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Abstract

In this paper we introduce a new type of algebraic attacks, called higher order algebraic
attacks, with applications towards cryptanalysis of stream ciphers. Its efficiency is described
through the new concept r-order algebraic immunity of a Boolean function. We show that the
2-order algebraic immunity of the following two classes of Boolean functions is equal to 1, which
gives very efficient attacks on them (substantially and greatly outmatching previously known
attacks):

(a) The class of Carlet-Feng functions, proposed at Asiacrypt 2008, having optimum alge-
braic degree, optimum algebraic immunity, good immunity to fast algebraic attacks and good
nonlinearity.

(b) The class of rotation symmetric Boolean functions, an interesting and well studied class
of Boolean functions, which can be implemented efficiently.

Keywords: Stream ciphers, Boolean functions, higher order algebraic attacks, higher order
algebraic immunity.

1 Introduction

Recently, algebraic attacks and fast algebraic attacks have received a lot of attention in the cryp-
tographic community. They might be efficient against LFSR-based stream ciphers as well as on
block ciphers [6, 7, 8, 9, 32]. To measure the resistance against algebraic attacks, the notion of
algebraic immunity has been proposed by Courtois and Meier: for a given Boolean function f , any
Boolean function g 6= 0 such that f · g = 0 or (f + 1) · g = 0 should have high algebraic degree. It
is known that the algebraic immunity of an n-variable Boolean function is upper bounded by dn2 e.
To resist fast algebraic attacks, a large algebraic immunity is not sufficient. It should also have a
high degree product, HDP [15]: for a given Boolean function f , for any non-annihilating function g,
deg(g) + deg(f · g) should be high.

In another direction, Rφnjom and Helleseth recently found a new kind of algebraic attack on
filter generators [16], which is very efficient. Its time complexity is roughly O(D), where D =
Σd
i=1

(
n
i

)
and d is the degree of the Boolean function. But it needs O(D) keystream bits, which

is much more than classical algebraic attacks. The filter function should have very high algebraic
degree to resist this attack.

In the search for lower degree relations, Fischer and Meier investigated augmented functions in
S-boxes [13]. They gave a definition of algebraic immunity of an S-box: Let S : Fn

2 → Fm
2 . Given
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some fixed output y, let d be the minimum degree of a non-zero conditional equation Fy(x) = 0
which holds for all x ∈ S−1(y). Then the algebraic immunity of S is defined by the minimum of
d over all y ∈ Fm

2 . S-boxes should have good immunity against algebraic attacks on augmented
functions.

There are many classes of Boolean functions achieving optimum algebraic immunity [2, 4, 5,
6, 11, 12, 14, 15], and a few of them achieve also a good nonlinearity, let alone achieving a high
order of HDP at the same time. At Asiacrypt 2008 [5], Carlet and Feng proposed an infinite class
of balanced functions with optimum algebraic degree, optimum algebraic immunity and a much
better nonlinearity than all the previously obtained infinite classes of functions. Moreover, they
checked that the functions also have a good immunity against fast algebraic attacks. In [6], they
generalized these functions to a vectorial form. The cryptographic properties of these functions are
known to be very good, but a practical problem is its implementation. We will show that our new
attacks apply to these functions.

The class of rotation symmetric Boolean functions is an interesting choice for a Boolean function
and this class has been studied in a number of papers [1, 18, 19, 21, 23, 24, 29, 30]. They can be
represented in a very compact way, both in their algebraic normal forms and in their truth table
form [3], and they can be implemented efficiently [17]. Previous work has demonstrated that
rotation symmetric Boolean functions is a class of functions, which contains Boolean functions
with excellent cryptographic properties [18, 22, 25, 26, 27, 28]. However, as we will show, they are
vulnerable to higher order algebraic attacks.

In this paper, we propose a generalization of the traditional algebraic attacks as well as fast
algebraic attacks. The new approach builds a low degree equation using r different initial equations
coming from evaluating the Boolean function in r different points. We call this approach higher
order algebraic attacks. This also leads to a generalization of the concept of algebraic immunity
to the new notion of r-order algebraic immunity. The notion comes from the fact that classical
algebraic attacks only consider one equation of the form f(x) = c whereas the new approach
considers r different equations, and e.g. seeks an annihilator to a function involving r equations.
The approach is a generalization of algebraic attacks; it is in general more complex to compute an
annihilator, but it can give much more powerful results.

To show its usefulness, we give very efficient attacks on the class of Carlet-Feng functions and
the class of rotation symmetric Boolean functions used in a filter generator. The new attacks
substantially and greatly outmatch all previously known attacks. As a consequence, we observe
that previously constructed functions with good cryptographic properties may not be resistant to
a higher order algebraic attack. In order to construct a secure stream cipher, the new notions of
higher order algebraic immunities of Boolean functions should also be considered, as an additional
criteria.

The paper is organized as follows. Some basics on Boolean functions are introduced in Section 2.
We assume a filter generator in our analysis and some of its properties are introduced in Section 3.
In Section 4, we then introduce higher order algebraic attacks. In Section 5 we apply the new
attacks on Carlet-Feng functions and in Section 6 we apply them on rotation symmetric Boolean
functions. We end in Section 7 with a few conclusions.
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2 Preliminaries

We start with some basics on Boolean functions. Let Fn
2 be the n-dimensional vector space over

the finite field F2. A Boolean function of n variables is a function from Fn
2 into F2. We denote by

Bn the set of all n-variable Boolean functions.
Any f ∈ Bn can be uniquely represented as a multivariate polynomial

f(x1, ..., xn) =
∑

K⊆{1,2,...,n}

aK
∏
k∈K

xk,

which is called its algebraic normal form (ANF). The algebraic degree of f , denoted by deg(f), is
the number of variables in the highest order term with nonzero coefficient.

A Boolean function is affine if there exists no term of degree strictly greater than 1 in the ANF
and the set of all affine functions is denoted by An.

Let
1f = {x ∈ Fn

2 |f(x) = 1}, 0f = {x ∈ Fn
2 |f(x) = 0}.

The cardinality of 1f , denoted by wt(f), is called the Hamming weight of f . The Hamming distance
between two functions f and g, denoted by d(f, g), is the Hamming weight of f + g. We say that
an n-variable Boolean function f is balanced if wt(f) = 2n−1.

Let f ∈ Bn. The nonlinearity of f is its distance from the set of all n-variable affine functions,
i.e.,

nl(f) = min
g∈An

d(f, g).

For any f ∈ Bn, a nonzero function g ∈ Bn is called an annihilator of f if f · g = 0, and the
algebraic immunity of f , denoted by AI(f), is the minimum value of d such that f or f + 1 admits
an annihilator of degree d.

Let F2n denote a finite field with 2n elements. It can be viewed as an n-dimensional vector space
over its subfield F2. Every function f : F2n → F2n can be uniquely represented as a polynomial∑2n−1

i=0 aix
i (called its univariate representation), where ai ∈ F2n , and f is a Boolean function if

and only if
∑2n−1

i=0 aix
i ∈ F2 for any x ∈ F2n . Given a basis (β1, β2, · · · , βn), we can identify any

element x =
∑n

i=1 xiβi ∈ F2n with the n-tuple of its coordinates (x1, x2, · · · , xn) ∈ Fn
2 . f can then

be represented as an n-variable polynomial over F2. It is easy to see that x2
j

= x1β
2j
1 + · · ·+xnβ

2j
n ,

for any 1 ≤ j ≤ n. Hence the algebraic degree of the function equals the maximum w2(i) such
that ai 6= 0, where w2(i) equals the number of 1’s in the binary expansion of i. Let tr(x) denote
the trace function from F2n to F2, tr(x) = x + x2 + · · · + x2

n−1
. Clearly, deg(tr(x)) = 1. In what

follows, we denote an element of Fn
2 by a column vector.

3 Filter Generators and Their Cyclic Groups

As our cryptographic application we consider a stream cipher built from a filter generator, where
the filter generator consists of a length n linear feedback shift register that generates an m-sequence
and a Boolean function that combines state bits from the shift register. This is a standard model
used in numerous papers. Clearly, most results in this paper can be generalized to other similar
generators.
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A typical filter generator uses an m-sequence s = s0, s1, s2, . . . and a filter function f ∈ Bn.
Denote the output of the filter generator by c0, c1, c2, . . .. Any term st of the m-sequence s is
uniquely determined by a linear function of the initial state (s0, s1, . . . , sn−1). Let

f(st, st+1, . . . , st+n−1) = ct, t = 0, 1, 2, . . .

Then we have
f(Lt(s0, s1, . . . , sn−1)) = ct, t = 0, 1, 2, . . . ,

where Lt are vectorial Boolean functions from Fn
2 into Fn

2 and all components are linear functions.
An algebraic attack is an approach to solve this system of equations efficiently. If AI(f) is low

and there exists a g ∈ Bn of low degree such that fg = 0. Then

f(Lt(s0, s1, . . . , sn−1))g(Lt(s0, s1, . . . , sn−1)) = ctg(Lt(s0, s1, . . . , sn−1)) = 0, t = 0, 1, 2, . . . .

Therefore, each time ct = 1, we have g(Lt(s0, s1, . . . , sn−1)) = 0, and many equations of low degree
are derived. They can be solved more efficiently than the initial system. The complexity of the

standard algebraic attack is roughly O(D3) in time and O(D) in data, where D =
∑AI(f)

i=0

(
n
i

)
.

To resist fast algebraic attacks, a high algebraic immunity is not sufficient. Assume that we can
find g of low degree and h of reasonable degree such that fg = h. Then

h(Lt(s0, s1, . . . , sn−1)) = ctg(Lt(s0, s1, . . . , sn−1)), t = 0, 1, 2, . . . .

Then there exists a linear combination of the first
∑deg(h)

i=0

(
n
i

)
equations that sum the left hand

side to 0. We find this by using Berlekamp-Massey algorithm or through an explicit algebraic
calculation [31]. After summing up we arrive at one equation of degree at most deg(g). The fast
algebraic attack has a pre-computation step of complexity O(E log3E + En log2 n) and an online

complexity of O(D3 + 2DE logE) [31], where D =
∑AI(f)

i=0

(
n
i

)
and E =

∑deg(h)
i=0

(
n
i

)
. Note however

that fast algebraic attacks need more data than standard ones [7].
Let the sequence s obey the recursion

n∑
j=0

mjst+j = 0, mj ∈ F2,

where m0 = mn = 1. Clearly, m(x) = m0 +m1x+ · · ·+mn−1x
n−1 +xn is its generator polynomial,

and it is primitive. The (transpose) companion matrix M (we call it the generator matrix of the
sequence) is

M =


0 1 0 ... 0
0 0 1 . . . 0
...
0 0 0 . . . 1
m0 m1 m2 . . . mn−1

 .

Let α be a zero of m(x), which is a primitive element in F2n .
Let (st, st+1, . . . , st+n−1) denote the state of the register at time t. Then the next state is

determined by (st+1, st+2, . . . , st+n)T = M(st, st+1, . . . , st+n−1)
T = M t+1(s0, s1, . . . , sn−1)

T . Let

S = {(st, st+1, . . . , st+n−1)
T |t = 0, 1, ..., 2n − 2}.
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We define a multiplication ” ∗ ” on the set S as follows:

M i(1, 0, ..., 0)T ∗M j(1, 0, ..., 0)T = M i+j(1, 0, ..., 0)T .

Then S will be a cyclic group of order 2n − 1 and M(1, 0, . . . , 0)T = (0, . . . , 0, 1)T is its generator.
Let α = (0, . . . , 0, 1)T . Then αi = M i(1, 0, . . . , 0)T .

We now give some observations related to previous work [16]. Let the filter function be written
in univariate representation,

f(x) =
2n−1∑
i=0

aix
i,

where ai ∈ F2n , and let the initial state of the register be αr. Then we have

f(αr) =
2n−1∑
i=0

aiα
ir = c0,

f(αr+1) =
2n−1∑
i=0

aiα
i(r+1) = c1,

...
...

f(αr+2n−2) =
2n−1∑
i=0

aiα
i(r+2n−2) = c2n−2.

Since m0 + m1α + ... + mnα
n = 0, for 0 ≤ i ≤ n, multiplying the (i + 1)th equation by

mi, and summing up the first n + 1 equations, we cancel the terms a1α
r+j , where 0 ≤ j ≤ n.

In general, the minimal polynomial of αi is
∏n−1

k=0(x + αi·2k). Using the same method, we can
cancel the terms aiα

i(r+j). Let p(x) =
∏

wt(l)≥2(x + αl) ∈ F2[x]. Then p(αl) = 0, for wt(l) ≥ 2.

Therefore, multiplying the (i + 1)th equation with the coefficient of xi in p(x), and summing

up the first
∑deg(f)

k=2

(
n
k

)
equations, we can cancel all the terms aiα

i(r+j), for wt(i) ≥ 2, where

0 ≤ j ≤
∑deg(f)

k=2

(
n
k

)
, and a linear equation on αr is obtained. This comes down to the result of

Rφnjom and Helleseth [16]. Our arguments above are clear and simple, and can be an alternative
to Lemma 1, 2 and 3 of [16], which is more complicated.

Furthermore, assume that a fast algebraic attack results in

h(Lt(s0, s1, . . . , sn−1)) = ctg(Lt(s0, s1, . . . , sn−1)), t = 0, 1, 2, . . .

where deg(g) = d, deg(h) = e and e > d. By summing up equations according to the polynomial∏e
wt(l)=d+1(x + αl), we can cancel the terms with degree more than d of h, rather than summing

up equations that sums the left hand side to 0 using e.g. Berlekamp-Massey algorithm as in the
standard fast algebraic attack. The new way of summing equations gives a resulting equation of
degree at most d, the same as before, but it requires slightly less keystream symbols. This is a
slight improvement of the classical fast algebraic attack.

4 Introducing Higher Order Algebraic Attacks

Assume a filter generator with the generator matrix M and a filter function f with a very high
algebraic immunity. Our underlying thoughts are as follows. If we add the first equation and the
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ith equation, i 6= 1, i.e., we consider f(x) + f(M i−1x), then there may exist some g ∈ Bn of low
degree such that (f(x) + f(M i−1x))g = 0 or (f(x) + f(M i−1x) + 1)g = 0. This motivates the
following definition of higher order algebraic immunity relative to M , and its related definition for
arbitrary M .

Definition 1. Let f ∈ Bn and M be an n × n generator matrix for some sequence. The r-order
algebraic immunity (AIr) of f relative to M is equal to

min
h∈Br

AI(h(f(x), f(M i1x), ..., f(M ir−1x))),

where deg(h) ≥ 1 and 1 ≤ i1 < i2 < ... < ir−1 ≤ P < 2n − 1, where P is a secure parameter that
can be very large. Furthermore, we define

AIr(f) = max
M
{AIr(f) relative to M}.

Let us explain the underlying attack if AIr(f) is low. For example, if r = 2 and AI2(f) is low,
there exists a g ∈ Bn of low degree such that (f(x) + f(M i−1x))g(x) = 0. Then

(f(M ts) + f(M t+i−1s))g(M ts) = (ct + ct+i−1)g(M ts) = 0, t = 0, 1, 2, . . .

Therefore, each time t satisfies ct + ct+i−1 = 1, we have g(M ts) = 0, and many equations of
low degree are derived, which can be solved more efficiently than the initial system. The time
complexity and data complexity of this attack depend on r and AIr(f). With a resonable value of
r and a small value of AIr(f), a very efficient attack can be given.

Remark 1: The classical algebraic attack is the special case r = 1, and the Rφnjom-Helleseth
attack is a special case using r ≤ Σd

i=1

(
n
i

)
, where d = deg(f). Moreover, we can combine the

Rφnjom-Helleseth attack and the classical algebraic attack. For example, using the first
(
n
d

)
equa-

tions, we can get a new f ′ of degree d− 1, and AI(f ′) might be low (though deg(f) may be close
to n and AI(f) may be high). This can give an efficient algebraic attack to f ′.

Remark 2: The security parameter P used in the definition determines an interval where we
can select equations, and this affects the required keystream length. A suitable choice could be
either of the same order as the maximum keystream length that is allowed, or close to the number
of keys (if no maximum length is given). We do not allow P as large as 2n−1 (the period), as then
we have trivial attacks.

To resist higher order algebraic attacks in a specific design, the r-order algebraic immunity of the
filter function f relative to the generator matrixM should be high. Otherwise, there would be a g(x)
of low degree such that h(f(x), f(M i1x), ..., f(M ir−1x))·g(x) = 0 or (h(f(x), f(M i1x), ..., f(M ir−1x))+
1) · g(x) = 0. Also, if AIr(f) is low, we can regard f as useless. Sometimes, we denote AIr(f)
relative to M also with AIr(f), assuming no ambiguity.

Fast algebraic attacks can be generalized to a higher order fast algebraic attack, in a similar
way. For example, if one can find g of low degree and h of reasonable degree such that (f(x) +
f(M i−1x))g = h, then similar to the classical fast algebraic attacks, many equations of degree at
most deg(g) can be obtained.

We now give two examples showing the usefulness of this definition.
Example 1: Let the generator polynomial be m(x) = x5 + x2 + 1, and the filter function be

f(x) = x1x2x3x4+x1x2x4x5+x1x2x5+x1x3x5+x2x4x5+x1x3+x1x5+x2x3+x2x5+x3x4+x4x5+x2+1.
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It is a 5-variable Carlet-Feng function and has a good immunity to fast algebraic attacks [5],
deg(f) = 4, AI(f) = 3 and nl(f) = 12. We have

f(Mx) = x1x2x3x5 + x1x2x4x5 + x1x2x3 + x1x2x4 + x2x3x4 + x2x3x5

+x1x3x5 + x1x2 + x1x3 + x1x5 + x2x4 + x3x4 + x4x5 + 1,

and

f(x) + f(Mx) = x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x2x3x4x5 + x1x2x3 + x1x2x4 + x1x2x5

+x2x3x4 + x2x3x5 + x2x4x5 + x1x2 + x2x3 + x2x4 + x2x5 + x2.

Now it can be verified that (f(x) + f(Mx))(x2 + 1) = 0 and hence the second order algebraic
immunity is only 1, AI2(f) = 1.
Example 2: Let the generator polynomial be m(x) = x5 + x2 + 1, and the filter function be

f(x) = x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x2x3x4x5 + x1x2x3 + x1x2x4

+x1x2x5 + x1x3x4 + x1x3x5 + x1x4x5 + x2x3x4 + x2x3x5 + x2x4x5 + x3x4x5.

It is a 5-variable majority function, deg(f) = 4, AI(f) = 3 and nl(f) = 10. Again, we have

f(Mx) = x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4

+x1x3x5 + x1x4x5 + x2x3x4 + x2x3x5 + x2x4x5 + x3x4x5 + x2x3 + x3x4 + x3x5,

and
f(x) + f(Mx) = x2x3x4x5 + x2x3 + x3x4 + x3x5.

We verify that (f(x) + f(Mx))(x3 + 1) = 0 and AI2(f) = 1.

5 A 2-order Algebraic Attack on the Carlet-Feng Functions

After the introduction of higher order algebraic attacks we now demonstrate its usefulness by
attacking two classes of Boolean functions where previous attack methods were not successful.
This section presents powerful attacks on the Carlet-Feng functions.

Let f ∈ Bn and α a primitive element of the field F2n . The Carlet-Feng function f ∈ Bn

satisfies 1f = {0, 1, α, ..., α2n−1−2}. It has optimum algebraic immunity dn2 e, optimum algebraic
degree n− 1, good immunity to fast algebraic attacks and good nonlinearity.

Lemma 1 (5, Theorem 2 ). The univariate representation of the function f equals

1 +

2n−2∑
i=1

αi

(1 + αi)1/2
xi,

where u1/2 = u2
n−1

.

Let M be the generator matrix of the m-sequence of period 2n−1. Recall the cyclic group as de-
fined in Section 3. Let β = (0, ..., 0, 1)T , and α = βs, i.e., α = M s(1, 0, . . . , 0)T , where 1 ≤ s ≤ 2n−2
and (s, 2n − 1) = 1. Let the initial state of the register be αr = βrs = (x1, x2, . . . , xn)T . Then the
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state of the register at time s is βrs+s = αr+1 = M s(x1, x2, . . . , xn)T . Then we have the following
equations:

f(βrs+j) = 1 +
2n−2∑
i=1

αi

(1 + αi)1/2
(βrs+j)i = cj ,

where j = 0, 1, 2, . . ..

Theorem 1. Let the security parameter P of the definition be at least 2n−1. Then the 2-order
algebraic immunity of f is equal to 1.

Proof. Let
g(αr) = 1 + aαr+1 + a2α2(r+1) + · · ·+ a2

n−1
α2n−1(r+1),

where tr(a) = tr(a2α−1) = 1. By Lemma 1, we have

f(αr) + f(αr+1) =
2n−2∑
i=1

αi

(1 + αi)1/2
αir(1 + αi) =

2n−2∑
i=1

αi+ir(1 + αi·2n−1
).

Since

tr(a) = tr(a2α−1) = 1,
2n−2∑
i=1

αi+ir · α1+r =
2n−2∑
i=1

αi+ir + 1 + α1+r,

and
2n−2∑
i=1

αi+ir+i·2n−1 · α3+2r =
2n−2∑
i=1

αi+ir+i·2n−1
+ 1 + α3+2r,

we have
2n−2∑
i=1

αi+ir · g(αr) = 1 + tr(aαr+1),

and
2n−2∑
i=1

αi+ir+i·2n−1 · g(αr) = 1 + tr(a2α2(r+1)).

Therefore, (f(αr) + f(αr+1)) · g(αr) = 0, and the result follows. QED
Note that for any generator matrix M , the 2-order algebraic immunity of f relative to M is

equal to 1.
The number of g(αr) satisfying tr(a) = tr(a2α−1) = 1 is equal to 2n−2. Therefore, we can get

2n−2 linear equations if ct + ct+s 6= 0. The solution of these equations is βrs+t = α−1 = β−s or
βrs+t = α2n−1−2 = β(2

n−1−2)s, and the exact value of βrs+t can be determined from ct:

βrs+t =

{
β−s, if ct = 0,

β(2
n−1−2)s, if ct = 1.

The attack is then described as follows.
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Algorithm for the attack.
Given a filter generator, β and α = βs are known.
1. Pre-compute s, where α = βs.
2. Find the first t such that ct + ct+s 6= 0.
3. Determine the value of βrs+t from ct, which is the state of the filter generator at time t:

βrs+t =

{
β−s, if ct = 0,

β(2
n−1−2)s, if ct = 1.

We note that this attack can be very efficient, and the state even can be recovered by hand,
after a pre-computation with complexity corresponding to the DLP in F2n . In the best cases, this
attack needs only two bits of keystream ct and ct+s on the condition that s = 1 or 2n − 2 and
ct + ct+s 6= 0. In the worst cases, this attack needs about 2n−1 bits of keystream (s = 2n−1 or
s = 2n−1 − 1).

For a filter generator using f as the filter function, the time complexity of the Rφnjon-Helleseth
attack is roughly O(2n), after a pre-computation with complexity O(n3 · 2n). and it needs almost
all bits of keystream. The time complexity of the classical algebraic attack is roughly O(23(n−1)),

and it needs about
∑dn

2
e

i=1

(
n
i

)
bits of keystream. No nonzero function g and no function h were

observed such that fg = h, when deg(g) + deg(h) < n− 2 [5]. If this is true for all n, then the time
complexity and keystream needed of the fast algebraic attack is not much better than the classical
algebraic attack and the Rφnjon-Helleseth attack.

Example 3: Let the generator polynomial

m(x) = x16 + x13 + x12 + x11 + x10 + x6 + x2 + x+ 1,

and the filter function f(x) be the 16-variable Carlet-Feng function with α = β2, where β =
(0, ..., 0, 1)T . Let the m-sequence be

(0011011000000000000000100111...).

Then the first 6 bits of keystream is (c0, c1, . . . , c5) = (010100).
Suppose we receive the first 6 bits of the keystream. Clearly, s = 2 and ct + ct+s = 1 when

t = 3. Therefore we can determine the value of β2r+3 from c3 = 1:

β2r+3 = β2(2
n−1−2) = β−3 = (1011000000000000)T ,

which is the state of the register at time t = 3.
As a comparison, the classical algebraic attack needs at least 215 + 1

2

(
16
8

)
− 1 bits of keystream,

and the Rφnjom-Helleseth attack needs 216 − 3 bits of keystream. The keystream needed in our
attack here is only 6 bits.

The time complexity of the classical algebraic attack is roughly O(245), and the Rφnjom-
Helleseth attack has complexity roughly O(216). For any Carlet-Feng function of n-variable, it
was conjectured in [5] that no nonzero function g and no function h exist such that fg = h, when
(deg(g), deg(h)) = (1, n−3) for n even. If this is true, then the time complexity of the fast algebraic
attack is roughly O(216) and it needs about 216− 19 bits of keystream. Our attack can recover the
state by hand very easily.
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6 A 2-order Algebraic Attack on
Rotation Symmetric Boolean Functions

The second common class of Boolean functions we attack is rotation symmetric Boolean functions.
Define (see [18])

ρkn(xi) =

{
xi+k, if i+ k ≤ n,
xi+k−n, if i+ k > n.

Let x = (x1, . . . , xn)T . We can extend the definition of ρkn on tuples as follows:

ρkn(x) = (ρkn(x1), . . . , ρ
k
n(xn))T .

An n-variable Boolean function f is called rotation symmetric Boolean function (RSBF) if for each
input x ∈ Fn

2 , f(ρin(x)) = f(x) for 1 ≤ i ≤ n− 1.

Theorem 2. Let f be an n-variable rotation symmetric Boolean function. Then the 2-order alge-
braic immunity of f is equal to 1.

Proof. For any filter generator, let m(x) = m0 + m1x + ... + mn−1x
n−1 + xn be its generator

polynomial, and M be its generator matrix. We have

f(Mx) = f(x2, . . . , xn, x1 +m1x2 + · · ·+mn−1xn)

= f(x2, . . . , xn, x1) + (m1x2 + · · ·+mn−1xn)(f(x2, . . . , xn, 0) + f(x2, . . . , xn, 1))

= f(x1, x2, . . . , xn) + (m1x2 + . . .+mn−1xn)(f(0, x2, . . . , xn) + f(1, x2, . . . , xn)).

Therefore,

f(x) + f(Mx) = (m1x2 + · · ·+mn−1xn)(f(0, x2, . . . , xn) + f(1, x2, . . . , xn)),

and m1x2 + · · ·+mn−1xn + 1 is an annihilator of it. QED
Again, note that for any generator matrix M , the 2-order algebraic immunity of f relative to

M is equal to 1.
If c0 +c1 6= 0, we get m1x2 + · · ·+mn−1xn = 1 and f(0, x2, . . . , xn)+f(1, x2, . . . , xn) = 1. From

the latter equation, the value of x1 can be obtained in many cases. In general, if ct + ct+1 6= 0,
the linear equations can easily be obtained from the generator polynomial. Particularly, for the
majority function [12, 20]:

f(x1, x2, ..., xn) =

{
0, if wt(x) < dn2 e,
1, otherwise.

If c0 + c1 6= 0, we have f(0, x2, . . . , xn) = 0 and f(1, x2, . . . , xn) = 1. Therefore, we can get the
following two linear equations: m1x2 + . . .+mn−1xn = 1 and

x1 =

{
0, if f(x1, x2, ..., xn) = 0,
1, if f(x1, x2, . . . , xn) = 1.

Algorithm for the attack.
1. Find some t such that ct + ct+1 6= 0.
2. Deduce some linear equations at these time t, which can easily be obtained from the generator
polynomial.
3. Solve these linear equations.
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This attack is very efficient, and the time complexity of the attack is roughly O(n3). While
the classical algebraic attacks, the Rφnjom-Helleseth attack and the fast algebraic attacks need
exponential time on n in most cases. Moreover, this attack needs very few bits of keystream, which
can be seen from the following examples (one example with a RSBF will be given in the Appendix
and here we provide an example with a symmetric Boolean function).

Example 4: Let the generator polynomial m(x) = x8 + x7 + x6 + x + 1, the initial state be

(00000001)T , and the filter function f(x) = σ
(8)
1 + σ

(8)
3 + σ

(8)
4 + σ

(8)
6 + σ

(8)
8 (deg(f) = 8, AI(f) = 4

and nl(f) = 70 [1]), where σ
(8)
i denotes 8-variable homogeneous symmetric Boolean function which

contains of all terms of degree i, for i = 1, 3, 4, 6, 8. Then the sequence is

(000000011011010100010010111100...)

and the first 18 bits of keystream is (100111000111110101).
Suppose we receive the first 18 bits of keystream. Then we have

x2 + x7 + x8 = 1 (from c0 + c1 = 1),

x2 + x3 + x4 + x8 = 1 (from c2 + c3 = 1),

x2 + x4 + x5 + x6 + x7 + x8 = 1 (from c5 + c6 = 1).

x3 + x4 + x5 + x7 + x8 = 1 (from c8 + c9 = 1).

x3 + x4 + x5 + x6 + x8 = 1 (from c13 + c14 = 1).

x1 + x2 + x4 + x5 + x6 + x8 = 1 (from c14 + c15 = 1).

x1 + x3 + x5 + x6 + x8 = 1 (from c15 + c16 = 1).

x1 + x4 + x6 + x8 = 1 (from c16 + c17 = 1).

Solving these equations, we recover the initial state (00000001)T .
In comparison, the classical algebraic attack would need

∑4
i=1

(
8
i

)
= 162 bits of keystream, the

fast algebraic attacks need more than 162 bits of keystream and the Rφnjom-Helleseth attack needs
about

∑8
i=1

(
8
i

)
= 255 bits of keystream. The keystream needed in our attack is only 18 bits.

To recover the initial state, the classical algebraic attack needs to solve the linear equations in
162 variables, the Rφnjom-Helleseth attack and the fast algebraic attacks need many calculations
to get the linear equations in 8 variables. Our attack can get linear equations in 8 variables easily.

Ending this section, we consider the case when the register is of length n and f is an l-variable
RSBF. If there are j gaps, i.e., the filter function is

f ′(x) = f(x1, . . . , xk1 , xk1+r1 , . . . , xk2 , xk2+r2 , . . . , xkj , xkj+rj , . . . , xn),

then we have the following.

Theorem 3. The 2-order algebraic immunity of f ′ relative to M is at most j + 1.

Proof.

f ′(Mx) = f(x2, . . . , xk1+1, xk1+r1+1, . . . , xkj+1, xkj+rj+1, . . . , xn, x1 + h(x))

= f(x1, . . . , xk1+1, xk1+r1+1, . . . , xkj+1, xkj+rj+1, . . . , xn) + h(x)g(x),
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where h(x) = m1x2 + · · ·+mn−1xn and g(x) is an (l − 1)-variable function. Therefore,

f ′(x) + f ′(Mx) = f1 · (xk1+1 + xk1+r1) + f2 · (xk2+1 + xk2+r2) + · · ·+ fj · (xkj+1 + xkj+rj )

+f12 · (xk1+1xk2+1 + xk1+r1xk2+r2) + · · ·+ fj−1,j · (xkj−1+1xkj+1 + xkj−1+rj−1
xkj+kj )

+ . . .

+f12...j · (xk1+1 · · · xkj+1 + xk1+r1 · · · xkj+rj ) + h(x)g(x),

where fi are (l − j)-variable functions on x1, . . . , xk1 , xk1+r1+1, . . . , xkj , xkj+rj+1, . . . , xn. Clearly,

(h(x) + 1)

j∏
i=1

(xki+1 + xki+ri + 1)

is an annihilator of f ′(x) + f ′(Mx), and the result follows. QED
There are many RSBFs f ∈ Bl with optimum algebraic immunity d l2e. However, consider the

first two equations, we can get an equation of low degree if the number of gaps is small. To resist
the 2-order algebraic attack, there should be enough gaps (at least close to d l2e). Moreover, these
gaps should satisfy some conditions to ensure that AI(f ′(x) + f ′(M ix)) are all high, for i ≥ 1.
However, even if AI2(f ′(x)) is high, there are likely to be a small r such that AIr(f ′(x)) is low.
It seems to be hard to construct secure stream ciphers using RSBFs as filter functions.

7 Conclusion

In this paper, we introduced higher order algebraic attacks. In particular, we computed the 2-order
algebraic immunity of the Carlet-Feng functions and the rotation symmetric Boolean functions
which is equal to 1. This led to very efficient attacks on filter generators using functions from these
classes, that greatly outmatch all previously known attacks. In fact, many other functions with
good cryptographic properties may be also vulnerable to high order algebraic attacks. It is left as
an open problem to investigate higher order algebraic attacks on other classes of Boolean functions.
In particular, functions that use a subset of the state variables, determined e.g. by a difference set.

To construct a secure stream cipher, higher order algebraic immunities of Boolean functions
must be considered.
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8 Appendix

Example 5: Let the generator polynomial m(x) = x5 + x2 + 1 and the initial state be (00110)T .
Let

G(x) =

{
1, if wt(x) ≤ 2,
0, if wt(x) > 2,

O1 = {(1, 0, 0, 1, 0), (0, 1, 0, 0, 1), (1, 0, 1, 0, 0), (0, 1, 0, 1, 0), (0, 0, 1, 0, 1)}
O2 = {(1, 0, 0, 1, 1), (1, 1, 0, 0, 1), (1, 1, 1, 0, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1)},

and the filter function

R(x) =

{
G(x) + 1, if x ∈ O1 ∪O2,
G(x), otherwise.

R(x) is a RSBF with deg(f) = 4, AI(f) = 3 and nl(f) = 12 (see [19]). Then a full period of the
sequence is

(1110001101110101000010010110011)

and the first 16 bits of keystream is

(c0, c1, ..., c15) = (1000100000111110).

In fact, let the initial state be (x1, x2, x3, x4, x5)
T . Then the sequence is

(x1, x2, x3, x4, x5, x1 + x3, x2 + x4, x3 + x5, x1 + x3 + x4, x2 + x4 + x5, ...).

Suppose we receive the first 16 bits of keystream. Then we have

x3 = 1 (from c0 + c1 = 1),

x1 + x3 = 1 (from c3 + c4 = 1),

x2 + x4 = 1 (from c4 + c5 = 1),

x1 + x2 + x3 = 1 (from c9 + c10 = 1),

x1 + x2 + x4 + x5 = 1 (from c14 + c15 = 1).

Solving these equations, we recover the initial state (x1, x2, x3, x4, x5)
T = (00110)T .

In comparison, the classical algebraic attack would need
∑3

i=1

(
5
i

)
= 25 bits of keystream, the

fast algebraic attacks need more than 25 bits of keystream and the Rφnjom-Helleseth attack needs
about

∑4
i=1

(
5
i

)
= 30 bits of keystream. The keystream needed in our attack is much less.

To recover the initial state, the classical algebraic attack needs to solve the linear equations in
25 variables, the Rφnjom-Helleseth attack and the fast algebraic attacks need many calculations
to get the linear equations in 5 variables. Our attack can get linear equations in 5 variables easily,
and is much more efficient than theirs.
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