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Abstract

Malleability for cryptography is not necessarily an opportunity for attack, but in many
cases a potentially useful feature that can be exploited. In this work, we examine notions of
malleability for non-interactive zero-knowledge (NIZK) proofs. We start by defining a malleable
proof system, and then consider ways to meaningfully control the malleability of the proof
system, as in many settings we would like to guarantee that only certain types of transformations
can be performed. We also define notions for the cases in which we do not necessarily want a
user to know that a proof has been obtained by applying a particular transformation; these are
analogous to function/circuit privacy for encryption.

As our motivating application, we consider a shorter proof for verifiable shuffles. Our
controlled-malleable proofs allow us for the first time to use one compact proof to prove the
correctness of an entire multi-step shuffle. Each authority takes as input a set of encrypted
votes and a controlled-malleable NIZK proof that these are a shuffle of the original encrypted
votes submitted by the voters; it then permutes and re-randomizes these votes and updates
the proof by exploiting its controlled malleability. As another application, we generically use
controlled-malleable proofs to realize a strong notion of encryption security.

Finally, we examine malleability in existing proof systems and observe that Groth-Sahai
proofs are malleable. We then go beyond this observation by characterizing all the ways in
which they are malleable, and use them to efficiently instantiate our generic constructions from
above; this means we can instantiate our proofs and all their applications using only the Decision
Linear (DLIN) assumption.
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1 Introduction

Let L be a language in NP. For concreteness, consider the language of Diffie-Hellman tuples:
(G, g,X, Y, Z) ∈ LDH if there exist (x, y) such that g,X, Y, Z are elements of the group G, X = gx,
Y = gy, and Z = gxy. Suppose that we have a polynomial time prover P , and a verifier V , and
P wants to convince V that (G, g,X, Y, Z) ∈ LDH . Does the efficient prover need to know the
values (x, y) in order to convince the verifier? Not necessarily. Suppose that P is in possession
of a non-interactive zero-knowledge (NIZK) proof π′ that another tuple, (G, g,X ′, Y ′, Z ′) ∈ LDH ;
suppose in addition that P happens to know (a, b) such that X = (X ′)a, Y = (Y ′)b, and Z = (Z ′)ab.
Can he, using the fact that he knows (a, b), transform π′ into a NIZK π for the related instance
(G, g,X, Y, Z)? In the sequel, we say that a proof system is malleable if it allows a prover to derive
proofs of statements (such as (G, g,X, Y, Z) ∈ LDH ) not just from witnesses for their truth, but
also from proofs of related statements (such as the proof π′ that (G, g,X ′, Y ′, Z ′) ∈ LDH ).

In this paper, we consider malleability for non-interactive zero-knowledge proof systems. Our
contributions are threefold: (1) definitions; (2) constructions; and (3) applications.

Motivating application. Why is malleability an interesting feature for non-interactive zero-
knowledge proof systems? Let us present, as a motivating application, a verifiable vote shuffling
scheme that becomes much more efficient if constructed using malleable proofs.

In a vote shuffling scheme, we have a set of encrypted votes (v1, . . . , vn) submitted by n vot-
ers; each vote vi is an encryption of the voter’s ballot under some trusted public key pk . The
set of encrypted votes is then re-randomized1 and shuffled, in turn, by several shuffling author-

ities. More precisely, let (v
(0)
1 , . . . , v

(0)
n ) = (v1, . . . , vn); then each authority Aj takes as input

(v
(j−1)
1 , . . . , v

(j−1)
n ), picks a random permutation ρ and outputs (v

(j)
1 , . . . , v

(j)
n ) = (ṽ

(j)
ρ(1), . . . , ṽ

(j)
ρ(n)),

where ṽ
(j)
i is a randomization of v

(j−1)
i . At the end, the final set of encrypted votes (v

(`)
1 , . . . , v

(`)
n )

is decrypted (for example, by a trustee who knows the decryption key corresponding to pk , or via
a threshold decryption protocol) and the election can be tallied.

It is easy to see that, if we are dealing with an honest-but-curious adversary, this scheme
guarantees both correctness and privacy as long as at least one of the authorities is honest. To
make it withstand an active adversary, however, it is necessary for all participants (both the voters
and the shuffling authorities) to prove (using a proof system with appropriate, technically subtle
soundness and zero-knowledge guarantees) that they are correctly following the protocol. If these
proofs are non-interactive, then the protocol gets the added benefit of being universally verifiable:
anyone with access to the original encrypted votes and the output and proofs of each authority
can verify that the votes were shuffled correctly. Thus, any party wishing to verify an election
with n voters and ` shuffling authorities (and ` can potentially be quite large, for example a large
polynomial in n for cases where a small group is voting on a very sensitive issue) will have to access
Ω(n`) data just to read all the proofs.

Can the proof that the verifier needs to read be shorter than that? The statement that needs

to be verified is that the ciphertexts (v
(`)
1 , . . . , v

(`)
n ) can be obtained by randomizing and permuting

the original votes (v1, . . . , vn). The witness for this statement is just some permutation (that is
obtained by composing the permutations applied by individual authorities) and randomness that
went into randomizing each ciphertext (that can be obtained by applying the group operation
repeatedly to the randomness used by each authority); thus, ignoring the security parameter, the

1It is therefore important that the encryption scheme used is randomizable, so that on input a ciphertext c =
Encpk (m; r) and randomness r′ one can compute c′ = Encpk (m; r ∗ r′), where ∗ is some group operation.
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length of the witness can potentially be only O(n).2

Of course, no individual authority knows this witness. But each authority Aj is given a proof
πj−1 that, up until now, everything was permuted and randomized correctly. Using controlled
malleable proofs, from this πj−1 and its own secret permutation ρj and vector of random values

(r
(j)
1 , . . . , r

(j)
n ), Aj should be able to compute the proof π that his output is a permutation and

randomization of the original votes.
In this paper, we give a construction that roughly corresponds to this outline, and prove its

security. We must stress that even though this construction is a more or less direct consequence
of the new notion of controllable malleability, and therefore may seem obvious in hindsight, it is
actually a significant breakthrough as far as the literature on efficient shuffles is concerned: for the
first time, we obtain a non-interactive construction in which the complexity of verifying the tally
with ` authorities is not ` times the complexity of verifying the tally with one authority!

Our definitions. Care needs to be taken when defining malleable NIZKs suitable for the above
application. We first need malleability itself: from an instance x′ and a proof π′ that x′ ∈ L, we
want to have an efficient algorithm ZKEval that computes another instance x = T (x′) and a proof π
that x ∈ L, where T is some transformation (in the above example, x′ may be a set of ciphertexts,
and T is a re-randomization and permutation of these ciphertexts). We want the resulting proof to
be derivation private, so that, from x and π, it is impossible to tell from which T and x′ they were
derived. (In the above example, it should be impossible to tell how the ciphertexts were shuffled.)
Finally, we want to ensure that the proof system is sound, even in the presence of a zero-knowledge
simulator that provides proofs of adversarially chosen statements (so that we can relate the real-
world experiment where the adversary participates in shuffling the ciphertexts to an ideal-world
process that only has access to the final tally). To this end, we define controlled malleability (as
opposed to malleability that is out of control!) that guarantees that, from proofs computed by an
adversary, an extractor (with a special extracting trapdoor) can compute either a witness to the
truth of the statement, or the transformation T and some statement for which the simulator had
earlier provided a proof.

Our definitional approach to derivation privacy is inspired by circuit privacy for fully homo-
morphic encryption [28, 42, 41, 14], also called function privacy or unlinkability. Our definitional
approach to controlled malleability is inspired by the definitions of HCCA (homomorphic-CCA)
secure encryption due to Prabhakaran and Rosulek [38]; it is also related to the recently proposed
notion of targeted malleability due to Boneh, Segev, and Waters [13]. (See Appendix Efor more
detailed comparison with these notions.)

Our construction. Our construction of controlled-malleable and derivation-private NIZK proof
systems consists of two steps. First, in Section 3, we show how to construct a controlled-malleable
derivation-private NIZK from any derivation-private non-interactive witness-indistinguishable (NIWI)
proof system and secure signature scheme. Then, in Section 4.1 we show how to instantiate the
appropriate NIWI proof system and signature scheme using the Groth-Sahai proof system [35] and
a recent structure-preserving signature due to Chase and Kohlweiss [16]; this combination means
we can instantiate our proofs (and in fact all of the constructions in our paper) using the Decision

2Here we use a very simple approach to proving a shuffle in which we represent the permutation as a matrix, thus
the length of a single shuffle proof is O(n2). This could potentially be improved using more sophisticated verifiable
shuffle techniques as we will mention later. Additionally, because we want to be able to verify the fact that each
authority participated in the shuffle, we will include a public key for each authority involved and the size will actually
grow to O(n2 + `).

4



Linear (DLIN) assumption [11]. The size of the resulting proof is linear in the size of the statement,
although the size of the structure-preserving signature does make it admittedly much less efficient
than Groth-Sahai proofs alone.

At the heart of our construction is the observation that the Groth-Sahai (GS) proof system
is malleable in ways that can be very useful. This feature of GS proofs has been used in prior
work in a wide variety of applications: Belenkiy et al. [8] use the fact that the GS proof system
can be randomized in order to construct delegatable anonymous credentials; Dodis et al. [21] uses
homomorphic properties of GS proofs in order to create a signature scheme resilient to continuous
leakage; Acar and Nguyen [7] use malleability to delegate and update non-membership proofs for
a cryptographic accumulator in their implementation of a revocation mechanism for delegatable
anonymous credentials; and Fuchsbauer [25] uses malleability to transform a proof about the con-
tents of a commitment into a proof of knowledge of a signature on the committed message in his
construction of commuting signatures.

Armed with an appropriate construction of a controlled-malleable and derivation-private NIZK,
we proceed, in Section 6, to consider the problem of obtaining a verifiable shuffle with compact
proofs. We formally define this concept, describe a generic construction from a semantically-secure
encryption scheme and a controlled-malleable and derivation-private NIZK following the outline
above, and finally argue that we can in fact construct such a proof system for the appropriate set
of transformations based on the instantiation described in Section 4.1.

An application to encryption. Can controlled malleability of NIZKs give us controlled mal-
leability for encryption? That is to say, can we achieve a meaningful notion of adaptively secure
encryption, even while allowing computations on encrypted data? Similarly to controlled malleabil-
ity for proofs, we define in Section 5 controlled malleability for encryption (directly inspired by the
notion of HCCA security; in this, our work can be considered closely related to that of Prabhakaran
and Rosulek), and show a general method for realizing it for broad classes of unary transforma-
tions, using a semantically secure encryption scheme with appropriate homomorphic properties
and a controlled-malleable and derivation-private NIZK for an appropriate language as building
blocks. Our construction follows easily from these properties, resulting in a much simpler proof of
security than was possible in previous works. (We note that our methods do not extend to n-ary
transformations for n > 1, because the same limitations that apply for HCCA security, pointed
out by Prabhakaran and Rosulek, also apply here. The work of Boneh et al. overcomes this and
allows for binary transformations as well, with the sacrifice that, unlike both our scheme and the
Prabhakaran-Rosulek scheme, the encryption scheme can no longer satisfy function privacy.)

Related work on shuffling ciphertexts. Shuffles and mixing in general were introduced by
Chaum in 1981 [17], and the problem of verifiable shuffles was introduced by Sako and Kilian in
1995 [40]; the work on verifiable shuffles in the ensuing sixteen years has been extensive and varied [2,
27, 6, 36, 31, 26, 43, 33]. In 1998, Abe [1] considered the problem of compact proofs of shuffles.
Unlike our non-interactive solution, his solution is based on an interactive protocol3 wherein all
mixing authorities must jointly generate a proof with size independent of `; in comparison, our
solution allows authorities to be offline before and after shuffling the ciphertexts. In terms of
approaches most similar to our own, Furukawa and Sako [27] use a permutation matrix to shuffle

3The protocol could in fact be made non-interactive, but only using the Fiat-Shamir heuristic [24] and thus the
random oracle model.
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the ciphertexts; they then prove that the matrix used was in fact a permutation matrix, and
that it was applied properly. Most recently, Groth and Lu [33] give a verifiable shuffle that is
non-interactive (the only one to do so without use of the Fiat-Shamir heuristic [24]), uses pairing-
based verifiability, and obtains O(n) proof size for a single shuffle. The advantage, as outlined
above, that our construction has over all of these is that one proof suffices to show the security of
the entire shuffle; we do not require a separate proof from each mix server. An interesting open
problem is to see if there is some way to combine some of these techniques with an appropriate
controlled-malleable proof system to obtain a multi-step shuffle with optimal proof size O(n+ `).

2 Definitions and Notation

Our definitional goal is to formulate what it means to construct a proof of a particular statement
using proofs of related statements. Let R(·, ·) be some relation that is polynomial-time computable
in the size of its first input; in the sequel we call such a relation an efficient relation. Associated with
R, there is an NP language LR = {x | ∃ w such that R(x,w) = TRUE}.4 For example, let R(x,w)
be a relation that holds if the witness w = (a, b) demonstrates that the instance x = (G, g,A,B,C)
is a Diffie-Hellman tuple; i.e. it holds if g,A,B,C ∈ G and A = ga, B = gb, C = gab. Then
the language associated with R is LDH defined in the introduction. We often write (x,w) ∈ R to
denote that R(x,w) = TRUE .

Let T = (Tx, Tw) be a pair of efficiently computable n-ary functions, Tx : {{0, 1}∗}n → {0, 1}∗,
Tw : {{0, 1}∗}n → {0, 1}∗. In what follows, we refer to such a tuple T as an n-ary transformation.

Definition 2.1. An efficient relation R is closed under an n-ary transformation T = (Tx, Tw) if
for any n-tuple {(x1, w1), . . . , (xn, wn)} ∈ Rn, the pair (Tx(x1, . . . , xn), Tw(w1, . . . , wn)) ∈ R. If R
is closed under T , then we say that T is admissible for R. Let T be some set of transformations;
if for every T ∈ T , T is admissible for R, then T is an allowable set of transformations.

For example, for the DH relation R described above, consider T = (Tx, Tw) where for some
(a′, b′), Tx(G, g,A,B,C) = (G, g,Aa

′
, Bb′ , Ca

′b′) and Tw(a, b) = (aa′, bb′); then the Diffie-Hellman
relation R is closed under transformation T , and additionally the set T of transformations of this
form (i.e., where there is a transformation T corresponding to any pair (a′, b′)) is an allowable set
of transformations.

Our goal is to define non-interactive zero-knowledge and witness-indistinguishable proof systems
for efficient relations R that are (1) malleable with respect to an allowable set of transformations
T ; that is to say, for any T ∈ T , given proofs for x1, . . . xn ∈ LR, they can be transformed into a
proof that Tx(x1, . . . , xn) ∈ LR; and (2) derivation-private; that is to say, the resulting proof cannot
be distinguished from one freshly computed by a prover on input (Tx(x1, . . . , xn), Tw(w1, . . . , wn)).
Before we can proceed, however, we need to recall the definition of a non-interactive zero-knowledge
proof system.

A proof system for an efficient relation R allows a prover to prove that a value x is in the
associated language LR. A non-interactive (NI) proof system with efficient provers [10, 22] consists
of three PPT algorithms: the algorithm CRSSetup(1k) that generates a common reference string
(CRS) σcrs, the algorithm P(σcrs, x, w) that outputs a proof π that x ∈ LR, and the algorithm
V(σcrs, x, π) that verifies the proof; such a proof system must be complete (meaning the verifier
will always accept an honestly generated proof) and sound (meaning that a verifier cannot be
fooled into accepting a proof for a false statement). A NI zero-knowledge proof (NIZK) [30, 10],
additionally requires the existence of a simulator S that can generate proofs without access to a

4Without the restriction that R is efficient in its first input, the resulting language won’t necessarily be in NP.
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witness, while a NI witness-indistinguishable proof system [23] has the requirement that proofs
generated using two different witnesses for the same x are indistinguishable from each other. A NI
proof of knowledge [30, 9] additionally requires an efficient extractor algorithm E that, on input a
proof that x ∈ LR, finds a witness for the instance x.

Let us recall the formal definitions for non-interactive zero-knowledge proofs of knowledge
(NIZKPoK) systems and non-interactive witness-indistinguishable proofs of knowledge (NIWIPoK)
systems that we will use throughout. Definition 2.2 below is an amalgamation of definitions found in
prior work.We use the original definitions for completeness and soundness of non-interactive proof
systems in the common-reference-string model [10]. The version of the definition of zero-knowledge
for NIZK we give is originally due to Feige, Lapidot and Shamir (FLS) [22]; they call it “adaptive
multi-theorem NIZK.” We also use the FLS definition of witness indistinguishability. The version
of knowledge extraction we use is a generalization of the definition of knowledge extraction given by
Groth, Ostrovsky and Sahai (GOS) [34]: they defined the notion of perfect knowledge extraction,
while here we find it useful to generalize it, in the straightforward way, to when it is not perfect.
We find it convenient for our presentation to put together all these concepts into just one definition.

Definition 2.2 (Non-interactive proof systems). A set of algorithms (CRSSetup,P,V) constitute
a non-interactive (NI) proof system for an efficient relation R with associated language LR if com-
pleteness and soundness below are satisfied. A NI proof system is exractable if, in addition, the
extractability property below is satisfied. A NI proof system is witness-indistinguishable (NIWI) if
the witness-indistinguishability property below is satisfied. An NI proof system is zero-knowledge
(NIZK) if the zero-knowledge property is satisfied. A NIZK proof system that is also extractable
constitutes a non-interactive zero-knowledge proof of knowledge (NIZKPoK) system. A NIWI proof
system that is also extractable constitutes a non-interactive witness-indistinguishable proof of knowl-
edge (NIWIPoK) system.

1. Completeness. For all σcrs
$←− CRSSetup(1k) and (x,w) ∈ R, V(σcrs, x, π) = 1 for all proofs

π
$←− P(σcrs, x, w).

2. Soundness. For all PPT A, and for σcrs
$←− CRSSetup(1k), the probability that A(σcrs) outputs

(x, π) such that x /∈ L but V(σcrs, x, π) = 1, is negligible. Perfect soundness is achieved when
this probability is 0.

3. Extractability. There exists a polynomial-time extractor algorithms E = (E1, E2) such that
E1(1k) outputs (σext, τe), and E2(σext, τe, x, π) outputs a value w such that (1) a σext output by
E1(1k) is indistinguishable from σcrs output by CRSSetup(1k); (2) for all PPT A, the proba-

bility that A(σext, τe) (where (σext, τe)
$←− E1(1k)) outputs (x, π) such that V(σcrs, x, π) = 1 and

R(x,E2(σext, τe, x, π)) = 0, is negligible. Perfect extractability is achieved if this probability is
0, and σext is distributed identically to σcrs.

4. Witness indistinguishability. For all (x,w1, w2) such that (x,w1), (x,w2) ∈ R, the tuple

(σcrs, π1) is indistinguishable from (σcrs, π2) where σcrs
$←− CRSSetup(1k), and for i ∈ {1, 2},

πi
$←− P(σcrs, x, wi). Perfect witness indistinguishability is achieved when these two distribu-

tions are identical.

5. Zero knowledge. There exists a polynomial-time simulator algorithm S = (S1, S2) such that
S1(1k) outputs (σsim, τs), and S2(σsim, τs, x) outputs a value πs such that for all (x,w) ∈ R
and PPT adversaries A, the following two interactions are indistinguishable: in the first, we
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compute σcrs
$←− CRSSetup(1k) and give A σcrs and oracle access to P(σcrs, ·, ·) (where P will

output ⊥ on input (x,w) such that (x,w) 6∈ R); in the second, we compute (σsim, τs) and give
A σsim and oracle access to S(σsim, τs, ·, ·), where, on input (x,w), S outputs S2(σsim, τs, x)
if (x,w) ∈ R and ⊥ otherwise. Perfect zero-knowledge is achieved if for all (x,w) ∈ R, these
interactions are distributed identically.

Note that in the extractability definition above, we allow the adversary access to the extractabil-
ity trapdoor. This makes the definition somewhat stronger than seemingly necessary. However,
the proof systems we use as a building block in this paper, as well as the ones that we construct,
all satisfy this stronger property.

Next, we define a malleable proof system; i.e., one in which, from proofs (π1, . . . , πn) that
(x1, . . . , xn) ∈ L, one can compute a proof π that Tx(x1, . . . , xn) ∈ L, for an admissible transfor-
mation T = (Tx, Tw):

Definition 2.3 (Malleable non-interactive proof system). Let (CRSSetup,P,V) be a non-interactive
proof system for a relation R. Let T be an allowable set of transformations for R. Then this
proof system is malleable with respect to T if there exists an efficient algorithm ZKEval that on
input (σcrs, T, {xi, πi}), where T ∈ T is an n-ary transformation, and V(σcrs, xi, πi) = 1 for all
i, 1 ≤ i ≤ n, outputs a valid proof π for the statement x = Tx({xi}) (i.e., a proof π such that
V(σcrs, x, π) = 1).

Going back to our above example, the algorithm ZKEval will take as input the transformation T
(which is equivalent to taking as input the values a′ and b′), and a proof π1 that x1 = (G, g,A,B,C)
is a DH tuple, and output a proof π that x = Tx(x1) = (G, g,Aa

′
, Bb′ , Ca

′b′) is a DH tuple.

2.1 Derivation privacy for proofs

In addition to malleability, we must also consider a definition of derivation privacy analogous to
the notion of function privacy for encryption, also called unlinkability [38], and defined formally in
the next section. We have the following definition:

Definition 2.4 (Derivation privacy). For a non-interactive proof system (CRSSetup,P,V,ZKEval)
for an efficient relation R malleable with respect to T , an adversary A, and a bit b, let pAb (k) be
the probability of the event that b′ = 0 in the following game:

• Step 1. σcrs
$←− CRSSetup(1k).

• Step 2. (state, x1, w1, π1, . . . , xq, wq, πq, T )
$←− A(σcrs).

• Step 3. If V(σcrs, xi, πi) = 0 for some i, (xi, wi) 6∈ R for some i, or T /∈ T , abort and output
⊥. Otherwise, form

π
$←−
{
P(σcrs, Tx(x1, . . . , xq), Tw(w1, . . . , wq)) if b = 0
ZKEval(σcrs, T, {xi, πi}) if b = 1.

• Step 4. b′
$←− A(state, π).

We say that the proof system is derivation private if for all PPT algorithms A there exists a
negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).
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In some cases, we would like to work with a stronger definition that applies only for NIZKs. In
this case, the adversary will not be asked to provide witnesses or distinguish between the outputs
of the prover and ZKEval, but instead between the zero-knowledge simulator and ZKEval. It will
also be given the simulation trapdoor so that it can generate its own simulated proofs.

Definition 2.5 (Strong derivation privacy). For a malleable NIZK (CRSSetup,P,V,ZKEval) with
an associated simulator (S1, S2), a given adversary A, and a bit b, let pAb (k) be the probability of
the event that b′ = 0 in the following game:

• Step 1. (σsim, τs)
$←− S1(1k).

• Step 2. (state, x1, π1, . . . , xq, πq, T )
$←− A(σsim, τs).

• Step 3. If V(σsim, xi, πi) = 0 for some i, (x1, . . . , xq) is not in the domain of Tx, or T /∈ T ,
abort and output ⊥. Otherwise, form

π
$←−
{
S2(σsim, τs, Tx(x1, . . . , xq)) if b = 0
ZKEval(σsim, T, {xi, πi}) if b = 1.

• Step 4. b′
$←− A(state, π).

We say that the proof system is strongly derivation private if for all PPT algorithms A there exists
a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

As we will see in Section 3, schemes that satisfy the weaker notion of derivation privacy can in
fact be generically “boosted” to obtain schemes that satisfy the stronger notion. We can also see
a generic way to obtain derivation privacy using malleability and the notion of randomizability for
proofs, defined by Belenkiy et al. [8]as follows:

Definition 2.6 (Randomizable non-interactive proof system). [8] For a proof system (CRSSetup,P,V)
with an additional randomized algorithm RandProof that, on input a proof and a statement outputs
a new proof for the same statement, a given adversary A, and a bit b, let pAb (k) be the probability
of the event that b′ = 0 in the following game:

• Step 1. σcrs
$←− CRSSetup(1k).

• Step 2. (state, x, w, π)
$←− A(σcrs).

• Step 3. If V(σcrs, x, π) 6= 0 or (x,w) 6∈ R then output ⊥. Otherwise form

π′
$←−
{
P(σcrs, x, w) if b = 0
RandProof(σcrs, x, π) if b = 1.

• Step 4. b′
$←− A(state, π′).

We say that the proof system is randomizable if for all PPT algorithms A there exists a negligible
function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

Theorem 2.7. If a proof system is both malleable and randomizable and uses ZKEval′ := RandProof◦
ZKEval, then it is also derivation private.
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Proof. To show this, we can take an adversary A that breaks the derivation privacy of the proof
system with non-negligible advantage ε and use it to construct an adversary B that wins at the
randomizability game with related non-negligible advantage ε′. As input, B will first receive some
CRS σcrs, which it then passes along to A; B will then receive in turn a tuple ({xi}, {wi}, {πi}, T ).
It can now perform the checks that (xi, wi) ∈ R for all i, T ∈ T , and V(σcrs, xi, πi) = 1 for all
i; if any of these checks fails, then A was not successful and B can abort. Otherwise, it can now

compute x := Tx({xi}), w := Tw({wi}), and π
$←− ZKEval(σcrs, T, {xi, πi}), and output the tuple

(x,w, π) as its challenge. It then gets back a proof π′ and can give this to A; it then outputs the
same guess bit at the end of the game.

To see that interactions with B are indistinguishable from those that A would expect in the
ordinary game, we first notice that the σcrs given to A is identical to the honest one, so that we
need only focus on the value π′. In the case that b = 0, we know that B will get back and give

to A π′
$←− P(σcrs, x, w) = P(σcrs, Tx({xi}), Tw({wi})) which is exactly what A was expecting;

similarly, if b = 1, then π′
$←− RandProof(σcrs, x, π) = RandProof(σcrs, x,ZKEval(σcrs, T, {xi, πi})) =

ZKEval′(σcrs, T, {xi, πi}), which is again exactly what A was expecting. A will therefore have the
same advantage interacting with B as it does in the honest game, and as B succeeds whenever A
does we can conclude that B will succeed with non-negligible advantage as well.

2.2 Function privacy for encryption

In this section, we highlight similarities between our newly introduced notions of malleability for
proof systems, and notions of malleability for encryption, and we prove a theorem for encryption
that is analogous to Theorem 2.7 above.

Recall that a proof can be randomizable, so that from an existing proof for a statement one can
derive a new proof of the same statement. Similarly, an encryption scheme can be re-randomizable,
so that from one ciphertext for a message m one can obtain another random ciphertext for the same
message. We also defined derivation privacy for malleable proofs: a proof that is obtained from
another proof is indistinguishable from one that is computed just from a witness. The analogous
notion for encryption is function privacy, where from a given ciphertext, it is hard to tell whether
this is a ciphertext computed by the encryption algorithm, or one that is obtained from another
ciphertext via some homomorphic operations.

We just showed, in the previous section, that, in order to obtain derivation privacy for proof
systems it is sufficient to have a malleable proof system that is also randomizable. Here, we
show that, in order to achieve function privacy for encryption, it is sufficient to have a malleable
(homomorphic) cryptosystem that is also re-randomizable.

We begin by giving a definition of re-randomizable encryption. Our definition here follows
both our own analogous definition of randomizable proofs from the previous section, as well as the
outline of the one due to Prabhakaran and Rosulek [37]; the similarities between these definitional
approaches are important motivation for the definitions in the previous section.

Definition 2.8 (Re-randomizable encryption). For an encryption scheme (KeyGen,Enc,Dec) with
an additional randomized algorithm ReRand that, on input a ciphertext outputs a new ciphertext
with the same plaintext, a given adversary A, and a bit b, let pAb (k) be the probability of the event
b′ = 0 in the following game:

• Step 1. (pk , sk)
$←− KeyGen(1k).

• Step 2. (state, c)
$←− A(pk , sk).
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• Step 3. c′
$←−
{

Enc(pk ,Dec(sk , c)) if b = 0
ReRand(pk , c) if b = 1.

• Step 4. b′
$←− A(state, c′).

We say that the encryption scheme is re-randomizable if for all PPT algorithms A there exists a
negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

Before we define function privacy (as modified from the definition of unlinkability due to Prab-
hakaran and Rosulek [38]), we need to formalize what we mean by a homomorphic encryption
scheme. We again keep our notation consistent with what we use for proofs: transformations are
defined as a pair (Tc, Tm) corresponding to respective transformations on ciphertexts and messages,
and a homomorphic encryption scheme is an encryption scheme (KeyGen,Enc,Dec) with an addi-
tional algorithm Eval that, on input (pk , {ci}, T ), outputs a ciphertext c such that, if the values
contained in ci is called mi, Dec(sk , c) = Tm({mi}).

Unlike our transformations for proofs, we allow our transformations Tm to act even on ⊥ (i.e.,
we would like Eval to work even on ciphertexts that are malformed). We therefore require that
Tm(m1, . . . ,mn) = ⊥ if mi = ⊥ for any i, and similarly that Eval(pk , {ci}, T ) = ⊥ if Dec(sk , ci) = ⊥
for any i. (Note that this is in keeping with how transformations are defined by Prabhakaran and
Rosulek.)

Definition 2.9 (Function privacy). For a homomorphic encryption scheme (KeyGen,Eval,Enc,Dec),
a given adversary A, and a bit b, let pAb (k) be the probability of the event b′ = 0 in the following
game:

• Step 1. (pk , sk)
$←− KeyGen(1k).

• Step 2. (state, {ci}, T )
$←− A(pk , sk).

• Step 3. If T /∈ T then abort. Otherwise, compute

c′
$←−
{

Enc(pk , Tm({Dec(sk , ci)})) if b = 0
Eval(pk , {ci}, T ) if b = 1.

• Step 4. b′
$←− A(state, c′).

We say that the encryption scheme is function private with respect to T if for all PPT algorithms
A there exists a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

We are now ready to state and prove our theorem. Note that, although no formal statement
and proof of this theorem exists in the literature (as far as we know), this was previously known
and used in the literature on fully homomorphic encryption [28, 42].

Theorem 2.10. If an encryption scheme is both homomorphic and re-randomizable and uses
Eval′ := ReRand ◦ Eval, then it is function private.

Proof. To show this, we can take an adversary A that breaks the function privacy of the encryption
scheme with non-negligible advantage ε and use it to construct an adversary B that wins at the
re-randomizability game with related non-negligible advantage ε′. As input, B will first receive
some keypair (pk , sk), which it then passes along to A; B will then receive in turn a tuple ({ci}, T ).
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If T ∈ T then it can now compute c′ := Eval(pk , {ci}, T ) (otherwise it will just abort), and output
c′ as its challenge. It then gets back a ciphertext c′′ and can give this to A; it then outputs the
same guess bit at the end of the game.

To see that interactions with B are indistinguishable from those that A would expect in the
ordinary game, we first notice that the (pk , sk) given to A is identical to the honest one, so that we
need only focus on the value c′′. In the case that b = 0, we know that B will get back and give to A
c′′

$←− Enc(pk ,Dec(sk , c′)) = Enc(pk , Tm({mi})) which is exactly what A was expecting; similarly, if

b = 1, then c′′
$←− ReRand(pk , c′) = ReRand(pk ,Eval(pk , {ci}, T )) = Eval′(pk , {ci}, T ), which is again

exactly what A was expecting. A will therefore have the same advantage interacting with B as it
does in the honest game, and as B succeeds whenever A does we can conclude that B will succeed
with non-negligible advantage as well.

3 Controlled Malleability for NIZKs

Is the notion of malleability compatible with the notion of a proof of knowledge or with strong
notions like simulation soundness? Recall that to achieve simulation soundness, as defined by
Sahai and de Santis et al. [39, 20], we intuitively want an adversary A to be unable to produce a
proof of a new false statement even if it can request many such proofs from the simulator; for the
even stronger notion of simulation-extractability as defined by de Santis et al. and Groth [20, 32],
a proof system must admit an efficient extractor that finds witnesses to all statements proved by
an adversary, again even when the adversary has access to a simulator.

Malleability, in contrast, explicitly allows an adversary to take as input the values x′, π′, apply
some admissible transformation T to x′ to obtain x = Tx(x′), and compute a proof π that x ∈ LR;
importantly, the adversary can do all this without knowing the original witness w′. Suppose, for a
malleable proof system, that the adversary is given as input a simulated proof π′ that was generated
without access to the witness w′ for x′, and for concreteness let T be the identity transformation.
Then requiring that, on input (x, π), the extractor should output w, implies that membership in
LR can be tested for a given x by computing a simulated proof, mauling it, and then extracting the
witness from the resulting proof (formally, this would mean that LR ∈ RP). Thus, seemingly, one
cannot reconcile the notion of malleability with that of a simulation-extractable proof of knowledge.

Surprisingly, however, under a relaxed but still meaningful extractability requirement, we can
have a proof system that is both malleable and simulation-extractable to a satisfactory extent; we
call this notion controlled malleability. Essentially this definition will require that the extractor can
extract either a valid witness, or a previously proved statement x′ and a transformation T in our
allowed set T that could be used to transform x′ into the new statement x. To demonstrate that
our definition is useful, we will show in Section 5 that it can be used to realize a strong notion of
encryption security, and in Section 6 that it can also be used to reduce the overall size of proofs
for verifiable shuffles.

Definition 3.1 (Controlled-malleable simulation sound extractability). Let (CRSSetup,P,V) be a
NIZKPoK system for an efficient relation R, with a simulator (S1, S2) and an extractor (E1, E2).
Let T be an allowable set of unary transformations for the relation R such that membership in
T is efficiently testable. Let SE 1 be an algorithm that, on input 1k outputs (σcrs, τs, τe) such that
(σcrs, τs) is distributed identically to the output of S1. Let A be given, and consider the following
game:

• Step 1. (σcrs, τs, τe)
$←− SE1(1k).
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• Step 2. (x, π)
$←− AS2(σcrs,τs,·)(σcrs, τe).

• Step 3. (w, x′, T )← E2(σcrs, τe, x, π).

We say that the NIZKPoK satisfies controlled-malleable simulation-sound extractability (CM-
SSE, for short) if for all PPT algorithms A there exists a negligible function ν(·) such that the
probability (over the choices of SE 1, A, and S2) that V(σcrs, x, π) = 1 and (x, π) 6∈ Q (where Q
is the set of queried statements and their responses) but either (1) w 6= ⊥ and (x,w) 6∈ R; (2)
(x′, T ) 6= (⊥,⊥) and either x′ 6∈ Qx (the set of queried instances), x 6= Tx(x′), or T 6∈ T ; or (3)
(w, x′, T ) = (⊥,⊥,⊥) is at most ν(k).

This definition is actually closely related to simulation-extractability; in fact, if we restrict
our set of transformations to be T = ∅, we obtain exactly Groth’s notion of simulation-sound
extractability. Note also that this definition does not require that a proof system actually be
malleable, it only requires that, should it happen to be malleable, this malleability be limited in a
controlled way. Thus, a simulation-sound extractable proof system would also satisfy our definition,
for any set T , even though it is not malleable. We refer to a proof system that is both strongly
derivation private and controlled-malleable simulation-sound extractable as a controlled-malleable
NIZK (cm-NIZK).

Finally, note that our definition applies only to unary transformations. This is because our
requirement that we can extract the transformation T means we cannot hope to construct cm-
NIZKs for n-ary transformations where n > 1, as this would seem to necessarily expand the size
of the proof (similarly to what Prabhakaran and Rosulek show for HCCA encryption [38]). We
therefore achieve cm-NIZKs for classes of unary transformations that are closed under composition
(i.e., T ′ ◦ T ∈ T for all T, T ′ ∈ T ). In addition, our simulation strategy depends on the identity
transformation being a member of T , so we can achieve cm-NIZKs only for classes of transformations
that include the identity transformation.

A generic construction

Let R be an efficient relation, and suppose T is an allowable set of transformations for R that
contains the identity transformation; suppose further that membership in T is efficiently testable.
Let (KeyGen,Sign,Verify) be a secure signature scheme. Let (CRSSetupWI,PWI,VWI) be a NIWIPoK
for the following relation RWI: ((x, vk), (w, x′, T, σ)) ∈ RWI if (x,w) ∈ R or Verify(vk , σ, x′) = 1,
x = Tx(x′), and T ∈ T . Consider the proof system (CRSSetup,P,V) defined as follows:

• CRSSetup(1k): First generate σWIcrs
$←− CRSSetupWI(1

k) and (vk , sk)
$←− KeyGen(1k); then

output σcrs := (σWIcrs , vk).

• P(σcrs, x, w): Output π
$←− PWI(σWIcrs , xWI, wWI), where xWI = (x, vk) and wWI = (w,⊥,⊥,⊥).

• V(σcrs, x, π): Output VWI(σWIcrs , xWI, π) where xWI = (x, vk).

To obtain strong derivation privacy with respect to R and T we also require the NIWIPoK
to be derivation private with respect to RWI and a set of transformations TWI such that for every
T ′ = (T ′x, T

′
w) ∈ T there exists a TWI(T

′) ∈ TWI. For TWI(T
′) = (TWI,x, TWI,w) we require that

TWI,x(x, vk) = (T ′x(x), vk), and TWI,w(w, x′, T, σ) = (T ′w(w), x′, T ′ ◦ T, σ). Assuming our underlying
NIWI is malleable, we can define ZKEval in terms of ZKEvalWI:

• ZKEval(σcrs, T, x, π): Output ZKEvalWI(σWIcrs , TWI(T ), xWI, π) where xWI = (x, vk).
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To see that this construction gives us the desired properties, we have the following three theo-
rems:

Theorem 3.2. If the underlying non-interactive proof system is witness indistinguishable, the
scheme described above is zero knowledge.

Proof. To show this, we describe a simulator (S1, S2) for the NIZK such that an adversary that
distinguishes between the outputs of S1 and S2 and the honest values used for the CRS and proofs
with some non-negligible advantage would be able to distinguish either between an honest and a
simulated CRS or between witnesses in the underlying NIWIPoK with the same advantage.

The simulator S1 will first use the honest setup algorithm to generate σWIcrs ; it will also generate
a signing keypair (vk , sk) and use τs := sk . Now, when S2 is asked to provide a proof for a statement

x, it will compute σ
$←− Sign(sk , x), honestly prove knowledge of the tuple (⊥, x, id, σ), and return

the generated proof π.
As the signing keypair was generated honestly, the whole σcrs returned by S1 will be identical

to an honest one. that the proofs will be indistinguishable as well, we switch to the game that
uses S2 instead of the prover. As S2 is providing a valid witness and the proof system is witness
indistinguishable the output of S2 will be indistinguishable from the output of an honest prover.

Theorem 3.3. If the underlying signature scheme is EUF-CMA secure and the underlying NI-
WIPoK is extractable, the scheme described above satisfies controlled-malleable simulation-sound
extractability.

Proof. To demonstrate that the NIZK is CM-SSE, we can use the same simulator S2 from the proof
above; that is, a simulator with access to the signing key sk that forms signatures and thus only ever
uses the second type of witness. For the extraction trapdoor, we will use the τe for the underlying
PoK, so that SE1 will first run E1 to generate an honest σWIcrs along with the trapdoor τe, then
generate a signing keypair (vk , sk), and finally set σcrs := (σWIcrs , vk) and τs := sk .5 Now, given
this (σcrs, τe) and access to S2, an adversary A will play the CM-SSE game and eventually output
the pair (x, π), from which we will extract a tuple (w, x′, T, σ). In order for A to be considered
successful, recall that there are five cases:

1. w 6= ⊥ and (x,w) 6∈ R, or

2. (x′, T ) 6= (⊥,⊥) and Verify(vk , σ, x′) = 1 but A never queried S2 on x′, or

3. (x′, T ) 6= (⊥,⊥) and Verify(vk , σ, x′) = 1 but x 6= T (x′), or

4. (x′, T ) 6= (⊥,⊥) and Verify(vk , σ, x′) = 1, x = T (x′), but T 6∈ T , or

5. (w, x′, T ) = (⊥,⊥,⊥).

For all but the second item, the extractability of the underlying proof of knowledge implies that
this case cannot hold, as it would imply that A had output a proof for which the extractor could
not come up with a valid witness, and thus violate the underlying extractability property. For the
second case, the unforgeability of the signature scheme implies that it cannot happen either, as

5Note that, because of the requirement that the restriction to (σcrs, τs) be identical to that output by S1, we
seemingly require the underlying NIWIPoK to be perfectly extractable (as our simulator from the previous proof
uses an honest CRS). If we change the simulator to be (SE1, S2), however, then we can still achieve zero knowledge
and furthermore easily satisfy the requirement that the distributions be identical; alternatively, we could alter the
definition to require only that the output of SE1 restricted to (σcrs, τs) be indistinguishable from the output of S1,
rather than identical.
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it requires A to come up with a signature σ for a new statement x′ on its own. Therefore, the
unforgeability of the signature scheme and the extractability of the proof of knowledge together
imply that none of the above cases can occur with more than negligible probability, and so we are
done.

Theorem 3.4. If the underlying NIWIPoK is derivation private for TWI (as defined in Defini-
tion 2.4), then the scheme described above is strongly derivation private for T (as defined in Defi-
nition 2.5).

Proof. To show this, we can take an adversary A that breaks strong derivation privacy for our
cm-NIZK with some non-negligible advantage ε and use it to construct an adversary B that breaks
derivation privacy for the NIWIPoK with the same advantage ε. To start, B will receive σWIcrs for

the NIWIPoK. It then generates (vk , sk)
$←− KeyGen(1k), keeps sk and gives σcrs = (σWIcrs , vk) to A;

note that this means B can now act as the simulator S2 from the proof of Theorem 3.2. On S2 oracle
queries then, B will just run the same code as S2: namely, on queries x it will use sk to compute

σ
$←− Sign(sk , x), and then form and return to A a proof π

$←− PWI(σWIcrs , (x, vk), (⊥, x, id, σ)).
Now, on A’s challenge query ({xi, πi}, T ), B can use the same trick again to form witnesses wWIi as
wWIi := (⊥, xi, id,Sign(sk , xi)); it then queries its oracle on ({(xi, vk), wWIi, πi}, TWI(T )) to receive
a proof π which it then passes along to A. At the end of the game, B will output whatever guess
bit A does.

To see that interactions with B are indistinguishable from interactions in the honest strong
derivation privacy game, we first note that B exactly follows the code for both S1 in the CRS
generation and S2 in the oracle queries, so that the interaction in both of these steps will be
identical. As for the challenge query, we note that B is again computing the same valid witnesses
for the underlying proof as S2 would. If its query is answered by PWI then, the proof it returns
to A is distributed identically to a proof from S2, while if the query is answered by ZKEvalWI it is
trivially distributed identically to a proof from ZKEval. We therefore have that the success cases
for A and B correspond exactly, and thus B will succeed whenever A does.

In addition, we would like to ensure that this construction can in fact be instantiated efficiently
for many useful sets T with a derivation-private NIWIPoK; it turns out that this can be done by
combining Groth-Sahai proofs [35] with a special type of signature called a structure-preserving
signature. For more details, we defer to Section 4.2.

4 Instantiating cm-NIZKs Using Groth-Sahai Proofs

In this section, we explore the malleability of Groth-Sahai (GS) proofs [35]. This will allow us to
efficiently instantiate controlled-malleable proofs for a large class of transformations.

4.1 Malleability for Groth-Sahai Proofs

We aim to fully characterize the class of transformations with respect to which GS proofs can be
made malleable. First, we recall that GS proofs allow a prover to prove knowledge of a satisfying as-
signment to a list of (homogeneous) pairing product equations eq of the form

∏
i,j∈[1..n] e(xi, xj)

γij =
1 concerning the set of variables x1, . . . , xn ∈ G. Furthermore, some of the variables in these equa-
tions may be fixed to be specific constant values (for example, the public group generator g).
In what follows we will use a, b, c, . . . to denote fixed constants, and x,y, z, . . . to denote uncon-
strained variables. An instance x of such a pairing product statement consists of the list of equations
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eq1, . . . , eq` (fully described by their exponents {γ(1)
ij }, . . . , {γ

(`)
ij }) and the values of the constrained

variables (fully described by the list a1, . . . , an′ ∈ G for n′ ≤ n).
In the existing literature, there are already various examples [21, 7, 25] of ways in which pairing

product statements and the accompanying Groth-Sahai proofs can be mauled. Here, we attempt to
generalize these previous works by providing a characterization of all the ways in which GS proofs
of pairing product statements can be mauled; we then show, in Appendix A.4, how these previous
examples can be obtained as special cases of our general characterization.

To start, we describe transformations on pairing product instances in terms of a few basic
operations. We will say that any transformation that can be described as a composition of these
operations is a valid transformation. For each valid transformation we show, in Appendix A.2, that
there is a corresponding ZKEval procedure that updates the GS proof to prove the new statement.
Finally, we present in Appendix A.5some other convenient operations that can be derived from our
minimal set.

To help illustrate the usage of our basic transformations, we will consider their effect on the
pairing product instance (eq1, eq2, a, b), where eq1 := e(x, b)e(a, b) = 1 and eq2 := e(a,y) = 1.
Note that here we will describe the transformations in terms of their effect on the instances, but
in all of these operations the corresponding witness transformations Tw are easily derived from the
instance transformations Tx.

Definition 4.1. (Informal) A valid transformation is one that can be expressed as some combina-
tion of (a polynomial number of) the following six operations:

1. Merge equations: MergeEq(eqi, eqj) adds the product of eqi and eqj as a new equation.

Ex. MergeEq(eq1, eq2) adds the equation e(x, b)e(a, b)e(a,y) = 1

2. Merge variables: MergeVar(x, y, z, S) generates a new variable z. If x and y are both constants,
z will have value xy. Otherwise z will be unconstrained. For every variable w in the set S,
we add the equation e(xy,w)−1e(z, w) = 1.6

Ex. MergeVar(x, a, z, {x, b, z}) adds the variable z and the equations

e(xa,x)−1e(z,x) = 1, e(xa, b)−1e(z, b) = 1, and e(xa, z)−1e(z, z) = 1.

3. Exponentiate variable: ExpVar(x, δ, z, S) generates a new variable z. If x is a constant,
z = xδ, otherwise it will be unconstrained. For every variable w ∈ S, we add the equation
e(x,w)−δe(z, w) = 1.

Ex. ExpVar(x, δ, z, {x, b, z}) adds the variable z and the equations

e(x,x)−δe(z,x) = 1, e(x, b)−δe(z, b) = 1, and e(x, z)−δe(z, z) = 1.

4. Add constant equation: Add({ai}, {bj}, {γij}) takes a set of constants ai, bi, satisfying a pair-
ing product equation

∏
e(ai, bj)

γij = 1 and adds these variables and the new equation to the
statement.

Ex. Add({g}, {1}, {1}) adds the variables g, 1 and the equation eq3 := e(g, 1) = 1.

We often write as a shorthand Add(eq3 := e(g, 1) = 1).

5. Remove equation: RemoveEq(eqi) simply removes equation eqi from the list.

Ex. RemoveEq(eq2) removes the equation e(a,y) = 1 from the equation list.

6This is shorthand for e(x,w)−1e(y, w)−1e(z, w) = 1.
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6. Remove variable: RemoveVar(x) removes the variable x from the variable set iff x does not
appear in any of the listed equations.

Ex. We cannot remove any of the variables from the example statement. However, we could
do RemoveEq(eq2) and then RemoveVar(y), which would remove the equation e(a,y) = 1 from
the equation list and the variable y from the set of variables.

A proof of the following lemma appears in Appendix A.2:

Lemma 4.2. There exists an efficient procedure ZKEval such that given any pairing product in-
stance x, any valid transformation T , and any accepting Groth-Sahai proof π for x, ZKEval(x, π, T )
produces an accepting proof for T (x).

4.2 An efficient instantiation of controlled malleable NIZKs

Looking back at Section 3 we see that there are two main components needed to efficiently instanti-
ate a controlled-malleable NIZK proof system: appropriately malleable proofs and signatures that
can be used in conjunction with these proofs.

First we consider the set of relations and tranformations for which we can use Groth-Sahai
proofs to construct the necessary malleable NIWIPoKs.

Definition 4.3. For a relation R and a class of transformations T , we say (R, T ) is CM-friendly
if the following six properties hold: (1) representable statements: any instance and witness of R
can be represented as a set of group elements; (2) representable transformations: any transforma-
tion in T can be represented as a set of group elements; (3) provable statements: we can prove
the statement (x,w) ∈ R using pairing product equations; (4) provable transformations: we can
prove the statement “Tx(x′) = x for T ∈ T ” using pairing product equations; (5) transformable
statements: for any T ∈ T there is a valid transformation from the statement “(x,w) ∈ R” to the
statement “(Tx(x), Tw(w)) ∈ R”; and (6) transformable transformations: for any T, T ′ ∈ T there
is a valid transformation from the statement “Tx(x′) = x for T = (Tx, Tw) ∈ T ” to the statement
“T ′x ◦ Tx(x′) = T ′x(x) for T ′ ◦ T ∈ T .”

In order for the signatures to be used within our construction, we know that they need to
have pairing-based verifiability (i.e., we can represent the Verify algorithm in terms of a set of GS
equations), and that the values being signed are group elements, so that they can be efficiently
extracted from the proof (as GS proofs are extractable for group elements only, not exponents).
These requirements seem to imply the need for structure-preserving signatures [3], which we can
define for the symmetric setting as follows:

Definition 4.4. A signature scheme (KeyGen, Sign,Verify) over a bilinear group (p,G,GT , g, e)
is said to be structure preserving if the verification key, messages, and signatures all consist of
group elements in G, and the verification algorithm evaluates membership in G and pairing product
equations.

Since their introduction, three structure-preserving signature schemes have emerged that would
be suitable for our purposes; all three have advantages and disadvantages. The first, due to Abe,
Haralambiev, and Ohkubo [5, 3] is quite efficient but uses a slightly strong q-type assumption. The
second, due to Abe et al. [4], is optimally efficient but provably secure only in the generic group
model. The third and most recent, due to Chase and Kohlweiss [16], is significantly less efficient
than the previous two, but relies for its security on Decision Linear (DLIN) [11], which is already
a relatively well-established assumption.
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Because we can also instantiate GS proofs using DLIN, we focus on this last structure-preserving
signature, keeping in mind that others may be substituted in for the sake of efficiency (but at the
cost of adding an assumption). Putting these signatures and GS proofs together, we can show our
main result of this section: given any CM-friendly relation and set of transformations (R, T ), we
can combine structure-preserving signatures and malleable proofs to obtain a cm-NIZK. This can
be stated as the following theorem (a proof of which can be found in Appendix C):

Theorem 4.5. Given a derivation private NIWIPoK for pairing product statements that is mal-
leable for the set of all valid transformations, and a structure preserving signature scheme, we can
construct a cm-NIZK for any CM-friendly relation and transformation set (R, T ).

In Appendix A.2, we show that Groth-Sahai proofs are malleable for the set of all valid trans-
formations (as outlined in Definition 4.1) and that valid transformations can be carried through
conjunctions and disjunctions. As Groth-Sahai proofs and structure-preserving signatures can both
be constructed based on DLIN, we obtain the following theorem:

Theorem 4.6. If DLIN holds, then we can construct a cm-NIZK that satisfies strong derivation
privacy for any CM-friendly relation and transformation set (R, T ).

5 Controlled Malleability for Encryption

As we mentioned earlier, malleability can also be an attractive feature for a cryptosystem: it allows
computation on encrypted data. On the other hand, it seems to be in conflict with security: if a
ciphertext can be transformed into a ciphertext for a related message, then the encryption scheme
is clearly not secure under an adaptive chosen ciphertext attack, which is the standard notion of
security for encryption.

Prabhakaran and Rosulek [37, 38] were the first to define and realize a meaningful notion of
security in this context. Specifically, they introduced re-randomizable CCA security (RCCA) [37]
and homomorphic CCA security (HCCA) [38]. In a nutshell, their definition of security is given as
a game between a challenger and an adversary; the adversary receives a public key and a challenge
ciphertext and can query the challenger for decryptions of ciphertexts. The challenger’s ciphertext
c∗ is either a valid encryption of some message, or a dummy ciphertext; in the former case, the
challenger answers the decryption queries honestly; in the latter case, the challenger may decide that
a decryption query is a “derivative” ciphertext computed from c∗ using some transformation T ; if
this is an allowed transformation, the challenger responds with T (m), else it rejects the query. The
adversary wins if it correctly guesses whether its challenge ciphertext was meaningful.7 Prabhakaran
and Rosulek achieve their notion of security under the decisional Diffie-Hellman assumption using
ad-hoc techniques reminiscent of the Cramer-Shoup [18] cryptosystem.

In this section, we show that controlled-malleable NIZKs can be used as a general tool for
achieving RCCA and HCCA security. Our construction is more modular than that of Prabhakaran
and Rosulek: we construct a controlled-malleable-CCA-secure encryption scheme generically from
a semantically secure one and a cm-NIZK for an appropriate language; where controlled-malleable-
CCA security is our own notion of security that is, in some sense, a generalization of RCCA security
and also captures the security goals of HCCA security. We then show how our construction can be
instantiated using Groth-Sahai proofs, under the DLIN assumption in groups with bilinear maps.

7A formal definition and more detailed explanation of their notion of homomorphic-CCA (HCCA) security can be
found in Appendix E.
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5.1 Definition of Controlled-Malleable CCA Security

Our definitional goals here are (1) to give a definition of controlled malleability for encryption that
closely mirrors our definition of controlled malleability for proofs, and (2) to give a definition that
can be easily related to previous notions such as CCA, RCCA, and HCCA. We call this notion of
security controlled-malleable CCA (CM-CCA) security.

Following Prabhakaran and Rosulek [38], CM-CCA requires the existence of two algorithms,
SimEnc and SimExt. SimEnc creates ciphertexts that are distributed indistinguishably from regular
ciphertexts (those generated using the encryption algorithm Enc), but contain no information about
the queried message; this is modeled by having SimEnc not take any message as input. SimExt allows
the challenger to track “derivative” ciphertexts. That is to say, on input a ciphertext c, SimExt
determines if it was obtained by transforming some ciphertext c′ previously generated using SimEnc;
if so, SimExt outputs the corresponding transformation T .

The game between the challenger and the adversary in the definition of security is somewhat
different from that in the definition by Prabhakaran and Rosulek. Specifically, we do not have a
single challenge ciphertext c∗; instead, the adversary has access to an encryption and decryption
oracles. Intuitively, for our definition we would like to say that an adversary cannot distinguish
between two worlds: the real world in which it is given access to honest encryption and decryption
oracles, and an ideal world in which it is given access to an ideal encryption oracle (which outputs
ciphertexts containing no information about the queried message) and a decryption oracle that
outputs a special answer for ciphertexts derived from the ideal ciphertexts (by using SimExt to
track such ciphertexts) and honestly decrypts otherwise.

Let us consider transformations more closely. Recall that, for proofs of language membership, a
transformation T ∈ T consists of a pair of transformations (Tx, Tw), where Tx acts on the instances,
and Tw on the witnesses. What is the analogue for ciphertexts? A legal transformation Tx on a
ciphertext implies some legal transformation Tm on an underlying message and a corresponding
transformation Tr on the underlying randomness. Thus, here we view transformations as tuples
T = (Tx, (Tm, Tr)), where Tx acts on the ciphertexts, Tm acts on the plaintexts, and Tr acts on the
randomness.

In Appendix E, we relate CM-CCA security to CCA, RCCA and HCCA security. Specifically,
we show that (1) when the class of allowed transformation T is the empty set, CM-CCA implies
regular CCA security; (2) when the class of allowed transformations is as follows: T ∈ T if T =
(Tx, (Tm, Tr)) where Tm is the identity transformation, then CM-CCA security implies RCCA
security; (3) in more general cases we show that it implies the notion of targeted malleability
introduced by Boneh et al. [13]; in addition, we show that our notion satisfies the UC definition
given by Prabhakaran and Rosulek, so that it captures the desired HCCA security goals, even if it
does not satisfy their definition of HCCA security (which is in fact a stronger notion).

Finally, because our cm-NIZK is malleable only with respect to unary transformations, we
inherit the limitation that our encryption scheme is malleable only with respect to unary trans-
formations as well; as our security definition is closely related to HCCA security and Prabharakan
and Rosulek in fact prove HCCA security (combined with unlinkability) is impossible with respect
to binary transformations, this is perhaps not surprising.

Definition 5.1. For an encryption scheme (KeyGen,Enc,Dec), a class of transformations T ,
an adversary A, and a bit b, let pAb (k) be the probability of the event b′ = 0 in the following

game: first (pk , sk)
$←− K(1k), and next b′

$←− AEpk (·),Dsk (·)(pk), where (K,E,D) are defined as
(KeyGen,Enc,Dec) if b = 0, and the following algorithms (defined for a state set Q = Qm × Qc =
{(mi, ci)}) if b = 1:
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Procedure K(1k) Procedure E(pk ,m) Procedure D(sk , c)

(pk , sk , τ1, τ2)
$←− SimKeyGen(1k) c

$←− SimEnc(pk , τ1) (c′, T )← SimExt(sk , τ2, c)
return pk add (m, c) to Q if ∃i s.t. c′ = ci ∈ Qc and T 6= ⊥ return Tm(mi)

return c else return Dec(sk , c)

We say that the encryption scheme is controlled-malleable-CCA secure (or CM-CCA secure for
short) if there exist PPT algorithms SimKeyGen, SimEnc, and SimExt as used above such that for
all PPT algorithms A there exists a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

5.2 A generic construction of CM-CCA-secure encryption

As mentioned earlier, we can obtain an encryption scheme that achieves this notion of security; we
do this by combining a cm-NIZK (CRSSetup,P,V) for the relation R such that ((pk , c), (m, r) ∈ R
iff c := Enc′(pk ,m; r) and an IND-CPA-secure encryption scheme (KeyGen′,Enc′,Dec′) as follows:

• KeyGen(1k): Run (pk ′, sk ′)
$←− KeyGen′(1k) and σcrs

$←− CRSSetup(1k); set pk := (pk ′, σcrs)
and sk := (pk , sk ′) and output pk .

• Enc(pk ,m): Parse pk = (pk ′, σcrs); then compute c′
$←− Enc′(pk ′,m) and π

$←− P(σcrs, (pk ′, c′),m)
(i.e., a proof of knowledge of the value inside c′) and output c := (c′, π).

• Dec(sk , c): First parse sk = (pk , sk ′), pk = (pk ′, σcrs), and c = (c′, π); now check that
V(σcrs, (pk ′, c′), π) = 1. If not, abort and output ⊥. Otherwise, compute and output m =
Dec(sk ′, c′).

Aside from having our encryption scheme be secure, we would also like the functionality of
having the scheme be homomorphic with respect to the same operations as its underlying compo-
nents. Assuming then that the underlying encryption scheme is homomorphic with respect to a
class T and the underlying cm-NIZK is controlled malleable with respect to T , we can define our
Eval algorithm for T ∈ T in terms of the underlying Eval′ and ZKEval algorithms as

• Eval(pk , c, T ): Parse pk = (pk ′, σcrs) and c = (c′, π); then compute c′′
$←− (Eval(pk ′, c′, T ) and

π′
$←− ZKEval(σcrs, T, (pk ′, c′), π))) and return (c′′, π′).

To show CM-CCA security, we define the algorithms SimKeyGen, SimEnc, and SimExt as follows:

• SimKeyGen(1k): Run (pk ′, sk ′)
$←− KeyGen′(1k), (σcrs, τs, τe)

$←− SE1(1k), and output (pk :=
(pk ′, σcrs), sk := (pk , sk ′), τ1 := τs, τ2 := τe).

• SimEnc(pk , τ1): Pick a random message r
$←−M and form c′

$←− Enc(pk , r); form also a proof

π
$←− S2(σcrs, τ1, (pk ′, c′)) and return c := (c′, π).

• SimExt(sk , τ2, c): Parse c = (c′, π), sk = (pk , sk ′), and pk = (pk ′, σcrs); then check that
V(σcrs, (pk ′, c′), π) = 1; if not, abort and return (⊥,⊥). Otherwise, run (w, x′, T ) = Extract(τ2, π).
If (x′, T ) 6= (⊥,⊥) then parse x′ = (pk , c′′) and check if T ∈ T and Tc(c

′′) = c′; if either of
these checks fails then output (⊥,⊥). Otherwise, output (c′′, T ).
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An efficient instantiation of the above construction can be found in Appendix D.2 ; briefly,
we use our cm-NIZK construction based on GS proofs [35] and Boneh-Boyen-Shacham (BBS)
encryption [11]. As our concrete class of transformations we consider vector multiplication by
vectors from some subset of the whole plaintext space; this is done mainly to follow Prabhakaran
and Rosulek. In particular, we consider three meaningful restrictions: no restrictions, in which
case we just obtain vector multiplication; the restriction to a space generated by a single value, in
which case we obtain scalar multiplication; and the restriction to the identity transformation, in
which case we obtain RCCA security (and in particular, because our scheme is re-randomizable,
we obtain re-randomizable RCCA encryption).

Theorem 5.2. If the encryption scheme is IND-CPA secure and the NIZK satisfies controlled-
malleable simulation-sound extractability with respect to some set of transformations T , the en-
cryption scheme in the above construction is CM-CCA secure with respect to the same class T .

To prove this, we can go through the following series of game transitions, formally proved
indistinguishable in Appendix F:

• Game G0. Change to a simulated CRS and simulated proofs π in the E oracle; this is
indistinguishable from CM-CCA0 by zero knowledge.

• Game G1. Switch to using SimExt and Extract rather than Dec in the D oracle; this is
indistinguishable from G0 by the CM-SSE property of the NIZK.

• Game G2. Switch the ciphertexts returned by the E oracle to be encryptions of random
values; this is indistinguishable from G1 by the IND-CPA security of the encryption scheme.

• Game G3. Switch back to decrypting in the D oracle; this is now CM-CCA1 (and is indistin-
guishable from G2 again by the CM-SSE property of the NIZK).

In addition to achieving CM-CCA security, we would also like to exploit the strong derivation
privacy of the cm-NIZK to obtain a function-private encryption scheme; it turns out that if our
base encryption scheme satisfies function privacy, we get this property for free.

Theorem 5.3. If the encryption scheme is function private and the proof is strongly derivation
private and zero knowledge, the encryption scheme in the above construction is function private.

Proof. (Sketch.) To show this, we must prove that, for an adversarially chosen (c′, π, T ) such
that m := Dec′(sk ′, c′), the distribution D0 = (Enc′(pk ′, Tm(m); r),P(σcrs, (pk ′, c′), (T (m), r))) is
indistinguishable from D1 = (Eval′(pk ′, c′, T ),ZKEval(σcrs, T, (pk ′, c′), π)). We can demonstrate
this by going through the following game transitions:

• Game G0. Use the distribution D0.

• Game G1. Switch to using simulated instead of honest proofs; this is indistinguishable from
G0 by zero knowledge.

• Game G2. Switch to using Eval′(pk ′, c′, T ) instead of Enc′(pk ′, Tm(Dec′(sk ′, c)); r); this is
indistinguishable from G1 by the function privacy of the underlying encryption scheme.

• Game G3. Switch to using ZKEval(σcrs, T, (pk ′, c′), π) instead of the simulator; this is now
D1 and is indistinguishable from G2 by the strong derivation privacy of the underlying proof
system.
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To see how to switch from G0 to G1, we can take an adversary A that distinguishes between
them and use it to construct an adversary B that breaks zero knowledge. To start, B will get a
CRS σcrs and can then generate (pk ′, sk ′) on its own and give to A (pk ′, σcrs). When it is given
(c′, π, T ), it can first check that V(σcrs, (pk ′, c′), π) = 1 (and output ⊥ if this does not hold), then
compute m := Dec′(sk ′, c′), honestly compute c′′ := Enc′(pk ′, Tm(m); r), query its own oracle on
((pk ′, c′), (Tm(m), r)) to get back a proof π′, and give (c′′, π′) back to A. If A guesses it is in G0

then B will guess it is interacting with a prover, and if A guesses it is in G1 then B will guess it is
interacting with a simulator.

To see how to switch from G1 to G2, we can take an adversary A that distinguishes between
them and use it to construct an adversary B that breaks function privacy. To start, B will get

a keypair (pk ′, sk ′), generate (σcrs, τs)
$←− S1(1k), and give to A (pk ′, σcrs). When it is given

(c′, π, T ), it can give (c′, T ) to its own oracle to get back a ciphertext c′′; it will also compute

π′
$←− S2(σcrs, τs, (pk ′, c′)) and give (c′′, π′) back to A. If A guesses it is in G1 then B will guess

b = 0 (i.e., it is getting back fresh encryptions) and if A guesses it is in G2 then B will guess b = 1
(i.e., it is getting encryptions from Eval).

Finally, to see how to switch from G2 to G3, we can take an adversary A that distinguishes
between them and use it to construct an adversary B that breaks strong derivation privacy; note
that the behavior of B here is identical to the one for switching from G0 to G1 except for its output at
the end. To start then, B will get a CRS σcrs and can then generate (pk ′, sk ′) on its own and give to
A (pk ′, σcrs). When it is given (c′, π, T ), it can first check that V(σcrs, (pk ′, c′), π) = 1 (and output ⊥
if this does not hold), then compute m := Dec′(sk ′, c′), honestly compute c′′ := Enc′(pk ′, Tm(m); r),
query its oracle on ((pk ′, c′), (Tm(m), r)) to get back a proof π′, and give (c′′, π′) back to A. If A
guesses it is in G2 then B will guess b = 1 (i.e., it is getting proofs from a simulator), and if A
guesses it is in G3 then B will guess b = 0 (i.e., it is getting proofs from ZKEval).

6 Compactly Proving Correctness of a Shuffle

As described in the introduction, we achieve a notion of verifiability for shuffles that does not
require each mix server to output its own proof of correctness; instead, using the malleability of our
proofs, each mix server can maul the proof of the previous one rather than generate its own fresh
proof. One point that it is important to keep in mind with this approach is that the soundness
of the proof does not follow directly from the soundness of each of the individual proofs anymore;
instead, one proof must somehow suffice to prove the validity of the entire series of shuffles, yet still
remain compact. To capture this requirement, we define a new notion for the security of a shuffle,
that we call compact verifiability.

To define our notion, we assume that a verifiable shuffle consists of three algorithms: a Setup
algorithm that outputs the parameters for the shuffle and the identifying public keys for the honest
mix servers, a Shuffle algorithm that takes in a set of ciphertexts and outputs both a shuffle of
these ciphertexts and a proof that the shuffle was done properly, and finally a Verify algorithm that
checks the validity of the proofs.

In our definition, the adversary is given the public keys of all the honest shuffling authorities,
as well as an honestly generated public key for the encryption scheme. It can then provide a
list of ciphertexts and ask that they be shuffled by one of the honest authorities (we call this an
initial shuffle), or provide a set of input ciphertexts, a set of shuffled ciphertexts, and a proof, and
ask one of the honest authorities to shuffle the ciphertexts again and update the proof. Finally,
the adversary produces challenge values consisting of a set of input ciphertexts, a set of shuffled
ciphertexts and a proof that includes the public key of at least one of the honest authorities. If this
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proof verifies, it receives either the decryption of the shuffled ciphertexts, or a random permutation
of the decryptions of the initial ciphertexts. Our definition requires that it should be hard for the
adversary to distinguish which of the two it is given.

We also require that the input ciphertexts are always accompanied by a proof that they are
well-formed; i.e., a proof of knowledge of a valid message and the randomness used in encryption.
This is usually necessary in many applications (for example in voting when each voter must prove
that he has encrypted a valid vote), and in our construction it means that we can easily handle an
adversary who produces the input ciphertexts in invalid ways; e.g., by mauling ciphertexts from a
previous shuffle, or by submitting malformed ciphertexts.

Definition 6.1. For a verifiable shuffle (Setup,Shuffle,Verify) with respect to an encryption scheme
(KeyGen,Enc,Dec), a given adversary A and a bit b ∈ {0, 1}, let pAb (k) be the probability that b′ = 0
in the following experiment:

• Step 1. (params, sk , S = {pk i}, {sk i})
$←− Setup(1k).

• Step 2. A gets params, S, and access to the following two oracles: an initial shuffle oracle
that, on input ({ci, πi}, pk `) for pk ` ∈ S, outputs ({c′i}, π, {pk `}) (if all the proofs of knowledge
πi verify), where π is a proof that the {c′i} constitute a valid shuffle of the {ci} performed by
the user corresponding to pk ` (i.e., the user who knows sk `), and a shuffle oracle that, on
input ({ci, πi}, {c′i}, π, {pk j}, pkm) for pkm ∈ S, outputs ({c′′i }, π′, {pk j} ∪ pkm).

• Step 3. Eventually, A outputs a tuple ({ci, πi}, {c′i}, π, S′ = {pk j}).

• Step 4. If Verify(params, ({ci, πi}, {c′i}, π, {pk j})) = 1 and S∩S′ 6= ∅ then continue; otherwise
simply abort and output ⊥. If b = 0 then give A {Dec(sk , c′i)}, and if b = 1 then give A
ϕ({Dec(sk , ci)}), where ϕ is a random permutation ϕ

$←− Sn.

• Step 5. A outputs a guess bit b′.

We say that the shuffle is compactly verifiable if for all PPT algorithms A there exists a negligible
function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

Our compactly-verifiable shuffle construction will utilize four building blocks: a hard rela-
tion Rpk (as defined by Damg̊ard [19, Definition 3]), a re-randomizable IND-CPA-secure en-
cryption scheme (KeyGen,ReRand,Enc,Dec), a proof of knowledge (CRSSetup,P,V), and a cm-
NIZK (CRSSetup′,P ′,V ′). The hard relation will be used to ensure that the secret key sk j
known to the j-th mix server cannot be derived from its public key pk j ,

8 the proof of knowl-
edge will be created by the users performing the initial encryptions to prove knowledge of their
votes, and the cm-NIZK will be used to prove that a given collection {c′i} is a valid shuffle of
a collection {ci}, performed by the mix servers corresponding to a set of public keys {pk j}.
This means that the instances are of the form x = (pk , {ci}, {c′i}, {pk j}), witnesses are of the
form w = (ϕ, {ri}, {sk j}) (where ϕ is the permutation used, {ri} is the randomness used to re-
randomize the ciphertexts, and {sk j} are the secret keys corresponding to {pk j}), and the relation

R is ((pk , {ci}, {c′i}, {pk j}`
′
i=1), (ϕ, {ri}, {sk j})) ∈ R iff {c′i} = {ReRand(pk , ϕ(ci); ri) ∧ (pkj , skj) ∈

Rpk ∀j ∈ [1..`′]. The valid transformations are then T(ϕ′,{r′i},{sk
+
j ,pk

+
j },{pk

−
j })

= (Tx, Tw), where

Tx(pk , {ci}, {c′i}, {pk j}) := (pk , {ci}, {ReRand(pk , ϕ′(ci); r
′
i)}, {pk j}∪({pk+

j }\{pk−j })) and Tw trans-
forms the witness accordingly. We combine all these primitives as follows:

8It is worth mentioning that generically we can use a one-way function to obtain this property, but that we cannot
efficiently instantiate this in our setting and so use instead a hard relation (for more on this see Appendix D.3).
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• Setup(1k): To allow users to encrypt their values, run (pk , sk)
$←− KeyGen(1k) and σcrs

$←−
CRSSetup(1k). Next, each mix server i will run the generator for the hard relation to obtain
a pair (pk i, sk i) ∈ Rpk ; this will result in a collection S := {pk i} of public keys. Finally, run

σ′crs
$←− CRSSetup′(1k), and output (params := (pk , σcrs, σ

′
crs), sk , S, {sk i}).

• Enc(params, {mi}ni=1). Each user i can perform an encryption of his message mi as ci
$←−

Enc(pk ,mi), as well as form a proof of knowledge πi
$←− P(σcrs, ci,mi) of the value contained

inside this ciphertext. This produces a collection {(ci, πi)}ni=1.

• Shuffle(params, {ci, πi}, {c′i}, π, {pk j}): First check if π = ⊥ and {c′i} = {pk j} = ∅; if these
hold, then this is the initial shuffle and we proceed as follows: first, check the validity of
the proofs by running V(σcrs, ci, πi) for all i, 1 ≤ i ≤ n. If verification fails for some value
of i abort and output ⊥. Otherwise, perform the shuffle by picking a random permutation

ϕ ← Sn and computing (c′1, . . . , c
′
n)

$←− ReRand(pk , ϕ({ci})). Now finish by forming a proof
π for the shuffle performed by the user in possession of the secret key corresponding to pk1.
Output the tuple {ci, πi}, {c′i}, π, {pk1}).
In the case that π 6= ⊥ and {c′i} 6= {pk j} 6= ∅, we are working with some intermedi-
ate mix server, call it the k-th. We start the same as before: check the validity of the
proofs πi by running V(σcrs, ci, πi) for all i, 1 ≤ i ≤ n; here, we check also the valid-
ity of the proof π by running V ′(σ′crs, (pk , {ci}, {c′i}, {pk j}), π). If any of these proofs do
not pass verification abort and output ⊥; otherwise, continue by choosing a random per-

mutation ϕ
$←− Sn. Next, pick randomness {ri} for the encryption scheme and compute

c′′i
$←− ReRand(pk , ϕ(c′i); ri) for all i, 1 ≤ i ≤ n. Finally, define T := T(ϕ,{ri},{skk,pkk},∅) and run

ZKEval(σ′crs, T, (pk , {ci}, {c′i}, {pk j}), π)) to obtain a proof π′ that the values {c′′i } constitute a
valid shuffle of the {ci} performed by the users in possession of the secret keys corresponding
to the public keys (pk1, . . . , pkk). Output the tuple ({ci, πi}, {c′′i }, π′, {pk j} ∪ pkk).

• Verify(params, {ci, πi}, {c′i}, π, {pk j}): Upon receiving this tuple, the verifier will first run the
verification for each proof of knowledge πi by running V(σcrs, ci, πi) for all i, 1 ≤ i ≤ n; if
this fails for any value of i abort and return 0. Otherwise, move on to check the proof π by
running V ′(σ′crs, ({ci}, {c′i}, {pk j}), π); again, if this fails output 0 and otherwise output 1.

Our efficient shuffle instantiation can be found in Appendix D.3.

Theorem 6.2. If the encryption scheme is re-randomizable and IND-CPA secure, Rpk is a hard
relation, the proofs πi are NIZKPoKs, and the proof π is a cm-NIZK, then the above construction
gives a compactly verifiable shuffle.

To prove this theorem, we work with the following progression of games, formally proved indis-
tinguishable in Appendix G:

• Game G0. The honest game for b = 0.

• Game G1. In Step 1 we switch to using a simulated CRS σ′crs, and in Step 2 we switch to
using simulated proofs π in the initiation oracle. This is indistinguishable from G0 by zero
knowledge.

• Game G2. In Step 1 we switch to using a simulated proof π in the regular shuffle oracle as well.
This is indistinguishable from G1 by strong derivation privacy (as defined in Definition 2.5).
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• Game G3. In Step 2, we switch to having both the initiation and shuffle oracles return
fresh encryptions rather than re-randomizations; this is indistinguishable from G2 by the
re-randomizability of the encryption scheme.

• GameG4. In Step 4, we extract the permutation ϕ from the proof π and return {Dec(sk , ϕ(ci))}.
This is indistinguishable from G2 by the CM-SSE property of the NIZK. (While CM-SSE
does not guarantee that a permutation will be extracted directly, we argue in the proof of
Lemma G.4 that even in the case that a instance x′ and transformation T are recovered
instead of a direct witness ϕ, a permutation can still be recovered.)

• Game G4. In Step 1 we switch to using a trapdoor CRS σcrs, and in Step 4 we use the
extraction trapdoor to extract a witness mi from each proof πi for all i, 1 ≤ i ≤ n, and
use ϕ(mi) in place of Dec(sk , ϕ(ci)). This is indistinguishable from G3 by the extractability
property of the πi.

• Game G6. In Step 2, we switch to having both the initiation and shuffle oracles return
encryptions of garbage; that is, for the values c′i, rather than compute an honest shuffle

they will instead pick random values r1, . . . , rn
$←− M and use c′i

$←− Enc(pk , ri). This is
indistinguishable from G5 by the IND-CPA security of the encryption scheme.

• Game G7. In Step 4, we pick a random permutation ϕ′ and return {ϕ′(mi)}. This is indis-
tinguishable from G6 by the CM-SSE property of the NIZK and the hardness of the relation
Rpk .

• Game G8. In Step 2, both oracles return to permuting and freshly encrypting for the cipher-
texts rather than encrypting random values. This is indistinguishable from G7 again by the
IND-CPA security of the encryption scheme.

• Game G9. In Step 4, we return to decrypting the ciphertexts ci instead of using the val-
ues extracted from the proofs of knowledge; that is, we return {Dec(sk , ϕ′(ci))}. This is
indistinguishable from G8 again by the extractability property of the NIZKPoKs.

• Game G10. In Step 2, both oracles return to performing an honest shuffle; i.e., re-randomizing
the ciphertexts rather than performing fresh encryption. This is indistinguishable from G9

again by the re-randomizability of the encryption scheme.

• Game G11. In Step 2 we switch back to using honest proofs in the regular shuffle oracle. This
is indistinguishable from G10 again by the derivation privacy of the NIZK.

• Game G12. In Step 1 we switch back to an honest CRS, and in Step 2 we switch back to honest
proofs in the initiation oracle. This is now the honest game for b = 1, and is indistinguishable
from G11 again by zero knowledge.
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A Formal Definition and Proof of Groth-Sahai Malleability

To complement our brief discussion in Section 4.1, we present here a full characterization of Groth-
Sahai proofs and the operations with respect to which they are malleable. We start with a formal
definition of the types of statements GS proofs can be used to prove:

Definition A.1. Groth-Sahai proofs allow a prover to prove knowledge of values X = {xi}i∈[1..m]

and Y = {yi}i∈[1..n] that satisfy a bilinear equation system of the following form:∧̀
l=1

∏
i∈[1..m] j∈[1..n]

e(xi, yj)
γl,i,j = 1

 ∧
 ∧
i∈[1..m]

xi = ai ∨ ai =⊥

 ∧
 ∧
i∈[1..n]

yi = bi ∨ bi =⊥

 .

The constants of the pairing-product equations are defined by the proof instance (Γ1, . . . ,Γ`, A,B)
consisting of exponent matrices Γl = {γl,i,j}i∈[1..m],j∈[1..n], γl,i,j ∈ Fp for l ∈ [1..`] and group element
constants A = {ai}i∈[1..m], B = {bi}i∈[1..n], with ai ∈ G1 ∪ {⊥} and bi ∈ G2 ∪ {⊥} (where ⊥ is used
to indicate that the value of the variable is unconstrained).
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In order to accomodate these unconstrained ⊥ values in A and B we also extend our arithmetic
operations as follows: we define +̃ and ·̃ so that a1+̃a2 = a1 +a2, a1̃·a2 = a1 ·a2 for a1, a2 6= ⊥, and
a1+̃⊥ = ⊥, a1̃·⊥ = ⊥ for all a1 ∈ A (and similarly for ⊥+̃a2 and ⊥·̃a2, and for all values in B).
We also want to be able to compare things with ⊥ values, so we define =̃ as used in the definition;
i.e., x=̃a := (x = a ∨ a = ⊥) (and similarly for elements in B).

In the body of the paper we make several simplifications to reduce complexity: (i) we use
multiplicative notation; (ii) we work with symmetric bilinear groups with a pairing e : G×G→ GT ,
and thus consider the case only where X = Y , m = n, and A = B; (iii) as a short hand notation
for equations, we inline group element constants, and distinguish them by their own font, e.g., we
write e(x, b)e(a, y) = 1 instead of e(x, y′)e(x′, y) ∧ x′ = a ∧ y′ = b; (iv) to avoid using these ⊥
values, we assume that variables are ordered such that first n′ ≤ n variables are constrained by
values a1, . . . , an′ , while the remaining variables are unconstrained. We now dispense with these
simplifications and revisit our informal characterization of GS malleability in Definition 4.1, which
we can express more formally as follows:

Definition A.2. (Formal) A valid transformation T for a Groth-Sahai instance (Γ1, . . . ,Γ`, A,B)
is one that can be expressed as the composition TO1 ◦ · · · ◦ TOp(k)

of (a polynomial number of) the
following five operations (TO1 ◦ TO2 is done component wise):

Merge equations: MergeEq(i, j) adds a new equation that is the product of equations i and j.

TMergeEq(i,j) = (Tx, Tw), where Tx(Γ1, . . . ,Γ`, A,B) := (Γ1, . . . ,Γ`,Γ`+1, A,B) for Γ`+1 :=
Γi + Γj, and Tw(X,Y ) := (X,Y ).

Merge variables: MergeVar(x, y, z, S) generates a new variable z. If x and y are both constants, z
will have value xy. Otherwise it will be unconstrained (i.e., have value ⊥). For every variable
w in the set S, we add the equation e(x,w)−1e(y, w)−1e(z, w) = 1.

Let x := xi1, y := xi2, and S := {ys1 , . . . , ys|S|}. Then TMergeVar(x,y,z,S)(Γ1, . . . ,Γ`, A,B) =

(Tx, Tw), where Tx := (Γ′1, . . . ,Γ
′
`+|S|, ((A[1] . . . , A[m], A[i1]+̃A[i2]), B)) for

Γ′l[i, j] :=

{
Γl[i, j] i ∈ [1..m] ∧ j ∈ [1..n]

0 otherwise
for all l ∈ [1..`],i ∈ [1..m+ 1], j ∈ [1..n],

Γ′`+l[i, j] :=


1 i = m+ 1 ∧ j = sl

−1 (i = i1 ∨ i = i2) ∧ j = sl

0 otherwise

for all l ∈ [1..|S|],i ∈ [1..m+ 1], j ∈ [1..n]

and Tw(X,Y ) := (X[1], . . . , X[m], X[i1] +X[i2]), Y ).

There is a similar transformation for G2, x := yi1, y := yi2, and S := {xs1 , . . . , xs|S|}.9

Exponentiate variable: ExpVar(x, δ, z, S) generates a new variable z. If x is a constant, z :=
xδ, otherwise it will be unconstrained. For every variable w ∈ S, we add the equation
e(x,w)−δe(z, w) = 1.

Let x := xie and S := {ys1 , . . . , ys|S|}. Then TExpVar(x,δ,z,S)(Γ1, . . . ,Γ`, A,B) = (Tx, Tw), where
Tx := (Γ′1, . . . ,Γ

′
`+|S|, ((A[1] . . . , A[m], δ ·̃ A[ie]), B)) for

Γ′l[i, j] :=

{
Γl[i, j] i ∈ [1..m] ∧ j ∈ [1..n]

0 otherwise
for all l ∈ [1..`],i ∈ [1..m+ 1], j ∈ [1..n],

9For symmetric pairings they are equivalent.
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Γ′`+l[i, j] :=


1 i = m+ 1 ∧ j = sl

−δ i = ie ∧ j = sl

0 otherwise

for all l ∈ [1..|S|],i ∈ [1..m+ 1], j ∈ [1..n]

and Tw(X,Y ) := ((X[1], . . . , X[m], δ ·X[ie]), Y ).

There is a similar transformation for G2, x := yie, and S := {xs1 , . . . , xs|S|}.10

Add constant equation: Add({ai}, {bj}, {γij}) takes a set of constants ai, bi, satisfying a pairing
product equation

∏
e(ai, bj)

γij = 1 and adds these variables and the new equation to the
statement.

Let Γc := {γij}, Ac := {ai}, and Bc = {bj}. Then TAdd({ai},{bj},{γij})(Γ1, . . . ,Γ`, A,B) =

(Tx, Tw), where Tx := (Γ′1, . . . ,Γ
′
`+1, ((A Ac),

(
B
Bc

)
)) for

Γ′l[i, j] :=

{
Γl[i, j] i ∈ [1..m] ∧ j ∈ [1..n]

0 otherwise
for all l ∈ [1..`],i ∈ [1..m+mc], j ∈ [1..n+ nc],

Γ′`+1[i, j] :=


Γc[i−m, j − n]

i∈[m+1..m+mc]∧
j∈[n+1..n+nc]

0 otherwise

for all i ∈ [1..m+mc], j ∈ [1..n+ nc]

and Tw(X,Y ) := ((XAc),
(
Y
Bc

)
).

Remove equation: RemoveEq(i) simply removes the ith equation from the list. So, TRemoveEq(i)(Γ1, . . . ,
Γ`, A,B) = (Tx, Tw), where Tx := (Γ1, . . . ,Γi−1,Γi+1, . . . ,Γ`, A,B) and Tw(X,Y ) := (X,Y ).

Remove variable: RemoveVar(x) removes the variable x from the variable set iff x does not appear
in any of the listed equations.

Let x := xir and Γl[ir] := ~0 for l ∈ [1..`]. Then TRemoveVar(x)(Γ1, . . . ,Γ`, A,B) = (Tx, Tw),
where Tx := (Γ′1, . . . ,Γ

′
`, ((A[1] . . . , A[ir − 1], A[ir + 1], . . . A[m]), B)) for

Γ′l[i, j] :=

{
Γl[i, j] i ∈ [1..ir − 1]

Γl[i+ 1, j] i ∈ [ir + 1..m]
for all l ∈ [1..`], i ∈ [1..m− 1], j ∈ [1..n]

and Tw(X,Y ) := ((X[1], . . . , X[i1 − 1], X[i1 + 1], . . . , X[m]), Y ).

There is a similar transformation for G2 and x := yir .11

In Appendix A.2, we will see a proof that all of these transformations are in fact supported
by Groth-Sahai proofs; i.e., GS proofs are malleable with respect to each. First, we need to recall
what GS proofs look like, which we do in the next section.

10For symmetric pairings they are equivalent.
11For symmetric pairings they are equivalent.
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A.1 Internals of Groth-Sahai proofs

Groth-Sahai (GS) proofs require a bilinear map e : G1 × G2 → GT for groups G1,G2, and GT of
order p. We use strict additive notation, so the neutral elements of G1,G2, and GT are 01, 02, and
0T respectively. Similarly, we refer to the distinguished generators as 11, 12, and 1T . We usually
omit the index when it is clear from the context. We use P1

e• P2 = e(P1, P2) as a shorthand for
the pairing, so 01

e• 02 = 0T and 11
e• 12 = 1T . We extend this notation to vectors P1 and P2 of m

elements to mean P1
e• P2 :=

∑m
i=1 e(P1[i], P2[i]).

Let X ∈ Gm
1 and Y ∈ Gn

2 be the witnesses known only to the prover. In additive notation, GS
proofs allow us to prove statements of the form

∧`
i=1

(
X

e• ΓiY = 0
)
∧X=̃A∧Y =̃B; an instance of

the statement can therefore be given by constants `, m, n, Γi ∈ Matm×n(Fp), A ∈ (G1∪ ⊥)m and
B ∈ (G2∪ ⊥)n. Note that by the bilinear properties of e we have that X

e• ΓiY = ΓTi X
e• Y .

We usually omit the size constants `,m, n and write

E = {(Γ1, . . . ,Γ`, A,B) | `,m, n ∈ N,Γi ∈ Matm×n(Fp), A ∈ (G1∪ ⊥)m, B ∈ (G2∪ ⊥)n}

for the set of all pairing product equations (satisfiable or not) andW = G∗1×G∗2 for the set of possible
witnesses. We denote the pairing product relation by Rpp = {(x,w) | x = (Γ1, . . . ,Γ`, A,B) ∈
E , w = (X,Y ),

∧`
i=1

(
X

e• ΓiY = 0
)
∧X=̃A ∧ Y =̃B} and write Lpp in short for LRpp .

Proving an individual equation. Following Fuchsbauer [25], we first describe the proof system
for a single Γ, and with explicit commitments and randomness; commitments to witnesses X and
Y can be reused for proving multiple Γi. A core idea of Groth-Sahai proofs is to map elements of
G1 and G2 into larger commitment domains and to also define pairing product equations in those
domain. For the SXDH and DLIN instantiations, the domain of commitments is described by the
vector spaces V1 = Gm̂

1 and V2 = Gm̂
2 (with m̂ = 2 and m̂ = 3 respectively).

We use inclusion maps ι1 : G1 → V1, ι2 : G2 → V2, ιT : GT → VT and the bilinear mapping
E : V1 × V2 → VT as defined by Ghadafi et al. [29]:

E((V11, . . . V1m̂), (V21, . . . , V2m̂)) :=

(
e(V11,V21) ... e(V11,V2m̂

...
...

e(V1m̂,V21) ... e(V1m̂,V2m̂

)
.

For V1 ∈ V1 and V2 ∈ V2, we write V1
E• V2 as a shorthand for E(V1, V2). We extend this notation

to vectors V1 ∈ Vm1 and V2 ∈ Vm2 to mean V1
E• V2 :=

∑m
i=1E(V1[i], V2[i]). The mappings ι1, ι2, ιT

are applied to vectors element wise. When it is clear from the context whether we are referring to
group elements or commitments, we omit the superscripts e and E of •.

CRSSetup(grp). The GS parameters generation takes as input a pairing group setup grp for G1 ×
G2 → GT ; it then picks values U1 ∈ Vm̂1 and U2 ∈ Vn̂2 such that the subspaces spanned by
U1 and U2 overlap with those produced by ι1(11) and ι2(12) only in ~0, and sets params :=
(grp, U1, U2).

Commit1(params, X, r). To compute commitments C ∈ Vm1 to X ∈ Gm
1 using randomness r ∈

Matm×m̂(Fp), compute
C = ι1(X) + rU1.

Similarly, Commit2(params, Y, s) computes commitments D ∈ Vn2 to Y ∈ Gn
2 using random-

ness s ∈ Matn×n̂(Fp) by computing

D = ι2(Y ) + sU2 .
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Prove(params, (Γ, A,B), (X,Y ), r, s, T ). The proof π = (φ, θ) uses randomness T ∈ Matn̂×m̂(Fp)
and consists of

φ := rTΓD − T TU2 = rTΓι2(Y ) + rTΓsU2 − T TU2,

θ := sTΓT ι1(X) + TU1.

Verify(params, (Γ, A,B), C,D, π). A proof π = (φ, θ) is verified by checking that C=̃ι1(A), D=̃ι2(B),
and

C • ΓD = ιT (0) + U1 • φ+ θ • U2. (1)

RandCom1(params, C, r̂). To randomize commitments C ∈ Vm1 using randomness r̂ ∈ Matm×m̂(Fp),
compute

C ′ = C + r̂U1.

Similarly RandCom2(params, D, ŝ) computes commitments D′ ∈ Vn2 using randomness ŝ ∈
Matn×n̂(Fp) by computing

D′ = D + ŝU2.

RandProof(params, (Γ, A,B), (C,D), r̂, ŝ, T̂ ). To create a randomized proof π′ = (φ′, θ′), let D′ :=
D + ŝU2, and compute

φ′ := φ+ r̂TΓD′ − T̂ TU2 = φ+ r̂TΓD + r̂TΓŝU2 − T̂ TU2,

θ′ := θ + ŝTΓTC + T̂U1.

Combining proofs about the same internal commitments. To extend the previous con-
struction, we can also define a proof system for multiple pairing product equations (i.e., one with
multiple Γ values rather than just one):

CRSSetup(grp) is unchanged.

Prove(params, (Γ1, . . . ,Γ`, A,B), (X,Y )). Compute commitments C toX using Commit1(params, X,
r) with randomness r ∈ Matm×m̂(Fp), where r[i] = {0}m̂ if A[i] 6=⊥ and a random element in
Fm̂p otherwise. Similarly, compute commitments D to Y using randomness s. For all i, pick
randomness Ti and prove equation Γi using Prove(params, (Γi, A,B), (X,Y ), r, s, Ti). Output
the proof π := ((φ1, θ1), . . . , (φ`, θ`), C,D).

Verify(params, (Γ, A,B), π). A proof π = ((φ1, θ1), . . . , (φ`, θ`), C,D) is verified by checking that
C=̃ι1(A), D=̃ι2(B), and

C • ΓiD = ιT (0) + U1 • φi + θi • U2

for all i, 1 ≤ i ≤ `.

A.2 Proof of malleability

Lemma A.3. There exists an efficient procedure ZKEval such that given any pairing product in-
stance x, any valid transformation T := (Tx, Tw), and any accepting Groth-Sahai proof π for x,
ZKEval(σcrs, T, x, π) produces an accepting proof for Tx(x).

Proof. To prove the lemma, it suffices to describe a ZKEval procedure for each of the operations
in Definition A.2 and show that it transforms the GS proof correctly; this means checking that
Equation 1 is still satisfied by the transformed proof.
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Merge equations: ZKEval(x, π, TMergeEq(i,j)) parses π as ((φ1, θ1), . . . , (φ`, θ`), C,D) and return
the proof π′ := ((φ1, θ1), . . . , (φ`, θ`), (φi+φj , θi+θj), C,D); in other words, the mauled proof
for instance (Γ1, . . . ,Γ`,Γi+Γj , A,B) has an additional proof pair (φ`+1, θ`+1) := (φi+φj , θi+
θj). We verify that Equation 1 will be satisfied for this additional proof by checking that

C • (Γi + Γj)D =

C • (ΓiD + ΓjD) =

C • ΓiD + C • ΓjD =

= ιT (0) + U1 • φi + θi • U2 + ιT (0) + U1 • φj + θj • U2

= ιT (0) + U1 • (φi + φj) + (θi + θj) • U2.

Merge variables: ZKEval(x, π, TMergeVar(x,y,z,S)) parses π as ((φ1, θ1), . . . , (φ`, θ`), C,D), x as xi1 ,

y as xi2 , and returns the proof ((φ1, θ1), . . . , (φ`, θ`), (~0,~0), . . . , (~0,~0), (C[1], . . . , C[m], C[i1] +
C[i2]), D).

Γ′1, . . . ,Γ
′
` are the same as Γ1, . . . ,Γ` except for an added row of ~0, thus C • Γ′iD = C • ΓiD

and the same proof elements verify for the mauled equations. For l > `,

C • Γ′lD = C[i1] • −1D[sl] + C[i2] • −1D[sl] + C[m+ 1] •D[sl]

= −C[i1] •D[sl]− C[i2] •D[sl] + (C[i1] + C[i2]) •D[sl]

= 0T ,

and so a (~0,~0) proof will in fact verify for these equations.

Exponentiate variables: ZKEval(x, π, TExpVar(x,δ,z,S)) parses π as ((φ1, θ1), . . . , (φ`, θ`), C,D), x

as xie and returns the proof ((φ1, θ1), . . . , (φ`, θ`), (~0,~0), . . . , (~0,~0), (C[1], . . . , C[m], δ ·C[ie], D).

Γ′1, . . . ,Γ
′
` are the same as Γ1, . . . ,Γ` except for an added row of ~0, thus C • Γ′iD = C • ΓiD

and the same proof elements verify for the mauled equations. For l > `,

C • Γ′lD = C[ie] • −δD[sl] + C[m+ 1] •D[sl]

= (−δC[i1]) •D[sl] + (δ · C[ie]) •D[sl]

= 0T ,

and so a (~0,~0) proof will in fact verify for these equations.

Add constant equation: ZKEval(x, π, TAdd({ai},{bj},{γij})) parses π as ((φ1, θ1), . . . , (φ`, θ`), C,D).
Let Γc := {γij}, Ac := {ai}, and Bc := {bj}. ZKEval returns the proof ((φ1, θ1), . . . , (φ`, θ`),

(~0,~0), (Cι1(Ac)),
(

D
ι2(Bc)

)
).

Γ′1, . . . ,Γ
′
` are the same as Γ1, . . . ,Γ` except for an added rows and columns of~0, thus C•Γ′iD =

C • ΓiD and the same proof elements verify for the mauled equations.

For Γ′`+1, we know that Ac • ΓcBc = 0T , and consequently ι1(Ac) • Γc ι2(Bc) = ιT (0T ). Now

Γ′`+1 is Γc extended with rows and columns of ~0, and A′and B′ are equal to Ac and Bc for all
elements corresponding to non zero rows and columns. Consequently C ′ • Γ′`+1D

′ = ιT (0T ).

Remove equation: ZKEval(x, π, TRemoveEq(i)) parses π as ((φ1, θ1), . . . , (φ`, θ`), C,D) and returns
the proof ((φ1, θ1), . . . , (φi−1, θi−1)(φi+1, θi+1), . . . , (φ`, θ`), (C,D)).

As the checks performed on the mauled proof are a subset of the checks performed on the
original proofs, we know that if the original proof verified the mauled one must as well.
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Remove variable: ZKEval(x, π, TRemoveVar(x)) parses π as ((φ1, θ1), . . . , (φ`, θ`), C,D), x as xir and
returns the proof ((φ1, θ1), . . . , (φ`, θ`), (C[1], . . . , C[ir − 1], C[ir + 1], . . . , C[m]), D).

The ithr row of all Γl were ~0, thus C ′ • Γ′iD = C • ΓiD and the same proof elements verify for
the mauled equations.

A.3 Other transformations

Remove duplicate constant: RemoveConstant(x, y) removes variable x that is fixed to the same
constant as y.

Let x := xi1 and y := xi2 , such thatA[i1] = A[i2] 6=⊥. Then TRemoveConstant(x,y)(Γ1, . . . ,Γ`, A,B) :=
(Γ′1, . . . ,Γ

′
`, ((A[1] . . . , A[i1 − 1], A[i1 + 1], . . . A[m]), B)) for

Γ′l[i, j] :=


Γl[i, j] + Γl[i1, j] i ∈ [1..i1 − 1] ∧ i = i2

Γl[i, j] i ∈ [1..i1 − 1] ∧ i 6= i2

Γl[i+ 1, j] + Γl[i1, j] i ∈ [ir + 1..m] ∧ i+ 1 = i2

Γl[i+ 1, j] i ∈ [ir + 1..m] ∧ i+ 1 6= i2

for all i, j, l, 1 ≤ i < m, 1 ≤ j ≤ n, 1 ≤ l ≤ `.
There is a similar transformation for G2, x := yi1 , and y := yi2 .12

ZKEval(x, π, TRemoveConstant(x,y)) parses π as ((φ1, θ1), . . . , (φ`, θ`), C,D), x as xi1 , y as yi2 and re-
turns the proof ((φ1, θ1), . . . , (φ`, θ`), (C[1], . . . , C[i1 − 1], C[i1 + 1], . . . , C[m]), D).

Proof. Note that A[i1] = A[i2] and the row for y in Γ′l contain the sum of the vectors Γl[i1]
and Γl[i2], for l ∈ [1..`].

C • ΓlD =
∑

i=[1..m]

E(C[i],
∑
j=1..n

Γ[i, j]D[j])

=E(A[i1],
∑
j=1..n

Γ[i1, j]D[j]) + E(A[i2],
∑
j=1..n

Γ[i2, j]D[j])

+
∑

i=[1..m],i 6=i1∧i 6=i2

E(C[i],
∑
j=1..n

Γ[i, j]D[j])

=E(A[i2],
∑
j=1..n

(Γ[i1, j] + Γ[i2, j])D[j]) +
∑

i=[1..m],i 6=i1∧i 6=i2

E(C[i],
∑
j=1..n

Γ[i, j]D[j])

=
∑

i=[1..m−1]

E(C ′[i],
∑
j=1..n

Γ′[i, j]D′[j])

= C ′ • Γ′lD
′.

Merge Proofs: MergeProofs combines two instances x1 and x2 for independently proven state-
ments. Let xi have `i equations, mi variables in G1, and ni variables in G2, then TMergeProofs((Γ1,

. . . ,Γ`1 , A1, B1), (Γ`1+1, . . . ,Γ`1+`+2, A2, B2)) := (Γ′1, . . . ,Γ
′
`1+`2

, ((A1, A2),
(
B1
B2

)
) for

Γ′l[i, j] :=

{
Γl[i, j] i ∈ [1..m1] ∧ j ∈ [1..n1]

0 otherwise

12For symmetric pairings they are equivalent.
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for all l ∈ [1..`1],i ∈ [1..m1 +m2], j ∈ [1..n1 + n2], and

Γ′l[i, j] :=

{
Γl[i−m1, j − n1] i ∈ [m1 + 1..m1 +m2] ∧ j ∈ [n1 + 1..n1 + n2]

0 otherwise

for all l ∈ [`1 + 1..`1 + `2],i ∈ [1..m1 +m2], j ∈ [1..n1 + n2].

ZKEval(x1, x2, π1, π2, TMergeProofs) parses π1 as ((φ1, θ1), . . . , (φ`1 , θ`2), C1, D1), π2 as ((φ`1+1, θ`1+1),

. . . , (φ`1+`2 , θ`1+`2), C2, D2) and returns the proof ((φ1, θ1), . . . , (φ`1+`2 , θ`1+`2), (C1, C2),
(
D1
D2

)
).

Proof. The individual equations are verified independently and are unaffected by the merger.

A.4 Related work on Groth-Sahai malleability

In order to demonstrate the generality of our mauling operations described above are general,
we show in this section that they generalize all previous works that use the malleability of GS
proofs [21, 7, 25].

Homomorphic proofs of Dodis et al. [21]. Dodis et al. [21] consider relations RB
linear =

{(~c, ~x) | B~x = ~c} where B ∈ GM×N
1 with instances ~c = GM

1 and witnesses ~x ∈ FNp .
We embed their relation into a pairing product equation system with instances x = (Γ1, . . .ΓM ,

A,B). Let B = (b1,1, . . . b1,N , . . . , bM,N ). Each Γi describes a linear equation
∑N

j=1 bijxj = ci

encoded into a pairing product equation as
∑N

i=j bij • xj12 = ci • 12. The constants of the pairing
product equations are A = (c1, . . . , cM ,B) and B = (⊥, . . . ,⊥, 12).

They show the following homomorphic property for linear GS proofs: given two proofs π1 and
π2 for instances x1 = (Γ1, . . .ΓM , (c1, . . . , cM ,B), B) and x2 = (Γ1, . . .ΓM , (c

′
1, . . . , c

′
M ,B), B) such

that Verify(σcrs, xi, πi) = 1 for i ∈ [1, 2], the proof (π1 +π2) obtained using componentwise addition
is a valid proof for instance (Γ1, . . .ΓM , (c1+c′1, . . . , cM+c′M ,B), B). We check that the combination
of the following mauling operations has the same property:

• use MergeProofs to combine the two proofs into one equation system;

• use RemoveConstant to remove all duplicate constants;

• use MergeEq(i,M + i) to ‘add’ the two equations about ci, for all i ∈ [1..M ];

• use MergeVar(xj , x
′
j , x
′′
j ), for all j ∈ [1..N ] and MergeVar(c1, c

′
i, x
′′) for all i ∈ [1..N ] to combine

the variables and constants of the proof;

• finally we remove all intermediary equations and variables.

Homomorphic proofs of Acar and Nguyen [7]. For a fixed M ⊂ {1, . . . ,m}, and N ⊂
{1, . . . , n}, Acar and Nguyen [7] consider mauling operations on instances (Γ1, A1, B1) and (Γ2, A2, B2)
such that

• A1[i] = A2[i] 6=⊥, for i ∈M and B1[i] = B2[i] 6=⊥, for i ∈ N

• Γ1[i, j] = Γ2[i, j], for i ∈ {1, . . . ,m} \M, j ∈ {1, . . . , n}

• Γ1[i, j] = Γ2[i, j], for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} \N
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• Γ1[i, j] = Γ2[i, j] = 0 for i ∈ {1, . . . ,m} \M, j ∈ {1, . . . , n} \N

Acar and Nguyen implicitly use a relation Rx0 that is parameterized by a neutral instance of
the form (Γ0, A0, B0) such that ∀i∈M̄A0[i] = 0, ∀i∈N̄B0[i] = 0 and both ∀i∈M̄,j∈N̄Γ0[i, j] = 0 and
∀i∈M,j∈NΓ0[i, j] = 0:

Rx0 = {((Γ, A,B), (X,Y )) |
∀i∈MA[i] = A0[i] ∧ ∀i∈NB[i] = B0[i] ∧ ∀i∈M̄∨j∈N̄Γ[i, j] = Γ0[i, j]∧
X • ΓY = 0 ∧X=̃A ∧ Y =̃B}

Acar and Nguyen show the following homomorphic property for GS proofs for relation Rx0 :
given two proofs π1 and π2 for instances x1 = (Γ1, A1, B1) and x2 = (Γ2, A2, B2) such that
Verify(σcrs, xi, πi) = 1 for i ∈ [1, 2], the proof (π1 + π2) obtained using componentwise addition
is a valid proof for instance (Γ, A,B), where

Γ[i, j] =

{
Γ1[i, j] + Γ2[i, j] i ∈M, j ∈ N
Γ1[i, j] otherwise

, A[i] =

{
A1[i] i ∈M
A1[i] +A2[i] otherwise

,

B[i] =

{
B1[i] i ∈ N
B1[i] +B2[i] otherwise

.

We check that the combination of the following mauling operations has the same property:

• use MergeProofs to combine the two proofs into one equation system;

• use MergeEq(1, 2) to ‘add’ the two equations;

• use RemoveConstant to remove all duplicate constants for X[i], i ∈M and Y [i], i ∈ N ;

• use MergeVar1(xj , x
′
j , x
′′
j ), for all j ∈ M̄ and MergeVar2(yj , y

′
j , y
′′) for all j ∈ N̄ to add the

variables in M̄ and N̄ ;

• finally we remove all intermediary equations and variables.

Homomorphic proofs of Fuchsbauer [25]. Fuchsbauer shows the following homomorphic
property for GS proofs and an unrestricted pairing product relation: given two proofs π1 and
π2 for instances x1 = (Γ1, A1, B1) and x2 = (Γ2, A2, B2) such that Verify(σcrs, xi, πi) = 1 for
i ∈ [1, 2], the proof (π1 + π2) obtained using componentwise addition is a valid proof for instance

(
(

Γ1 0
0 Γ2

)
, (A1, A2),

(
B1
B2

)
). The following mauling operations have the same property:

• use MergeProofs to combine the two proofs into one equation system;

• use MergeEq(1, 2) to ‘add’ the two equations;

• finally we remove all intermediary equations.

A.5 Derived operations

The basic operations described in Definition A.2 are sufficient to describe all known ways in which
Groth-Sahai instances can be transformed. Describing a given transformation in terms of these
operations, however, can be fairly complex.

To help simplify this process, we therefore present some common operations below, and show
that they can be derived from the basic transformation set above.
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Copying Equations CopyEq(eqk) creates a new equation that is identical to equation eqk.

Derivation: Run Add(1, 1, {1}) to obtain an additional equation eq1 := e(1, 1) = 1. Run
MergeEq(eqk, eq1) to obtain equation eq′k, which is identical to equation k except for the
additional e(11) term. Now, run Add(1, 1, {−1}) to obtain an additional equation eq−1 :=
e(1, 1)−1 = 1. Run MergeEq(eq′k, eq−1) to obtain equation eq′′k, which is identical to equa-
tion eqk. Run RemoveEq and RemoveVar to remove the additional equations and variables
generated.

Exponentiating Equations ExpEq(eqk, δ) creates a new equation that is the same as equation
eqk except that all the exponents γij are multiplied by δ.

Derivation: This can be derived from the MergeEq operation essentially by a square-and-
multiply technique. Note that, if δ is negative, it is equivalent to use (δ mod p), since the
group order, p is public information.

Run Add(1, 1, {1}) to obtain an additional equation eqaux
0 := e(1, 1) = 1.

We write δ as binary as δ = b1 . . . bn.

Now, for i = 1, . . . , n, do the following: If bi = 1, MergeEq(eqaux
i−1, eqk) to obtain equation

eqres
i . If bi = 0, run CopyEq(eqaux

i−1) to obtain equation eqres
i . Then run MergeEq(eqres

i , eqres
i )

to obtain equation eqaux
i . Increase i, and repeat this process.

Finally, obtain eqres
n and run RemoveEq and RemoveVar to remove the additional equations

and variables generated.

Copying Variables CopyVar(x, z, S) generates a new variable z. If x is a constant, z = x, other-
wise it will be unconstrained. For every variable w ∈ S, we add equation e(x,w)−1e(z, w) = 1.

Derivation: This is essentially equivalent to ExpVar(x, z, 1, S).

Adding Trivial Equations AddTriv(S) generates a new variable 1, and the equations e(w, 1) = 1
for all w ∈ S.

Derivation: Run ExpVar(g,−1, g−1, S) to obtain new variable g−1 and equations {eqw :=
e(g, w)e(g−1, w) = 1}w∈S . Run MergeVar(g, g−1, 1, S) to obtain new variable 1 and equations
{eq′w := e(g, w)−1e(g−1, w)−1e(1, w) = 1}w∈S . Run MergeEq(eqw, eq′w) for w ∈ S to obtain
{e(1, w) = 1}w∈S as desired.

Constant to Variable ConstToVar(a, z, S) generates a new non-constant variable z, and adds the
equation e(a,w)−1e(z, w) = 1 for each w ∈ S.13

Derivation: Let x be a non-constant variable. Run ExpVar(x,−1, y, S) to obtain new variable
y, and equation set {eqw := e(x,w)e(y, w) = 1}w∈S . Run MergeVar(a, y, y′, S) to obtain
new variable y′, and equation set {eq′w := e(ay,w)−1e(y′, w) = 1}w∈S . For each w ∈ S
run MergeEq(eqw, eq′w) to obtain the set {eq′′w := e(a,w)−1e(x,w)e(y′, w) = 1}w∈S . Run
MergeVar(x, y′, z, S) to obtain new variable z, and equation set {eq′′′w := e(xy′, w)−1e(z, w) =
1}w∈S . For each w ∈ S run MergeEq(eq′′w, eq′′′w ) to obtain {e(a,w)−1e(z, w) = 1}w∈S . Run
RemoveEq on all equations in {eqw, eq′w, eq′′w, eq′′′w ), and RemoveVar on x, y, y′.

Adding Disjunction: Given instance x1 ∈ Lpp, we can give transforms OrL(x0) and OrR(x0) such
that TOrL(x0)(x1) = Or(x0, x1) and TOrR(x0)(x1) = Or(x1, x0) respectively.

13To make this formally derivable from the basic operations, we require that every pairing product statement have
at least one non-constant variable.
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W.l.o.g. we describe OrL(x0). Let x0 = (Γ
(0)
1 , . . . ,Γ

(0)
`0
, A(0), B(0)) and x1 = (Γ

(1)
1 , . . . ,Γ

(1)
`1
,

A(1), B(1)). We show that the transformation OrL(x0) can be derived from our five basic
mauling operations.

Derivation: For b ∈ {0, 1}, we use 0b, 0
′
b and 1b, 1

′
b to disambiguate between different vari-

ables constrained to 0b and 1b respectively.

• We start with the equations {(eq
(1)
i }

`1
i=1 about variables X(1) and Y (1).

• Use Add to introduce a new constant equation 11 • 12 + 11 • 02 + 11 • 1′2 = 0T .

• For i ∈ [1..m1], run CopyVar(X(1)[i], X1[i], {−1′2}∪{Y (1)[j]}n1
j=1) to obtain new variables X1[i]

and equations {eqi,j}j∈[1..n1] with eqi,j = −X(1)[i]•Y (1)[j])+X1[i]•Y (1)[j] = 0T and {eq
(1,=)
i }

with eq
(1,=)
i = X(1)[i] • 1′2 −X1[i] • 1′2 = 0T .14

• Use {eqi,j}j∈[1..n1] and MergeEq to ‘rename’ X(1)[i] in {(eq
(1)
i }

`1
i=1 into X1[i]. We denote the

resulting equations by {(eq′
(1)
i }

`1
i=1.

• Let B′ be B(0) with ⊥ replaced by 1. Use Add(~01, B
′,Γ

(0)
i ), i ∈ [1..`0] and RemoveConstant to

obtain equations {(eq
(0)
i }

`0
i=1.

• Use Add, to generate {eq
(0,=)
i }m0

i=1 with eq
(0),=
i = A(0)[i] • 02 − 0′1 • 02 = 1T . Note that X(0)[i]

will be A(0)[i] for A(0)[i] 6=⊥.

• Use ConstToVar on {eq
(1,=)
i } and 11 • 12 + 11 • 02 + 11 • 1′2 = 0T . to turn 1′2 into v1 to get

equations {eq′
(1,=)
i } and 11 • 12 + 11 • 02 + 11 • v1 = 0T .

• Use ConstToVar to turn 02 in {eq
(0,=)
i }m0

i=1 and equation 11 • 12 + 11 • 02 + 11 • v1 = 0T . into

variable v0 to get equations {eq′
(0,=)
i }m0

i=1 and 11 • 12 + 11 • v0 + 11 • v1 = 0T .

• Use ConstToVar to turn the 01s in {(eq
(0)
i }

`0
i=1 and eq′

(0,=)
i into variable X0[i] to get equations

{(eq′
(0)
i }

`0
i=1 and eq′′

(0,=)
i .

• Use RemoveEq to remove all equations except 11 • 12 + 11 • v0 + 11 • v1 = 0T , {eq′′
(0,=)
i }m0

i=1,

{eq′
(1,=)
i }m1

i=1,{(eq′
(0)
i }

`0
i=1, and {(eq′

(1)
i }

`1
i=1.

B Proving Disjunctions and Conjunctions

There are two main types of statement we consider proving: disjunctions of the form “x0 ∈ L or
x1 ∈ L” and conjunctions of the form “x0 ∈ L and x1 ∈ L.” In this section we consider both. We
first focus on how to prove disjunctions, and then examine transformations on disjunctions. We
then turn to conjuctions; at first glance, these should be easy, as we can just join the equations
for x0 and x1 into a single equation system. The situation can become a bit more complicated,
however, if the instances for x0 and x1 share unconstrained variables, and so we consider that case
here, as well as transformations on these types of conjunctions.

14As a tedious technicality this requires also an ExpVar on −1′2 to move the − from the constant into the equation.
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B.1 Disjunctions of pairing product equations

As observed by Groth [32], GS proofs also allow us to prove disjunctions of statements; i.e., a
proof that either x0 ∈ LR or x1 ∈ LR, without revealing which is true. More formally, there exist
efficiently computable functions Or and Orw, such that Or(x0, x1) ∈ LR iff x0 ∈ LR ∨ x1 ∈ LR and
whenever either (x0, w0) ∈ R or (x1, w1) ∈ R, (Or(x0, x1),Orw(x0, x1, w1, w2)) ∈ R.

We begin by reviewing the techniques we use to prove disjunctions. To be general, we describe
the main transformation for asymmetric pairings and in additive notation.

We assume for simplicity that the two sides of the ‘or’ do not share unconstrained variables
and can thus be described by two independent instances. Suppose we have two pairing product

instances x0 = (Γ
(0)
1 , . . . ,Γ

(0)
`0
, A(0), B(0)) and x1 = (Γ

(1)
1 , . . . ,Γ

(1)
`1
, A(1), B(1)), and we want to prove

that at least one of them is in Lpp. We describe a function Or : E×E → E such that Or(x1, x2) ∈ Lpp

iff x0 ∈ Lpp ∨ x1 ∈ Lpp and a function Orw : E × E × W × W → W such that whenever either
(x0, w0) ∈ Rpp or (x1, w1) ∈ Rpp, (Or(x0, x1),Orw(x0, x1, w0, w1)) ∈ Rpp.

We describe the two functions together: As a first step the functions add variables v0 and v1

corresponding to the two sides of the disjunction. They then set up the rest of the pairing product
equations so that, if vb is not 02, then xb must be true. In order to ensure that one of the original
instances was true, we therefore add the following equation to show that at least one of v0, v1 is
not 02:

11 • 12 + 11 • v0 + 11 • v1 = 0T . (2)

(The non-degenerate property of the bilinear map then guarantees that both of the vb variables
cannot equal 02.)

Now we have to modify the paring product equations for each statement so that they imply
that each statement is true if the appropriate vb 6= 02, and so that if vb = 02 it is easy to generate
a satisfying assignment even without a witness for instance xb.

To this end, we note that an equation of the form z •a = 0T always has a satisfying assignment
when z is unconstrained: we simply set z to 02. Based on this concept, we modify the set of pairing
product equations as follows:

We first introduce additional variables X0 and X1 that will replace X(0) and X(1) in {Γ(0)} and
{Γ(1)} respectively.15 The intuition is that if we know a witness for x0, we set X0 and X1 such that
X0 = X(0) and X1 := ~01, otherwise we do the reverse. We then add the set of equations

X(0)[i] • v0 −X0[i] • v0 = 0T for all i ∈ [1..m0], and

X(1)[i] • v1 −X1[i] • v1 = 0T for all i ∈ [1..m1].

The idea is that for the equations we don’t know how to prove, we will set vb = 02 and so these
equations are trivially satisfied and we can set the corresponding variables X0[j] or X1[j] to be
equal to anything; in particular, we can use X0[j] = 01 or X1[j] = 01 (depending on what b is). For
the set of equations we do know how to prove, we will have to set vb 6= 02 and so the only way we
could prove that the equation is satisfied is if we knew a witness for the original equation as well.

Finally, we modify all the original equations in {Γ(0)} and {Γ(1)} to use variables X0 and X1 in
place of X(0) and X(1) for constrained variables.

15In the case where the two sides do not share unconstrained variables, the Xb[i]for unconstrained X(b)[i] are not
strictly needed. We omit this optimization for the sake of generality and simplicity.
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B.2 Transformations on disjunctions

Conveniently, we can show that this transformation actually preserves the malleability of the un-
derlying proofs; i.e., we can perform the same transformations on Or(x0, x1) that we perform on
instances x0 and x1 independently. This can be stated as the following theorem:

Theorem B.1. For any pair of valid transformations T1, T2, one can derive a transformation
LR(T1, T2) such that if either x0 ∈ LR or x1 ∈ LR then LR(T1, T2)(Or(x0, x1)) = Or(T1(x0), T2(x1)).

Proof. Suppose we are given T0 and T1. W.l.o.g. we will consider how to generate a transforma-
tion which, given Or(x0, x1), will produce Or(T0(x0), x1); the second transformation can then be
implemented analogously.

Let x0 = (Γ
(0)
1 , . . . ,Γ

(0)
`0
, A(0), B(0)) and x1 = (Γ

(1)
1 , . . . ,Γ

(1)
`1
, A(1), B(1)). Or(x0, x1) consists of

equations 11•12+11•v0+11•v1 = 0T , {eq
(0,=)
i }m0

i=1, {eq
(1,=)
i }m1

i=1, {(eq′
(0)
i }

`0
i=1, and {(eq′

(1)
i }

`1
i=1, where

{eq
(0,=)
i }m0

i=1 and {eq
(1,=)
i }m1

i=1 are the equality proofs between X(0), X0 and X(1), X1 respectively,

and {(eq′
(0)
i }

`0
i=1 and {(eq′

(1)
i }

`1
i=1 correspond to the equations in x0 and x1.

Given a disjunction proof constructed as described above, we consider now how to apply the
transformation T0 to the left-hand side of the proof. We will show how this can be done for each of
our basic operations; as any valid transformation can be represented as a set of basic operations,
this will be sufficient to show the theorem.

1. Merge Equations: LR(TMergeEq(eqi,eqj), Tid) executes the MergeEq(eq′
(0)
i , eq′

(0)
j ) operation.

2. Merge Variables: Let x = xi1 , y = xi2 , and let i3 be the position of the new variable z as it

evolves during the mauling. LR(TMergeVar(x,y,z,S), Tid) uses MergeEq(eq
(0,=)
i1

, eq
(0,=)
i2

) to merge

the equality proofs of X(0)[i1] and X(0)[i2] to get a new equality proof eq
(0,=)
i3

. Then it uses

MergeVar(X0[i1], X0[i2], X0[i3], {Y (0)[j]}m0
i=1) and MergeVar(X(0)[i1], X(0)[i2], X0[i3], {Y (0)[j]}m0

i=1)
to generate both the equations “e(x,w)−1e(y, w)−1e(z, w) = 1” for w ∈ S that will be added

to {(eq′
(0)
i }

`0
i=1 and to simplify the equality proof eq

(0,=)
i3

by combining X(0)[i1] and X(0)[i2]

into X(0)[i3]. Finally, RemoveEq and RemoveVar are used to remove unused equations and
variables.

3. Exponentiate Variables: Let x = xie , S = {ys1 , . . . ys|S|}, and let iz be the position of the new

variable z as it evolves during the mauling. LR(TExpVar(x,δ,z,S), Tid) uses ExpEq(eq
(0,=)
ie

, δ) to

maul the equality proof equation for X(0)[ie] to get a new equality proof equation eq
(0,=)
iz

.

Then it uses ExpVar(X0[ie], δ,X0[iz], {Y0[sj ]}|S|j=1) both to obtain the equations correspond-

ing to “e(x,w)−δe(z, w) = 1” and to simplify the equality proof eq
(0,=)
iz

to replace X(0)[ie]
δ

with X(0)[ie]. Finally, RemoveEq and RemoveVar are used to remove unused equations and
variables.

4. Add Constant Equation: LR(TAdd({ai},{bj},{γij}), Tid) executes an Add({ai}, {bj}, {γij}) opera-

tion to extend the equations {(eq′
(0)
i }

`0
i=1 with an additional equation. The {ai} correspond to

new X0[i] variables. In turn CopyVar(X0[i], X(0)[i], {v0}) operations extend the {eq
(0,=)
i }m0

i=1

equations with additional equality proofs. This also resulting in new variable X(0)[i]. Finally
ConstToVar is used to hide the new X0[i] variables.

5. Remove Equation: LR(TRemoveEq(eqi)
, Tid) executes the operation RemoveEq(eq′

(0)
i ).
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6. Remove Variable: Let x = xir , LR(TRemoveVar(x), Tid) executes the operations RemoveEq(eq
(0,=)
ir

),

RemoveVar(X0[ir]), and RemoveVar(X(0)[ir]).

B.3 Conjunctions of pairing product equations

For disjunctions, we considered only the case when the two sides of the ‘or’ shared no unconstrained
variables; here, we eliminate this requirement and consider what happens for conjunctions. So,

suppose we have two pairing product instances x0 = (Γ
(0)
1 , . . . ,Γ

(0)
`0
, A(0), B(0)) and x1 = (Γ

(1)
1 , . . . ,

Γ
(1)
`1
, A(1), B(1)). We want to prove that both of them are in Lpp and that they coincide on the first

m̃ variables in G1 and on the first ñ variables in G2. We write S for N×N and describe functions
And : E × E × S → E and Andw :W ×W × S →W:

And(x1, x2; m̃, ñ) = (Γ1, . . . ,Γ`0+`1 , A,B), where for k ∈ [1..`0], i ∈ [1..m0 + m1 − m̃], j ∈
[1..n0 + n1 − ñ]

Γk[i, j] =

{
Γk[i, j] i ∈ [1..m0] ∧ j ∈ [1..n0]

0 otherwise

and for k ∈ [`0 + 1..`0 + `1], i ∈ [1..m0 +m1 − m̃], j ∈ [1..n0 + n1 − ñ]

Γk[i, j] =



Γk[i, j] i ≤ m̃ ∧ j ≤ ñ
Γk[i, ñ+ j − n0] i ≤ m̃ ∧ j > n0

Γk[m̃+ i−m0, j] i > m0 ∧ j ≤ ñ
Γk[m̃+ i−m0, ñ+ j − n0] i > m0 ∧ j > n0

0 otherwise

Andw(w0, w1; m̃, ñ) = (X,Y ) where

X[i] =

{
X(0)[i] i ∈ [1..m0]

X(1)[m̃+ i−m0] otherwise
for i ∈ [1..m0 +m1 − m̃]

Y [i] =

{
Y (0)[i] i ∈ [1..n0]

Y (1)[ñ+ i− n0] otherwise
for i ∈ [1..n0 + n1 − ñ]

It follows from the construction of And and Andw that (And(x0, x1, m̃, ñ),Andw(w0, w1, m̃, ñ)) ∈ Rpp

iff for w0 = (X(0), Y (0)) and w1 = (X(1), Y (1))

(x0, w0) ∈ Rpp ∧ (x1, w1) ∈ Rpp ∧ ∀m̃i=1X
(0)[i] = X(1)[i] ∧ ∀ñi=1Y

(0)[i] = Y (1)[i].

The pairing product equations described by And(x0, x1, m̃, ñ) correspond to the conjunction of the
equations of x0 and x1 plus the additional equalities. It is thus sufficient to prove And(x0, x1, m̃, ñ).

B.4 Transformations on conjunctions

Before we discuss transformations on conjunctions, we need the following additional definition:

Definition B.2. We say a valid transformation T preserves 1...ñ and 1...m̃ if it can be ex-
pressed as a set of basic operations which does not include RemoveVar(X[i]) for any i ∈ [1...ñ]
or RemoveVar(Y [j]) for any j ∈ [1...m̃].
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Note that all of our derived operations can be described by a set of basic operations which
does not include running RemoveVar on any of the input variables, so a transformation described
in terms of these derived operations that doesn’t explicitly call RemoveVar on any of the mentioned
variables will also preserve those variables.

Now we are ready to present our theorem describing transforms on conjunctions:

Theorem B.3. For any pair of valid transformations T0 and T1 that preserve 1...m̃ and 1...ñ, we
derive a transformation Lift(T0, T1) such that

Lift(T0, T1; m̃, ñ)(And(x0, x1; m̃, ñ)) = And(T0(x0), T1(x1); m̃, ñ).

Proof. Suppose we are given T0 and T1. W.l.o.g. we will consider how to generate a transformation
which, given And(x0, x1; m̃, ñ), will produce And(T0(x0), x1; m̃, ñ); the second transformation can
then be implemented analogously.

Let x0 = (eq
(0)
1 , . . . , eq

(0)
`0
, A(0), B(0)) and x1 = (eq

(1)
1 , . . . , eq

(1)
`1
, A(1), B(1)). And(x0, x1) =

(eq′
(0)
1 , . . . , eq′

(0)
`0
, eq′

(1)
1 , . . . , eq′

(1)
`1
, A′, B′).

Given a conjunction proof π ← P(σcrs,And(x0, x1; m̃, ñ),Andw(w0, w1; m̃, ñ)) we consider now
how to apply the transformation T0 to the left-hand side of of the proof. We will show how this
can be done for each of our basic operations; as any valid transformation can be represented as a
set of basic operations, this will be sufficient to show the theorem.

1. Merge Equations: Lift(T
MergeEq(eq

(0)
i ,eq

(0)
j )
, Tid) executes the MergeEq(eq′

(0)
i , eq′

(0)
j ) operation.

2. Merge Variables: Let x = xi1 , y = xi2 , z = xi3 (once it’s created) and S = {ys1 , . . . ys|S|}. Let
i′1, i

′
2, i′3, {s′1, . . . s′|S|} be the position of the lifted variables. This does not affect the other side

of the ‘and’ as shared variables are excluded. Lift(TMergeVar(x,y,z,S), Tid) uses MergeVar(X ′[i′1],
X ′[i′2], X ′[i′3], {Y ′[s′i]}

m0
i=1) to generate the equations “e(x,w)−1e(y, w)−1e(z, w) = 1” for w ∈ S

that will be added to {(eq′
(0)
i }

`0
i=1 Finally, RemoveEq and RemoveVar are used to remove unused

equations and variables.

3. Exponentiate Variables: Let x = xie , z = xie (once it’s created), S = {ys1 , . . . ys|S|}. Let i′e,
i′z, {s′1, . . . s′|S|} be the position of the lifted variables. This does not affect the other side of

the ‘and’ as shared variables are excluded. LR(TExpVar(x,δ,z,S), Tid) uses ExpVar(X ′[i′e], δ,X
′[i′z],

{Y0[s′j ]}
|S|
j=1) to obtain the equations corresponding to “e(x,w)−δe(z, w) = 1”. Finally, RemoveEq

and RemoveVar are used to remove unused equations and variables.

4. Add Constant Equation: LR(TAdd({ai},{bj},{γij}), Tid) executes an Add({ai}, {bj}, {γij}) oper-

ation to extend the equations {(eq′
(0)
i }

`0
i=1 with an additional equation.

5. Remove Equation: LR(T
RemoveEq(eq

(0)
i )
, Tid) executes the operation RemoveEq(eq′

(0)
i ).

6. Remove Variable: Let x = xir , and let i′r be the position of the lifted variables. This does
not affect the other side of the ‘and’ as shared variables are excluded. Lift(TRemoveVar(x), Tid)
executes and RemoveVar(X[i′r]).

C Proof of Efficient Controlled Malleable NIZK (Theorem 4.5)

To start, we give a slightly more fleshed-out version of our CM-friendly definition (Definition 4.3):
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Definition C.1. For a relation R and a class of transformations T , we say (R, T ) is CM-friendly
if the following six properties hold:

1. Representable statements: any instance and witness of R can be represented as a set of group
elements; i.e., there are efficiently computable bijections Fs : LR → Gds for some ds and
Fw : WR → Gdw for some dw where WR := {w | ∃x : (x,w) ∈ R}.

2. Representable transformations: any transformation in T can be represented as a set of group
elements; i.e., there is an efficiently computable bijection Ft : T → Gdt for some dt.

3. Provable statements: we can prove the statement (x,w) ∈ R (using the above representation
for xand w) using pairing product equations; i.e., there is a pairing product statement that is
satisfied by Fs(x) and Fw(w) iff (x,w) ∈ R.

4. Provable transformations: we can prove the statement “Tx(x′) = x for T ∈ T ” (using the
above representations for x and T ) using a pairing product equation, i.e. there is a pairing
product statement that is satisfied by Ft(T ), Fs(x), Fs(x

′) iff T ∈ T and Tx(x′) = x.

5. Transformable statements: for any T ∈ T , there is a valid transformation s(T ) that takes the
statement “(x,w) ∈ R” (phrased using pairing products as above) and produces the statement
“(Tx(x), Tw(w)) ∈ R.”

6. Transformable transformations: for any T, T ′ ∈ T there is a valid transformation t(T ) that
takes the statement “Tx(x′) = x for T ∈ T ” (phrased using pairing products as above) and
produces the statement “T ′x◦Tx(x′) = T ′x(x) for T ′◦T ∈ T ,” and that preserves16 the variables
in x′.

With this definition suitably formalized, we restate the theorem we would like to prove:

Theorem 4.5. Given a derivation private NIWIPoK for pairing product statements that is mal-
leable for the set of all valid transformations, and a structure preserving signature scheme, we can
construct a cm-NIZK for any CM-friendly relation and transformation class (R, T ).

Proof. Let (R, T ) be a CM-friendly relation and transformation class. Let (Setuppp,Ppp,Vpp,ZKEvalpp)
be a NIWIPoK for pairing product statements that is malleable for the set of all valid transforma-
tions, and let (KeyGen,Sign,VerifySig) be a structure-preserving signature scheme.

Let RWI be the relation {((vk , x), (w, x′, T, σ)) | (x,w) ∈ R ∨ (Verify(vk , σ, x′) = 1 ∧ x =
T (x′) ∧ T ∈ T )} needed by our generic construction. We want to consider an embedding of
this language into pairing product equations. Let PPs be the pairing product statement specified
by the provable statements requirement, let PPVer be the pairing product equations specified by
the verification algorithm of the structure preserving signature scheme, and let PPt be the pairing
product equations specified by the provable transformation requirement. Let PP have variables
x, y, z, we write PP(a, b) for the equations in which x, y are constrained by a, b. We have that
(x,w) ∈ R iff PPs(Fs(x), Fw(w)) = TRUE , Verify(vk , σ, x′) = 1 iff PPVer(vk , Fs(x

′), σ) = TRUE ,
and x = T (x′)∧T ∈ T iff (PPt(Fs(x), Fs(x

′), FT (T )) = TRUE . PPVer and PPt share unconstrained
variables Fs(x

′), w.l.o.g. we assume that these are the first ñ variables of PPVer and PPt. Let t(T )
and s(x) be transformations on transformations respectively instances.

We note that, given the above, it will be the case that if we set

xpp = Or(PPs(Fs(x)),And(PPVer(vk),PPt(x); ñ))

16 We say a valid transformation T preserves a variable x if T can be described by a set of basic operations that
does not include RemoveVar(x).
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and

wpp = Orw(PPs(Fs(x)),And(PPVer(vk),PPt(x); ñ), Fw(w),Andw((Fs(x
′), σ), (Fs(x

′), FT (T ), σ), ñ)),

then (xpp, wpp) ∈ RPP iff ((vk , x), (w, x′, T, σ)) ∈ RWI. Thus, we can easily implement a NIWIPoK
for the relation RWI as:

Setup(1k): Run Setuppp(1k) to get σcrs.

P(σcrs, x, (w, x
′, T, σ)): Let

xpp = Or(PPs(Fs(x)),And(PPVer(vk),PPt(x); ñ)) and

wpp = Orw(PPs(Fs(x)),And(PPVer(vk),PPt(x); ñ), Fw(w),Andw((Fs(x
′), σ), (Fs(x

′), FT (T ), σ), ñ)).

Return the proof π ← Ppp(σcrs, xpp, wpp).

V(σcrs, x, π): Compute xpp = Or(PPs(Fs(x)),And(PPVer(vk),PPt(Fs(x)); ñ)). Output Vpp(σcrs, xpp, π).

ZKEval(T, π): Let Ts = s(T ) and Tt = Lift(id, t(T )). Compute ZKEvalpp(LR(Ts, Tt), π).

From Theorem B.1 and B.3 we have that LR(Ts, Tt) is a valid transformation that transforms an
instance

xpp = Or(PPs(Fs(x)),And(PPVer(vk),PPt(Fs(x)); ñ)))

into an instance

x′pp = Or(s(T )(PPs(Fs(x))),And(PPVer(vk), t(T )(PPt(Fs(x), ); ñ))).

The properties of Or and And guarantee that x′pp ∈ Lpp iff ∃w, x′, T ′, σ : ((vk , Tx(x)), (w, x′, T ′, σ)) ∈
RWI. In other words for every T ′ = (T ′x, T

′
w) ∈ T , LR(Ts, Tt) for s(T ′) and t(T ′) realizes a function

TWI(T
′) ∈ TWI. For every TWI(T

′) = (TWI,x, TWI,w) we have that TWI,x(vk , x) = (vk , T ′x(x)), and
TWI,w(w, x′, T, σ) = (T ′w(w), x′, T ′ ◦ T, σ).

The proof system described above is thus a derivation private NIWIPoK forRWI that is malleable
with respect to TWI. We conclude by Theorem 3.2, 3.3 and 3.4.

D Efficient Instantiations of CM-CCA-Secure Encryption and Com-
pactly Verifiable Shuffles

D.1 BBS encryption

For all of our efficient instantiations involving IND-CPA-secure encryption, we use the Boneh-
Boyen-Shacham (BBS) encryption scheme [11], which we recall works as follows:

• KeyGen(1k): Compute a bilinear group G of some prime order p with generator g and pairing

e : G × G → GT . Pick random values α, β
$←− Fp and set f := gα and h := gβ. Publish

pk := (p,G,GT , g, e, f, h) (or just pk := (f, h) if the group has been specified elsewhere) and
keep sk := (α, β).

• Enc(pk ,m): Pick random values r, s
$←− Fp and compute u := f r, v := hs, and w := gr+sm;

return c := (u, v, w).
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• Dec(sk , c): Parse c = (u, v, w) and sk = (α, β); then compute m := u−1/αv−1/βw.

This scheme is multiplicatively homomorphic; to see this, note that we can simply define
Eval(pk , {ci},×) = c1 · . . . · cn (i.e., the homomorphic operation on ciphertexts is also multipli-
cation). To see that this works we consider two ciphertexts c1 = (f r1 , hs1 , gr1+s1m1) and c2 =
(f r2 , hs2 , gr2+s2m2), and confirm that computing c1c2 = (f r1+r2 , hs1+s2 , gr1+r2+s1+s2m1m2) does in-
deed give us an encryption of m1m2. We can similarly define an algorithm for ReRand(pk , c) to show
that the scheme is also re-randomizable: given an encryption c = (u := f r, v := hs, w := gr+sm),

we compute a new encryption c′ := (u′, v′, w′) of the same message m by picking r′, s′
$←− Fp and

setting u′ := u · f r′ = f r+r
′
, v′ := v · hs′ = hs+s

′
, and w′ := w · gr′gs′ = g(r+r′)+(s+s′)m. By

Theorem 2.10, BBS encryption is therefore function private (as defined in Definition 2.9).

D.2 An efficient instantiation of CM-CCA-secure encryption

To consider as general a set of transformations as possible, we start with messages of the form m :=
(m1, . . . ,mn) ∈ Gn and some subspace H ⊆ Gn. We can then look at the set of transformations

TH = {(T(a,r′) | a ∈ H}

with T(a,r′) = (Tx, Tw), Tw(m, r) = (Tm(m), Tr(r)), and Tm(m1, . . . ,mn) = (a1m1, . . . , anmn); in
other words, transformations that perform component-wise multiplications of message vectors with
vectors in H. The corresponding transformation on ciphertexts Tx is the operation such that the
valuem in c is multiplied by a, and the ciphertext c is also re-randomized using r′.17 If we use vectors
of BBS encryption (outlined above), then the ciphertexts will be of the form c = (c1, . . . , cn) for
ci := (ui, vi, wi), and the randomizers r will be of the form r = (r1, . . . , rn) for ri := (fsi , hti , gsi , gti),
so Tx(pk , (c1, . . . , cn)) = {(ui · fs

′
i , vi · ht

′
i , aiwi · gs

′
i+t
′
i)}.

With this set of transformations in mind, we consider how to efficiently instantiate the corre-
sponding cm-NIZK of relation R = {((pk , c), (m, r)) | c = Enc′(pk ,m; r)}; to do this we use our
outline from Definition 4.3, which requires us to show that our relation and class of transformations
satisfy six properties:

Representable statements: Public keys and ciphertexts consist of group elements: pk = (f, h),
c = {(ui, vi, wi)}ni=1.

Representable transforms: We represent each transform T({ai,ri}) ∈ TH as {ai, fsi , hti , gsi , gti}ni=1.

Provable statements: To prove statements, we define the following pairing product equations
with unconstrained variables {mi,g

si ,gti}ni=1:

eq1i := e(ui, g)−1e(gsi , f) = 1 ∀i
eq2i := e(vi, g)−1e(gti , h) = 1 ∀i

eq3i := e(wi, g)−1e(mi, g)e(gsi , g)e(gti , g) = 1 ∀i

Provable transformation: To prove that for public key pk = (f, h), and ciphertexts x = {(ui, vi,
wi)} and x′ = {(u′i, v′i, w′i)}, the prover knows a transformation T{ai,r′i} ∈ TH such that x =

17This last condition is because we would like our encryption scheme to be function private; re-randomization thus
guarantees that the outcome of T will be indistinguishable from a freshly-formed ciphertext.
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Tx(x′), we make use of the following equations in unconstrained variables {ai,g
s′i ,gt′i}ni=1:18

eqt1i := e(ui, g)−1e(u′i, g)e(gs′i , f) = 1 ∀i

eqt2i := e(vi, g)−1e(v′i, g)e(gt′i , h) = 1 ∀i

eqt3i := e(wi, g)−1e(ai, g)e(w′i, g)e(gs′i , g)e(gt′i , g) = 1 ∀i
eq(a1, . . . ,an)

where eq(a1, . . . ,an) is the set of equations expressing that (a1, . . . , an) ∈ H.

We consider a few classes of notable transformations for specific subspaces H:

• Vector multiplication. In this case H = Gn and so there is no restriction on the values
ai; this means eq({ai}) = ∅.

• Scalar multiplication. In this case H = {a} for a single value a. Rather than form an ad-
ditional set of proofs showing that a1 = . . . = an = a, we could instead modify equations
eqt3i to look like e(wi, g)−1e(a, g)e(w′i, g)e(gs′i , g)e(gt′i , g) = 1 for a single value a.

• The identity transformation. This is simply a special case of the previous case, but we
need to add the restriction that a = 1; to do this, we add the equation e(a, g) = 1. Note
that in particular this gives us an RCCA-secure encryption scheme.

Transformable statements: We transform the pairing product equations {eq1i, eq2i, eq3i}ni=1 for
an instance (f, h, {(ui, vi, wi)}ni=1) into mauled equations for an instance (f, h, {(ũi, ṽi, w̃i)}ni=1)

with ũi = uif
ŝi , ṽi = vih

t̂i , and w̃i = âiwig
ŝigt̂i as follows:

For all i first run Add(eq
(1)
i := e(f ŝi , g)−1e(gŝi , f) = 1), Add(eq

(2)
i := e(ht̂i , g)−1e(gt̂i , h) = 1),

and Add(eq
(3)
i := e(âig

ŝigt̂i , g)−1e(âi, g)e(gŝi , g)e(gt̂i , g) = 1). Next, multiply in these equa-

tions to the originals by using MergeEq(eq1i, eq
(1)
i ), MergeEq(eq2i, eq

(2)
i ), and MergeEq(eq3i, eq

(3)
i )

for all i to get {eq′1i, eq′2i, eq′3i}ni=1

Next, use MergeVar(ui, f
ŝi , ũi, {g}) to get eq

(u,f)
i := e(uif

ŝi , g)−1e(ũi, g) = 1 and MergeEq(eq1i,

eq
(u,f)
i ) to combine ui and f ŝi in eq1i. Similarly combine the pairs (vi, h

t̂i) into the constant

ṽi; (wi, âig
ŝigt̂i) into the constant w̃i; (gsi , gŝi) into the unconstrained variable g̃si ; (gti , gt̂i)

into new unconstrained variable g̃ti ; and (mi, âi) into new unconstrained variable m̃i to get
equations {eq′′1i, eq′′2i, eq′′3i}ni=1.

Finally, remove the now obsolete equations and variables using RemoveEq and RemoveVar.

Transformable transformations: We transform the pairing product equations for proving knowl-
edge of a transformation from instance f, h, {(u′i, v′i, w′i)} to f, h, {(ui, vi, wi)}, into mauled
equations for proving knowledge of a transformation from from instance f, h, {(u′i, v′i, w′i)}
to f, h, {(uif ŝi , viht̂i , aiwigŝigt̂i)}ni=1 we can use the same strategy (and the same constant
equations) as for transforming statements.

We use MergeVar to combine the pairs (ui, f
ŝi), (vi, h

t̂i), and (wi, âig
ŝigt̂i) into new constants;

contrary to the mauling of statements we combine the pairs (gs′i , gŝi), (gt′i , gt̂i), and (ai, âi)
into new unconstrained variables.

18Note that extracting {ai, gs
′
i , gt

′
i}ni=1 is sufficient for obtaining the whole transformation as fs′i = ui/u

′
i and

ht′i = vi/v
′
i.
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Note that when removing obsolete equations and variables {(u′i, v′i, w′i)} are unaffected by
RemoveVar operations.

For the three transformations considered, i.e. vector multiplication, scalar multiplication,
and identity transformation on plaintexts, no additional transformations on eq(a1, . . . ,an)
are required. For more complex restrictions on H, eq could potentially be mauled using
similar Add and MergeEq operations as above.

D.3 An efficient instantiation of our compactly verifiable shuffle

We instantiate the encryption scheme (KeyGen,ReRand,Enc,Dec) for the shuffle using BBS encryp-

tion. For the hard relation, we first define a generator g and a value h := gβ for some β
$←− Fp;

these values will be publicly available. For an individual user to compute values (pk , sk) ∈ Rpk ,

he will pick α
$←− Fp and set pk := gα and sk := hα. We can instantiate the proof of knowledge

(CRSSetup,P,V) using any existing (preferably non-malleable) proof of knowledge; the main chal-
lenge then lies in instantiating the cm-NIZK (CRSSetup′,P ′,V ′). To this end, we again use our
outline from Section 4.2:

Representable statements: We represent a proof instance by (pk , {ui, vi, wi}ni=1, {u′i, v′i, w′i}ni=1,
{pkj}`

′
i=1).

Representable transformations: We represent each transformation T(ϕ′,r′,{sk+
j ,pk

+
j },{pk

−
j })
∈ T

as
T = ({a′ij}, (fs

′
, ht
′
, gs
′+t′), {sk+

j , pk+
j }, {pk−j }),

where {a′ij} is the representation of the permutation matrix corresponding to ϕ′ using group
elements 1 and g.

Provable statements: To prove that {u′i, v′i, w′i}ni=1 is a permutation of {ui, vi, wi}ni=1, and that
the owners of public keys {pkj}`

′
i=1) were involved in the mixing we use the following equations

with unconstrained variables {aij}1≤i,j≤n, {gsi ,gti}ni=1, {skj}`
′
i=1:

e(aij,aij/g) = 1

n∏
k=1

e(aik/g, g) = 1

n∏
k=1

e(akj/g, g) =1 ∀i, j

eq
(u)
i := e(u′i, g)−1

n∏
j=1

e(ui,aij)e(f,g
si) =1 ∀i

eq
(v)
i := e(v′i, g)−1

n∏
j=1

e(vi,aij)e(h,g
ti) =1 ∀i

eq
(w)
i := e(w′i, g)−1

n∏
j=1

e(wi,aij)e(g
si gti , g) =1 ∀i

e(pkj , h)−1 · e(skj, g) =1 ∀1 ≤ j ≤ `′

Provable transformations: To prove that for ciphertexts and public keys x = {(ui, vi, wi)}, {pkj}
and x′ = {(u′i, v′i, w′i), {pk′j}}, the prover knows a transformation T(ϕ,r,{sk+

j ,pk
+
j },{pk

−
j })
∈ T

such that x = Tx(x′), we make use of the following equations in unconstrained variables
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{aij}1≤i,j≤n, {gsi ,gti}ni=1, {sk+
j }:

e(aij,aij/g) = 1
n∏
k=1

e(aik/g, g) = 1
n∏
k=1

e(akj/g, g) =1 ∀i, j

eq
(u,T )
i := e(u′i, g)−1

n∏
j=1

e(ui,aij)e(f,g
si) =1 ∀i

eq
(v,T )
i := e(v′i, g)−1

n∏
j=1

e(vi,aij)e(h,g
ti) =1 ∀i

eq
(w,T )
i := e(w′i, g)−1

n∏
j=1

e(wi,aij)e(g
si gti , g) =1 ∀i

(e(pkj , g)−1e(pk ′j , g) = 1 ∨ e(pkj , h)−1 · e(sk+
j , g) =1 ∀1 ≤ j ≤ `′

Transformable statements: Let A = {aij} be the permutation matrix in the witness of the
proof. Let Â be the permutation matrix corresponding to ϕ̂ of T(ϕ̂,r̂,{sk+

j ,pk
+
j },{pk

−
j })

; note

that (AÂ) = ϕ̂({A.j}) = ϕ̂({Ai.}). This means that the shuffled permutation matrix can be
obtained by shuffling either the rows or the columns of A with ϕ′.

As our main mauling operation we permute the variables {u′i, v′i, w′i}ni=1, {ãi.}1≤i≤n by ϕ̂.
After this transformation all equations verify, as the only thing that was changed was the
order in which the same variables are paired with each other.

The second mauling operation multiplies the same additional randomness into equations

{eq
(u,x)
i , eq

(v,x)
i , eq

(w,x)
i }ni=1.

The last mauling operation adds equations e(pk+
j ), h)−1 ·e(sk+

j , g) = 1 for all {sk+
j , pk+

j } and

removes all equations for {pk−j }.

Transformable transformations: We permute the variables {u′i, v′i, w′i}ni=1, {ãi.}1≤i≤n by ϕ′. We

multiply the same additional randomness into equations {eq
(u,T )
i , eq

(v,T )
i , eq

(w,T )
i }ni=1..

We add equations e(pk+
j , g)−1e(pk ′j , g) = 1∨e(pk+

j , h)−1 ·e(sk+
j , g) = 1 for all {sk+

j , pk+
j } and

remove all equations for {pk−j }.

E Relating CM-CCA Security to Other Notions

In Section 5 we put forth our new notion (Definition 5.1) of controlled malleability for encryption,
and showed that it can be realized by combining IND-CPA-secure encryption and a cm-NIZK.
To motivate this new definition, we show that it is in fact closely related to existing notions of
security. In particular, we start by showing that our definition generalizes the notions of RCCA
security [15] and CCA security; we then show that it is also closely related to HCCA security [38],
and additionally implies the notion of targeted malleability introduced by Boneh et al. [13].

Theorem E.1. For the cases when T = ∅ and T = {id}, CM-CCA security (as defined in Defini-
tion 5.1) implies CCA and RCCA security respectively.

Proof. To show this, we take an adversary A that breaks the RCCA or CCA security of the system
with some non-negligible advantage ε and use it to construct a B that breaks the CM-CCA-security
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of the system with some similar non-negligible advantage ε′. To start, B gets in some public key
pk ; it then gives this directly to A. On Dec queries, B will query its own oracle D and return the
answer it obtains here. At some point, B will get a challenge (m0,m1); it can now pick its own bit
b and query E on mb to get back a ciphertext c that it can then pass along to A. On second-stage
Dec queries, it can again query its D oracle; this time, its answer will depend on whether A is
the RCCA or CCA adversary. For the RCCA adversary, if the answer it gets back from D is m0

or m1 then it will send replay to A and otherwise it will send the answer directly; for the CCA
adversary, it will always send the answer back directly unless the queried ciphertext is identical to
the challenge ciphertext c (in which case it will return ⊥). At the end, if A correctly guesses b then
B will guess it is in the real world, and otherwise it will guess it is in the simulated world.

To see that interactions with B will be indistinguishable from those in the honest setting, we
can consider all stages of the interaction. In the first stage, we know that the values B queries to
D cannot possibly be derived from any SimEnc ciphertexts (in either the real or simulated world,
as B has at this point made no queries to the E oracle), so in particular the value returned will
be (by definition of both Dec and SimDec) the honest decryption of the queried value. In the
challenge phase, we know the value given to A will either be an honest encryption of the chosen
message mb (in the real world) or an encryption of an entirely random message (in the simulated
world); these will be indistinguishable to A by the IND-CPA security of the encryption scheme.
In the second-stage decryption queries, we can define SimExt as follows: for a CCA adversary it
will check if the input c is in Qc; if so it outputs id and otherwise ⊥. For an RCCA adversary,
it will decrypt the ciphertext and check if the plaintext is in Qm; if it is then it outputs id and
otherwise ⊥. Because B only ever makes one query to SimEnc, we know that the only ciphertext
in Qc will be the challenge ciphertext, and the only message in Qm will be mb; in either case then,
this SimExt behavior guarantees that SimDec will return the queried message mb (rather than the
random message encrypted by SimEnc), and thus the overall behavior of B will be indistinguishable
in this stage as well.

Finally, we see that in the simulated world, the challenge ciphertext given to A contains no
information whatsoever about the bit b, and so in particular A can have no advantage here. By
guessing that it is in the simulated world only when A correctly guesses the bit, B will therefore
suceed with the same non-negligible advantage ε as A.

E.1 Comparison with HCCA

Our definition for CM-CCA-secure encryption is very similar to (and in fact heavily inspired by)
the definition of homomorphic-CCA-secure (HCCA) encryption introduced by Prabhakaran and
Rosulek [38]. To examine the similarities, we first recall the HCCA security definition here:

Definition E.2. [38] For an encryption scheme (KeyGen,Enc,Dec), a set of transformations T , a
given adversary A, and a bit b, let pAb (k) be the probability of the event that b′ = 0 in the following
game:

• Step 1. (pk , sk)
$←− KeyGen(1k).

• Step 2. m∗
$←− AGRigEncpk (·),GRigExtractsk (·,·),Decsk (·)(pk), where GRigEncpk (·) calls RigEnc(pk) to

obtain (ci, Si) (when called for the i-th time) and returns ci and GRigExtractsk (c, i) returns
RigExtractsk (c, Si).

• Step 3. If b = 0, set c∗
$←− Enc(pk ,m∗); otherwise, call RigEnc(pk) to obtain (c∗, S∗).
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• Step 4. b′
$←− AGRigEncpk (·),GRigExtractsk (·,·),RigDecsk (·)(c∗), where GRigEnc and GRigExtract are the

same as in Step 2 and RigDec is defined as:

RigDec(sk , c) =

{
T (m∗) if ⊥ 6= T ← RigExtractsk (c, S∗)
Decsk (c) otherwise.

We say that the encryption scheme is homomorphic-CCA secure (HCCA-secure for short) if there
exist PPT algorithms RigEnc and RigExtract used as above such that for all PPT algorithms A there
exists a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

Right away, we can see that their RigDec algorithm corresponds closely to our SimDec algorithm,
while their RigEnc and RigExtract are essentially identical to our SimEnc and SimExt respectively.
Aside from these notational differences, the main difference between the definitions is that while
they consider an adversary that sees only one challenge message that is either real or simulated,
we consider instead an adversary that is given an encryption oracle that will output either many
real encryptions or many simulated encryptions. In order to ensure that their definition will still
imply multi-message security, they give the adversary oracle access to the GRigExtract and GRigEnc
oracles. This allows them to describe a series of hybrid games in which one by one real encryptions
are replaced by simulated encryptions, and thus argue that this 1-message definition does in fact
give multi-message security.

As we achieve multi-message security by definition, we do not require direct SimExt oracle
access; the fact that the adversary is given direct access to this oracle in the HCCA game means
that their definition is strictly stronger than ours, and in fact our construction does not seem to
satisfy their definition.19 Our definition is implied by theirs, however, and we believe that our
definition does capture all the desired security goals.

As evidence, we consider the UC functionality for homomorphic message posting FTHMP that
Prabhakaran and Rosulek propose as “a natural security definition encompassing both unlinka-
bility and our desired notion of non-malleability.” They show that FTHMP can be realized by any
encryption scheme that is both HCCA and unlinkable (i.e., function private); we argue that in
fact it can also be realized if the scheme is only CM-CCA secure rather than HCCA (it still needs
to be unlinkable). The proof follows exactly the same structure as that of Prabhakaran and Ro-
sulek. The only difference is that in the proof of their Claim 3, (which argues that the environment
can’t tell whether the message handles are derived as encryptions of the (transformed) messages
or as simulated encryption), we can directly apply the CM-CCA property, without any additional
hybrids.

E.2 Comparison with targeted malleability

To begin the comparison between CM-CCA security and the notion of targeted malleability intro-
duced by Boneh et al. [13], we must first recall their definition:

Definition E.3. [13] Let t = t(k) be a polynomial. A public-key encryption scheme Π = (KeyGen,
Enc,Dec,Eval) is t-bounded non-malleable against chosen-plaintext attacks with respect to a set of
functions F if for any polynomials r = r(k) and q = q(k) and for any PPT algorithm A = (A1,A2)
there exists a PPT algorithm S = (S1, S2) such that the distributions {RealCPA

Π,A,t,r,q(k)}k∈N and

{SimCPA
Π,S,t,r,q(k)}k∈N are computationally indistinguishable, where these distributions are defined as

follows:

19To see this note that if the adversary is given the extraction trapdoor for the cm-NIZK, then we can no longer
argue that real and simulated are indistinguishable, so we cannot argue that it is hard to distinguish real and simulated
encryptions.
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RealCPA
Π,A,t,r,q(k) SimCPA

Π,S,t,r,q(k)

1. (pk , sk)
$←− KeyGen(1k) 1. (pk , sk)

$←− KeyGen(1k)

2. (M, state1, state2)
$←− A1(1k, pk) 2. (M, state1, state2)

$←− S1(1k, pk)

3. (m1, . . . ,mr)
$←−M 3. (m1, . . . ,mr)

$←−M
4. c∗i

$←− Enc(pk ,mi) for all i, 1 ≤ i ≤ r 4. (c1, . . . , cq)
$←− S2(1k, state2)

5. (c1, . . . , cq)
$←− A2(1k, c∗1, . . . , c

∗
r , state2) 5. For every j, 1 ≤ j ≤ q, let

6. For every j, 1 ≤ j ≤ q, let

dj =

{
copyi if cj = c∗i
Dec(sk , cj) otherwise

dj =


copyi if cj = copyi
f(mi) if cj = (i, f1, . . . , f`), 1 ≤ i ≤ r,

` ≤ t, fi ∈ F ∀i, f = f1 ◦ · · · ◦ f`
Dec(sk , cj) otherwise

7. Output (state1,m1, . . . ,mr, d1, . . . , dq) 6. Output (state1,m1, . . . ,mr, d1, . . . , dq)

As mentioned by Boneh et al., this definition can be extended to capture CCA1 attacks by
allowing A1 to have oracle access to Decsk (·) in Step 2 (i.e., when choosing the distribution M),
and leaving the simulated distribution the same.

One of the main contributions of this definition is that it allows for function classes that are
not necessarily closed under composition; as we can see, this is done by extracting the entire
list of functions (f1, . . . , f`) and requiring that each one be in the class F , rather than just their
composition f . In our model, this can be expressed by defining the class of transformations T
to be transformations of the form (f1, . . . , fn) for n < t; similarly, T ◦ T ′ can be represented as
(f1, . . . , fn, f

′
1, . . . , f

′
n), where T (x) = f1 ◦ f2 ◦ · · · ◦ fn(x). If we do this, then we can see that

our definition of CM-CCA security in fact implies targeted malleability (with the caveat that in
representing our transformations this way the size of our proofs must necessarily grow).

Theorem E.4. For any F , if T is derived from F as above, then any encryption scheme that is
CM-CCA secure will also be t-bounded non-malleable against CCA1 attacks with respect to F .

Proof. To show this, we must take an adversary D that distinguishes between the real distribution
for some adversary (A1,A2) and the simulated distribution for a simulator (S1, S2) with some non-
negligible advantage ε, and use both D and (A1,A2) to construct an adversary B that can win at
the CM-CCA game with related non-negligible advantage ε′.

To start, we describe our simulator (S1, S2) based on (A1,A2). Let SimKeyGen,SimEnc,SimExt

be as specified in Section 5. The simulator S1(pk) will first run (pk ′, sk ′, τ1, τ2)
$←− SimKeyGen(1k).

It will then run A1(pk ′) and output the same (M, state1, state2) as it does. If A1 makes any
decryption queries, S1 can answer them honestly using the secret key sk ′. Given state2, S2 can run

c∗i
$←− SimEnc(pk ′, τ1) for all i, 1 ≤ i ≤ r; it then gives to A2 the tuple (1k, {c∗i }, state2) and gets back

(c′1, . . . , cq). For each c′i, if there exists a j such that c′i = c∗j , S2 sets ci := copyj . Otherwise, it runs
SimExt(τ2, c

′
i) to get back (w, c∗j , T ). If w 6= ⊥ then let ci := c′i; otherwise parse T = (f1, . . . , fn)

and let ci := (j, f1, . . . , fn).
We can now define B as follows: to start, B is given pk and can run A1(pk) to obtain

(M, state1, state2); if A1 makes any decryption queries, B can query its own D oracle and send

the response back to A1. Next, B will sample (m1, . . . ,mr)
$←−M and query its E oracle on these

messages to obtain (c∗1, . . . , c
∗
r). It then runs A2(1k, c∗1, . . . , c

∗
r , state2) to obtain (c′1, . . . , c

′
q). For

each c′i, if there exists a j such that c′i = c∗j it sets di := copyj ; otherwise it queries its D oracle on
c′i to obtain di. Finally, it sends (state1,m1, . . . ,mr, d1, . . . , dq) to D. If D guesses this is the real
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distribution then B guesses b = 0; otherwise, if D guesses this is the simulated distribution then B
guesses b = 1.

If b = 0 in the CM-SSE game, then the input to D will be identical to that produced by the
distribution Real; similarly, if b = 1 in the CM-SSE game, then the input to D will be identical to
that produced by the distribution Sim. Thus, if D distinguishes between Real and Sim with non-
negligible advantage, B succeeds in the CM-SSE game with the same non-negligible advantage.

F Proof of CM-CCA Security (Theorem 5.2)

To prove the theorem, we need to demonstrate the indistinguishability of the following two games:

Game CM-CCA0 Game CM-CCA1

(pk , sk)
$←− KeyGen(1k); σcrs

$←− CRSSetup(1k) (pk , sk)
$←− KeyGen(1k); (σcrs, τe)

$←− E1(1k)
pk∗ ← (pk , σcrs) pk∗ ← (pk , σcrs)

b
$←− AE,D(pk∗) b

$←− AE,D(pk∗)

Procedure E(pk∗,m) Procedure E(pk∗,m)

c
$←− Enc(pk ,m) r

$←−M; c
$←− Enc(pk , r)

π
$←− P(σcrs, c,m) π

$←− S2(σcrs, τs, c)
return (c, π) add (m, c) to Q

return (c, π)

Procedure D(sk , c, π) Procedure D(sk , c, π)

return Dec(sk , c) (c′, T )← SimExt(sk , τe, c, π)
if ∃i s.t. c′ = ci ∈ Q and T 6= ⊥ return Tm(mi)
else return Dec(sk , c)

Procedure SimExt(sk , τe, c, π)

if V(σcrs, (pk , c), π) = 0 return (⊥,⊥)
(m, c′, T )← Extract(τe, π)
if (c′, T ) 6= (⊥,⊥) but Tc(c

′) 6= c or T 6∈ T return (⊥,⊥)
return (c′, T )

We can do this by going through the following series of game transitions:

• Game G0. Change to a simulated CRS and simulated proofs π in the E oracle; this is
indistinguishable from CM-CCA0 by zero knowledge.

• Game G1. Switch to using SimExt and Extract rather than Dec in the D oracle; this is
indistinguishable from G0 by the CM-SSE property of the NIZK.

• Game G2. Switch the ciphertexts returned by the E oracle to be encryptions of random
values; this is indistinguishable from G1 by the IND-CPA security of the encryption scheme.

• Game G3. Switch back to decrypting in the D oracle; this is now CM-CCA1 (and is indistin-
guishable from G2 again by the CM-SSE property of the NIZK).

To start then, we switch the proofs in the encryption oracle from real to simulated:
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Game CM-CCA0, G0

1 (pk , sk)
$←− KeyGen(1k); σcrs

$←− CRSSetup(1k), (σcrs, τs)
$←− S1(1k)

2 pk∗ ← (pk , σcrs)

3 b
$←− AE,D(pk∗)

Procedure E(pk∗,m)

4 c
$←− Enc(pk ,m)

5 π
$←− P(σcrs, c,m), π

$←− S2(σcrs, τs, c)

6 return (c, π)

Procedure D(sk , c, π)

7 return Dec(sk , c)

Lemma F.1. If the NIZK satisfies zero knowledge, then Game G0 is indistinguishable from CM-CCA0.

Proof. To show this, we take an adversary A that distinguishes between CM-CCA0 and G0 with
some non-negligible advantage ε and use it to construct an adversary B that can distinguish between
an interaction with a simulator (S1, S2) and an interaction with the honest (CRSSetup,P) with the
same non-negligible advantage. To start, B will receive some σcrs. It then creates (pk , sk) itself
and passes along pk∗ := (pk , σcrs) to A. On E oracle queries, B can simply form the ciphertext c
honestly and query its own oracle to obtain a proof π; it will then return (c, π) to A, while on D
queries B can use sk to carry out decryption itself. At the end, if A guesses it is in CM-CCA0 B will
guess it is interacting with the prover, while if A guesses it is in G0 B will guess it is interacting
with the simulator.

If B gets in an honest CRS and gets honest proofs from its oracle, then it is clear that it is
executing the exact code of CM-CCA0; similarly, if it gets instead a simulated CRS and simulated
proofs, it is executing the exact code of G0. Interactions with B will therefore be identical to
the interactions that A expects, so in particular its advantage will not change. Finally, as B
successfully guesses its bit every time A does, we know that it will succeed with the same non-
negligible advantage.

Next, we can switch away from using sk in the decryption oracle; we do this by introducing
SimExt and using Extract rather than Dec as follows:

52



Game G0, G1

1 (pk , sk)
$←− KeyGen(1k); (σcrs, τs)

$←− S1(1k), (σcrs, τs, τe)
$←− SE1(1k)

2 pk∗ ← (pk , σcrs)

3 b
$←− AE,D(pk∗)

Procedure E(pk∗,m)

4 c
$←− Enc(pk ,m)

5 π
$←− S2(σcrs, τs, c)

6 add (m, c) to Q

7 return (c, π)

Procedure D(sk , c, π)

8 return Dec(sk , c), (c′, T )← SimExt(sk , τe, c, π)

9 if ∃i s.t. c′ = ci ∈ Q and T 6= ⊥ return Tm(mi)

10 else return Extract(τe, π)

Procedure SimExt(sk , τe, c, π)

11 if V(σcrs, (pk , c), π) = 0 return (⊥,⊥)
12 (m, c′, T )← Extract(τe, π)
13 if (c′, T ) 6= (⊥,⊥) but Tc(c

′) 6= c or T 6∈ T return (⊥,⊥)
14 return (c′, T )

Lemma F.2. If the NIZK satisfies controlled-malleable simulation-sound extractability, then Game
G1 is indistinguishable from G0.

Proof. To see that the switch from decryption to extraction will go unnoticed, consider the event
Fake in which A submits a D query (c, π) such that Extract(τe, π) = (m, c′, T ) but either m 6= ⊥
but m 6= Dec(sk , c) or (c′, T ) 6= (⊥,⊥) but c′ 6∈ Qc, c 6= Tc(c

′), or T 6∈ T ; it is clear that A can
distinguish between G0 and G1 exactly when Fake occurs. To therefore show that this event can
happen with at most negligible probability, we take an adversary A that can cause it to happen
with some non-negligible probability ε and use it to construct an adversary B that breaks the
CM-SSE property of the NIZK with related non-negligible probability ε′. The code for B is fairly
straightforward: it will first be given (σcrs, τe) and proceed to generate (pk , sk) itself and give to
A pk∗ := (pk , σcrs). On E queries, B can simply encrypt the message and query S2 to obtain a
proof. On D queries for a ciphertext (c, π), B can first run Extract(τe, π) = (m, c′, T ). If m 6= ⊥,
B can further compute m′ := Dec(sk , c); if m 6= m′ then B can output the queried (c, π), and if
m = m′ then B just continues with the game. In the case that (c′, T ) 6= (⊥,⊥) instead, B can check
to see if c′ 6∈ Qc, c 6= Tx(c′), or T 6∈ T . If any of these hold B can once again output the queried
(c, π); otherwise, B will again continue with the game. In the case that neither of these holds (i.e.,
(m, c′, T ) = (⊥,⊥,⊥), B will again output (c, π).

Looking back at the CM-SSE definition, we can see that there are three possible winning
conditions for this setting: (1) m 6= ⊥ but m 6= Dec(sk , c), (2) (c′, T ) 6= (⊥,⊥) but c′ 6∈ Qc,
c 6= Tx(c′), or T 6∈ T , or (3) (m, c′, T ) = (⊥,⊥,⊥). Looking back at the code for B, we can see
that these are the exact conditions it is checking for; furthermore, looking back at the definition
of Fake, we can see that these same conditions are being used here as well. In other words, each
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case that would allow A to distinguish would also allow B to output a statement/proof pair (c, π)
that met one of the CM-SSE winning conditions; this means that B will succeed in breaking the
CM-SSE property with the same probability that A will cause Fake to occur (and thus distinguish
between G0 and G1).

Now that the proofs do not contain any information about the message and the secret key sk is
not used anywhere, we can proceed to switch the message inside encryption queries to be random;
this means changing Line 4 of G1 as follows:

Game G1, G2

4 c
$←− Enc(pk ,m), r

$←−M; c
$←− Enc(pk , r)

Lemma F.3. If the encryption scheme is IND-CPA secure, then Game G2 is indistinguishable
from G1.

Proof. To show this, we take an adversary A that distinguishes between the two games with some
non-negligible advantage ε and use it to construct an adversary B that can break the IND-CPA
security of the encryption scheme with the same advantage ε.20 To start, B will get in a public key

pk ; it can then generate (σcrs, τs, τe)
$←− SE1(1k) and give to A pk∗ := (pk , σcrs). On E queries, B

can pick a random message r
$←−M. It can then query its encryption oracle on (m, r) to get back

a ciphertext c; it then fakes the proof π using τs and returns (c, π) to A. On D queries, B can use
τe to run SimExt and Extract and thus execute the code honestly. At the end of the game, if A
guesses it is in G1 then B will guess b′ = 0 (indicating it is in the left world) and if A guesses G2

then B will guess b′ = 1.
To see that interactions with B will be indistinguishable from the honest interactions that A

expects, we can consider the two cases for B. If it receives an encryption of the left value, then it
receives (and returns to A) Enc(pk ,m) and is executing the code for G1. In the case that it receives
an encryption of the right value, it is giving to A an encryption of a completely random value and
is thus executing the code for G2. A must therefore have the same advantage ε with B as it does in
the real world; as B’s guesses are correlated exactly with A’s, we therefore see that B will succeed
with the same advantage as A.

We can now switch back to using Dec again in the decryption oracle; this involves changing
Line 10 to match CM-CCA1 above:

Game G2, CM-CCA1

10 else return Extract(τe, π), Dec(sk , c)

The proof of indistinguishability of G2 and CM-CCA1 is analogous to the proof of Lemma F.2,
as an adversary can distinguish between the two games only when the same event Fake occurs.
As each game was indistinguishable from the previous game in the series, CM-CCA0 must be
indistinguishable from CM-CCA1 and so we are done.

20 Here we are considering a B that can make multiple queries to its IND-CPA oracle; the advantage for a B that
was allowed to make only one would just be ε/q, where q is the number of queries A makes to E in the course of the
game.
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G Proof of Shuffle Security (Theorem 6.2)

To prove that the shuffle is compactly verifiable (as defined in Definition 6.1), we can go through
the following series of games:

• Game G0. The honest game for b = 0.

• Game G1. In Step 1 we switch to using a simulated CRS σ′crs, and in Step 2 we switch to
using simulated proofs π in the initiation oracle. This is indistinguishable from G0 by zero
knowledge.

• Game G2. In Step 1 we switch to using a simulated proof π in the regular shuffle oracle as well.
This is indistinguishable from G1 by strong derivation privacy (as defined in Definition 2.5).

• Game G3. In Step 2, we switch to having both the initiation and shuffle oracles return
fresh encryptions rather than re-randomizations; this is indistinguishable from G2 by the
re-randomizability of the encryption scheme.

• GameG4. In Step 4, we extract the permutation ϕ from the proof π and return {Dec(sk , ϕ(ci))}.
This is indistinguishable from G2 by the CM-SSE property of the NIZK. (While CM-SSE
does not guarantee that a permutation will be extracted directly, we argue in the proof of
Lemma G.4 that even in the case that a instance x′ and transformation T are recovered
instead of a direct witness ϕ, a permutation can still be recovered.)

• Game G4. In Step 1 we switch to using a trapdoor CRS σcrs, and in Step 4 we use the
extraction trapdoor to extract a witness mi from each proof πi for all i, 1 ≤ i ≤ n, and
use ϕ(mi) in place of Dec(sk , ϕ(ci)). This is indistinguishable from G3 by the extractability
property of the πi.

• Game G6. In Step 2, we switch to having both the initiation and shuffle oracles return
encryptions of garbage; that is, for the values c′i, rather than compute an honest shuffle

they will instead pick random values r1, . . . , rn
$←− M and use c′i

$←− Enc(pk , ri). This is
indistinguishable from G5 by the IND-CPA security of the encryption scheme.

• Game G7. In Step 4, we pick a random permutation ϕ′ and return {ϕ′(mi)}. This is indis-
tinguishable from G6 by the CM-SSE property of the NIZK and the hardness of the relation
Rpk .

• Game G8. In Step 2, both oracles return to permuting and freshly encrypting for the cipher-
texts rather than encrypting random values. This is indistinguishable from G7 again by the
IND-CPA security of the encryption scheme.

• Game G9. In Step 4, we return to decrypting the ciphertexts ci instead of using the val-
ues extracted from the proofs of knowledge; that is, we return {Dec(sk , ϕ′(ci))}. This is
indistinguishable from G8 again by the extractability property of the NIZKPoKs.

• Game G10. In Step 2, both oracles return to performing an honest shuffle; i.e., re-randomizing
the ciphertexts rather than performing fresh encryption. This is indistinguishable from G9

again by the re-randomizability of the encryption scheme.

• Game G11. In Step 2 we switch back to using honest proofs in the regular shuffle oracle. This
is indistinguishable from G10 again by the derivation privacy of the NIZK.
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• Game G12. In Step 1 we switch back to an honest CRS, and in Step 2 we switch back to honest
proofs in the initiation oracle. This is now the honest game for b = 1, and is indistinguishable
from G11 again by zero knowledge.

Following this outline, the first step in our series of game transitions is to switch the proofs
returned by the initiation oracle from honest proofs in G0 to simulated proofs in G1. In here and
what follows, we use R to denote the randomness used for the encryption scheme, and G to denote
the generator for the hard relation.

Game G0, G1

1 (pk, sk)
$←− KeyGen(1k); {(pk i, sk i)}

$←− G(1k); S := {pk i}
2 σcrs

$←− CRSSetup(1k)

3 σ′crs
$←− CRSSetup′(1k), (σ′crs, τs)

$←− S1(1k)

4 ({ci, πi}, {c′i}, π, S′ := {pk j})
$←− AInitShuffle,Shuffle(σcrs, σ

′
crs, pk , S)

5 if S ∩ S′ = ∅ then abort
6 if V(σcrs, ci, πi) = 0 for any i then abort
7 if V ′(σ′crs, ({ci}, {c′i}, S′), π) = 0 then abort

8 b′
$←− A({Dec(sk , c′i)})

Procedure InitShuffle({ci, πi}, pk1)

9 if V(σcrs, ci, πi) = 0 for any i then abort

10 ϕ
$←− Sn; R1, . . . , Rn

$←− R
11 c′i ← ReRand(pk , ϕ(ci);Ri) for all i

12 π
$←− P(σ′crs, ({ci}, {c′i}, pk1), (ϕ, {Ri}, sk1)), π

$←− S2(σ′crs, τs, ({ci}, {c′i}, pk1))

13 output ({c′i}, π, {pk1})

Procedure Shuffle({ci, πi}, {c′i}, π, {pk j}, pkk)

14 if V(σcrs, ci, πi) = 0 for any i then abort
15 if V ′(σ′crs, ({ci}, {c′i}, {pk j}), π) = 0 then abort

16 ϕ
$←− Sn; R1, . . . , Rn

$←− R
17 c′′i ← ReRand(pk , ϕ(c′i);Ri) for all i

18 π′
$←− ZKEval(σ′crs, T := (ϕ, {Ri}, (skk, pkk), ∅), (({ci}, {c′i}, {pk j}), π))

19 output ({c′′i }, π′, {pkj} ∪ pkk)

Lemma G.1. If the proof π is zero knowledge, Game G1 is indistinguishable from G0.

Proof. To show this, we can take an adversary A that distinguishes between G0 and G1 with some
non-negligible advantage ε and use it to construct an adversary B that can distinguish between an
honest CRS followed by interactions with an honest prover and a simulated CRS and interactions
with a simulator with the same advantage ε. To start, B will have access to some CRS σ′crs; it will
then create (pk , sk), {(pk i, sk i)}, and σcrs by itself and give all the public values to A. On queries to

the initiation oracle, B will come up with an honestly chosen permutation ϕ
$←− Sn and randomness

{Ri} and compute the shuffle {c′i} honestly. It can then query its own oracle to get back a proof π;
it will then pass back this information to A. On queries to the regular shuffle oracle, B will simply
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execute the code honestly. At the end of the game, B will guess that it is interacting with a prover
if A guesses G0 and that it is interacting with a simulator if A guesses G1.

To see that interactions with B will appear the same as interactions with the honest games, we
just observe that when B is handed an honest σ′crs and access to an honest prover it is executing
the exact code of Game G0; similarly, when it is given a simulated σ′crs and access to a simulator, it
is executing the exact code of Game G1. The advantage of A in guessing the game will then be the
same as its advantage when guessing with B; as B is right every time A is right, we can conclude
that B will guess correctly with non-negligible advantage ε as well.

Next, we switch in Game G2 to using simulated proofs in the regular shuffle oracle as well; this
means changing only one line of G1 as follows:

Game G1, G2

18 π′
$←− ZKEval(σ′crs, T := (ϕ, {Ri}, (skk, pkk), ∅), (({ci}, {c′i}, {pk j}), π)),

π′
$←− S2(σ′crs, τs, ({ci}, {c′′i }, {pk j} ∪ pkk))

Lemma G.2. If the proof π is strongly derivation private, Game G2 is indistinguishable from G1.

Proof. To show this, we will proceed through a series of hybrids H0 through Hq, where q is some
upper bound on the number of queries A can make to the regular shuffle oracle. In the hybrid Hi,
the first i regular shuffle queries will be answered using ZKEval, while the last ones (at most q − i)
will be answered using the simulator; it is clear then that H0 is identical to G1 and Hq is identical
to G2, so that if we show the indistinguishability of Hi from Hi+1 for all i, 1 ≤ i < q, then we prove
the lemma.

To do this, we take an adversary that can distinguish between Hi and Hi+1 with some non-
negligible advantage ε and use it to construct an adversary B that can distinguish between proofs
from ZKEval and simulated proofs with the same advantage ε. To start, B will have access to some
CRS σ′crs and simulation trapdoor τs; it will then create (pk , sk), {(pk i, sk i)}, and σcrs by itself and
give all the public values to A. On queries to the initiation oracle, B will come up with an honestly

chosen permutation ϕ
$←− Sn and randomness {Ri} and compute the shuffle {c′i} honestly. It can

then use τs to simulate a proof π and pass all this information back to A. On queries to the regular

shuffle oracle using public key pkk, B will again pick an honest permutation ϕ
$←− Sn and randomness

{Ri} to compute the shuffle; it will also set T := (ϕ, {Ri}, {skk, pkk}, ∅). For the first i queries of the

form ({ci, πi}, {c′i}, π, {pk j}, pkk), B will return π′
$←− ZKEval(σ′crs, T, (x := ({ci}, {c′i}, {pk j}), π)).

For the i + 1-st query, B will query its own oracle on input (x, π) to get back a proof π′ that it

then returns to A. Finally, for the rest of the queries, B will return π′
$←− S2(σ′crs, τs, x). At the end

of the game, B will guess that its proof came from ZKEval if A guesses Hi and the simulator if A
guesses Hi+1.

To see that interactions with B will appear the same as interactions with the honest games, we
just observe that when B is given a proof from ZKEval it is executing the exact code of Game Hi;
similarly, when it is given a simulated proof, it is executing the exact code of Game Hi+1. The
advantage of A in guessing the game will then be the same as its advantage when guessing with B;
as B is right every time A is right, we can conclude that B will guess correctly with non-negligible
advantage ε as well.

Next, in Game G3 we switch to computing fresh encryptions of the given ciphertexts rather
than re-randomizing them. This means changing two lines from G2 as follows:
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Game G2, G3

14 c′i ← ReRand(pk , ϕ(ci);Ri) for all i, c′i
$←− Enc(pk ,Dec(sk , ϕ(ci))) for all i

21 c′′i ← ReRand(pk , ϕ(c′i);Ri) for all i, c′′i
$←− Enc(pk ,Dec(sk , ϕ(c′i))) for all i

Lemma G.3. If the encryption scheme is re-randomizable, then Game G3 is indistinguishable from
G2.

Proof. To show this, we will proceed through a series of hybrids H0 through Hq, where q is some
upper bound on the number of queries A can make to the shuffle oracles. In the hybrid Hi, the first
i shuffle queries will be answered using ReRand, while the last ones (at most q− i) will be answered
using fresh encryptions; it is clear then that H0 is identical to G2 and Hq is identical to G3, so that
if we show the indistinguishability of Hi from Hi+1 for all i, 1 ≤ i < q, then we prove the lemma.

To do this, we take an adversary that can distinguish between Hi and Hi+1 with some non-
negligible advantage ε and use it to construct an adversary B that can distinguish between fresh and
re-randomized encryptions with the same advantage ε. To start, B will have access to some keypair

(pk , sk); it will then create {(pk i, sk i)}
$←− G(1k), σcrs

$←− CRSSetup(1k), and (σ′crs, τs)
$←− S1(k) by

itself and give all the public values to A. On the first i queries, B can act as either the initiation
or the shuffle oracle: for the initiation oracle, B will come up with an honestly chosen permutation

ϕ
$←− Sn and randomness and compute the shuffle {c′i} honestly. It can then use τs to simulate

a proof π and pass all this information back to A. On queries to the regular shuffle oracle using

public key pkk, B will again pick an honest permutation ϕ
$←− Sn and randomness {Ri} to compute

the shuffle; it will then again use τs to simulate the proof π. For the i + 1-st query, if the query
is to the initiation oracle then B will query its own oracle on input {ci}, and if the query is to
the regular shuffle oracle then B will query on input {c′i}.21 It will then get in response a set of
ciphertexts {c′′i } and return these to A, along with the appropriate proof and public key values (so
if the query was to the initiation oracle it sends ({c′′i }, π, {pk1}), where π is a simulated proof, and
if the query was to the shuffle oracle with public key pkk it sends ({c′′i }, π′, {pk j} ∪ pkk), where π′

is again simulated). Finally, for the rest of the queries B will compute all the c′i (respectively c′′i )
as Enc(pk ,Dec(sk , ϕ(ci))) and return these to A. At the end of the game, B will guess that it is
getting freshly encrypted ciphertexts if A guesses Hi and re-randomized ciphertexts if A guesses
Hi+1.

To see that interactions with B will appear the same as interactions with the honest games, we
just observe that when B is given a set of freshly encrypted ciphertexts it is executing the exact
code of Game Hi; similarly, when it is given a set of re-randomized ciphertexts, it is executing the
exact code of Game Hi+1. The advantage of A in guessing the game will then be the same as its
advantage when guessing with B; as B is right every time A is right, we can conclude that B will
guess correctly with non-negligible advantage ε as well.

Next, we switch in Game G4 to returning {Dec(sk , ϕ(ci))} rather than {Dec(sk , c′i)}, where ϕ
is the permutation used to obtain {c′i} from {ci} (and which we get from the proof π).

21Note that in the game in Definition 2.8 we currently consider only the case of a single ciphertext; by a simple
hybrid argument, however, we can extend this to the case of n ciphertexts, where either all are re-randomized or all
are fresh encryptions.
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Game G3, G4

1 (pk, sk)
$←− KeyGen(1k); {pk i, sk i)}

$←− G(1k); S := {pk i}
2 σcrs

$←− CRSSetup(1k)

3 (σ′crs, τs)
$←− S1(1k), (σ′crs, τs, τ

′
e)

$←− SE1(1k)

4 ({ci, πi}, {c′i}, π, S′ := {pk j})
$←− AInitShuffle,Shuffle(σcrs, σ

′
crs, pk , S)

5 if S ∩ S′ = ∅ then abort
6 if V(σcrs, ci, πi) = 0 for any i then abort
7 if V ′(σ′crs, ({ci}, {c′i}, S′), π) = 0 then abort

8 b′
$←− A({Dec(sk , c′i)}), (w, x′, T )← Extract(τ ′e, π)

9 if w 6= ⊥ then parse w = (ϕ′, {Ri}, {sk j}); b′
$←− A({Dec(sk , ϕ′(ci))})

10 else parse (x′, T ) = (({ci}, {ĉi}, {pk j}), (ϕ′, {Ri}, {skk, pkk}, {pk ′k}))

11 if (({ci}, {ĉi}, {pk j}), ϕ̂) ∈ Q then b′
$←− A({Dec(sk , ϕ′ ◦ ϕ̂(ci))})

Procedure InitShuffle({ci, πi}, pk1)

12 if V(σcrs, ci, πi) = 0 for any i then abort

13 ϕ
$←− Sn; R1, . . . , Rn

$←− R
14 c′i

$←− Enc(pk ,Dec(sk , ϕ(ci))) for all i

15 π
$←− S2(σ′crs, τs, ({ci}, {c′i}, pk1))

16 add (({ci}, {c′i}, {pk1}), ϕ) to Q

17 output ({c′i}, π, {pk1})

Procedure Shuffle({ci, πi}, {c′i}, π, {pk j}, pkk)

18 if V(σcrs, ci, πi) = 0 for any i then abort
19 if V ′(σ′crs, ({ci}, {c′i}, {pk j}), π) = 0 then abort

20 ϕ
$←− Sn; R1, . . . , Rn

$←− R
21 c′′i

$←− Enc(pk ,Dec(sk , ϕ(c′i))) for all i, (w, x′, T )← Extract(τe, π)

22 if w 6= ⊥ then parse w = (ϕ′, {Ri}, {sk j}); c′′i
$←− Enc(pk ,Dec(sk , ϕ ◦ ϕ′(ci))) for all i

23 else parse (x′, T ) = (({ci}, {ĉi}, {pk j}), (ϕ′, {Ri}, {skk, pkk}, {pk ′k}))

24 if (({ci}, {ĉi}, {pk j}), ϕ̂) ∈ Q then c′′i
$←− Enc(pk ,Dec(sk , ϕ ◦ ϕ′ ◦ ϕ̂(ci))) for all i

25 π′
$←− S2(σ′crs, τs, ({ci}, {c′′i }, {pk j} ∪ pkk))

26 add (({ci}, {c′′i }, {pk j} ∪ pkk), ϕ ◦ ϕ′ ◦ ϕ̂) to Q

27 output ({c′′i }, π′, {pkj} ∪ pkk)

Lemma G.4. If the NIZK π satisfies controlled-malleable simulation-sound extractability (as de-
fined in Definition 3.1), Game G4 is indistinguishable from G3.

Proof. To show this, we will argue that the probability that an adversary A is able to cause games
G3 and G4 to behave differently is at most negligible; to do this, we can take an adversary A that
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causes this event with some non-negligible probability ε and use it to produce an adversary B that
can win at the CM-SSE game with related non-negligible probability ε′.

To start, B gets in σcrs and τe; it can then honestly generate all the other parameters itself and
pass these along to A. We will argue that, throughout the game, the database Q stores only tuples
of the form (({ci}, {ĉi}, {pk j}), ϕ̂) where Dec(sk , ĉi) = Dec(sk , ϕ̂(ci)) for all i.

On InitShuffle queries, B will perform the shuffle honestly according to game G4, making use of
the database Q to store the permutations, and then query its S2 oracle to obtain the corresponding
proof. Note that the output of the query will be identical to that in gameG3, and that by correctness
of the encryption scheme, our invariant on Q must hold for all entries added in these queries.

Eventually, A will either query the regular shuffle oracle on a tuple ({ci, πi}, {c′i}, π, {pk j}) or
output such a tuple at the end (i.e., in line 4). Given such a tuple, B can now compute (w, x′, T ) :=
Extract(τe, π). If (w, x′, T ) = (⊥,⊥,⊥), then B can immediately output (x := ({ci}, {c′i}, {pk j}), π).
Otherwise, if w 6= ⊥ but w has the wrong structure (i.e., w 6= (ϕ′, {Ri}, {sk j})) then B can once
again output (x, π). If, on the other hand, w = (ϕ′, {Ri}, {sk j}), B can check that Dec(sk , c′i) =
Dec(sk , ϕ′(ci)) for all i; if this equality does not hold for some i, B can once again output (x, π). If
it does hold, then, if we are in step 4, B can send A {Dec(sk , ϕ′(ci))} = {Dec(sk , c′i)}, which will
be identical to the output in both game G3 and game G4, and the tuple added to Q will satisfy the
invariant. Similarly, if this is a shuffle query, then B can proceed as in Game G4; again, this will
be identical to the response it would give in G3, and we are guaranteed that the value added to Q
will satisfy the invariant.

If (x′, T ) 6= (⊥,⊥), B can check to see that these values have the proper structure and x′ was
output by one of the shuffle oracle (i.e., queried to the simulator at some point), if not then B can
once again output the pair (x, π). Otherwise, B can look up in Q the permutation ϕ̂ used at the time
x′ was generated; note that by our invariant it will be be the case that Dec(sk , ϕ̂(ci)) = Dec(sk , ĉi)
for all i. Then B can finally check if Dec(sk , c′i) = Dec(sk , ϕ′(ĉi)) for all i and output (x, π)
if equality doesn’t hold for some i. If none of these cases hold, then it will be the case that
Dec(sk , c′i) = Dec(sk , ϕ′(ĉi)) = Dec(sk , ϕ′ ◦ ϕ̂(ci)). Thus, B can proceed as in game G4 and this will
be identical to the responses it would give in G3.

If B reaches the end of the game without finding a (x, π) tuple to output, then it will output
⊥ to indicate failure. Note that if this happens, then this means B’s behavior throughout was
identical to the honest behavior in both G3 and G4.

Similarly, each of the cases in which B does output (x, π) correspond to one of the winning
conditions for the CM-SSE game; if (w, x′, T ) = (⊥,⊥,⊥) (or are otherwise improperly formatted)
then we are in case (3); if w 6= ⊥ but Dec(sk , c′i) 6= Dec(sk , ϕ(ci)) for some i then we are in case
(1); if (x′, T ) 6= (⊥,⊥) but x′ was never queried then we are in the first part of case (2); if T 6=
(ϕ′, {Ri}, {pk j}) then we are in the third part of case (2); finally, if Dec(sk , c′i) 6= Dec(sk , ϕ′ ◦ ϕ̂(ci))
for some i then we are in the second part of case (2). As the case in which A causes the games to
differ therefore implies that B can win the CM-SSE game, we know that B will succeed with the
same probability as A does.

Next, in Game G5 we switch to using the values extracted from the proofs πi rather than the
plaintexts recovered from decrypting the ci; we do this by changing six lines from G4 as follows:
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Game G4, G5

2 σcrs
$←− CRSSetup(1k), (σcrs, τe)

$←− E1(1k)

9 if w 6= ⊥ then parse w = (ϕ′, {Ri}, {sk j}); b′
$←− A({Dec(sk , ϕ′(ci))}), b′

$←− A({E2(τe, ϕ
′(πi))})

11 if (({ci}, {ĉi}, {pk j}), ϕ̂) ∈ Q then b′
$←− A({Dec(sk , ϕ′ ◦ ϕ̂(ci))}), b′

$←− A({E2(τe, ϕ
′ ◦ ϕ̂(πi))})

14 c′i
$←− Enc(pk ,Dec(sk , ϕ(ci))) for all i, c′i

$←− Enc(pk , E2(τe, ϕ(πi))) for all i

22 if w 6= ⊥ then parse w = (ϕ′, {Ri}, {sk j}); c′′i
$←− Enc(pk ,Dec(sk , ϕ ◦ ϕ′(ci))) for all i,

c′′i
$←− Enc(pk , E2(τe, ϕ ◦ ϕ′(πi))) for all i

24 if (({ci}, {ĉi}, {pk j}), ϕ̂) ∈ Q then c′′i
$←− Enc(pk ,Dec(sk , ϕ ◦ ϕ′ ◦ ϕ̂(ci))) for all i,

c′′i
$←− Enc(pk , E2(τe, ϕ ◦ ϕ′ ◦ ϕ̂(πi))) for all i

Lemma G.5. If the NIZKPoKs πi satisfies soundness, Game G5 is indistinguishable from G4.

Proof. For an adversary to notice a different between these two games, there must be at least
one index i for which the decryption of ci differed from the value extracted from πi. As the only
valid witness for πi is the value in ci, however, this would imply that A had produced a valid
proof of a false statement, which violates the soundness of the proof system (and in particular
the extractability property). This event must therefore happen with negligible probability for
a given index i (and therefore by a union bound for any index), and thus the two games are
indistinguishable.

Next, in Game G6 we switch the values in the ciphertexts returned by queries to the shuffle
oracles; rather than performing an honest shuffle, both shuffle oracles will now return encryptions
of completely random values instead.

Game G5, G6

14 c′i
$←− Enc(pk , E2(τe, ϕ(πi))) for all i, (r1, . . . , rn)

$←−Mn; c′i
$←− Enc(pk , ri) for all i

22 if w 6= ⊥ then parse w = (ϕ′, {Ri}, {sk j}); c′′i
$←− Enc(pk , E2(τe, ϕ

′(πi))) for all i,

(r1, . . . , rn)
$←−Mn; c′′i

$←− Enc(pk , ri) for all i

24 if (({ci}, {ĉi}, {pk j}), ϕ̂) ∈ Q then c′′i
$←− Enc(pk , E2(τe, ϕ ◦ ϕ′ ◦ ϕ̂(πi))) for all i,

(r1, . . . , rn)
$←−Mn; c′′i

$←− Enc(pk , ri) for all i

Lemma G.6. If the encryption scheme is IND-CPA secure, Game G6 is indistinguishable from
G5.

Proof. To see that these games are indistinguishable, we can consider a series of hybrids Hi. In each
game Hi, the first i ciphertexts c′j returned by the shuffle oracle are encryptions of random values,

while the ones from i+ 1 on are computed as c′k
$←− Enc(pk , E2(τe, ϕ(πk))) for all k, i+ 1 ≤ k ≤ n

(and for the appropriately extracted permutation); we can then see that H0 is just the game G5

and Hn is G6.
To see that Hi must be indistinguishable from Hi+1, we can consider an adversary A that

succeeds with non-negligible advantage ε in distinguishing between Hi and Hi+1 and use it to
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construct an adversary B that succeeds in attacking the IND-CPA security of the encryption scheme
with related non-negligible advantage ε′; for simplicity, we assume that A makes only one oracle
query, but our result does generalize to the case of multiple queries.22

To start, B will get a public key pk . It can then generate all the other parameters for the

shuffle on its own and pass these along to A; in particular, B will generate (σcrs, τe)
$←− E1(1k)

and (σ′crs, τs, τ
′
e)

$←− SE1(1k). On a shuffle query (of either type), B will first simulate the proof π.
It can then either pick a random permutation ϕ (for the initiation oracle) or extract/compose a

permutation ϕ using τ ′e (for the shuffle oracle), in addition to random values r1, . . . , ri
$←−M. It then

sets c′j
$←− Enc(pk , rj) for all j, 1 ≤ j ≤ i, and c′k

$←− Enc(pk , E2(τe, ϕ(πk))) for all k, i+ 2 ≤ k ≤ n.
For the i+ 1-st encryption, B can use τe to extract the message m from ϕ(πi+1) and pick a random

value r
$←−M. B will now query its own IND-CPA oracle on the message pair (m, r) and get back

some ciphertext c; it will then use c′i+1 := c. At the end of the game, it will output the same guess
bit as A.

To see that B will succeed with the same advantage as A, we must first show that interactions
with B are indistinguishable from interactions in the honest games. In the case that its encryption
oracle returns an encryption of the message m, B will then be using c′i+1 = Enc(pk , E2(τe, ϕ(πi+1)))
and thus executing the exact code for Hi. Similarly, if the encryption oracle returns instead an
encryption of r, B will be using an encryption of a random value as c′i+1 and thus executing the
exact code for Hi+1; in either case, therefore, B is executing the code for one of the two games and
so interactions with B are indistinguishable from interactions with the honest game. In addition, B
succeeds every time A does, so if A succeeds with non-negligible advantage then B does as well.

Next, in Game G7 we switch to using a random permutation at the end rather than the per-
mutation extracted from A’s proof. This means replacing lines 8-11 from G6 as follows:

Game G6 Game G7

8 (w, x′, T )← Extract(τ ′e, π) ϕ
$←− Sn

9 if w 6= ⊥ then parse w = (ϕ′, {Ri}, {pk j}); b′
$←− A({E2(τe, ϕ

′(πi))}) b′
$←− A({E2(τe, ϕ(πi))})

10 else parse (x′, T ) = (({ci}, {ĉi}, {pk j}), (ϕ′, {Ri}, {skk, pkk}, {pk ′k}))
11 if (({ci}, {ĉi}, {pk j}), ϕ̂) ∈ Q then b′

$←− A({E2(τe, ϕ
′ ◦ ϕ̂(πi))})

Lemma G.7. If the NIZK π is CM-SSE and Rpk is a hard relation, Game G7 is indistinguishable
from G6.

Proof. First we note that in Game G6, if the adversary is called on Step 11, then it is given as input
a set of messages shuffled according to ϕ′ ◦ ϕ̂, where ϕ̂ was retrieved from Q. As we saw back in
Game G4, permutations are added to Q when the adversary queries InitShuffle or Shuffle. In both of
these cases the permutation is chosen at random (and in the case of Shuffle queries, composed with
some other permutations, resulting in another random permutation) and never affects any response
given to the adversary (until Step 11). Thus, in this case we are using a permutation which is
completely random in the adversary’s view, so this must be identical to what the adversary is given
in Step 9 of Game G7.

We observe then, that an adversary A that can distinguish between the games must cause one
of the following three events to occur (we refer to the event in which one of these occurs as Fake):
(1) the extractor produces w 6= ⊥, (2) the extractor produces an x′ = ({ci}, {ĉi}, {pk j}) that was

22In the case of multiple queries, say q, B’s advantage will be ε/q, which is still non-negligible for polynomial q.
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never stored in Q, or (3) the extractor fails entirely and produces invalid (x′, T ). We will show that,
if A can cause Fake to occur with some non-negligible probabiliy ε then we can use it to construct
an adversary B that can either win at the CM-SSE game or break the hardness of the relation with
related non-negligible probability.

With this in mind, we can consider the tuple ({ci, πi}, {c′i}, π, S′ := {pk j}) output by A, and
consider our adversary B, who is given (σcrs, τe) and a value pk j and is asked to either break the
CM-SSE property of the NIZK (acting in a strategy we refer to as B1) or break the hard relation;
i.e., produce a value sk j such that (pk j , sk j) ∈ Rpk (in a strategy we refer to as B2). To create an
input for A, B1 will ignore pk j and generate on its own encryption keys (pk , sk) and a set S := {pki}
of mix server keys (along with the corresponding values sk i such that (pk i, sk i) ∈ Rpk ). B1 can
next answer shuffle queries by first encrypting random values, and then querying its S2 oracle to
get back a proof.

The adversary B2, on the other hand, will ignore (σcrs, τe). To create input for A, B2 will instead
generate (σcrs, τs, τe) and (pk , sk) on its own; it will then also generate a set SB2 := {pk i} of random
mix server keys and give to A S := SB2 ∪ pk j (as well as the other parameters it generated). To
answer shuffle queries, B2 can just simulate the proofs using τs.

As the behavior of both B1 and B2 is indistinguishable from the honest game interactions, in
particular A cannot tell when it is interacting with B1 or when it is interacting with B2. B’s
strategy can then be to randomly pick which path to pursue at the start; as the bit it picks will
be independent of A’s view, it will pick the correct path (i.e., whether A will break the CM-SSE
property or the hard relation) with probability 1/2.

Finally A outputs its tuple in Step 4. If S′ ∩ S = ∅ or any of the proofs fail to verify then A is
not behaving properly within the game and so both B1 and B2 can simply abort. Otherwise, we can
look at (w, x′, T ) := Extract(τe, π). If w 6= ⊥ and w = (ϕ′, {Ri}, {sk j}), then either (pk i, sk i) ∈ Rpk

for all i or there is some i such that this does not hold. In the former case, and in particular if
(pk j , sk j) ∈ Rpk for the pk j that B2 started with, then B2 can output sk j to win its game. As the
pk j that B2 was given is distributed identically to the ones that it generated itself, this will happen
with probability |S′ ∩S|/|S| ≥ 1/|S| (i.e., as long as pk j was included in S′) and so B2 will succeed
with overall probability ε/|S|. In the latter case, A has managed to prove a false statement for the
i such that (pk i, sk i) 6∈ Rpk and so B1 can output the tuple (x := ({ci}, {c′i}, {pk j}), π) to win the
CM-SSE game.

If instead of the cases above it holds that (x′, T ) 6= (⊥,⊥), we can check to see if x′ was in fact
queried to the simulated proof oracle as part of one of the shuffle queries. If this check fails then
B1 can again output (x, π) to win its game; if it succeeds, then x′ must have been stored in Q as
part of the same shuffle query and so, as discussed above, the games will be identical.

The only remaining case is the one in which Step 11 is executed correctly, and we have argued
that in this case the two games are identical. Thus B can succeed (using either B1 or B2) with
probability at least 1/|S| whenever A succeeds and it guesses the correct path; it thus succeeds
with overall probability at least ε/2|S|.

For the transitions for the rest of the games, we are just reversing the changes made in previous
games and thus these previous proofs suffice to show that they will also be indistinguishable. In
particular, the proof of indistinguishability of Games G7 and G8 (in which we switch back to
encryptions of the honest values rather than random encryptions) is analogous to the proof of
Lemma G.6; the proof of indistinguishability of G8 and G9 (in which we switch back to decrypting
rather than extracting) is analogous to the proof of Lemma G.5; the proof of indistinguishability
of G9 and G10 (in which we switch back to re-randomizing rather than freshly encrypting) is
analogous to the proof of Lemma G.3; the indistinguishability of G10 and G11 (in which we return

63



to using honest proofs in the regular shuffle oracle) is analogous to the proof of Lemma G.2; and
the indistinguishability of G11 and G12 (in which we return to using honest proofs in the initiation
oracle) is analogous to the proof of Lemma G.1.
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