of
inputs component-wise. For example, if A is an algorithm and x,y are vectors then z $←A(x,y) denotes
that z[i] $←A(x[i],y[i]) for all 1 ≤ i ≤ |x|.

Let X and Y be random variables. For t, ε ≥ 0, we say that X and Y are computationally (t, ε)-
indistinguishable, denoted X ≈t,ε Y , if |Pr [ D(X)⇒ 1 ] − Pr [ D(Y )⇒ 1 ] | ≤ ε or all distinguishers D
running in time at most t.

Statistical notions. Let X be a random variable on a finite set X . We write PX for the distribution
of random variable X and PX(x) for the probability that X puts on value x ∈ X , i.e., PX(x) = P[X =x].
Denote by |X| the size of the support of X, i.e., |X| = |{x s.t. PX(x) > 0}|. We often identify X with PX

when there is no danger of confusion. By x
$←X we denote that x is assigned a value drawn according to

PX . When this experiment is PPT we say that X is efficiently sampleable. We write X | E for the random
variable X conditioned on an event E. When X is vector-valued we denote it in boldface, for example X. For
a function f : X → R, we denote the expectation of f over X by E f(X) def= Ex∈X f(x) def=

∑
x∈X PX(x)f(x).

The min-entropy of X is H∞(X) = − log(maxx PX(x)), the (worst-case) conditional min-entropy of X
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given Y is H∞(X|Y ) = − log(maxx,y PX|Y =y(x)), and the average conditional min-entropy of X given Y [16]
is H̃∞(X|Y ) = − log(Ey∈Y maxx PX|Y =y(x)). Following [3, 5], for vector-valued X the min-entropy is the
minimum individual min-entropy of the components, i.e., H∞(X) = − log(maxx,i PX[i](x[i])). The collision
probability of X is Col(X) =

∑
x PX(x)2. The statistical distance between random variables X and Y with

the same domain is ∆(X, Y ) = 1
2

∑
x |PX(x) − PY (x)|. We write X ≈ε Y if ∆(X, Y ) ≤ ε, and when ε is

negligible then we say X and Y are statistically close.

t-wise independent functions. Let F : K ×D → R be a function. We say that F is t-wise independent
if for all distinct x1, . . . , xt ∈ D and all y1, . . . , yt ∈ R

Pr
[

F (K, x1) = y1 ∧ . . . ∧ F (K, xt) = yt : K
$←K

]
=

1
|R|t

.

In other words, F (K, x1), . . . , F (K, xt) are all uniformly and independently random over R. 2-wise indepen-
dence is also called pairwise independence.

Entropy after information leakage. Dodis et al. [16, Lemma 2.2] characterized the effect of auxiliary
information on average min-entropy:

Lemma 2.1 [16, Lemma 2.2] Let A,B, C be random variables. Then

1. For any δ > 0, the conditional entropy H∞(A|B = b) is at least H̃∞(A|B)− log(1/δ) with probability
at least 1− δ over the choice of b.

2. If B has at most 2λ possible values, then H̃∞(A|(B,C)) ≥ H̃∞((A,B)|C) − λ ≥ H̃∞(A|C) − λ. In
particular, H̃∞(A|B) ≥ H∞((A,B))− λ ≥ H∞(A)− λ.

Extractors. Let χ be a finite set. A polynomial-time computable deterministic function ext : χ ×
{0, 1}d → {0, 1}m × {0, 1}d is a strong (k, ε)-extractor [36] if the last d outputs of bits of ext are equal to
the last d input bits (these bits are called seed), and δ(ext(X, Ud), Um × Ud) ≤ ε for every distribution X
on χ with H∞(X) ≥ k. The number of extracted bits is m, and the entropy loss is k −m.

Average-case extractors, defined in [16, Section 2.5], are extractors extended to work with average-case,
rather than unconditional, min-entropy. It is also shown there that every extractor can be converted to an
average-case extractor with some loss, and that some extractors are already average-case extractors without
any loss.

Definition 2.2 Let χ1, χ2 be finite sets. An extractor ext is a (k, ε)-average-case extractor if for all pairs
of random variables X, Y over χ1, χ2 such that H̃∞(X|Y ) ≥ k, we have δ((ext(X, Ud), Y ), Um×Ud×Y ) ≤ ε.

Public-key encryption. A (probabilistic) public-key encryption scheme with plaintext-space PtSp is a
triple of algorithms Π = (K, E ,D). The key-generation algorithm K takes input 1k to return a public key pk
and matching secret key sk. The encryption algorithm E takes pk and a plaintext m to return a ciphertext;
this algorithm is randomized, using randomness r. The deterministic decryption algorithm D takes sk and
a ciphertext c to return a plaintext. We require that for all plaintexts m ∈ PtSp

Pr
[
D(sk, E(pk,m)) = m : (pk, sk) $←K(1k)

]
= 1 .

Next we define security against chosen-plaintext attack [25]. To an encryption scheme Π = (K, E ,D), an
adversary A = (A1, A2), and k ∈ N we associate
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Experiment Expind-cpa
Π,A (k):

b
$←{0, 1} ; (pk, sk) $←K(1k)

(m0,m1, state) $←A1(pk)
c

$←E(pk,mb)
d

$←A2(pk, c, state)
If d = b return 1 else return 0

where we require A1’s output to satisfy |m0| = |m1|. Define the IND-CPA advantage of A against Π as

Advind-cpa
Π,A (k) = 2 · Pr

[
Expind-cpa

Π,A (k)⇒ 1
]
− 1 .

We say that Π is IND-CPA secure if Advind-cpa
Π,A (·) is negligible for any PPT adversary A.

Lossy trapdoor functions. A lossy trapdoor function (LTDF) generator [38] is a pair LTDF = (F ,F ′)
of algorithms. Algorithm F is a usual trapdoor function (TDF) generator, namely on input 1k outputs
(a description of a) function f on {0, 1}n for n = n(k) along with (a description of) its inverse f−1, and
algorithm F ′ outputs a (description of a) function f ′ on {0, 1}n. For a distinguisher D, define its LTDF
advantage against LTDF as

Advltdf
LTDF,D(k) = Pr

[
D(f)⇒ 1 : (f, f−1) $←F(1k)

]
− Pr

[
D(f ′)⇒ 1 : f ′

$←F ′(1k)
]

.

We say that LTDF is secure if Advltdf
LTDF,D(·) is negligible for any PPT D. We say LTDF has residual leakage

s if for all f ′ output by F ′ we have |Image(f ′)| ≤ 2s. The lossiness of LTDF is ` = n− s.

One-way and hardcore functions on non-uniform distributions. We extend the usual notion of
one-wayness to vectors of inputs drawn from non-uniform and possibly correlated distributions. Let F be a
TDF generator and X be a distribution on input vectors. To F ,X, an inverter I, and k ∈ N we associate

Experiment Expowf
F ,X,I(k):

(f, f−1) $←F
x $←X

x′
$← I(f, f(x))

If ∃i such that x[i] = x′ return 1 else return 0

Define the OWF advantage of I against F,X as

Advowf
F ,X,I(k) = Pr

[
Expowf

F ,X,I(k)⇒ 1
]

.

We say that F is one-way on a class of distributions on input vectors X if for every X ∈ X and every
PPT inverter I, Advowf

F ,X,I(·) is negligible. We extend hardcore functions (HCFs) in a similar way. Namely,
to a trapdoor function generator F , function hc : {0, 1}k → {0, 1}n, distribution on input vectors X, a
distinguisher D, and k ∈ N we associate

Experiment Exphcf
F ,hc,X,D(k):

b
$←{0, 1} ; (f, f−1) $←F

x $←X

h0 ← hc(f,x) ; h1
$← ({0, 1}n)×|x|

d
$←D(f, f(x),hb)

If d = b return 1 else return 0

Define the HCF advantage of D against F, hc,X as

Advhcf
F ,hc,X,D(k) = 2 · Pr

[
Exphcf

F ,hc,X,D(k)⇒ 1
]
− 1 .
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We say that hc is hardcore for F on a class of distributions on input vectors X if for every X ∈ X and every
PPT distinguisher D, Advhcf

F ,hc,X,D(·) is negligible.
Note that we depart somewhat from standard treatments in that we allow a HCF to also depend on the

description of the trapdoor function (via the argument f). This allows us to simplify our exposition.

Augmented trapdoor functions. It is useful to introduce the notion of an “augmented” version of a
TDF, which augments the description of the latter with keying material for a HCF. More formally, let F be a
trapdoor function generator and let H be a keyed function with keyspace K. Define the H-augmented version
of F , denoted F [H], that on input 1k returns (f,K), (f−1,K) where (f, f−1) $←F(1k) and K

$←K; evaluation
is defined for x ∈ {0, 1}k as f(x) (i.e., evaluation just ignores K) and inversion is defined analogously.

Goldreich-Levin hardcore function. For i ∈ N define the length-i Goldreich-Levin (GL) function [24]
GLi : {0, 1}i×k × {0, 1}k → {0, 1}i as GLi(M,x) = Mx, where Mx is the matrix-vector product of M and x
over GF (2). We recall the following.

Theorem 2.3 (Goldreich-Levin Theorem [24]) Let F [GLi] be as defined above and let X be a distri-
bution on inputs to F . Let D be a distinguisher against GLi. Then there is a inverter I such that for all
k ∈ N

Advhcf
F [GLi],GLi,X,D

(k) ≤ 2i+3 ·Advowf
F ,X,I(k) . (1)

Furthermore, the running-time of I is the time for O(ε−4k3) executions of D where ε = Advhcf
F [GLi],GLi,X,D

(k).

2.2 Computational Entropy

For computational entropy we define several classes of distinguishers. Let Ddet,{0,1}
s be the set of all deter-

ministic circuits of size s with binary output {0, 1}, let Ddet,[0,1]
s be the set of all deterministic circuits of size

s with output in [0, 1], and let Drand,{0,1}
s ,Drand,[0,1]

s as the set of probabilistic circuits without {0, 1} and
[0, 1] respectively. (We talk of circuit size rather than running-time in the context of computational entropy
for consistency with the literature.) Given a circuit D, define the computational distance δD between X and
Y as δD(X, Y ) = |E[D(X)] − E[D(Y )]|. While min-entropy is measured only by amount, computational
min-entropy has two additional parameters: distinguisher size s and quality ε. Larger s and smaller ε mean
“better” entropy.

Definition 2.4 ([27]) A distribution X has HILL entropy at least k, denoted HHILL
ε,s (X) ≥ k if there exists

a distribution Y where H∞(Y ) ≥ k, such that ∀D ∈ Drand,{0,1}
s , δD(X, Y ) ≤ ε.

For HILL entropy drawing D from Ddet,{0,1}
s ,Ddet,[0,1]

s ,Drand,{0,1}
s ,Drand,[0,1]

s is essentially equivalent, as
shown in [19, 22]). An alternative notion called Metric entropy is often used for proofs and is obtained by
switching in the order of quantifiers.

Definition 2.5 ([2]) A distribution X has Metric entropy at least k, denoted HMetric
ε,s (X) ≥ k if ∀D ∈

Drand,{0,1}
s there exists a distribution Y with H∞(Y ) ≥ k and δD(X, Y ) ≤ ε.

In particular we will define metric entropy as indistinguishability against Ddet,[0,1]
s , which we call “metric-

star” entropy and denote HMetric∗
ε,s (this notion was used in [19, 22]). Equivalence (with a loss in quality)

between Metric∗ and HILL entropy5 was shown by Barak, Shaltiel, and Wigderson [2, Theorem 5.2]:
5Metric∗ entropy is weaker than HILL entropy in two ways, the distinguisher is deterministic and the distribution Y can

depend on the distinguisher.
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Theorem 2.6 ([2]) Let X be a discrete distribution over a finite set χ. For every ε, εHILL > 0, ε′ ≥ ε+εHILL,
k, and s, if HMetric∗

ε,s (X) ≥ k then HHILL
ε′,sHILL

(X) ≥ k where sHILL = Ω(ε2HILLs/ log |χ|).

It turns out that extractors can be applied to distributions with computational entropy to obtain pseu-
dorandom, rather than random, outputs: that is, outputs that are computationally indistinguishable from,
rather than statistically close to, uniformly random strings. This fact is well-known for HILL entropy. How-
ever, we have not seen it proven for Metric entropy and, although the proof is quite straightforward, we
provide it here for completeness. (Since HILL entropy implies Metric entropy, this proof also works for HILL
entropy.)

HILL

Metric∗

Metric-
Lossless

@
@

@
@

@
@I

Loss in
circuit size ?

L
ossless

Figure 1: Known state of equivalence for HILL and Metric Entropy. It is known how to extract from HILL
and Metric entropy but not Metric∗ entropy.

Theorem 2.7 Let ext : χ×{0, 1}d → {0, 1}m×{0, 1}d be a (k, εext)-extractor, computable by circuits of size
sext. Let X be a distribution over χ with Hmetric

εmetric,s(X) ≥ k. Then ∀D ∈ Drand,{0,1}
s′ , where s′ ≈ smetric−sext,

δD(ext(X, Ud), Um × Ud) ≤ εext + εmetric .

Proof: We proceed by contradiction. Suppose not, that is, ∃D ∈ Drand,{0,1}
s′ such that

δD(ext(X, Ud), Um × Ud)) > εext + εmetric.

We use D to construct a distinguisher D′ to distinguish X from all distributions Y where H∞(Y ) ≥ k,
violating the metric-entropy of X. We define D′ as follows: upon receiving input α ∈ χ, D′ samples
seed ← Ud, runs β ← ext(α, seed) and then runs D(β, seed) on the result. Note that D′ ∈ Drand,{0,1}

s where
s ≈ s′ + sext = smetric. Thus we have the following ∀Y, where H∞(Y ) ≥ k:

δD′
(X, Y ) = δD(ext(X, Ud), ext(Y, Ud))

≥ δD(ext(X, Ud), Um × Ud)− δD((ext(Y, Ud), Um × Ud)
> εext + εmetric − εext = εmetric

Thus D′ is able to distinguish X from all Y with sufficient min-entropy. This is a contradiction.

Unfortunately, the theorem does not extend to Metric∗ entropy, because the distinguisher D′ we construct
in this proof is randomized. The only way to extract from Metric∗ entropy that we know of is to convert
Metric∗ entropy to HILL∗ entropy using Theorem 2.6 (which incurs some loss) and then use Theorem 2.7.

Conditional entropy has been extended to the computational case by Hsiao, Lu, Reyzin [29].

Definition 2.8 ([29]) Let (X, Y ) be a pair of random variables. X has conditional HILL entropy at least
k conditioned on Y , denoted HHILL

ε,s (X|Y ) ≥ k if there exists a collection of distributions Zy for each y ∈ Y ,

giving rise to a joint distribution (Z, Y ), such that H̃∞(Z|Y ) ≥ k and ∀D ∈ Drand,{0,1}
s , δD((X, Y ), (Z, Y )) ≤

ε.
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Again, we can switch the quantifiers of Z and D to obtain the definition of conditional metric entropy.

Definition 2.9 Let (X, Y ) be a pair of random variables. X has conditional Metric entropy at least k

conditioned on Y , denoted by HMetric
ε,s (X|Y ) ≥ k, if ∀D ∈ Drand,{0,1}

s there exists a collection of distributions
Zy for each y ∈ Y , giving rise to a joint distribution (Z, Y ), such that H̃∞(Z|Y ) ≥ k and δD((X, Y ), (Z, Y )) ≤
ε.

Conditional Metric∗ can be defined similarly, replacing Drand,{0,1} with Ddet,[0,1].
Theorem 2.6 can be extended to the conditional case with the same techniques (see [11, 22] a proof):

Theorem 2.10 Let X be a discrete discrete distribution over a finite set χ1 and let Y be a discrete random
variable over χ2. For every ε, εHILL > 0, ε′ ≥ ε+εHILL, k and s, if HMetric∗

ε,s (X|Y ) ≥ k then HHILL
ε′,sHILL

(X|Y ) ≥
k where sHILL = Ω(ε2HILLs/ log |χ1||χ2|).

In this theorem, it seems natural to set εHILL = O(ε), however if ε is negligible this will severely reduce
the size of the circuit. Thus, we assume that εHILL >> ε. We then seek to find setting of εHILL that
maximizes the minimum of 1/ε′ and s′. That is,

max
εHILL>>0

min{log
1
ε′

, log s′} = max
εHILL>>0

min{log
1

ε + εHILL
, log

ε2HILLs

log |χ1||χ2|}
}.

This is maximized when 1
ε+εHILL

= ε2HILLs

log |χ1||χ2| . Or

log |χ1||χ2| = ε3HILLs + ε2HILLεs

≈ ε3HILLs

εHILL ≈
3

√
log |χ1||χ2|

s

The first step proceeds because εHILL >> ε makes ε2HILLεs << ε3HILLs. Thus, we set εHILL = 3

√
log |χ1||χ2|

s ,

this makes ε′ = ε + 3

√
log |χ1||χ2|

s , s′ = Ω( 3

√
s

log |χ1||χ2|).

Similar to extractors in the case of unconditional entropy, average-case extractors can be used on distri-
butions that have conditional Metric (and therefore also on distributions that have HILL or HILL∗) entropy
to produce psuedorandom, rather than random outputs6. The proof is similar to [29, Lemma 5]. However,
it is not known how to extract directly from conditional Metric∗ entropy.

2.3 Deterministic Encryption

We say that an encryption scheme Π = (K, E ,D) is deterministic if E is deterministic.

Semantic security of DE. We recall the semantic-security style PRIV notion for DE from [3]7. To
encryption scheme Π = (K, E ,D), an adversary A = (A0, A1, A2), and k ∈ N we associate

6It is not known if extractors can be used on distributions that have Metric∗ entropy directly. When we have a need to
extract from a Metric∗ entropy source we first convert to a HILL entropy source using Theorem 2.10

7More specifically, it is a “comparison-based” semantic-security style notion; this was shown equivalent to a “simulation-
based” formulation in [5].
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Experiment Exppriv-1
Π,A (k):

(pk, sk) $←K(1k)
state

$←A0(1k)
(x1, t1)

$←A1(state)
c $←E(pk,x1)
g

$←A2(pk, c, state)
If g = t1 Return 1 Else Return 0

Experiment Exppriv-0
Π,A (k):

(pk, sk) $←K(1k)
state

$←A0(1k)
(x1, t1), (x0, t0)

$←A1(state)
c $←E(pk,x0)
g

$←A2(pk, c, state)
If g = t1 Return 1 Else Return 0

We require that there are functions v = v(k), ` = `(k) such that (1) |x| = v, (2) |x[i]| = ` for all 1 ≤ i ≤ v,
and (3) the x[i] are all distinct with probability 1 over (x, t) $←A1(state) for any state output by A0

8. In
particular we say A outputs vectors of size v for v as above. Define the PRIV advantage of A against Π as

Advpriv
Π,A(k) = Pr

[
Exppriv-1

Π,A (k)⇒ 1
]
− Pr

[
Exppriv-0

Π,A (k)⇒ 1
]

.

Let M be a class of distributions on message vectors. Define AM to be the class of adversaries {A =
(A0, A1, A2)} such that for each A ∈ AM there is a M ∈ M for which x has distribution M over
(x, t) $←A1(state) for any state output by A0. We say that Π is PRIV secure for M if Advpriv

Π,A(·) is
negligible for any PPT A ∈ AM. Note that (allowing non-uniform adversaries as usual) we can without loss
of generality consider only those A with “empty” A0, since A1 can always be hardwired with the “best”
state. However, following [5] we explicitly allow state because it greatly facilitates some proofs.

Indistinguishability of DE. Next we recall the indistinguishability-based formulation of security for DE
given (independently) by [5, 7] (and which is adapted from [18]). To an encryption scheme Π = (K, E ,D),
an adversary D = (D1, D2), and k ∈ N we associate

Experiment Expind
Π,A(k):

(pk, sk) $←K(1k)
b

$←{0, 1} ; (x, t) $←D1(b)
c $←E(pk,x)
d

$←D2(pk, c)
If b = d return 1 else return 0

We make the analogous requirements on D1 as on A1 in the PRIV definition. Define the IND advantage of
D against Π as Advind

Π,D(k) = 2 · Pr
[
Expind

Π,D(k)⇒ 1
]
− 1. Let M∗ be a class of pairs of distributions on

message vectors. Define DM∗ to be the class of adversaries {D = (D1, D2)} such that for each D ∈ DM∗ ,
there is a pair of distributions (M0,M1) ∈ M∗ such that for each b ∈ {0, 1} the distribution of x $←D1(b)
is M b. We say that Π is IND secure for M∗ if Advind

Π,D(·) is negligible for any PPT D ∈ DM∗ .

3 Our Tools

3.1 A Precise Definitional Equivalence for DE

While the PRIV definition is meaningful with respect a single message distribution M , the IND definition
must inherently talk of pairs of different message distributions. Thus, in proving an equivalence between the
two notions, the best we can hope to show is that PRIV security for a message distribution M is equivalent to
IND security for some class of pairs of message distributions (depending on M). However, prior works [5, 7]
did not provide such a statement. Instead, they showed that PRIV security on all distributions of a given
entropy µ is equivalent to IND security on all pairs of distributions of slightly less entropy.

8In this work we only consider the definition relative to deterministic Π, so requirement (3) is without loss of generality.
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Induced distributions. To state our result we first give some definitions relating to a notion of “induced
distributions.” Let X, X ′ be distributions (or random variables) on the same domain. For α ∈ N, we say
that X ′ is an α-induced distribution of X if X ′ is a conditional distribution X ′ = X | E for an event E such
that Pr [ E ] ≥ 2−α. We call E the corresponding event to X ′. We require that the pair (X, E) is efficiently
samplable (where we view event E as a binary random variable).

Define X[α] to be the class of all α-induced distributions of X. Furthermore, let X0, X1 be two α-induced
distributions of X with corresponding events E0,E1 respectively. Define X∗[α] = {(X0, X1)} to be the class
of all pairs (X0, X1) for which there is a pair (X ′

0, X
′
1) of α-induced distributions of X such that X0 (resp. X1)

is statistically close to X ′
0 (resp. X ′

1).
9

The equivalence. We are now ready to state our result. The following theorem captures the “useful”
direction that IND implies PRIV:

Theorem 3.1 Let Π = (K, E ,D) be an encryption scheme. For any distribution M on message vectors,
PRIV security of Π with respect to M is implied by IND security of Π with respect to M∗[2]. In particular,
let A ∈ AM be a PRIV adversary against Π. Then there is a IND adversary D ∈ DM∗[2] such that for all
k ∈ N

Advpriv
Π,A(k) ≤ 162 ·Advind

Π,D(k) +
(

3
4

)k

.

Furthermore, the running-time of D is the time for at most that for k executions of A (but 4 in expectation).

The theorem essentially follows from the techniques of [5]. Thus, our contribution here is not in providing
any new technical tools used in proving this result but rather in extracting it from the techniques of [5]. For
completeness, we give the entire proof (incorporating simplifications due to [13] that lead to better concrete
security) in Appendix A.

To establish a definitional equivalence; that is, also show that PRIV implies IND, we need to further
restrict the latter to pairs (that are statistically close to pairs) of complementary 2-induced distributions of
M (which we did not do above for conceptual simplicity), where we call X0, X1 complementary if E1 = E0.
(The idea for the proof is to have the constructed PRIV adversary sample according to M and let the
partial information be whether the corresponding event for the induced complementary distributions of the
given IND adversary occurred or not.) We stress that this further restriction is not needed for the “useful”
implication above and for our security proofs.

Why is the more precise equivalence better? This equivalence result is more precise than prior
work, because it requires a weaker condition in order to show PRIV holds on a specific message distribution.
Moreover, conceptually, viewing a lower-entropy distribution as a conditional (induced) version of a higher-
entropy distribution is helpful in simplifying proofs. In particular, it allows us to use results about entropy of
conditional distributions, which we explain next. Looking ahead, it also simplifies proofs for schemes based
on one-wayness, because it is easy to argue that one-wayness is preserved on slightly induced distributions
(the alternative would require us to go through an argument that distributions of lower entropy are induced
by distributions of higher entropy).

3.2 Measuring Computational Entropy of Induced Distributions

We study how conditioning a distribution reduces its computational entropy. This result is used later in
the work to show that randomness extractors can convert a hardcore function into a robust one; it also

9We need to allow a negligible statistical distance for technical reasons; cf. Proposition A.3. (This relaxation is reminiscent
of the notion of smooth entropy [40] by Renner and Wolf.) Since we will be interested in indistinguishability of functions of
these distributions this will not make any appreciable difference, and hence we mostly ignore this issue in the remainder of the
paper.
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applicable to leakage-resilient cryptography. Some basic definitions and results concerning computational
entropy are reviewed in Section 2.2.

Our result is simplest to understand when stated in terms of Metric∗ computational entropy (defined
in [19]): A random variable X has Metric∗ entropy at least k, denoted HMetric∗

ε,s (X) ≥ k if for all deterministic
distinguisher circuits of size at most s with output in [0, 1] there exists a distribution Z with H∞(Z) ≥ k
and |E[D(X)]− E[D(Z)]| ≤ ε.

It is easy to see that conditioning on an event E with probability PE reduces (information-theoretic)
min-entropy by at most log PE; indeed, this is Lemma 5.5. (Note that this statement is quite intuitive: the
more surprising a leakage value is, the more it decreases the entropy.) We show that the same holds for the
computational notion of Metric∗ entropy if one considers reduction in both quantity and quality:

Lemma 3.2 Let X, Y be discrete random variables. Then

HMetric∗

ε/PY (y),s′(X|Y = y) ≥ HMetric∗
ε,s (X)− log 1/PY (y) (2)

where s′ ≈ s.

The use of Metric∗ entropy and an improved proof allow for a simpler and tighter formulation than
results of [19, Lemma 3] and [39, Theorem 1.3] (see Appendix B for a comparison).

The proof is similar to [39]. The high level outline of the proof is: Let ν = HMetric∗
ε,s (X).

1. Suppose D distinguishes X|Y = y from any distribution Z of min-entropy ν −∆ with advantage ε′.
Show that either for all such Z, E[D(Z)] is lower than E[D(X|Y = y)] by at least ε′, or for all such Z,
E[D(Z)]−ε′ is higher than E[D(X|Y = y)] by at least ε′. Assume the former without loss of generality.
This initial step allows us to remove absolute values and to find a high-entropy distribution Z+ on
which E[D(Z)] is the highest.

2. Show that there exists a distinguisher D′ that also has advantage ε′ but, unlike D, outputs only 0 or
1. This is done by finding a cutoff α: if D’s output is above α, it D′ will output 1, and otherwise it
will output 0.

3. Show that for every every z outside of Z+ D′ outputs 0, and that Z+ is essentially flat. Use these two
facts to show an upper bound on E[D′(W )] for any W of min-entropy ν.

4. Show a lower bound on E[D′(X)].

We now proceed with the full proof:

Proof: Assume HMetric∗
ε,s (X) ≥ ν. We denote ε′ = ε/PY (y). Let χ be the outcome space of X. We assume

for contradiction that

HMetric∗
ε′,s′ (X|Y = y) ≥ ν − log 1/PY (y)

does not hold. By definition of metric entropy there exists a distinguisher Dy ∈ Ddet,[0,1]
s′ such that ∀Z with

H∞(Z) ≥ ν − log 1/PY (y) we have

|E[Dy(X)|Y = y]− E[Dy(Z)]| > ε′. (3)

Let Z− and Z+ be distributions of min-entropy ν − log 1/PY (y) minimizing E[Dy(Z−)] and maximizing

E[Dy(Z+)] respectively. Let β−
def
= E[Dy(Z−)], β+ def

= E[Dy(Z+)] and β
def
= E[Dy(X)|Y = y].

Claim 3.3 Either β− ≤ β+ + ε′ < β or β < β− − ε′ ≤ β+.
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From (3) and the fact that Z+, Z− have min-entropy at least ν − log 1/PY (y) it suffices to show that ei-
ther β− ≤ β+ ≤ β or β ≤ β− ≤ β+. Suppose it does not hold. Then β− ≤ β ≤ β+. Then we can
define a distribution Z as a convex combination of Z+, Z− with E[Dy(Z)] = β. Furthermore a distribution
formed by taking a convex combination of distributions with min-entropy ν − log 1/PY (y) maintains that
min-entropy ([22, Lemma 2.6]). This is a contradiction of (3).

For the rest of the proof we will assume that the first case β− < β+ + ε′ < β holds10.

Claim 3.4 There exists a point ρ ∈ [0, 1] such that

Pr[Dy(X) > ρ|Y = y]− Pr[Dy(Z+) > ρ] > ε′ . (4)

Proof: One has that

ε′ < E[Dy(X)|Y = y]− E[Dy(Z+)]

=
∫ 1

0
Pr

x∈X
[Dy(x)|Y = y > ρ]dρ−

∫ 1

0
Pr
z∈Z

[Dy(z) > ρ]dρ

=
∫ 1

0

(
Pr

x∈X
[Dy(x)|Y = y > ρ]− Pr

z∈Z
[Dy(z) > ρ]

)
dρ

Suppose no ρ ∈ [0, 1] satisfies (4). This means ∀ρ ∈ [0, 1],Pr[Dy(X) > ρ|Y = y]− Pr[Dy(Z+) > ρ] ≤ ε′ and
thus ∫ 1

0

(
Pr

x∈X
[Dy(x)|Y = y > ρ]− Pr

z∈Z
[Dy(z) > ρ]

)
dρ ≤ ε′.

This is a contradiction.

Since D is a fixed size circuit, it outputs values of some bounded precision. Call the ordered set of possible
output values Π = {p1, ..., pj}. Then, let α = max{pi|pi ≤ ρ}. Thus, α is a fixed precision number where
∀pi ∈ Π, pi > α implies pi > ρ. This means that

Pr[Dy(X) > α|Y = y]− Pr[Dy(Z+) > α] > ε′ .

We define a distinguisher D′
y as follows:

D′
y(z) =

{
0 Dy(z) ≤ α

1 Dy(z) > α.
(5)

We define the quantities

βα
def
= Pr[Dy(X) > α|Y = y] = E[D′

y(X)|Y = y]

β+
α

def
= Pr[Dy(Z+) > α] = E[D′

y(Z
+)].

Let γ = minz∈Z+ Dy(z). Since βα − β+
α ≥ ε′, we know that β+

α < 1. This implies that γ < α.

Claim 3.5 For all z if Pr[Z+ = z] 6= 2−ν+log 1/PY (y), then Dy(z) ≤ γ < α and therefore D′
y(z) = 0.

10 The other case is similar; the main difference is that we work with Z−.
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Proof: Recall that because H∞(Z+) = ν − log 1/PY (y), for all z we have Pr[Z+ = z] ≤ 2−ν+log 1/PY (y).
Thus, suppose, for contradiction that there exists a z such that Pr[Z+ = z] < 2−ν+log 1/PY (y) and Dy(z) > γ.
Choose a w with Pr[Z+ = w] > 0 such that Dy(w) = γ. Create a distribution Z ′ by starting with Z+,
increasing the probability of z and decreasing the probability of w by the same amount, while keeping the
min-entropy guarantee. Then we have E[Dy(Z ′)] > E[Dy(Z+)] which is a contradiction to how Z+ was
chosen.

Claim 3.5 implies that

β+
α =

∑
z∈χ

Pr[Z+ = z]D′
y(z) =

∑
z∈χ

2−ν+log 1/PY (y)D′
y(z) =

1
PY (y)

2−ν
∑
z∈χ

D′
y(z) .

Claim 3.6 For all W over χ where H∞(W ) ≥ ν, E[D′
y(W )] ≤ β+

α PY (y).

Proof: Indeed,

E[D′
y(W )] =

∑
z∈χ

Pr[W = z]D′
y(z) ≤

∑
z∈χ

2−νD′
y(z) = 2−ν

∑
z∈χ

D′
y(z) = PY (y) E[D′

y(Z
+)] .

Claim 3.7 E[D′
y(X)] ≥ βαPY (y)

Proof: One computes

E[D′
y(X)] = E[D′

y(X)|Y = y] Pr[Y = y] + E[D′
y(X)|Y 6= y] Pr[Y 6= y]

≥ E[D′
y(X)|Y = y] Pr[Y = y]

= βαPY (y)

By combining Claim 3.6, Claim 3.7, and (4) we have that for all W over χ with H∞(W ) ≥ ν we have that

E[D′
y(X)]− E[D′

y(W )] > βαPY (y)− β+
α PY (y) = ε′PY (y) = ε (6)

Thus, we have successfully distinguished the distribution X from all distributions W of sufficient min-entropy.
This is a contradiction.

If we now consider averaging over all values of Y , we obtain the following simple formulation that
expresses how much average entropy is left in X from the point of view of someone who knows Y . (This
scenario naturally occurs in leakage-resilient cryptography, as exemplified in [19]).

Theorem 3.8 Let X, Y be discrete random variables. Then

HMetric∗

ε|Y |,s′ (X|Y ) ≥ HMetric∗
ε,s (X)− log |Y |

where s′ ≈ s (recall that |Y | is the size of the support of Y ).
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This statement is similar to the statement for the information-theoretic case (where the reduction is only
in quantity, of course) from Lemma 2.1. In Appendix B, we compare this theorem to [11, Lemma 16] and
[23, Lemma 3.1].

Unfortunately, it is not known whether Metric∗ entropy can be extracted from. Thus, for extraction we
must convert the conditional Metric∗ entropy to conditional HILL entropy. As we discuss in Subsection 2.2,
such a conversion is possible ([2, Theorem 5.2]), although it loses some quality; thus, it should be applied
only when necessary (for instance, repeated conditioning is best measured in Metric∗ entropy, and then
converted to HILL entropy once at the end). Here we provide a “HILL-to-HILL” formulation of Lemma 3.2.

Corollary 3.9 Let X be a discrete random variable over χ and let Y be a discrete random variable. Then,

HHILL
ε′,s′ (X|Y = y) ≥ HHILL

ε,s (X)− log 1/PY (y) (7)

where ε′ = ε/PY (y) + 3

√
log |χ|

s , and s′ = Ω( 3
√

s/ log |χ|).

The Corollary follows by combining Lemma 3.2, [2, Theorem 5.2], and setting εHILL = 3
√

log |χ|/s (see
Theorem 2.10 for justification). A similar Corollary is available for conditioning on average-case Y (see
Corollary B.4).

3.3 A (Crooked) Leftover Hash Lemma for Correlated Distributions

The following generalization of the (Crooked) LHL to correlated input distributions will be very useful to
us when considering bounded multi-message security in Section 6. Since our generalization of the classical
LHL is a special case of our generalization of the Crooked LHL, we just state the latter here.

Lemma 3.10 (CLHL for Correlated Sources) Let H : K ×D → R be a 2t-wise δ-dependent function
for t > 0 with range R, and let f : R → S be a function. Let X = (X1, . . . , Xt) where the Xi are
random variables over D such that H∞(Xi) ≥ µ for all 1 ≤ i ≤ n and moreover Pr [ Xi = Xj ] = 0 for all
1 ≤ i 6= j ≤ t. Then

∆((K, f(H(K,X))), (K, f(U))) ≤ 1
2

√
|S|t(t22−µ + 3δ) (8)

where K
$←K and U = (U1, . . . , Ut) where the Ui are all uniform and independent over R (recall that

functions operate on vectors X and U component-wise).

Note that the lemma implies the corresponding generalization of the classical LHL by taking H to have
range S and f to be the identity function.

The proof of the above lemma, which extends the proof of the Crooked LHL in [7], is in Appendix C.

Remark 3.11 We can further extend Lemma 3.10 to the case of average conditional min-entropy using the
techniques of [16]. Such a generalization (without considering correlated sources) is similarly useful in the
context of randomized encryption from lossy TDFs [38].

4 Deterministic Encryption from Robust Hardcore Functions

4.1 Robust Hardcore Functions

We introduce a new notion of robustness for hardcore functions. Intuitively, robust HCFs are those that
remain one-way when the input is conditioned on an event that occurs with good probability. We expand
on this below.
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Definition 4.1 Let F be a TDF generator and let hc be a HCF such that hc is hardcore for F with respect
to a distribution X on input vectors. For α = α(k), we say hc is α-robust for F on X if hc is also hardcore
for F with respect to the class X[α] of α-induced distributions of X.

Discussion. Robustness is interesting even for the classical definition of hardcore bits, where hc is boolean
and a single uniform input x is generated in the security experiment. Here robustness means that hc remains
hardcore even when x is conditioned on an event that occurs with good probability. It is clear that not
every hardcore bit in the classical sense is robust — note, for example, that while every bit of the input to
RSA is well-known to be hardcore assuming RSA is one-way [1], they are not even 1-robust since we may
condition on a particular bit of the input being a fixed value. It may also be interesting to explore robustness
in contexts other than DE, such as leakage resilience [34] and computational randomness extraction (or key
derivation) [33].

4.2 The Encrypt-with-Hardcore Scheme

The scheme. Let Π = (K, E ,D) be a probabilistic encryption scheme, F be a TDF generator, and hcf

be a HCF. Assume that hc outputs binary strings of the same length as the random string r needed by
E . Define the associated “Encrypt-with-Hardcore” deterministic encryption scheme EwHCore[Π,F , hc] =
(DK,DE ,DD) with plaintext-space PtSp = {0, 1}k via

Algorithm DK(1k):
(pk, sk) $←K(1k)
(f, f−1) $←F(1k)
Return ((pk, f), (sk, f−1))

Algorithm DE((pk, f), x):
r ← hcf (x)
c← E(pk, f(x); r)
Return c

Algorithm DD((sk, f−1), c):
y ← D(sk, c)
x← f−1(y)
Return x

Security analysis. To gain some intuition, suppose hc is hardcore for F on some distribution X on input
vectors. One might think that PRIV security of EwHCore = EwHCore[Π,F , hc, g] on X then follows by
IND-CPA security of Π. However, this is not true. To see this, suppose hc is a “natural” hardcore function
(i.e., outputs some bits of the input). Define Π′ = (K, E ′,D′) to be like Π = (K, E ,D) except that the coins
consumed by E ′ are extended by one bit, which E ′ outputs in the clear and D′ ignores. That is, define
E ′(pk, x; r‖b) = E(pk, x; r)‖b and D′(sk, y‖b) = D(sk, y). Then IND-CPA security of Π′ follows from that of
Π, but a straightforward attack shows EwHCore is not PRIV on X. This is how our notion of robustness
comes into play.

Theorem 4.2 Suppose Π is IND-CPA secure, hc is 2-robust for F on a distribution M on input vectors.
Then EwHCore[Π,F , hc] is PRIV-secure on M .

The theorem follows from combining Theorem 3.1 with the following lemma, which shows that what
does follow if hc is hardcore (but not necessarily robust) is the IND security of EwHCore.

Lemma 4.3 Suppose Π is IND-CPA, hc is hardcore for F on a distribution M on input vectors, and that
g is pseudorandom. Then EwHCore = EwHCore[Π,F , hc, g] is IND secure on M . In particular, let D ∈ DM

be a IND adversary against EwHCore. Then there is an IND-CPA adversary A against Π, an adversary B
against hc on M such that for all k ∈ N

Advind
EwHCore,D(k) ≤ Advind-cpa

Π,A (k) + 2 ·Advhcf
F ,hc,M ,B(k) . (9)

Furthermore, the running-times of A,B are the time to run D.
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Proof: Let Game G1 correspond to the IND experiment with D against EwHCore, and let Game G2 be like
G1 except that the coins used to encrypt the challenge plaintext vector are truly random. For i ∈ {0, 1} let
Bi = (Bi

1, B
i
2) be the HCF adversary against F hc defined via

Algorithm Bi
1(1

k):
x $←D1(i)
Return x

Algorithm Bi
2(pk,y,h):

c← E(pk,y;h)
d

$←D2(pk, c)
Return d

Then

Pr
[
GD

1 ⇒ b
]

= Pr
[
GD

1 ⇒ b | b = 1
]
+ Pr

[
GD

1 ⇒ b | b = 0
]

= Pr
[
GD

2 ⇒ b | b = 1
]
+ Advhcf

F ,hc,B1(k)

+ Pr
[
GD

2 ⇒ b | b = 0
]
+ Advhcf

F ,hc,B0(k)

≤ Pr
[
GD

2 ⇒ b
]
+ 2 ·Advhcf

F ,hc,B(k)

where we take B to be whichever of B0, B1 has the larger advantage. Now define IND-CPA adversary A
against Π via

Algorithm A1(pk):
x0

$←D1(0)
x1

$←D1(1)
Return (x0,x1)

Algorithm A2(pk, c):
d

$←D2(pk, c)
Return d

Then (9) follows from taking into account the definition of the advantages of D,A.

A subtle point worth mentioning is where in the proof we use the fact that the Lemma 4.3 considers
IND security of EwHCore rather than PRIV (which, as we have said, does not follow). It is in the step that
uses security of the hardcore function. If we considered PRIV security, in this step the constructed HCF
adversaries against F would need to test whether the output of the PRIV adversary against EwHCore is
equal to a “target value” representing partial information on the input to F , which these adversaries are not
given. Indeed, this is exactly what caused complications in the original analysis of the scheme of [5], who
used the PRIV notion directly.

5 Single-Message Instantiations of Encrypt-with-Hardcore

5.1 Getting Robust Hardcore Functions

Making any large hardcore function robust. We show that by applying a randomness extractor in
a natural way, one can convert any large hardcore function in the standard sense to one that is robust (with
some loss in parameters). However, while the conversion procedure is natural, proving that it works turns
out to be non-trivial.

For a random variable X on a finite set X , define the entropy discrepancy of X as disc(X) = log |X | −
H∞(X). Let F be a TDF generator, and let hc : {0, 1}k → {0, 1}` be an HCF for F on an input distribution
X such that H∞(X) ≥ µ. Let ext : {0, 1}` × {0, 1}d → {0, 1}m × {0, 1}d be a strong average-case (`− α −
disc(f) − disc(f(X)), εext)-extractor for α ∈ N that takes time text to compute, where the random variable
f(X) is taken over f output by F . Define a new “extractor-augmented” HCF hc[ext] for F [ext] such that
hc[ext]s(x) = ext(hc(x), s) for all x ∈ {0, 1}k and s ∈ {0, 1}d. (Here we view ext as a keyed function with
the second argument as the key.) The following characterizes the α-robustness of hc[ext].

Adam notes: Let’s try to remove the ugly dependence on |F| !!!!!
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Lemma 5.1 If hc is a sufficiently long hardcore function for F on an input distrubition X, then hc[ext] is
a hardcore function for any input distribution X ′ ∈ X[α]. More precisely, if

(f, f(X), hc(X)) ≈t,ε (f, f(X), U`)

(f, f(X ′), ext(hc(X ′), Ud), Ud) ≈t′,2ε′+εext (f, f(X ′), U`, Ud) ,

where in both equations f is distributed according to F(1k), and ε′ = ε · 2α + 3
√

(k + log |F|+ `)/t and
t′ = Ω( 3

√
t/(k + log |F|+ `)).

We note that in the Lemma, we lose not only α bits of the hardcore function in making it robust but
also disc(f) + disc(f(X)) bits. That is, in general we need the starting hardcore function to be sufficiently
long compared to the entropy discrepancies of both f and f(X). (But for typical trapdoor functions such
as RSA, disc(f) is 0 because the distribution put by the key generation algorithm on the keyspace is flat.)
This can always be achieved if the starting hardcore function is long enough to be used as a seed for a
pseudorandom generator, since then it can be expanded to any polynomial length (here we are referring to
running the hardcore function through a pseudorandom generator before applying the extractor).

Also note that when α = log(k) the security loss in the reduction is polynomial (in our application we
just need α = 2). We note that the conversion procedure also works when hc is hardcore on a distribution X
on input vectors, but we omit this since we do not know any examples of “natural” hardcore functions that
are secure on correlated inputs. (Looking ahead, in Section 6 we give a direct constructions of the latter
without needing the conversion procedure.)

Proof: Assume that for t, ε > 0

(f, f(X), hc(X)) ≈t,ε (f, f(X), U`) , (10)

where above in and what follows f is distributed according to F(1k). By definition of HILL entropy,
HHILL

ε,t (f, f(X), hc(X)) ≥ H∞(f, f(X), U`) = H∞(f) + H∞(X) + ` (using the fact that f is injective). Let
E be such that X ′ = X | E; note that Pr[E] = 2−α. Applying the “HILL-to-HILL” Corollary 3.9, we know
that

HHILL
ε′,t′ (f, f, f(X), hc(X) | E) ≥ HHILL

ε,t (f, f(x), hc(X))− α ≥ H∞(f) + H∞(X) + `− α ,

where ε′ = ε · 2α + 3
√

(k + log |F|+ `)/t, and t′ = Ω( 3
√

t/(k + |F|+ `)). By definition of HILL entropy, this
implies that there exist random variables A,B such that

(f, f(X), hc(X)) | E ≈t′,ε′ (A,B, C) (11)

and furthermore H∞((A,B, C)) ≥ H∞(f) + H∞(X) + ` − α. Because an independent random string does
not help the distinguisher,

(f, f(X), hc(X), Ud) | E ≈t′,ε′ (A,B, C, Ud) .

Because applying a deterministic function to the distributions can help the distinguisher by at most the time
it takes to compute the function,

(f, f(X), ext(hc(X), Ud), Ud) | E ≈t′−text,ε′ (A,B, ext(C,Ud), Ud) . (12)

We now claim that
(A,B, ext(C,Ud), Ud) ≈εext (A,B, U`, Ud) . (13)

Indeed,

H̃∞(C | (A,B)) ≥ H̃∞(A,B, C)− |F| − |f(X)|
≥ H∞(f) + H∞(X) + `− α− |F| − |f(X)|
= `− α− disc(f)− disc(f(X))
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where the first inequality uses Lemma 2.1, and thus (??) follows by security of ext. Note that (10) implies
that (f, f(X)) | E ≈t′,ε′ (A,B), which implies

(A,B, U`, Ud) ≈t′,ε′ (f | E, f(X | E), U`, Ud) . (14)

Combining (??), (??), (??) via the triangle inequality we have

(f, f(X), ext(hc(X), Ud), Ud) | E ≈2t′−text,2ε′+εext (f | E, f(X | E), U`, Ud) . (15)

Recalling that f is distributed independently of E and X ′ = X | E, we get the statement of the Lemma.

Remark 5.2 The conclusion of the lemma actually holds given a weaker hypothesis on the starting hardcore
function. Namely, its output need not be indistinguishable from uniform but rather have high computational
(HILL) entropy.

The above conversion procedure notwithstanding, we give specific examples of hardcore functions that
are already robust without requiring the former. This is especially useful to view constructions from both
one-wayness as in [5] and from lossiness as in [7] in a unified way: these constructions emanate from the fact
that both “one-way hardness” and min-entropy are preserved on slightly induced distributions.

Robust Goldreich-Levin bits for any TDF. First, we show that the Goldreich-Levin [24] hardcore
function as considered in [5] is robust. Indeed, robustness of Goldreich-Levin follows from the following
simple lemma, which describes how “one-way hardness” on an input distribution is preserved on induced
distributions.

Lemma 5.3 Let F be a TDF generator. Let X be an input distribution and fix X ′ ∈ X[α] for α ∈ N.
Then for any inverter I ′ against F on X ′ there is an inverter I against F on X such that for all k ∈ N

Advowf
F ,X′,I′(k) ≤ 2α ·Advowf

F ,X,I(k) . (16)

Furthermore, the running-time of I is the time to run I ′.

Proof: (of Lemma 5.3) Let I ′ be the inverter that simply runs I on its input, and let E be the corresponding
event to X ′. Let G be the event that Expowf

F ,X′,I′(k)⇒ 1. Then

Advowf
F ,X′,I′(k) = Pr [ G | E ] · Pr [ E ] + Pr

[
G | E

]
· Pr

[
E
]

≥ Pr [ G | E ] · Pr [ E ]
= Advowf

F ,X,I(k) · 1/2−α ,

from which (12) follows by re-arranging terms.

Note that when α = O(log k) the reduction incurs a polynomial loss in advantage (again, in our appli-
cations we just need α = 2). Then we have the following result.

Proposition 5.4 Let F [GLi] be as defined above and suppose GLi is hardcore for F [GLi] on single-input
distribution X. Then GLi is O(log k)-robust for F [GLi] on X.

Robust bits for any LTDF. Peikert and Waters [38] showed that LTDFs admit a simple, large hardcore
function, namely a pairwise-independent hash function (the same argument applies also to universal hash
functions or, more generally, randomness extractors). We show robustness of the latter based on the following
simple lemma, which says that min-entropy of a given input distribution is preserved on sub-distributions
induced by an event that occurs with good probability.
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Lemma 5.5 Let X be a random variable with H∞(X) ≥ µ, and let X ′ be a random variable where PX′ is
a an α-induced sub-distribution of PX . Then H∞(X ′) ≥ µ− α.

Proof: (of Lemma 5.5) Suppose not, and let E be the corresponding event to X ′. Then there exists an x′

such that PX′(x′) > 2−µ+α. But then

PX(x′) ≥ Pr
[
X = x′ | E

]
· Pr [ E ] + Pr

[
X = x′ | E

]
· Pr

[
E
]

≥ Pr
[
X = x′ | E

]
· Pr [ E ]

> 2−µ+α · 2−α

= 2−µ

a contradiction.

By combining the Generalized Leftover Hash Lemma of [16] (i.e., for the case of average min-entropy) with
the “chain rule” for average conditional min-entropy (Lemma 2.1), it follows that if F is a lossy trapdoor
function generator with residual leakage s, then a pairwise-independent hash function H : K × {0, 1}k →
{0, 1}r is hardcore for F [H] on any single-input distribution X with min-entropy s + r + 2(log 1/ε) for
negligible ε (as compared to [38, Lemma 3.4], we simply observe that the argument does not require the
input to be uniform). Then, using Lemma 5.5 we have the following.

Proposition 5.6 Let LTDF = (F ,F ′) be a LTDF generator with residual leakage s, and letH : K×{0, 1}k →
{0, 1}r be a pairwise-independent hash function. Then H is a O(log k)-robust hardcore function for F [H]
on any single-input distribution X with min-entropy s + r + 2(log 1/ε) for negligible ε.

5.2 Putting It Together

Equipped with the above results, we describe instantiations of the Encrypt-with-Hardcore scheme that both
explain prior constructions and produce novel ones.

Using an iterated trapdoor permutation. The prior trapdoor-permutation-based DE scheme of
Bellare et al. [5] readily provides an instantiation of EwHCore by using an iterated trapdoor permutation as
the TDF. Let F be a TDP and hc be a hardcore bit for F . For i ∈ N denote by F i the TDP that iterates
F i-many times. Define the Blum-Micali-Yao (BMY) [6, 47] hardcore function for F i via BMY i[hc](f, x) =
hc(x)‖hc(f(x))‖ . . . ‖hc(f i−1). Bellare et al. [5] used the specific choice of hc = GL (the GL bit) in their
scheme, which is explained by the fact that the latter is robust as per Proposition 5.4 and one can show that
BMY iteration expands one robust hardcore bit to many (on a non-uniform distribution, the bit should be
hardcore on all “permutation distributions” of the former).

However, due to our augmentation procedure to make any large hardcore function robust, we are no
longer bound to any specific choice of hc. For example, we may choose hc to be a natural bit of the input
in the case that the latter is hardcore. In fact, it may often be the case that F has many simultaneously
hardcore natural bits, and therefore our construction will require fewer iterations of the TDP than the
construction of [5].

Using a lossy TDF. Applying Proposition 5.6, we get an instantiation of the Encrypt-with-Hardcore
scheme from lossy TDFs that is an alternative to the prior scheme of Boldyreva et al. [7] and the concurrent
work of Wee [46]. Our scheme requires an LTDF with residual leakage s ≤ H∞(X) − 2 log(1/ε) − r, where
r is the number of random bits needed in E (or the length of a seed to a pseudorandom generator that can
be used to obtain those bits). Thus the LTDF should lose a constant fraction of its input. To compare,
the prior scheme of [7] encrypts under (an augmented version of) the LTDF directly and does not use the
“outer” encryption scheme at all. Its analysis requires the “Crooked” LHL of Dodis and Smith [17] rather
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than the standard LHL but gets rid of r in the above bound leading to a better requirement on lossiness or
input entropy.

Using 2-correlated product TDFs. Hemenway et al. [28] show a construction of DE from a decisional
2-correlated product TDF, namely where F has the property that f1(x), f2(x) is indistinguishable from
f1(x1), f2(x2) where x1, x2 are sampled independently (in both cases for two independent public instances
f1, f2 of F). (This property is a strengthening of the notion of security under correlated products introduced
in [42].) They show such a trapdoor function is a secure DE scheme for uniform messages. To obtain an
instantiation of EwHCore under the same assumption, we can use F as the TDF, and an independent instance
of the TDF as hc. When a randomness extractor is applied to the latter, robustness follows from Lemma 5.1,
taking into account Remark 5.2.

Using any TDF with a large HCF. Our most novel instantiations in the single-message case come from
considering TDFs that have a sufficiently large HCF but are not necessarily lossy or an iterated TDP. Let us
first consider instantiations on the uniform message distribution (an important special case as highlighted
in [5]). It was recently shown by Freeman et al. [21] that the Niederreiter TDF [35] has linearly many
(simultaneous) hardcore bits under the “Syndrome Decoding Assumption (SDA)” and “Indistinguishability
Assumption (IA)” as defined in [21, Section 7.2], which are already needed to show the TDF is one-way. Fur-
thermore, the RSA [41] and Paillier [37] TDPs have linearly many hardcore bits under certain computational
assumptions, namely the “Small Solutions RSA (SS-RSA) Assumption” [45] and the “Bounded Computa-
tional Composite Residuosity (BCCR) Assumption” [9] respectively. Because these hardcore functions are
sufficiently long, they can be made robust via Lemma 5.1 and give us a linear number of robust hardcore
bits—enough to use as randomness for E (expanded by a pseudorandom generator if necessary). (Here the
“outer” encryption scheme can be instantiated under the same assumptions.) Thus, by Theorem 4.2, we
obtain:

Corollary 5.7 Under SDA+IA for the Niederreiter TDF, DE for the uniform message distribution exists.
Similarly, under SS-RSA the RSA TDP or BCCR for the Paillier TDP respectively, DE for the uniform
message distribution exists.

In particular, the first statement provides the first DE scheme without random oracles based on the
hardness of syndrome decoding. (A scheme in the random oracle model follows from [3].) Moreover, the
schemes provided by the second statement are nearly as efficient as the ones obtained from lossy TDFs
(since they do not use iteration), and the latter typically requires decisional assumptions (in contrast to the
computational assumptions used here).

If we do not wish to rely on specific assumptions, we can also get DE from strong but general assumptions.
Specifically, for general F , we can obtain a large enough HCF by using enough GL bits and assuming the
TDF is sufficiently hard to invert.11 The GL theorem (Theorem 2.3) tells us that if F is s-hard on X then it
has a HCF on X with output length c′ log s for some constant c′. Note we can trade hardness of the TDF for
greater hardness of an underlying PRG used to expand the HCF, which can be built from a one-way function
without a trapdoor. For example, we can assume a TDF F that is quasi-polynomially hard to invert, which
yields a GL HCF on with poly-logarithmic output length, and expand it via a PRG with sub-exponential
hardness (which could be built assuming a sub-exponentially hard one-way function).

To obtain instantiations on message distributions of less than maximal entropy, we can use a technical
lemma [20, Lemma 4] saying that every distribution with min-entropy α less than maximal can be viewed as
an α-induced distribution of the uniform distribution, and take into account Remark 5.2. By Corollary 3.9,
we know the HILL entropy of a HCF on such a distribution degrades in quantity by α and in quality
polynomially in 2α. Thus, assuming the HCF is sufficiently long and sufficiently hard to distinguish from

11For very long messages, on the uniform distribution we can actually apply any TDF block-wise to collect a large hardcore
function from individual GL bits, but this does not extend to lower entropy messages.
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uniform, it can still be turned into a robust HCF using Remark 5.2 For example, if α = O(log(k)), a
standard hardness assumption suffices. We thus obtain the analogue of Corollary 5.7 for distributions whose
min-entropy is logarithmically away from maximal under the same assumptions.

For any α = o(k), we can obtain DE for distributions of min-entropy α away from maximal by assuming
sub-exponential hardness of simultaneous hardcore bits. That is, the analogue of Corollary 5.7 holds under
sub-exponential hardness of the assumptions.

6 Bounded Multi-Message Security and its Instantiations

6.1 The New Notion and Variations

The new notion. The notion of q-bounded multi-message security (or just q-bounded security) for DE is
quite natural, and parallels the treatment of “bounded” security in other contexts (e.g. [12]). In a nutshell, it
asks for security on up to q arbitrarily correlated but high-entropy messages (where we allow the public-key
size to depend on q). More formally, fix an encryption scheme Π = (K, E ,D). For q = q(k) and µ = µ(k), let
Mq,µ be the class of distributions on message vectors Mµ,q = (Mµ,q

1 , . . . ,Mµ,q
q ) where H∞(Mµ,q

i ) ≥ µ and for
all 1 ≤ i ≤ q and Mµ

1,q, . . . ,M
µ
q,q are distinct with probability 1. We say that Π is q-bounded multi-message

PRIV (resp. IND) secure for µ-sources if it is PRIV (resp. IND) secure for Mq,µ. We note that Theorem 3.1
(combined with Lemma 5.5) tells us that PRIV on Mq,µ is equivalent to IND on Mq,µ−2.

Unbounded multi-message security for q-block sources. We also consider unbounded multi-
message security for what we call a q-block source, a generalization of a block-source [10] where every
q-th message introduces some “fresh” entropy. More formally, fix an encryption scheme Π = (K, E ,D).
For q = q(k), n = n(k), and µ = µ(k), let Mq,n,µ be the class of distributions on message vectors
M q,n,µ = (M q,n,µ

1 , . . . ,M q,n,µ
qn ) such that H∞(Xqi+j | X1 = x1, . . . , Xqi−1 = xqi−1) ≥ µ for all 1 ≤ i ≤ n, all

0 ≤ j ≤ q − 1, and all outcomes x1, . . . , xqi−1 of X1, . . . , Xqi−1. We say that Π is q-bounded multi-message
PRIV (resp. IND) secure for (µ, n)-block-sources if Π is PRIV (resp. IND) secure on Mq,n,µ. Using a similar
argument to [7, Theorem 4.2], one can show equivalence of PRIV on Mq,n,µ to IND on Mq,n,µ.

6.2 Our Basic Scheme

Note that we cannot trivially achieve q-bounded security by running, say, q copies of a scheme secure for
one message in parallel (and encrypting the i-th message under the i-th public key), since this approach
would lead to a stateful scheme. The main technical tool we use to achieve the notion is Lemma 3.10.
Combined with Lemma 2.1, this tells us that a 2q-wise independent hash function is robust on correlated
input distributions of sufficient min-entropy:

Proposition 6.1 For any q, let LTDF = (F ,F ′) be an LTDF generator with input length n and residual
leakage s, and let H : K × D → R where r = log |R| be a 2q-wise independent hash function. Then H
is a 2-robust hardcore function for F on any input distribution X = (X1, . . . , Xq) such that H∞(X) ≥
q(s + r) + 2 log q + 2 log(1/ε)− 2 for negligible ε.

Thus, by Theorem 4.2 we obtain a q-bounded multi-message secure DE scheme based on lossy trapdoor
functions. Note that since we require (H∞(X)−2 log q−log(1/ε))/q−r ≥ s (where r is the number of random
bits needed in E , or the length of a seed to a pseudorandom generator that can be used to obtain those bits)
the lossy trapdoor function must lose a 1 − O(1/q) fraction of its input. The DDH-based construction of
Peikert and Waters [38], the Paillier-based one of [7, 21], and the one from d-linear of [21] can all satisfy this
requirement for any polynomial q.
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6.3 Our Optimized Scheme

We show that by extending some ideas of [7], we obtain a more efficient DE scheme meeting q-bounded
security that achieves better parameters.

Intuition and preliminaries. Intuitively, for the optimized scheme we modifying the scheme of [7] to
first pre-process an input message using a 2q-wise independent permutation (instead of pairwise as in [7]).
However, there are two issues to deal with here. First, for q > 1 such a permutation is not known to exist (in
an explicit and efficiently computable sense). Second, Lemma 3.10 applies to t-wise independent functions
rather than permutations. (In the case t = 2 as considered in [7] the difference turns out to be immaterial.)

To solve the first problem, we turn to 2q-wise “δ-dependent” permutations (as constructed in e.g. [30]).
Namely, say that a permutation H : K ×D → D is t-wise δ-dependent if for all distinct x1, . . . , xt ∈ D

∆((H(K, x1), . . . ,H(K, xt)), (P1, . . . , Pt)) ≤ δ ,

where K
$←K and P1, . . . , Pt are defined iteratively by taking P1 to be uniform on D and, for all 2 ≤ i ≤ t,

taking Pi to be uniform on R\{p1, . . . , pi−1} where p1, . . . , pi−1 are the outcomes of P1, . . . , Pi−1 respectively.
To solve the second problem, we use the following lemma, which says that a t-wise δ-dependent permu-

tation is a t-wise δ′-dependent function where δ′ is a bit bigger than δ.

Lemma 6.2 Suppose H : K × D → D is a t-wise δ-dependent permutation for some t ≥ 1. Then H is a
t-wise δ-dependent function for δ′ = δ + t2/|D|.

The proof uses the fact that the distribution of (P1, . . . , Pt) equals the distribution of (U1, . . . , Ut) | DIST
where DIST is the event that U1, . . . , Ut are all distinct and then applies a union bound. It will be useful
to now restate Lemma 3.10 in terms of δ-dependent permutations, which follows by combining Lemma 3.10
and Lemma 6.2.

Lemma 6.3 (CLHL for Correlated Sources with Permutations) LetH : K×D → D be a δ-dependent
t-wise permutation for t > 0 with range R, where δ = t2/|D|. Let f : R → S be a function. Let
X = (X1, . . . , Xt) where the Xi are random variables over D such that H∞(Xi) ≥ µ for all 1 ≤ i ≤ n and
moreover Pr [ Xi = Xj ] = 0 for all 1 ≤ i 6= j ≤ t. Then

∆((K, f(H(K,X))), (K, f(U))) ≤ 1
2

√
7|S|tt22−µ (17)

where K
$←K and U = (U1, . . . , Ut) where the Ui are all uniform and independent over R (recall that

functions operate on vectors component-wise).

It is interesting to note here that the the bound in Equation (13) is essentially as good as the one in
Equation (8). At first one might not expect this to be the case. Indeed, when the classical LHL is extended
to “imperfect” hash functions [44, 15], the error probability must be taken much smaller than 1/|R|, where
R is the range of the hash function. But in Lemma 3.10 we have δ = t2/|D|, which is large compared to
1/|D| (where D the range of the hash function in our case as it is a permutation). The reason we can tolerate
this is that it is enough for t2/|D| to be much smaller than 1/|R| where R is the output range of f in the
lemma, which is indeed the case in applications. In other words, the Crooked LHL turns out to be more
tolerant than the classical one in this respect.

The construction. We now detail our construction. Let LTDF = (F ,F ′) be an LTDF and let P : K ×
{0, 1}k → {0, 1}k be an efficiently invertible family of permutations on k bits. Define the associated deter-
ministic encryption scheme Π[LTDF,P] = (DK,DE ,DD) with plaintext-space PtSp = {0, 1}k via
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Algorithm DK(1k):
(f, f−1) $←F(1k) ; K

$←K
Return ((f,K), (f−1,K))

Algorithm DE((f,K), x):
c← f(P(K, x))
Return c

Algorithm DD((sk, f−1), c):
x← f−1(P−1(K, c))
Return x

We have the following result.

Theorem 6.4 Suppose LTDF is a lossy trapdoor function on {0, 1}n with residual leakage s, and let q, ε > 0.
Suppose P is a 2q-wise δ-dependent permutation on {0, 1}n for δ = t2/2n. Then for any q-message IND
adversary B ∈ DMq,µ with min-entropy µ ≥ qs + 2 log q + log(1/ε) + 5, there is a LTDF distinguisher D such
that for all k ∈ N

Advind
Π[LTDF,P],B(k) ≤ Advltdf

LTDF,D(k) + ε .

Furthermore, the running-time of D is the time to run B.

Proof: The first step in the proof is to switch the HCF experiment to execute not (f, f−1) $←F(1k) but
f ′ ← F ′(1k). We can conclude by applying Lemma 6.3 with t = 2q and H = P.

An efficiently invertible 2q-wise δ-dependent permutation on {0, 1}n for δ = t2/2n can be obtained
from [30] using key length nt + log(1/δ) = n(t + 1)− 2t.

Now, combining Theorem 6.4 with Theorem 3.1 and Lemma 5.5 (extended to message vectors rather
than single-input distributions) gives us bounded multi-message PRIV (rather than IND) security for any
distribution on message vectors of size q with sufficient entropy. We make explicit the following corollary.

Corollary 6.5 Suppose LTDF is a lossy trapdoor function on {0, 1}n with residual leakage s. Then we
obtain a q-bounded multi-message PRIV secure DE scheme for the class of distributions on {0, 1}n with
min-entropy µ ≥ qs + 2 log q + 2 log(1/ε) + 7 for negligible ε.

Comparing to Proposition 6.1, we see that we have dropped the r in the entropy bound (indeed, there is
no hardcore function here). This translates to savings on the input entropy or lossiness requirement on the
trapdoor function. Namely, while we still need to lose a 1− O(1/q) fraction of the input, we get rid of the
factor 2 on q. We also note that we can prove that the optimized scheme meets our notion of unbounded
multi-message PRIV security on q-block sources of the same entropy directly by using our precise definitional
equivalence, as follows. First, its IND security on q-block sources follows by extending Lemma 3.10 to q-
block sources by a hybrid argument as in the case of the original LHL [48]. Then, its PRIV security on
q-block sources (of 2 bits greater entropy) follows by Theorem 3.1 after extending Lemma 5.5 to show that
a 2-induced distribution of a q-block source with min-entropy µ is a q-block source with min-entropy µ− 2.

Discussion. We believe that q-bounded security better illuminates the technical gap between achieving un-
bounded security for DE in the RO and standard models. In particular, note that for an unbounded number
of arbitrarily correlated messages the information-theoretic approach we use to achieve q-bounded multi-
message security breaks down (since there would not be enough randomness in the inputs to extract). One
approach towards achieving unbounded security without random oracles would be to give a computational
analogue of Lemma 3.10 (or rather, the version in the context of the “standard” LHL) for an unbounded
number of arbitrarily correlated sources. We consider finding a hash function (in the standard model) that
satisfies such an analogue to be a very interesting open problem. Some partial results in this direction were
obtained recently in [26].
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A Proof of Theorem 3.1

Following [5], the high-level intuition for the proof is as follows. For the given distribution M on message
vectors, we first show that it suffices to consider PRIV adversaries for which A2 outputs (x, t) where t is
boolean. Now, we would like to use the fact if t is easy to guess from the encryption of x then the encryption
of x conditioned on (1) the output (x, t) of A2 being such that t = 1, or (2) the output (x, t) of A2 being such
that t = 0 are easy to distinguish; indeed, these are induced distributions of M (viewing the binary t as the
random variable indicating the event E). However, one of these distributions may be hard to sample from
and have low entropy. Therefore, we show it additionally suffices to consider PRIV adversaries on M for
which t is not just boolean but also balanced, meaning the probability it is 0 or 1 is about the same. Then,
we can easily sample from the above-mentioned distributions by repeatedly running A. In this section, we
assume PRIV adversaries have an empty A0 and accept 1k as input (the “best” state is hardwired) though
we describe the A0’s of some adversaries for clarity.

Reduction to the boolean case. Call a PRIV adversary A boolean if it outputs test strings of length
1. We first show that is suffices to consider boolean PRIV adversaries (this was previously shown in both [5]
and [7]).

Proposition A.1 Let Π = (K, E ,D) be an encryption scheme and A ∈ AM be a PRIV adversary that
outputs test strings of length `. Then there is a boolean PRIV adversary B ∈ AM such that

Advpriv
Π,A(k) ≤ 2 ·Advpriv

Π,B(k) .

Furthermore, the running-time of B is the time to run A plus O(`).

Proof: The proof is identical to an argument in [14] for the information-theoretic setting. Adversary B
works as follows:

Algorithm B0(1k):
r

$←{0, 1}`
Return r

Algorithm B1(r):
(x, t) $←A1(1k)
Return (x, 〈t, r〉)

Algorithm B2(pk, c, r):
g

$←A2(pk, c)
Return 〈g, r〉

For d ∈ {0, 1}, let EA
d denote the event Exppriv-d

Π,A (k)⇒ 1 and similarly EB
d denote Exppriv-d

Π,B (k)⇒ 1. Then

Advpriv
Π,B(k) = Pr

[
EB

1

]
− Pr

[
EB

0

]
=

(
Pr
[
EA

1

]
+

1
2
· (1− Pr

[
EA

1

]
)
)
−
(

Pr
[
EA

0

]
+

1
2
· (1− Pr

[
EA

0

]
)
)

=
1
2
· (Pr

[
EA

1

]
− Pr

[
EA

0

]
)

=
1
2
·Advpriv

Π,A(k)

where in the second step we use that if t 6= g then 〈t, r〉 = 〈g, r〉 with probability 1/2 over the choice of r.
The claimed running-time of B is easy to verify.

Reduction to the balanced boolean case. As in [5] the next step is to show that it in fact suffices
to consider boolean PRIV adersaries that are balanced, meaning the probability the partial information is 1
or 0 is approximately 1/2. Namely, call a boolean PRIV adversary A = (A0, A1, A2) δ-balanced [5] if for all
b ∈ {0, 1} ∣∣∣∣Pr

[
t = b : (x, t) $←A1(state)

]
− 1

2

∣∣∣∣ ≤ δ

for all state output by A0 on input 1k.
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Proposition A.2 Let Π = (K, E ,D) be an encryption scheme and B ∈ AM be a boolean PRIV adversary.
Then for any 0 ≤ δ < 1/2 there is a δ-balanced boolean PRIV adversary C ∈ AM such that

Advpriv
Π,B(k) ≤

(
2
δ

+ 1
)2

·Advpriv
Π,C(k) .

Furthermore, the running-time of C is the time to run B plus O(1/δ).

Proof: As compared to [5] we give a simplified proof due to [13] (which also leads to better concrete security),
where for simplicity we assume 1/δ is an integer. Adversary C works as follows:

Algorithm C1(1k):
(x, t) $←B1(1k)
i

$←{1, . . . , 2(1/δ) + 1}
If i ≤ 1/δ then return (x, 0)
Else if i ≤ 2(1/δ) then return (x, 1)
Else return (x, t)

Algorithm C2(pk, c):
g

$←B2(pk, c)
j

$←{1, . . . , 2(1/δ) + 1}
If j ≤ 1/δ then return 0
Else if j ≤ 2(1/δ) then return 1
Else return g

Note that C is δ-balanced, since for all b ∈ {0, 1}∣∣∣∣Pr
[

t = b : (x, t) $← C1(1k)
]
− 1

2

∣∣∣∣ ≤ 1
2/δ + 1

.

As before, for d ∈ {0, 1}, let Bd denote the event Exppriv-d
Π,B (k)⇒1 and similarly Cd denote Exppriv-d

Π,C (k)⇒1.
We define the event E to be the event that i = j = 2/δ + 1. Then

Advpriv
Π,C(k) = Pr [ C1 ]− Pr [ C0 ]

= Pr [ C1 | E ] Pr [ E ]− Pr [ C0 | E ] Pr [ E ] + Pr
[
C1 | E

]
Pr
[
E
]
− Pr

[
C0 | E

]
Pr
[
E
]

= Pr [ C1 | E ] Pr [ E ]− Pr [ C0 | E ] Pr [ E ] +
1
2
− 1

2

=
(

1
2/δ + 1

)2

·Advpriv
Π,B(k) .

As before, the claimed running-time of C is easy to verify.

Reduction to distribution hiding. Similar to [5] the final component for the proof is as follows.

Proposition A.3 Let Π = (K, E ,D) be an encryption scheme and C ∈ AM be a δ-balanced boolean PRIV
adversary. Then there is an IND adversary D ∈ DM∗[log(1/(1/2−δ))] such that

Advpriv
Π,C(k) ≤ Advind

Π,D(k) +
(

1
2

+ δ

)k

.

In particular, D samples from message distributions that are statistically 2Ω(k)-close to complementary
log(1/(1/2− δ))-induced message distributions of C. Furthermore, the running-time of D is the time for at
most k executions of C.

Proof: Adversary D works as follows.
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Algorithm D1(b):
For i = 1 to k do:

(x, t) $←B1(1k)
If t = b then return x

Return x

Algorithm D2(pk, c):
g

$←B2(pk, c)
Return g

For the analysis, let BAD denote the event that the final return statement is executed. Let CORRECTD

be the event that b = d when D is executed in the PRIV experiment with Π and similarly let CORRECTB

denote the event that t = g when B is executed in the PRIV experiment with Π. Then

Advpriv
Π,D(k) = Pr [ CORRECTD | b = 1 ] + Pr [ CORRECTD | b = 0 ]

≥
(
Pr
[
CORRECTD | b = 1 ∧ BAD

]
+ Pr

[
CORRECTD | b = 0 ∧ BAD

])
· Pr

[
BAD

]
= (Pr [ CORRECTB | t = 1 ] + Pr [ CORRECTB | t = 0 ]) · Pr

[
BAD

]
= Advpriv

Π,B(k) · Pr
[
BAD

]
≥ Advpriv

Π,B(k)

(
1−

(
1
2

+ δ

)k
)

≥ Advpriv
Π,B(k)−

(
1
2

+ δ

)k

,

where the second-to-last line uses that B is δ-balanced. The claimed running-time of D is easy to verify. It
remains to argue that D ∈ DM∗[log(1/(1/2−δ))]. Let MD,i be the message distribution sampled by D1 on input
b = i for i ∈ {0, 1} and similarly let MC,i be the message distribution sampled by C1 when t = i in its output
for i ∈ {0, 1}. Observe that MC,0 and MC,1 are complementary log(1/(1/2 − δ))-induced distributions of
the message distribution of C, with corresponding events t = 0 and t = 1 respectively. Furthermore, we have
MD,i | BAD = MC,i for i ∈ {0, 1}. Since Pr [ BAD ] ≤ (1/2 + δ)k, it follows that MD,i | BAD is statistically
2−Ω(k)-close to MC,i for i ∈ {0, 1}, which concludes the proof.12

Theorem 3.1 follows by combining Propositions A.1, A.2, and A.3 with δ = 1/4.

B Comparison to other Computational Entropy Leakage Lemmas

Previous works have considered the question of measuring conditional computational entropy under a wide
array of applications and settings. Dziembowski and Pietrzak [19] show that the output of a pseudorandom
generator still has entropy conditioned on functions of the seed:

Lemma B.1 [19, Lemma 3] Let prg : {0, 1}n → {0, 1}ν and f : {0, 1}n :→ {0, 1}λ (where 1 ≤ λ < n < ν)
be any functions. If prg is a (εprg, s)-secure pseudorandom-generator, then for any ε1, ε2,∆ > 0 satisfying
εprg ≤ ε1ε2/2λ − 2−∆, we have with X ∼ Un,

Pr
y:=f(X)

[HMetric∗
ε1,s′ (prg(X)|f(X) = y) ≥ ν −∆] ≥ 1− ε2 (18)

where s′ ≈ s.

Our results improve the parameters and simplify the exposition. Our result considers any random variables
X, Y (not just pseudorandom X) and gives simpler statements, such as Theorem 3.8. To make the quanti-
tative comparison, we present the following alternative formulation of our result, in the style of [19, Lemma
3]:

12Note that as compared to [5] our approach avoids having to analyze the min-entropy of D, which is more involved.
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Lemma B.2 Let X, Y be discrete random variables with |Y | ≤ 2λ and HMetric∗
εent,s (X) ≥ ν, then for any

ε1, ε2,∆ > 0 satisfying εent ≤ ε1ε2/2λ and 2−∆ ≤ ε2/2λ,

Pr
y∈Y

[HMetric∗
ε1,s′ (X|Y = y) ≥ ν −∆)] ≥ 1− ε2

where s′ ≈ s.

To compare the bounds, observe that we have removed ε1 from 2−∆, because the constraint εprg ≤ ε1ε2/2λ−
2−∆ implies that εprg ≤ ε1ε2/2λ and ε1ε2/2λ ≥ 2−∆.

The question has also been considered by [39] in the language of the dense model theorem. Their main
result, restated in our language is:

Lemma B.3 [39, Theorem 1.3] Let X, Y be discrete random variables. Then

HHILL
ε′,s′ (X|Y = y) ≥ HHILL

ε,s (X)− log 1/PY (y) (19)

where ε′ = Ω(ε/PY (y)), and s′ = s/poly(PY (y)/ε, log 1/PY (y))

Note that the quantity loss is the same as in Lemma 3.2; however, the losses in the circuit size and dis-
tinguishing advantage are different, because Lemma 3.2 separates the conditioning step and the conversion
back to HILL entropy. This separation allows us set conversion parameters separately (which is needed when
ε is smaller than 1/s). It also allows paying for the conversion step only once in case of repeated leakage,
enabling the proof of a limited chain rule for repeated conditioning (see [22, Theorem 3.6]).

Recent work concurrent with ours [23, 11] has shown results on information leakage when the starting
distribution is already conditional. This is a significantly harder as the auxiliary information may shape the
original distribution or its condition. Both works are able to achieve this “chain-rule” but must introduce
significant restrictions. Since these works are both average-case, formulations we first present an average
case formulation of Corollary 3.9:

Corollary B.4 Let X, Y be discrete random variables over χ1, χ2 respectively. Then

HHILL
ε′,s′ (X|Y ) ≥ HHILL

ε,s (X)− log |Y |

where ε′ = ε|Y |+ 3

√
log |χ1||χ2|

s , s′ = Ω( 3

√
s

log |X||Y1||Y2|).

This corollary follows by Theorem 3.8, Theorem 2.10, and setting εHILL = 3

√
log |χ1||χ2|

s .
Gentry and Wichs consider indistinguishability with auxiliary information in their work on succinct

argument systems [23, Lemma 3.1]. Their result is below (restated in our language):

Lemma B.5 [23, Lemma 3.1] Let X, Y, Z be discrete random variables with H∞(Z) ≥ k and Y ranges over
{0, 1}λ. If ∀D ∈ Drand,{0,1}

s , δD(X, Z) ≤ ε, then ∃Y ′ such that ∀D̃ ∈ Drand,{0,1}
s′ , δD̃((X, Y ), (Z, Y ′)) ≤ ε′

where ε′ = 2ε and s′ = s · poly(ε/|Y |).

This lemma is related to entropy as follows: X has HILL entropy k, and it can be said that, since (X, Y ) is
indistinguishable from (Z, Y ′), that computational entropy of X | Y is at least H̃∞(Z | Y ′), which is at least
k − λ by Lemma 2.1. Note, however, that this Lemma requires a different definition of entropy from ours,
in which the condition itself may also be replaced. It is unclear the implications of this change and where it
would better or worse than conditional HILL entropy. The advantage of this lemma is that it handles the
case when X is already a conditional distribution (we can only handle this in some settings [22, Theorem
3.6]). The disadvantage, however, is that the lemma inherently talks about the average case Y and not a
single event y. For our application in the current paper, we need to condition on a particular event y and
not the distribution of events.

Chung et al. in their work on memory delegation need indistinguishability in the presence of a single bit
of auxiliary information. They formulate the problem in the asymptotic setting:
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Lemma B.6 [11, Lemma 16] Let k be a security parameter and n, l, t be any parameters such that n ≤
poly(k), l = O(log k), and t = ω(log k). Let (X, C) be a joint distribution over {0, 1}∗ × {0, 1}∗ of poly(k)
length. If HHILL(X|C) ≥ n w.r.t. samplable distributions, then for any distribution B = B(X, C) over
{0, 1}l, we have

HHILL(X|C,B) ≥ n− t.

It is important to note that in this lemma, the “conditional HILL entropy” is different from our notion:
it means indistinguishability against distributions of worst-case conditional min-entropy, whereas here we
define conditional HILL entropy as indistinguishability against distributions of average min-entropy (see the
precise definitions in Section 2). In addition, this lemma imposes a samplability condition that we do not.

Thus, removing limitations on the chain rule remains an interesting open problem.

C Proof of Lemma 3.10

For random variables X and Y , we define te square of the 2-distance between X and Y as D(X, Y ) =∑
x

(
PX(x)− PY (x)

)2. Writing Ek for the expectation over the choice of k according to the distribution of
K, it follows that

∆
(
(K, f(H(K,X))), (K, f(U))

)
= Ek

[
∆
(
f(H(k,X)), f(U)

)]
≤ 1

2
Ek

[√
|S|t ·D

(
f(H(k,X)), f(U)

)]
≤ 1

2

√
|S|t ·Ek

[
D
(
f(H(k,X))), f(U)

)]
where the first inequality is by Cauchy-Schwarz and the second inequality is due to Jensen’s inequality. We
will show that

Ek

[
D
(
f(H(k,X)), f(U)

)]
≤ t22−µ + 6t22−r + 3δ ,

which completes the proof. Write Y = H(k,X) for an arbitrary but fixed k. Then

D
(
f(Y), f(U))

)
=

∑
s

(
Pf(Y)(s)− Pf(U)(s)

)2
=

∑
s

Pf(Y)(s)
2 − 2

∑
s

Pf(Y)(s)Pf(U)(s) + Col(f(U)) .

For a set Z ⊆ Rt, define δr,Z to be 1 if r ∈ Z and else 0. For s ∈ St we can write Pf(Y)(s) =∑
x PX(x)δH(k,x),f−1(s) and thus∑

s

Pf(Y)(s)
2 =

∑
s

(∑
x

PX(x)δH(k,x),f−1(s)

)(∑
x′

PX(x′)δH(k,x′),f−1(s)

)
=

∑
s,x,x′

PX(x)PX(x′)δH(k,x),f−1(s)δH(k,x′),f−1(s) ,

so that

Ek

[∑
s

Pf(Y)(s)
2
]

=
∑
s

∑
x,x′

PX(x)PX(x′)Ek[δH(k,x),f−1(s)δH(k,x′),f−1(s)]

=
∑
s

∑
∃i,j, x[i]=x′[j]

PX(x)PX(x′)

+
∑
s

∑
∀i,j, x[i] 6=x′[j]

PX(x)PX(x′)Ek[δH(k,x),f−1(s)δH(k,x′),f−1(s)]

≤ t22−µ + Col(f(U)) + t22−r + δ
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where the first term is by a union bound over all 1 ≤ i, j ≤ t and for the remaining terms we use the δ-almost
2t-wise independence of H and note that

Ek[δH(k,x),f−1(s)δH(k,x′),f−1(s)] = Pr
[
f(H(K,x)) = f(H(K,x′))

]
.

Similarly, ∑
s

Pf(Y)(s)Pf(U)(s) =
∑
s

(∑
x

PX(x)δH(k,x),f−1(s)

)(
1
|R|

∑
u

δu,f−1(s)

)
=

1
|R|

∑
s

∑
u,x

PX(x)δH(k,x),f−1(s)δu,f−1(s)

so that

Ek

[∑
s

Pf(Y)(s)Pf(U)(s)
]

=
1
|R|

∑
s

∑
u,x

PX(x)Ek[δH(k,x),f−1(s)δu,f−1(s)]

≥ Col(f(U))− δ

using δ-almost t-wise independence of H. By combining the above, it follows that

Ek

[
D
(
f(Y), f(U)

)]
≤ t22−µ + 3δ

which was to be shown.
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