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Abstract. It had been widely believed that the indifferentiability framework ensures composition in
any security game. However, Ristenpart, Shacham, and Shrimpton (EUROCRYPT 2011) demonstrated
that for some multi-stage security, there exists a cryptosystem which is secure in the random oracle
(RO) model but is broken when some indifferentiable hash function is used. However, this does not
imply that any cryptosystem is broken when a RO is replaced with the indifferentiable hash function.
They showed that the important multi-stage security: the chosen-distribution attack (CDA) security is
preserved for some public key encryption (PKE) schemes when a RO is replaced with the indifferentiable
hash function proposed by Dodis, Ristenpart, and Shrimpton (EUROCRYPT 2009). An open problem
from their result is the multi-stage security when a RO is replaced with other indifferentiable hash
functions. We show the following for the important indifferentiable hash functions, Prefix-free Merkle-
Damg̊ard, Sponge, and chop Merkle-Damg̊ard.
– For any PKE scheme, the PRIV security, which is a multi-stage security, is preserved when a RO

is replaced with the indifferentiable hash functions.
– All existing hedged PKE schemes, which is CDA-secure in the RO model, are CDA-secure when

using the indifferentiable hash functions.

1 Introduction

The indifferentiable composition theorem of Maurer, Renner, and Holenstein [23] is that if a functionality
F (e.g., a hash function from an ideal primitive) is indifferentiable from a second functionality F ′ (e.g.,
a random oracle (RO)), the security of any cryptosystem is preserved when F ′ is replaced with F . The
important application of this framework is the RO model security, because many practical cryptosystems
e.g., RSA-OAEP [8] and RSA-PSS [9] are design by the RO methodology. Usually, ROs are instantiated by
hash functions such as SHA-1 and SHA-256 [26]. However, the Merkle-Damg̊ard hash functions [18, 24] such
as SHA-1 and SHA-256, are not indifferentiable from ROs [17]. So many indifferentiable (from a RO) hash
functions have been proposed, e.g., the finalists of the SHA-3 competition [3, 11, 20, 21, 28, 1, 2, 10, 12, 17, 16,
19]. The indifferentiable security is thus an important security of hash functions.

Recently, Ristenpart, Shacham, and Shrimpton [27] showed that in some multi-stage security game a RO
secure scheme is broken when the indifferentiable hash functions are used. They considered the multi-stage
security game called CRP and showed that the hash-based challenge response protocol is CRP-secure in
the RO model but broken when the indifferentiable hash functions are used. The CRP security game for
the n-bit (output length) hash function H is the two stage security game. In the first stage, for a random
message M of 4n bits, the first stage adversary A1 derives the some state st of 2n bits. In the second stage,
the second stage adversary A2 receives st, and for a random 2n-bit challenge value C outputs an n-bit
value z. Then, the adversary wins if z = H(M ||C). Consider the chop MD hash function Hh(M1||M2) =
chopn(h(h(IV,M1),M2)) which is indifferentiable from a RO [17], where h : {0, 1}4n → {0, 1}2n is a RO,
|M1| = |M2| = 2n, and chopn : {0, 1}2n → {0, 1}n outputs the right n-bits of the input. Clearly, the
following adversary can win with probability 1 when H is the chop MD hash function. First, A1 receives
M , calculates st = h(h(IV,M1),M2) where M = M1||M2, and outputs st. Second, A2 receives st, and for
a random challenge C, outputs z = chopn(h(st, C)). On the other hand, when H is a RO, since A2 cannot
receive several value of M , the probability that the adversary wins is negligible. This result implies that the
indifferentiable composition theorem does not ensure any multi-stage security when a RO is replaced with
indifferentiable hash functions.

The chosen-distribution attack (CDA) security game is an important multi-stage security game, which
is the security goal for deterministic [4, 6, 13], hedged [5], and efficiently searchable [4] public key encryption



(PKE), wherein there are several PKE schemes which are proven in the RO model [4, 5]. For the CDA
secure PKE schemes EwH [4] and REwH1 [5] (in the RO model), Ristenpart et al. salvaged the important
indifferentiable hash function, the NMAC-type hash function [19], which was proposed by Dodis, Ristenpart,
and Shrimpton, and which is employed in the SHA-3 finalist Skein [20]. They showed that these PKE schemes
are non-adaptive CDA secure in the chosen-plaintext attack (CPA) case when the NMAC-type hash function
is used.

The open problem from the paper of Ristenpart et al. is thus the CDA security when a RO replaced
with other indifferentiable hash functions. Especially, it is important to consider the security when a RO is
replaced with the SHA-3 finalists, because one of the SHA-3 finalists will be published as a standard hash
function (FIPS) [25]. So we consider the important hash functions, Prefix-free Merkle-Damg̊ard (PFMD) [17],
Sponge [10] and chop Merkle-Damg̊ard (chop MD) [17]. The PFMD hash function is employed in the SHA-3
finalist BLAKE [3]. The Sponge hash function is employed in the SHA-3 finalist Keccak [11]. The chop
Merkle-Damg̊ard hash function is employed in SHA-224 and SHA384 [26]. We show the following.

– The adaptive PRIV security and the non-adaptive PRIV security of any PKE scheme in both chosen-
ciphertext attack (CCA) and CPA cases are preserved when a RO is replaced with these hash functions.

– All existing hedged PKE schemes [5], REwH, RtD, and PtD, which are CDA secure in the RO model, is
CDA secure when using these hash functions.

The PRIV security [4] is the special case of the CDA security which is the security goal for the deterministic [4,
6, 13] and efficiently searchable [4] PKE schemes. Note that our results cover all PKE schemes which are
CDA secure in the RO model. The advantages of our result to the result of Ristenpart et al. are that (1) our
result ensures the stronger security (adaptive and CCA), and (2) our result ensures the CDA security of all
existing PKE schemes which are CDA secure in the RO model. Since several PKE schemes in [5, 4] support
the CCA case or the adaptive case, the analysis for the stronger security cases is important.

(Reset) Indifferentiability [27]. To prove the CDA security, we use the reset indifferentiability framework
of Ristenpart et al. The reset indifferentiability ensures composition in any security game: if a hash function
HP which uses an ideal primitive P is reset indifferentiable from another ideal primitive P ′, any security of
any cryptosystem is preserved when P ′ is replaced with HP .

Recall the original [23] and reset [27] indifferentiability (from a RO) framework. The original indif-
ferentiable security game from a RO for HP is that a distinguisher A converses either with (HP , P ) or
(RO,SRO). S is a simulator which simulates P with the relation among HP and P . If the probability that
the distinguisher A hits the conversing world is small, then HP is indifferentiable from a RO. In the reset
indifferentiable security game, the distinguisher can reset the simulator to its initial state at arbitrary times.

To prove the original indifferentiable security, the simulator needs to record the query-response history.
For a repeated query P (x) where z was returned, the value z is returned. So, for a repeated query to the
simulator where z was returned, the simulator should return z. When the internal state is reseted, the
simulator forgets the value and cannot return. Thus one cannot use the reset indifferentiability from a RO
to prove the CDA security when a RO is replaced with the indifferentiable hash functions.

Our Approach. We thus use the reset indifferentiability from a variant of a RO. We propose a variant which
covers many indifferentiable hash functions. We call the variant “Versatile Oracle” (VO). VO consists of a
RO and auxiliary oracles. The auxiliary oracles are used to record the query-response history of a simulator.
VO thus enables to construct a simulator which does not update the internal state and which is unaffected
by the reset function. We show that the PFMD hash function, the Sponge hash function, and the chop MD
hash function are reset indifferentiable from VOs. Recently, Andreeva et al. [1] and Chang et al. [16] consider
the indifferentiable security of the BLAKE hash function with the more concrete structure than PFMD. In
the appendix E, we prove that the BLAKE hash function with the concrete structure is reset indifferentiable
from VO. Then, we show the following in both CPA and CCA cases and both adaptive and non-adaptive
cases.

– For any PKE scheme, the PRIV security is preserved when a RO is replaced with VO.
– The CDA security of the existing hedged PKE schemes is preserved when a RO is replaced with VO.

The reset indifferentiability composition theorem ensures that the PRIV security and the CDA security are
preserved when a RO is replaced with the indifferentiable hash function. Our results cover all existing CDA
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ROn(M)

1 if F[M ] =⊥, F[M ]
$←− {0, 1}n;

2 return F[M ];

ROj
nj

(M)

1 If Fj [M ] 6=⊥, Fj [M ]
$←− {0, 1}nj ;

2 return Fj [M ];

RO(i)
wi(M)

1 if F∗
i [M ] 6=⊥ then F∗

i [M ]
$←− {0, 1}wi ;

2 return F∗
i [M ];

T O(i)(y)

1 if ∃1M s.t. F∗
i [M ] = y then return M ;

3 return ⊥;

Et(k, x)

1 if Et[k, x] =⊥, y
$←− {0, 1}mt\T+

t [k];
2 Updatet(k, x, y);
3 return Et[k, x];

Dt(y)

1 if Dt[k, y] =⊥, x
$←− {0, 1}mt\T−

t [k];
2 Updatet(k, x, y);
3 return Dt[k, y];

Fig. 1. Versatile Oracle VO

or PRIV secure PKE schemes. Note that this is the first time positive result for the reset indifferentiability
(from VO).

2 Preliminaries

Notation. For two values x, y, x||y is the concatenated value of x and y. For some value y, x ← y means

assigning y to x. When X is a non-empty finite set, we write x
$←− X to mean that a value is sampled

uniformly at random from X and assign to x. ⊕ is bitwise exclusive or. |x| is the bit length of x. For l× r-bit
value M , div(r,M) divides M into r-bit values (M1, . . . ,Ml) and outputs them where M1|| · · · ||Ml = M .
For a formula F , if there exists an only one value M such that F (M) is true, we denote ∃1M s.t. F (M).

(Reset) Indifferentiability [23, 27]. In the reset indifferentiability [27], for a functionality F , a private
interface F.priv and a public interface F.pub are considered, where adversaries have oracle access to F.pub
and other parties (honest parties) have oracle access to F.priv. For example, for a cryptosystem in the F
model, an output of the cryptosystem is calculated by accessing F.priv and an adversary has oracle access
to F.pub. In the RO model the RO ROn : {0, 1}∗ → {0, 1}n has both interfaces. Let HP : {0, 1}∗ → {0, 1}n

be a hash function that utilizes an ideal primitive P . The interfaces of HP are defined by HP .priv = HP

and HP .pub = P .
For two functionalities F1 (e.g., hash function) and F2 (e.g. a variant of a RO), the definition of the reset

indifferentiability for F1 from F2 is as follows.

Advr-indiff
F1,F2,S(A) = |Pr[AF̄1.priv,F̄1.pub ⇒ 1] − Pr[AF2.priv,ŜF2.pub

⇒ 1]|

where Ŝ = (S, S.Rst), F̄1.priv = F1.priv and F̄1.pub = (F1.pub, nop). S.Rst takes no input and when run
reinitializes all of S. nop takes no input and does nothing. We say F1 is reset indifferentiable from F2 if
there exists a simulator S such that for any distinguisher A the advantage of the reset indifferentiability is
negligible. This framework ensures that if F1 is reset indifferentiable from F2 then the any stage security of
any cryptosystem is preserved when F2 is replaced with F1. Please see Theorem 6.1 in the full version of
[27].

When S.Rst and nop are removed from the reset indifferentiable security game, it is equal to the original
indifferentiable security game [23]. In the original indifferentiable security game, the distinguisher interacts
with (F1.priv, F1.pub) and (F2.priv, SF2.pub). We denote the advantage of the indifferentiable security by
Advindif

F1,F2,S(A) for a distinguisher A. We say F1 is indifferentiable from F2 if there exists a simulator S such
that for any distinguisher A the advantage is negligible.

3 Versatile Oracle

In this section, we propose a versatile oracle VO. VO consists of a RO ROn, ROs ROj
nj

(j = 1, . . . , v),

traceable random oracles T RO(i)
wi

(i = 1, . . . , u), and ideal ciphers IC
(t)
kt,mt

(t = 1, . . . , s). The private in-
terface is defined by VO.priv = ROn and the public interface is defined by VO.pub = (ROn,ROj

nj
(j =

1, . . . , v), T RO(i)
wi

(i = 1, . . . , u), IC(t)
kt,mt

(t = 1, . . . , s)). VO can be implemented as Fig. 1.
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PFMDh(M)

1 (M1, . . . , Mi) ← div(m, pfpad(M))
2 x ← IV ;
3 For j = 1, . . . , i, x ← h(x||Mj);
4 Ret x;

S(x, y)

1 M∗ ← T O(1)(x);
2 if x = IV then
3 if ∃M s.t. pfpad(M) = y then z ← ROn(M);

4 else z ← RO(1)
n (y);

5 else if M∗ 6=⊥ then
6 if ∃M s.t. pfpad(M) = M∗||y then z ← ROn(M);

7 else z ← RO(1)
n (M∗||y);

8 else z ← RO1
n(x||y);

9 return z;

Fig. 2. PFMD Hash Function (left) and Simulator S (right)

ROn is shown in Fig. 1 (Left) where the input length is arbitrary and the output length is n bits. F is a
(initially everywhere ⊥) table.

ROj
nj

is shown in Fig. 1 (Left) where the input length is arbitrary and the output length is nj bits, and
Fj is a (initially everywhere ⊥) table. Note that the nj is defined in our proofs.

T RO(i)
wi

is shown in Fig. 1 (Center) which consists of a RO RO(i)
wi

and a trace oracle T O(i). The output
length of RO(i)

wi
and the input length of T O(i) are wi bits, and F∗

i is a (initially everywhere ⊥) table. Note
that the length wi is defined in our proofs.

IC
(t)
kt,mt

can be implemented as Fig. 1 (Right) which consists of an encryption oracle Et and a decryption
oracle Dt where the first input of Et is the key of kt bits and the second input is the plain text of mt bits,
and the first input of Dt is the key of kt bits and the second input is the cipher text of mt bits. Et and
Dt are (initially everywhere ⊥) tables where for the query Et(k, x) (resp. Dt(k, y)) the output is recored
in Et[k, x] (resp. Dt[k, y]). T+

t [k] and T−
t [k] are (initially empty) tables which stores all values of Et[k, ·]

and Dt[k, ·], respectively. Updatet(k, x, y) is the procedure wherein the tables Et, Dt, T
+
t [k] and T−

t [k] are
updated, Et[k, x] ← y, Dt[k, y] ← x, T+

t [k] ← y and T−
t [k] ← x.

4 Reset Indifferentiability for Hash Functions

In this section, we consider the reset indifferentiable security of the important hash functions, prefix-free
Merkle-Damg̊ard (PFMD) [17] and Sponge [10]. We show that these hash functions are reset indifferentiable
from VOs.

4.1 Reset Indifferentiability for the PFMD Hash Function

The PFMD hash function is employed in the SHA-3 finalist BLAKE hash function [3]. In the document of
[3], the indifferentiable security is proven when the compression function is a RO.

The PFMD hash function is illustrated in Fig. 2 (Left) where IV is the initial value of n bits, h : {0, 1}d →
{0, 1}n is a compression function, d = n + m, and pfpad : {0, 1}∗ → ({0, 1}m)∗ is an injective prefix-free
padding where for any different values M,M ′, pfpad(M) is not a prefix of pfpad(M ′) and the inverse function
of pfpad is efficiently computable.

We evaluate the reset indifferentiable security from VO for the PFMD hash function where h is a RO.
We define the parameter of VO as v = 1, u = 1 n1 = n, and w1 = n. Note that in the reset indifferentiable
proof ideal ciphers are not used. Thus in this case, VO.priv = ROn and VO.pub = (ROn,RO1

n, T RO(1)
n ).

The following theorem shows that PFMDh is reset indifferentiable from VO.

Theorem 1. There exists a simulator S such that for any distinguisher A, the following holds,

Advr-indiff
PFMDh,VO,S(A) ≤ O

(
(lqH + qh)2

2n

)
where A can make queries to PFMDh/ROn and h/S at most qH , qh times, respectively, and l is a maximum
number of blocks of a query to PFMDh/ROn. S makes at most 2qh queries and runs in time O(qh). ¨
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Algorithm SpongeP (M)

1 M ′ ← padS(M);
2 (M1, . . . , Mi) ← div(n, M);
3 s = IV ;
4 for i = 1, . . . , i do s = P (s ⊕ (Mi||0c));
5 return the left most n-bits of s;

S−(z, w)

01 M ← T O(1)(w);
02 if M 6=⊥ and |M | = n then
03 x ← IV1 ⊕ M ; y ← IV2;
04 if M 6=⊥ and |M | > n then
05 let M = M∗||m (|m| = n);
06 if unpadS(M∗) = M ′ 6=⊥ then x ← m ⊕ROn(M ′);
07 else x ← m ⊕RO1

n(M∗);

08 y ← RO(1)
c (M∗);

09 else x||y ← P−1(z||w);
10 return x||y;

S+(x, y)

01 M∗ ← T O(1)(y);
02 if y = IV2 then
03 if unpadS(IV1 ⊕ x) = M 6=⊥ then z ← ROn(M);
04 else z ← RO1

n(IV1 ⊕ x);

05 w ← RO(1)
c (x ⊕ IV1);

06 else if M∗ 6=⊥ then
07 if unpad(M∗) = M ′ 6=⊥ then m ← x ⊕ROn(M ′);
08 else m ← x ⊕RO1

n(M∗);
08 if unpadS(M∗||m) = M 6=⊥ then z ← ROn(M);
09 else z ← RO1

n(M∗||m);

10 w ← RO(1)
c (M∗||m);

11 else z||w ← P(x||y);
12 return z||w;

Fig. 3. Sponge Hash Function (left) and Simulator S (S+ in right and S− in left)

The Simulator S. We define the simulator S in Fig. 2. The S’s task is to simulate the compression function
h such that ROn and S are consistent, that is, the relation of the query-responses among PFMDh and h
holds that among ROn and S as well. Namely, for a value M PFMDS(M) = ROn(M). We explain that the
simulator S succeeds in the simulation of h with the consistency. For the ordered queries S(IV,M1), S(z1, M2)
were made where z1 = S(IV,M1), z2 = S(z1,M2), the structure of S ensures that the responses z1 and z2

are the responses of RO(1)
n (M1) and RO(1)

n (M1||M2), respectively, if there does not exists M such that
PFMD(M) = M1||M2. Thus, the Merkle-Damg̊ard style path (M1||M2, z2) is recoded in the table F∗

1 of
RO(1)

n . Then for the query S(z2,M3), the response is defined by the output of ROn(M) if there exists M

such that pfpad(M) = M1||M2||M3. Notice that M1||M2 can be obtained by the query T O(1)(z2). Thus the
simulator S succeeds in the simulation of h. The formal proof is given in Appendix B.

Remark 1. The EMD hash function [7] and the MDP hash function [22] are designed from the same design
spirit as the PFMD hash function, which are designed so that the length extension attack is resisted. Thus,
by the similar proof, one can prove that the EMD hash function and the MDP hash function are reset
indifferentiable from VOs where the compression function is a RO.

4.2 Reset Indifferentiability for Sponge

The Sponge hash function is a permutation-based hash function which employed in the SHA-3 candidate
Keccak [11].

Fig. 3 (left) illustrates the Sponge hash function where IV is the initial value of b bits, padS : {0, 1}∗ →
({0, 1}n)∗ is an injective padding function such that the final block message Mi 6= 0, P : {0, 1}b → {0, 1}b is
a permutation and b = n+ c. The inverse function of padS is denoted by unpadS : ({0, 1}n)∗ → {0, 1}∗ ∪{⊥}
efficiently computable. unpadS(M∗) outputs M if there exists M such that padS(M) = M∗, and outputs ⊥
otherwise. Note that the Sponge hash function of Fig. 3 is the special case of the general Sponge hash function
where the output length is variable. The output lengths of SHA-3 are 224, 256, 384 and 512 bits and in this
case the Keccak hash function has the structure of Fig. 3 1. We conjecture that the reset indifferentiable
1 In the Keccak case, b = 1600 and c = 576. So, the output length of Keccak is shorter than n. Notice that the security

analysis of this case is the same as the case that the output length n-bit, because the advantage of adversaries in
the shorter output length case is decreased from that of adversaries in the case that the output length is n-bit. In
the shorter output length case (assume that the output length is n′-bit), VO.priv is chopn−n′ ◦ ROn and VO is
(ROn,RO1

c , T O1,RO2
r,P,P−1) where chopn−n′ is the chop function where the right most n−n′-bits of the input

are chopped.
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chopMD(M)

1 M ′ ← padc(M);
2 (m1, . . . , mi) ← div(d, M ′);
3 x ← IV ;
4 for j = 1, . . . , i do x ← h(x, mj);
5 return the right n-bits of x;

S(x, m) where x = x1||x2 (|x1| = s, |x2| = n)

01 M ← T O(1)(x1);
02 if x = IV then
03 z ← ROn(m);

04 w ← RO(1)
s (m);

05 else if M 6=⊥ then
06 z ← ROn(M ||m);

07 w ← RO(1)
s (M ||m);

08 else w||z ← RO1
n+s(x, m);

09 return w||z;

Fig. 4. chop MD (left) and S (right)

security of the general Sponge hash function can be proven by extending the following analysis of the Sponge
hash function. We denote the left most n-bit value and the right most c bit value of IV by IV1 and IV2,
respectively. Namely, IV = IV1||IV2.

We evaluate the reset indifferentiable security of the Sponge hash function, where the permutation P is
a forward oracle of a random permutation and P−1 is its inverse oracle 2. We define the parameter of VO
as u = 1, s = 1, w1 = c, and m1 = b, and the ROs ROj

nj
are not used. We don’t care the key length k1,

since in this proof we fix the key by some constant value, that is the fixed key ideal cipher is used. Since
the fixed key ideal cipher is a random permutation of b bits, we use the random permutation (P,P−1) of b

bits instead of the ideal cipher IC
(1)
k1,b where P is a forward oracle and P−1 is an inverse oracle. Thus, in this

case, VO.priv = ROn and VO.pub = (ROn, T RO(1)
c ,P,P−1). The following theorem is that the sponge

hash function SpongeP is reset indifferentiable from VO.

Theorem 2 (Sponge is reset indifferentiable from VO). There exists a simulator S = (S+, S−) such
that for any distinguisher A, the following holds.

Advr-indiff
SpongeP ,VO,S(A) ≤ (1 − 2−n)q2 + (1 + 2−n)q

2c+1
+

3q2

2b+1
+

q(3q + 1)
2c−1

where A can make at most q queries. S makes at most 3q queries and runs in time O(q). ¨

The Simulator S. We define the simulator S in Fig. 3. The S’s task is to simulate the random permutation
(P, P−1) such that ROn and S are consistent, that is, for a value M , SpongeS+(M) = ROn(M). For
the ordered queries S+(x1, IV2), S+(x2, w1) where z1||w1 = S+(x1, IV2), z2||w2 = S+(x2, w1), the structure
of S ensures that z1 = RO1

n(unpadS(M1)), w1 = RO(1)
c (M1), z1 = ROn(unpadS(M1||M2)), and w1 =

RO(1)
c (M1||M2)) where M1 = IV1 ⊕ x1 and M2 = z1 ⊕ x2. Note that in this case unpadS(M1) 6=⊥ and

unpadS(M1||M2) 6=⊥. Thus, the path (M1||M2, w2) is recoded in the table F∗
1 where F∗

1[M1||M2] = w2. Then,
for the query S+(x3, w2), the response w3||z3 is defined as w3 = ROn(M) and z3 = RO(1)

c (M1||M2||M3),
if unpad(M1||M2||M3) = M 6=⊥ where M3 = z2 ⊕ x3. Notice that M1||M2 and z2 can be obtained by
the queries T O(1)(w2) and ROn(unpad(M1||M2)). Thus the simulator S succeeds in the simulation of the
random permutation. The formal proof is given in Appendix C.

4.3 Reset Indifferentiability for chop Merkle-Damg̊ard

The chop Merkle-Damg̊ard (chop MD) hash function is employed in SHA-2 family, SHA-224 and SHA-
384 [26].

Fig. 4 illustrates the chop MD hash function chopMDh : {0, 1}∗ → {0, 1}n. h : {0, 1}d+n → {0, 1}n is
a compression function. padc is an injective padding function such that the inverse function is efficiently
computable.

We evaluate the reset indifferentiable security of the chop MD hash function where h is a RO. We define
the parameter VO as v = 1, u = 1, n1 = s + n and w1 = s. Note that the ideal ciphers are not used.
2 The security of the Sponge hash function was evaluated in the random permutation model [10].
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CDAA1,A2
AE,F

b
$←− {0, 1}

(pk, sk)
$←− K

(m0,m1, r) ← AF.pub
1

c ← EF.priv(pk,mb, r)

b′ ← AF.pub
2 (pk, c)

return (b = b′)

CDAjA1,A2
AE,F (j = 1, 2)

b
$←− {0, 1}

(pk, sk)
$←− K

((m0,m1, r), i) ← AF.pub
1

c ← EF.priv(pk,mb, r)

b′ ← AF.pub
2 (pk, c)

return (biti(mb, r) = b′)

Fig. 5. CDA Security Game (left) and CDAj Security Game (j = 1, 2) (right)

Thus, in this case, VO = (ROn,RO1
s+n, T RO(1)

s ). The following theorem shows that chopMDh is reset
indifferentiable from VO.

Theorem 3. There exists a simulator S such that for any distinguisher A, the following holds,

Advr-indiff
chopMDh,VO,S(A) ≤ (3n + 1)qh + nqH

2s
+

(qH + qh)
2n−1

+
(lqH + qh)2

2s+n+1
+

q2
h

2s−1
+

(qh + 1)2

2n

where A can make queries to chopMDh/ROn and h/S at most qH , qh times, respectively, and l is a maximum
number of blocks of a query to chopMDh/ROn. S makes at most 3qh queries and runs in time O(qh). ¨

The Simulator S. We define the simulator S in Fig. 4. In the proof of Theorem 3, the padding function
padc is removed. Thus the queries to chopMDh and ROn are in ({0, 1}d)∗. Note that the chop Merkle-
Damg̊ard hash function with the padding function is the special case of that without the padding function.
The S’s task is to simulate the compression function h such that ROn and S are consistent, that is, for
a value M , chopMDS(M) = ROn(M). For the ordered queries S(IV,M1), S(w1||w1, M2) where w1||z1 =
S(IV,M1), w2||z2 = S(w1||z1,M2), the structure of S ensures that z1 = ROn(M1), w1 = RO(1)

c (M1),
z2 = ROn(M1||M2), and w2 = RO(1)

c (M1||M2)). Thus, the path (M1||M2, w2) is recoded in the table
F∗

1 where F∗
1[M1||M2] = w2. Then, for the query S+(w2||z2,M3), the response w3||z3 is defined as w3 =

ROn(M1||M2||M3) and z3 = RO(1)
c (M1||M2||M3). Notice that M1||M2 can be obtained by the queries

T O(1)(w2). Thus the simulator S succeeds in the simulation of h. The formal proof is given in Appendix D.

5 Multi-Stage Security in the VO Model

We show the following. Note that the following security ensure both adaptive and non-adaptive cases and
both CCA and CPA cases.

– For any PKE scheme, the PRIV security [4] is preserved when a RO is replaced with VO.
– For all hedged PKE schemes [5], REwH, RtD, and PtD, the CDA security is preserved when a RO is

replaced with VO.

In this section, we use the following notations. Vectors are written in blodface, e.g., x. If x is a vector
then |x| denotes its length and x[i] denotes its i-th component for 1 ≤ i ≤ |x|. bitj(x) is the left j-th bit of
x[1]|| . . . ||x[|x|].
Public Key Encryption (PKE). Recall that a public key encryption scheme AE = (K, E ,D) consists
of three algorithms. Key generation K outputs a public key, secret key pair. Encryption E takes a public
key pk, a message m, and randomness r and outputs a cipher text. Decryption D takes a secret key, a
cipher text, and outputs a plaintext or a distinguished symbol ⊥. For vectors m, r with |m| = |r| = l we
denote by E(pk,m; r) the vector (E(pk,m[1]; r[1]), . . . , E(pk,m[l]; r[l])). We say that AE is deterministic if E
is deterministic. (That is, the length of the randomness is 0)

CDA Security. We explain the CDA security (we quote the explanation of the CDA security in [27]). Fig.
5 illustrates the non-adaptive CDA game in the CPA case for a PKE scheme AE using a functionality F .
We explain the adaptive case and the CCA case, later. This notion captures the security of a PKE scheme
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when the randomness r used may not be a string of uniform bits. For the remainder of this section, fix a
randomness length ρ ≥ 0 and a message length ω > 0. An (µ, ν)-mmr-source M is a randomized algorithm
that outputs a triple of vector (m0,m1, r) such that |m0| = |m1| = |r| = ν which is the size of vectors, all
components of m0 and m1 are bit strings of length ω, all components of r are bit strings of length ρ, and
(mb[i], r[i]) 6= (mb[j], r[j]) for all 1 ≤ i < j ≤ ν and all b ∈ {0, 1}. Moreover, the source has mini-entropy

µ, meaning Pr[(mb[i], r[i]) = (m′, r′)|(m0,m1, r)
$←− M] ≤ 2−µ for all b ∈ {0, 1}, all 1 ≤ i ≤ ν, and all

(m′, r′). A CDA adversary A1,A2 is a pair of procedures, the first of which is a (µ, ν)-mmr-source. The CDA
advantage for a CDA adversary A1,A2 against scheme AE using a functionality F is defined by

Advcda
AE,F (A1,A2) = 2 · Pr[CDAA1,A2

AE,F ⇒ true] − 1.

In the adaptive case, the adversary A1 can select multiple triples (m0,0,m0,1, r0), . . . , (mj,0,mj,1, rj) adap-
tively, where before selecting (mi,0,mi,1, ri), A1 can know cipher texts c0, . . . , ci−1 of (m0,b, r0), . . . , (mi−1,b, ri−1)
where b ∈ {0, 1}. The adversary A2 can receive its cipher texts c0, . . . , cj−1. In the CCA case, the adversary
A2 has oracle access to the decryption oracle where the queries don’t appear as a component of the cipher
text(s).

PRIV Security. The PRIV security is the special case of the CDA security when the PKE scheme AE
being considered has randomness length ρ = 0. Thus the PRIV security game for a PKE scheme AE using
a functionality F against adversary A1, A2 is equal to the CDA game when ρ = 0. The PRIV advantage for
a PRIV adversary A1,A2 is denoted by Advpriv

AE,F (A1,A2) which is equal to the CDA advantage with ρ = 0.

CDA1 Security. In the following proofs, we use a new security called CDA1. The CDA1 security game
is shown in Fig. 5 where A1 is a (µ, ν)-mmr-source and outputs i in addition to (m0,m1, r) and A2

outputs b′ where b′ ∈ {0, 1}. Fig. 5 is a non-adaptive and CPA case. In the adaptive case, A1 outputs
(m0,0,m0,1, r0), . . . , (mj−1,0,mj−1,1, rj−1) and A2 obtains its cipher texts c0, . . . , cj−1. In the adaptive case,
the CDA1 game returns (biti(m0,b, · · · ,mj−1,b, r1, · · · , rj−1) = b′). In the CCA case, the adversary A2 has
oracle access to the decryption oracle where the queries don’t appear as a component of the cipher text(s).
The CDA1 advantage for a CDA1 adversary A1,A2 against scheme AE using a functionality F is defined by

Advcda1
AE,F (A1,A2) = 2 · Pr[CDA1A1,A2

AE,F ⇒ true] − 1.

CDA2 Security. The CDA2 security game is the special case of the CDA1 security game. In the CDA2
security game, A1 outputs ((m0,m1, r), i) such that biti(mb, r) is a random bit, namely, for the output ofA1,
(m0,m1, r), Pr[biti(mb, r) = 1] = 1/2. The CDA2 advantage for a CDA2 adversary A1,A2 against scheme
AE using a functionality F is defined by

Advcda2
AE,F (A1,A2) = 2 · Pr[CDA2A1,A2

AE,F ⇒ true] − 1.

Clearly the following lemma holds.

Lemma 1. For any CDA2 adversary A1, A2 of a PKE scheme AE using a functionality F , there exists a
CDA1 adversary B1, B2 such that

Advcda2
AE,F (A1,A2) ≤ Advcda1

AE,F (B1, B2)

where the running time of B1, B2 is at most that of A1, A2. ¨

5.1 Tools of Our Security Proofs

Removing Random Oracle. Let ROn and RO∗ be ROs (in this case we don’t care the lengths of domain
and range spaces of RO∗). Let O1 be some oracle where O1.priv = ROn and O1.pub includes ROn, RO∗ and
other independent oracles. Let O2 be an oracle which is equal to O1 but excludes RO∗. The following lemma
ensures that the CDA security in the O2 model ensures that in the O1 model. Notice that the following
lemma ensures both the CPA case and the CCA case and both the non-adaptive case and the adaptive case.

8



Lemma 2. For any CDA adversary A1, A2, making queries at most qRO, qRO∗ , q times to ROn,RO∗ and
other oracles, there exists a CDA adversary A1,A2 such that

Pr[CDAA1,A2
AE,O1

⇒ true] ≤ Pr[CDAA1,A2
AE,O2

⇒ true].

where the running time of the CDA adversary A1,A2 is at most that of the CDA adversary A1, A2 and
makes queries at most qRO, q times to ROn, and other oracles. ¨
Proof. We consider the following three games.

– Game 0 is the CDA game in the O1 model where the adversary is A1, A2 which has oracle access to
O1.pub.

– Game 1 is the CDA game in the O1 model where the adversary is A1, A2 but A1, A2 does not have oracle
access to RO∗.

– Game 2 is the CDA game in the O2 model where the adversary is A1,A2 which has oracle access to
O2.pub.

Let Gj be an event that the CDA game in Game j output true. Thus

Pr[CDAA1,A2
AE,O1

⇒ true] − Pr[CDAA1,A2
AE,O2

⇒ true] ≤ Pr[G0] − Pr[G1] + Pr[G1] − Pr[G2].

Consider the difference between Game 0 and Game 1 (Pr[G0] − Pr[G1]). Since RO∗ does not leak one
bit or more of (m0,m1), RO∗ gives no advantage to the CDA adversary. Thus Pr[G0] ≤ Pr[G1].

Consider the difference between Game 1 and Game 2 (Pr[G1] − Pr[G2]). Clearly, Pr[G1] = Pr[G2].
From above discussions, Pr[CDAA1,A2

AE,O1
⇒ true] − Pr[CDAA1,A2

AE,O2
⇒ true] ≤ 0. ut

Removing Ideal Cipher. Let ROn be a RO. Let IC = (E,D) be an ideal cipher where E is an encryption
oracle and D is a decryption oracle (in this case we don’t care the plain text space, the cipher text space
and the key space). Let O3 be some oracle where O3.priv = ROn and O3.pub includes ROn, IC and other
independent oracles. Let O4 be an oracle which is equal to O3 but does not include IC. The following lemma
ensures that the CDA security in the O4 model ensures that in the O3 model. Notice that the following
lemma ensures both the CPA case and the CCA case and both the cases of the non-adaptive adversary and
the adaptive adversary.

Lemma 3. For any CDA adversary A1, A2 in the O3 model, making queries at most qRO, qIC, q times to
ROn, IC and other oracles, respectively, there exists a CDA adversary A1,A2 such that

Pr[CDAA1,A2
AE,O3

⇒ true] ≤ Pr[CDAA1,A2
AE,O4

⇒ true].

A1,A2 can make queries at most qRO, q times to ROn and other oracles, respectively. The running time of
the CDA adversary A1,A2 is at most that of the CDA adversary A1, A2. ¨
Proof. We consider the following three games.

– Game 0 is the CDA game in the O3 model where the adversary is A1, A2 which has oracle access to
O3.pub.

– Game 1 is the CDA game in the O3 model where the adversary is A1, A2 which has oracle access to
O3.pub excluding the ideal cipher (E,D).

– Game 2 is the CDA game in the O4 model where the adversary is A1,A2 which has oracle access to
O4.pub.

Let Gj be an event that the CDA game in Gamej output true. Thus

Pr[CDAA1,A2
AE,O3

⇒ true] − Pr[CDAA1,A2
AE,O4

⇒ true] ≤ Pr[G0] − Pr[G1] + Pr[G1] − Pr[G2].

Game 0 ⇒ Game 1. Consider the difference between Game 0 and Game 1 (Pr[G0] − Pr[G1]). If A1 can
success to give some cipher text of the ideal cipher to A2 where the plain text includes one bit or more of
(m0,m1), the adversary might be obtained the advantage of the ideal cipher. However, since the length of
the plain text is equal to that of the cipher text, the adversary A1 can also give the plain text to A2 without
the ideal cipher. Thus, the ideal cipher gives no advantage to the adversary and Pr[G0] ≤ Pr[G1].

Game 1 ⇒ Game 2. Since in Game 1 the adversary cannot make a query to the ideal cipher, Game 2 is
equal to Game 1. So Pr[G1] = Pr[G2]. ut
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Removing Traceable Random Oracles. Let ROn be a RO. Let T RO(i)
wi

= (RO(i)
wi

, T O(i)) (i = 1, . . . , v)
be traceable random oracles. Let O5 be some oracle where O5.priv = ROn and O5.pub includes ROn,
T RO(i)

wi
and other independent oracles. Let O6 be an oracle which is equal to O5 but does not include

T RO(i)
wi

. The following lemma shows that the CDA security in the O6 model and the CDA2 security in the
O5 model ensures CDA security in the O5 model. Notice that the following lemma ensures both the CPA
case and the CCA case and both the cases of the non-adaptive adversary and the adaptive adversary.

Lemma 4. For any CDA adversary A1, A2 in the O5 model, making queries to ROn,RO(i)
wi

, T O(i) and
other oracles at most qRO, qRO∗ , qT O∗ , q, respectively, there exists a CDA adversary A1,A2 in the O6 mode
or a CDA1 adversary B1, B2 in the O6 model such that

Pr[CDAA1,A2
AE,O5

⇒ true] ≤ Pr[CDAA1,A2
AE,O6

⇒ true] + Advcda2
AE,O5

(B1, B2) +
qRO∗qT O∗

2w−1
.

where A1,A2 can query to ROn and other oracles at most qRO, q, respectively. w = min{w1, . . . , wv}. The
running time of the CDA adversary A1,A2 is at most that of the CDA adversary A1, A2. ¨

Proof. We consider the following four games.

– Game 0 is the CDA game in the O5 model where the adversary is A1, A2 which has oracle access to
O5.pub.

– Game 1 is the CDA game in the O5 model where the adversary is A1, A2 which has oracle access to
O5.pub excluding T O(i) (i = 1, . . . , u).

– Game 2 is the CDA game in the O5 model where the adversary is A1, A2 which has oracle access to
O5.pub excluding T RO(i)

wi
(i = 1, . . . , u).

– Game 3 is the CDA game in the O6 model where the adversary is A1,A2 which has oracle access to
O6.pub.

Let Gj be an event that the CDA game in Gamej output true. Thus

Pr[CDAA1,A2
AE,O1

⇒ true] − Pr[CDAA1,A2
AE,O2

⇒ true] ≤ Pr[G0] − Pr[G1] + Pr[G1] − Pr[G2] + Pr[G2] − Pr[G3].

Game 0 ⇒ Game 1. Consider the difference between Game 0 and Game 1 (Pr[G0]−Pr[G1]). We consider
the following events.

– Event E1: A1 makes a query RO(i)
wi

(M) such that M includes one bit or more of (m0,m1).
• Event E11 = E1 ∧ E1’ where Event E1’ is that A2 makes the query T O(i)(z) where z = RO(i)

wi
(M)

∗ Event E111 = E11 ∧ E11’ where Event E11’ is that (mb, r) includes one bit or more of z.
· Event E1111 = E111∧E111’ where Event E111’ is that when A2 makes the query T O(i)(z),

A2 knows one bit or more of z in (mb, r).
· Event E1112 = E111∧¬E112’ where Event ¬E112’ is that when A2 makes the query T O(i)(z),

A2 know no bit of z in (mb, r).
∗ Event E112 = E11 ∧ ¬E11’ where Event ¬E11’ is that (mb, r) includes no bit of z.

• Event E12 = E1 ∧ ¬E1’ where Event ¬E1’ is that A2 does not make the query T O(i)(z).
– Event E2 = ¬E1 where Event ¬E1 is that A1 does not make the query RO(i)

wi
(M) .

Thus in the following we consider the events E1111, E1112, E112, E12 and E2.
Let E[i] be the Event E in Game i. Then

Pr[G0] − Pr[G1] ≤ Pr[G0|E1111[0]] Pr[E1111[0]] + Pr[G0|E1112[0]] Pr[E1112[0]] + Pr[G0|E112[0]] Pr[E112[0]]
+ Pr[G0|E12[0]] Pr[E12[0]] + Pr[G0|E2[0]] Pr[E2[0]] − Pr[G1]

≤ Pr[E1111[0]] + Pr[E1112[0]] + Pr[E112[0]]
+ Pr[G0|E12[0]] Pr[E12[0]] + Pr[G0|E2[0]] Pr[E2[0]] − Pr[G1]

Pr[E1111[0]]: Under Event E1111[0], A2 knows one bit or more of z in (mb, r) without using T O(i). And
RO(i)

ni
leaks no bit of (mb, r). Thus A2 knows the bit without using the traceable random oracles T RO(i)

wi
.
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Since z is a random value, E1111[0] is equal to the event that in the O6 model A1 makes (m0,m1, r) such
that for some i biti(mb∗ , r) is some bit of z and then A2 hits the bit. Namely, if E1111[0] occurs then the
CDA adversary succeeds in the CDA2 advantage begin 1. So if Event E1111[0] occurs then there exists the
CDA2 adversary B1, B2 such that Pr[E1111[0]] ≤ Advcda2

AE,O6
(B1, B2).

Pr[E1112[0]]: Under Event E1111[0], when A2 makes a query T O(i)(z), A2 know no bit of (mb, r). Thus,
Event E1111[0] is that A2 needs to hit the random value z. Since A1 can make such value z at most qRO
values, Pr[E1112[0]] ≤ qRO∗ × qT O∗/2w.

Pr[E112[0]]: Since (mb, r) does not include z, to query T O(i)(z), A2 needs to hit the random value z. Since
A1 can make such value z at most qRO∗ values, Pr[E112[0]] ≤ qRO∗ × qT O∗/2w.

Pr[G0|E12[0]]: Since A2 makes no T O(i) query to obtain (m0,m1, r), T O(i) gives no advantage to A2. Thus
Pr[G0|E12[0]] = Pr[G1].

Pr[G0|E2[0]]: Since T RO(i)
wi

gives no value of (m0,m1, r) to A2 under Event E2[0], Pr[G0|E22[0]] = Pr[G1].

Since Pr[E12[0]] + Pr[E2[0]] ≤ 1, there exists the CDA2 adversary B1, B2 such that

Pr[G0] − Pr[G1] ≤ Advcda2
AE,O6

(B1, B2) + qRO∗ × qT O∗/2w−1.

Note that the above discussion is in the case of the non-adaptive adversary, but clearly one can apply the
discussion to the case of the adaptive adversary by changing the A1’s output and the cipher text from
(m0,m1, r) and c to (m0,0,m0,1, r0), . . . , (mi−1,0,mi−1,1, ri−1) and (c0, . . . , cj)

Game 1 ⇒ Game 2. In Game 2 RO(i)
wi

queries are removed. From Lemma 2, Pr[G1] ≤ Pr[G2].

Game 2 ⇒ Game 3. Clearly Game 3 is equal to Game 2. Thus Pr[G2] = Pr[G3].

Thus, the bound of the theorem is obtained. ut

5.2 PRIV Security

Lemmas 2 and 3 ensure that for any PKE scheme the PRIV security is preserved when O7 is replaced with
VO, where O7.priv = ROn and O7.pub = (ROn, T RO(i)

wi
) for i = 1, . . . , u. To use Lemma 4, we evaluate

the CDA1 advantage in the ROn model. Note that CDA2 advantage is bounded by the CDA1 advantage
from Lemma 1. To win the CDA1 game implies that the second stage adversary in the PRIV game obtains
one bit or more of mb. Thus, in this case, the CDA1 adversary can win the PRIV game by generating mb

such that the obtained bit is b. Namely, the CDA1 advantage is bounded by the PRIV advantage in the RO
model. The formal evaluation of the bound of the CDA1 advantage is given in Appendix F. We thus obtain
the following theorem. Notice that the theorem ensures both the CPA case and the CCA case and both the
non-adaptive cases and the adaptive case.

Theorem 4. For any PRIV adversary A1, A2 in the VO model, making queries at most qRO, qRO′ , qIC, qRO∗

and qT O∗ times to ROn, ROj
nj

(j = 1, . . . , v), IC
(t)
kt,mt

(t = 1, . . . , s), RO(i)
wi

and T O(i) (i = 1, . . . , u),
respectively, there exists a PRIV adversary A1,A2 such that

Advpriv
AE,O∗(A1, A2) ≤ 3 · Advpriv

AE,ROn
(A1,A2) +

qRO∗qT O∗

2w−2

A1,A2 can make queries at most qRO times to ROn. The running time of the PRIV adversary A1,A2 is at
most that of the PRIV adversary A1, A2. ¨
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5.3 The CDA Security of Hedged PKE Schemes

In the CDA security game with randomness, one cannot use Lemma 4 for some PKE scheme, since there
exists a PKE scheme which is CDA secure in the RO model but the CDA2 advantage is not negligible. For
example, such PKE scheme is that the encryption is defined as E(pk,m; r)||bit1(r). We thus prove all hedged
PKE schemes, REwH, RtD and PtD [5].

Lemmas 2 and 3 ensure that the CDA security of these PKE schemes is preserved when O7 is replaced
with VO where O7.priv = ROn and O7.pub = (ROn, T RO(i)

wi
) for i = 1, . . . , u. We thus consider the CDA2

security of these PKE schemes in the ROn. Then Lemma 4 ensures that the CDA security of these PKE
schemes is preserved when RO is replaced with O7.

Let AEr = (Kr, Er,Dr) be a (randomized) PKE scheme with randomness length ρr > 0. Let AEd =
(Kd, Ed,Dd) be a (deterministic) PKE scheme with randomness length always 0.

The CDA Security of REwH. Let REwH[AEr] = (KREwH, EREwH,DREwH) be the PKE scheme. The encryp-
tion is defined as EREwH(pk,m; r) = Er(pk,m;ROn(pk||m||r)). We evaluate the CDA2 advantage of REwH in
the ROn model. The message mb is hidden by Er and the randomness r is hidden by ROn. When the first
stage CDA2 adversary selects i such that biti(mb, r) is some bit of mb and a random bit, if the second stage
CDA2 adversary hits the bit, then the adversary can break the CDA security by setting b in the obtained
bit via the CDA1 adversary (Lemma 1). Thus in this case the CDA2 advantage is bounded by the CDA
advantage. When the first stage CDA2 adversary selects i such that biti(mb, r) is some bit of r and a random
bit, the probability that the second stage CDA2 adversary hits the random bit is 1/2. Thus in this case the
CDA2 advantage is 0. The formal evaluation is given in Appendix G. We thus have the following theorem.

Theorem 5. For any CDA adversary A1, A2 in the VO model, making queries at most qRO, qRO′ , qIC, qRO∗

and qT O∗ times to ROn, ROj
nj

(j = 1, . . . , v), IC
(t)
kt,mt

(t = 1, . . . , s), RO(i)
wi

(i = 1, . . . , u) and T O(i) (i =
1, . . . , u), respectively, there exists a CDA adversary A1,A2 such that

Advcda
AE,O∗(A1, A2) ≤ 3 · Advcda

AE,ROn
(A1,A2) +

qRO∗qT O∗

2w−2

A1,A2 can make queries at most qRO times to ROn. The running time of the CDA adversary A1,A2 is at
most that of the CDA adversary A1, A2. ¨

The CDA Security of PtD. Let PtD[AEr] = (KPtD, EPtD,DPtD) be the PKE scheme. The encryption
is defined as EPtD(pkd,m; r) = Ed(pkd, r||m). We evaluate the CDA1 advantage of PtD. The deterministic
encryption Ed ensures that the PRIV security of Ed ensure the CDA1 security of PtD. The formal evaluation
is given in Appendix H. We have the following theorem.

Theorem 6. For any CDA adversary A1, A2 in the VO model, making queries at most qRO, qRO′ , qIC, qRO∗

and qT O∗ times to ROn, ROj
nj

(j = 1, . . . , v), IC
(t)
kt,mt

(t = 1, . . . , s), RO(i)
wi

(i = 1, . . . , u) and T O(i) (i =
1, . . . , u), respectively, there exists a CDA adversary A1,A2 or a PRIV adversary B1, B2 such that

Advcda
AEPtD,O∗(A1, A2) ≤ 2 · Advcda

AEPtD,ROn
(A1,A2) + 2 · Advpriv

AEd,ROn
(B1, B2) +

qRO∗qT O∗

2w−2

A1,A2 and B1, B2 can make queries at most qRO times to ROn. The running times of the CDA adversary
A1,A2 and the PRIV adversary B1, B2 are at most that of the CDA adversary A1, A2. ¨

The CDA Security of RtD. Let RtD[AEr] = (KRtD, ERtD,DRtD) be the PKE scheme. The encryption is
defined as ERtD((pkr, pkd),m; r) = Ed(pkd, Er(pkr,m; r)||10l) where the randomized encryption Er preserves
the mini-entropy of its inputs. Thus, RtD is the special case of PtD. Namely, the CDA security of PtD ensures
that of RtD. We thus have the following theorem.

Theorem 7. For any CDA adversary A1, A2 in the VO model, making queries at most qRO, qRO′ , qIC, qRO∗

and qT O∗ times to ROn, ROj
nj

(j = 1, . . . , v), IC
(t)
kt,mt

(t = 1, . . . , s), RO(i)
wi

(i = 1, . . . , u) and T O(i) (i =
1, . . . , u), respectively, there exists a CDA adversary A1,A2 or a PRIV adversary B1, B2 such that

Advcda
AERtD,O∗(A1, A2) ≤ 2 · Advcda

AERtD,ROn
(A1,A2) + 2 · Advpriv

AEd,ROn
(B1, B2) +

qRO∗qT O∗

2w−2
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A1,A2 and B1, B2 can make queries at most qRO times to ROn. The running times of the CDA adversary
A1,A2 and the PRIV adversary B1, B2 are at most that of the CDA adversary A1, A2. ¨

6 Conclusion and Future Works

We proved that for the following PKE schemes, any PKE scheme being PRIV secure in the RO model and
all hedged PKE schemes, the adaptive CDA security and the non-adaptive CDA security in both CPA and
CCA cases are preserved when a RO is replaced with the indifferentiable hash functions, PFMD, Sponge,
and chop MD. First, we proposed the Versatile Oracle VO, and showed that the PFMD hash function,
the Sponge hash function, and the chop MD hash function are reset indifferentiable from VOs. Second,
we proved that for the PKE schemes the CDA security are preserved when a RO is replaced with VO.
The reset indifferentiable composition theorem ensures the CDA security when a RO is replaced with the
indifferentiable hash functions. So far, there is no positive result for the reset indifferentiability. So, our result
is the first time positive result.

For other indifferentiable hash functions, e.g., the SHA-3 finalists JH [28] and Grøstl [21], the CDA
security is still open. We conjecture that our approach can be applied to the CDA security proof for these
indifferentiable hash functions.
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17. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 430–448.
Springer, 2005.

18. Ivan Damg̊ard. A Design Principle for Hash Functions. In CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 416–427. Springer, 1989.

19. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damg̊ard for Practical Applica-
tions. In EUROCRYPT (Full Version in ePrint 2009/177), volume 5479 of Lecture Notes in Computer Science,
pages 371–388. Springer, 2009.

20. Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, and
Jesse Walker. The Skein Hash Function Family. Submission to NIST (Round 3). 2010.

21. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin
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A The Strategy of Reset Indifferentiable Proofs

We prove the reset indifferentiable security by using the following strategy which enables to modularly
incorporate the previous original indifferentiable security result into our proof.

Let P be some ideal primitive. Let HP : {0, 1}∗ → {0, 1}n be a hash function using P . In the reset
indifferentiable game, in the HP world the distinguisher interacts with (ROn, Ŝ) (VO scenario) and (HP , P )
(HP scenario) where Ŝ = (S, S.Rst) and the simulator S simulates P . The simulator S has oracle access
to VO.pub. Let S∗ be the simulator of the original indifferentiable security from ROn for HP where the
simulator S∗ has oracle access to ROn.

To evaluate the reset indifferentiable advantage, we employ the following strategy. In our proofs, we
consider the following five games.

– Game 0. This is the VO scenario where A has oracle access to (ROn, Ŝ).
– Game 1. This game is equal to Game 0 but S.Rst is removed where A has oracle access to (ROn, S).
– Game 2. This game is the RO scenario of the original indifferentiable security game of HP where A has

oracle access to (ROn, S∗).
– Game 3. This game is the HP scenario of the original indifferentiable security game where A has oracle

access to (HP , P ).
– Game 4. This game is the HP scenario of the reset indifferentiable security game where A has oracle

access to (HP , P, nop).

Let Gi be an event that A outputs 1 in Game i. Then,

Advr-indiff
HP ,VO,S(A) ≤ Pr[G0] − Pr[G4]

≤ (Pr[G0] − Pr[G1]) + (Pr[G1] − Pr[G2]) + (Pr[G2] − Pr[G3]) + (Pr[G3] − Pr[G4])

The difference (Pr[G2]−Pr[G3]) is equal to the original indifferentiable security advantage of HP from a RO,
We denote the bound of the advantage by p∗. Since nop takes no input and does not nothing, Pr[G3] = Pr[G4].
Thus for any distinguisher A, the following holds.

Advr-indiff
HP ,VO,S(A) ≤ (Pr[G0] − Pr[G1]) + (Pr[G1] − Pr[G2]) + p∗.

So the remaining work is to define the simulator S such that the simulator does not update the internal state
and the difference (Pr[G1]−Pr[G2]) is small. If the simulator does not update the internal state, S.Rst gives
no advantage to A, that is, Pr[G0] = Pr[G1]. We thus define such simulator.
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S∗(x, y)

01 if TS∗ [x, y] 6=⊥ then return TS∗ [x, y];
02 if x = IV then
03 if ∃M s.t. pfpad(M) = y then z ← ROn(M);
04 else
05 z ← {0, 1}n;
06 if Path[z] =⊥ then Path[z] ← y;
07 else if Path[x] = M∗ 6=⊥ then
08 if ∃M s.t. pfpad(M) = M∗||y then z ← ROn(M);
09 else
10 z ← {0, 1}n;
11 if Path[z] =⊥ then Path[z] ← M∗||y;

12 else z
$←− {0, 1}n;

13 TS∗ [x, y] ← z;
14 return TS∗ [x, y];

O(x, y)

1 M∗ ← T O(1)(x);
2 if x = IV then
3 if ∃M s.t. pfpad(M) = y then z ← ROn(M);

4 else z ← RO(1)
n (y);

5 else if M∗ 6=⊥ then
6 if ∃M s.t. pfpad(M) = M∗||y then z ← ROn(M);

7 else z ← RO(1)
n (M∗||y);

8 else z ← RO1
n(x||y);

9 return z;

Fig. 6. Simulator S∗ (Left) and Game PF1 (Right)

O(x, y)

01 if x = IV then
02 if ∃M s.t. pfpad(M) = y then z ← ROn(M);
03 else

04 if F∗
1[y] =⊥ then F∗

1[y]
$←− {0, 1}n;

05 z ← F∗
1[y];

06 else if ∃1M
∗ s.t. F∗

1[M
∗] = x then

07 if ∃M s.t. pfpad(M) = M∗||y then z ← ROn(M);
08 else

09 if F∗
1[M

∗||y] =⊥ then F∗
1[M

∗||y]
$←− {0, 1}n;

10 z ← F∗
1[M

∗||y];
11 else

12 if F1[x||y] =⊥ then F1[x||y]
$←− {0, 1}n;

13 z ← F1[x||y];
14 TS∗ [x, y] ← z;
15 return TS∗ [x, y];

O(x, y)

01 if TS∗ [x, y] 6=⊥ then return TS∗ [x, y];
02 if x = IV then
03 if ∃M s.t. pfpad(M) = y then z ← ROn(M);
04 else

05 if F∗
1[y] =⊥ then F∗

1[y]
$←− {0, 1}n;

06 z ← F∗
1[y];

07 else if ∃1M
∗ s.t. F∗

1[M
∗] = x then

08 if ∃M s.t. pfpad(M) = M∗||y then z ← ROn(M);
09 else

10 if F∗
1[M

∗||y] =⊥ then F∗
1[M

∗||y]
$←− {0, 1}n;

11 z ← F∗
1[M

∗||y];
12 else

13 if F1[x||y] =⊥ then F1[x||y]
$←− {0, 1}n;

14 z ← F1[x||y];
15 TS∗ [x, y] ← z;
16 return TS∗ [x, y];

Fig. 7. Game PF2 (left), and Game PF3 (right)

B Proof of Theorem 1

We prove Theorem 1 by using the strategy shown in Appendix A.
Since the simulator S does not update the internal state, Pr[G0] − Pr[G1] = 0.
We use the result of the indifferentiable security from a RO by Chang et al. [14]. They defined a simulator

S∗ which is shown in Fig. 6. TS∗ is a (initially everywhere ⊥) table which records query-response values of S∗.
For the query S∗(x, y), the response is recorded in TS∗ [x, y]. Path is a (initially everywhere ⊥) table which
records all paths with the Merkle-Damg̊ard style. If triples (z0, y1, z1), (z1, y2, z2), (z2, y3, z3) are recoded in
TS∗ where TS∗ [zj−1, yj ] = zj and z0 = IV , y1||y2||y3 is recoded in Path[z3] 3. The task of the simulator S∗

is to simulate h so that ROn and S∗ are consistent. So the response of S∗(x, y) is defined by the output of
ROn(M) if there exists M∗ such that Path[x] = M∗ and there exists M such that pfpad(M) = M∗||y. They
show that the advantage p∗ of the indifferentiable security is bounded by O((lqH + qh)2/2n).

We evaluate the difference Pr[G1] − Pr[G2] where the distinguisher interacts with (ROn, S) in Game 1
and (ROn, S∗) in Game 2. Since the difference between Game 1 and Game 2 is a simulator, we consider
3 Note that in [14], the paths are recorded by using another formula, which is a relation R, but the table Path

realizes the same role as the relation.
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O(x, y)

01 if TS∗ [x, y] 6=⊥ then return TS∗ [x, y];
02 if x = IV then
03 if ∃M s.t. pfpad(M) = y then z ← ROn(M);
04 else

05 z
$←− {0, 1}n;

06 F∗
1[y] ← z;

07 else if ∃1M
∗ s.t. F∗

1[M
∗] = x then

08 if ∃M s.t. pfpad(M) = M∗||y then z ← ROn(M);
09 else

10 z
$←− {0, 1}n;

11 F∗
1[M

∗||y] ← z;
12 else

13 z
$←− {0, 1}n;

14 F1[x||y] ← z;
15 TS∗ [x, y] ← z;
16 return TS∗ [x, y];

O(x, y)

01 if TS∗ [x, y] 6=⊥ then return TS∗ [x, y];
02 if x = IV then
03 if ∃M s.t. pfpad(M) = y then z ← ROn(M);
04 else
05 z ← {0, 1}n;
06 if Path[z] =⊥ then Path[z] ← y;
07 else if Path[x] = M∗ 6=⊥ then
08 if ∃M s.t. pfpad(M) = M∗||y then z ← ROn(M);
09 else
10 z ← {0, 1}n;
11 if Path[z] =⊥ then Path[z] ← M∗||y;

12 else z
$←− {0, 1}n;

13 TS∗ [x, y] ← z;
14 return TS∗ [x, y];

Fig. 8. Game PF4 (left), and Game PF5 (right)

the distinguishing game between S and S∗. We evaluate the difference Pr[AS
1 ⇒ 1] − Pr[AS∗

1 ⇒ 1] for any
distinguisher A1 which outputs a bit.

We consider the five games, Game PF1, Game PF2, Game PF3, Game PF4, and Game PF5. In each
game, the distinguisher A1 interacts with O which is shown in Figs. 6, 7, and 8. O in Game PF1 is equal to
S∗ and O in Game PF5 is equal to S. Let GPFj be an event that in Game PFj A1 outputs 1. Thus

Pr[G1] − Pr[G2] = Pr[GPF1] − Pr[GPF5]

=
4∑

j=1

Pr[GPFj] − Pr[GPF (j + 1)]

First we evaluate the difference Pr[GPF1]−Pr[GPF2]. In Game PF2, the procedures of T RO(1)
n and RO1

n

are hard-coded. Thus this modification does not affect the distinguisher’s view and Pr[GPF1] = Pr[GPF2].
We evaluate the difference Pr[GPF2] − Pr[GPF3]. In Game PF3, for a repeated query to O, the value

which was previously defined is returned due to the step 01. In Game PF2, for a repeated query, if no collision
for the table F∗

1 occurs, the value which was previously defined is returned, and otherwise the value might
not be returned due to the condition of the step 06. The collision probability is at most q2

h/2n+1 from a
birthday analysis. We thus have

Pr[GPF2] − Pr[GPF3] ≤ q2
h

2n+1
.

We evaluate the difference Pr[GPF3] − Pr[GPF4]. In Game PF4, “if” in the steps 05, 10, and 13 is
removed. So some value of the tables F∗

1 and F1 might be redefined. However, the table TS∗ prevents the
redefinition. Thus this modification does not affect the distinguisher’s view and Pr[GPF3] = Pr[GPF34].

Finally, we evaluate the difference Pr[GPF4] − Pr[GPF5]. In Game PF4, the table F∗
1 is replaced with

the table Path and F1 is removed. For a pair (M, z), if F∗
1[M ] = z in Game PF4 then Path[z] = M in Game

PF5. Thus if no collision for the table F∗
1 occurs, this modification does not affects the distinguisher’s view.

The collision probability is at most q2
h/2n+1 from a birthday analysis. We thus have

Pr[GPF4] − Pr[GPF5] ≤ q2
h

2n+1
.

ut
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S∗
+(x, y)

01 if TS∗
+
[x, y] 6=⊥ then return TS∗

+
[x, y];

02 if y = IV2 then
03 if unpadS(IV1 ⊕ x) = M 6=⊥ then z ← ROn(M);

04 else z
$←− {0, 1}n;

05 else if Path[y] 6=⊥ then
06 let Path[y] = (M∗, z∗);
07 if unpadS(M∗||(z∗ ⊕ x)) = M 6=⊥ then z ← ROn(M);

08 else z
$←− {0, 1}n;

09 else z
$←− {0, 1}n;

10 w
$←− {0, 1}c\TF [z];

11 UpdateS∗(x, y, z, w);
12 return z||w;

S∗
−(z, w)

1 if TS∗
−

[z, w] 6=⊥ then TS∗
−

[z, w];

2 x
$←− {0, 1}n; y

$←− {0, 1}c\TI [x];
3 UpdateS∗(x, y, z, w);
4 return x||y;

Fig. 9. Simulator S∗

C Proof of Theorem 2

We prove Theorem 2 by using the strategy shown in Appendix A.
Since the simulator S does not update the internal state, Pr[G0] − Pr[G1] = 0.
We use the result of the indifferentiable security from a RO by Bertoni et al. [10]. They define a

simulator S∗ = (S∗
+, S∗

−) which is shown in Fig. 9. S∗
+ and S∗

− simulate the random permutation P
and its inverse P−1, respectively. TS∗

+
and TS∗

−
are (initially everywhere ⊥) tables which records query-

response values of S∗
+ and S∗

−. For the query S∗
+(x, y), the response z||w is recorded in TS∗

+
[x, y] and

x||y is recoded in TS∗
−
[z, w]. Similarly, the response z||w of the query S∗

−(x, y) and x||y are recoded in
these tables. Path is a (initially everywhere ⊥) table which records all paths with the Sponge style. If
triples (x1, w0, z1, w1), (x2, w1, z2, w2), (x3, w2, z3, w3) are the query-response values where TS∗

+
[xj , wj−1] =

zj ||wj (j = 1, 2, 3) and w0 = IV2, then (x1 ⊕ IV1)||(x2 ⊕ z1)||(x3 ⊕ z2) and z3 is recoded in Path[w3]. TF

and TI are (initially everywhere ⊥) tables. TF [z] includes values which are all y′ such that TS∗
+
[·, y′] 6=⊥,

IV2, all y′′ such that Path[y′′] 6=⊥, and all w′ such that TS∗
−
[z||w′] 6=⊥. TI [x] includes values which are IV2,

all y′ such that Path[y′] 6=⊥, and all y′′ such that TS∗
+
[x, y′′]. UpdateS∗(x, y, z, w) is a procedure that the

tables TS∗
+
, TS∗

−
, and Path are updated by using (x, y, z, w), namely, TS∗

+
[x, y] ← z||w, TS∗

−
[z, w] ← x||y,

and if Path[y] = (M, z∗) 6=⊥ then Path[w] ← (M ||(x ⊕ z∗), z) 4. They show that the advantage p∗ of the
indifferentiable security is bounded by ((1 − 2−n)q2 + (1 + 2−nq))/2n).

We evaluate the difference Pr[G1] − Pr[G2] where a distinguisher interacts with (ROn, S) in Game 1
and (ROn, S∗) in Game 2. Since the difference between Game 1 and Game 2 is a simulator, we consider
the distinguishing game between S and S∗. We evaluate the difference Pr[AS

1 ⇒ 1] − Pr[AS∗

1 ⇒ 1] for any
distinguisher A1 which outputs a bit.

We consider the seven games Game S1, Game S2, Game S3, Game S4, Game S5, Game S6, and Game
S7. In each game, the distinguisher interacts with (O+,O−) shown in Figs. 10, 11, 12 13, 14, 15, and 16.
Game S1 is equal to Game 1 and Game S7 is equal to Game 2. Let GSj be an event that A1 output 1 in
Game Sj. Thus

Pr[G1] − Pr[G2] = Pr[GS1] − Pr[GS7]

=
6∑

j=1

(Pr[GSj] − Pr[GS(j + 1)]).

In the following, we evaluate each difference Pr[GSj] − Pr[GS(j + 1)].

Game S2. In this game, a random permutation (P,P−1) is replaced with a new function (P1,P−1
1 ). F+

4 Note that in [10], the paths and the query-response values are recorded by using a graph representation, but the
table Path and the tables TS∗

+
, TS∗

−
realizes the same role as the graph.
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O+(x, y)

01 M∗ ← T O(1)(y);
02 if y = IV2 then
03 if unpadS(IV1 ⊕ x) = M 6=⊥ then z ← ROn(M);
04 else z ← RO1

n(IV1 ⊕ x);

05 w ← RO(1)
c (x ⊕ IV1);

06 else if M∗ 6=⊥ then
07 if unpad(M∗) = M ′ 6=⊥ then m ← x ⊕ROn(M ′);
08 else m ← x ⊕RO1

n(M∗);
08 if unpadS(M∗||m) = M 6=⊥ then z ← ROn(M);
09 else z ← RO1

n(M∗||m);

10 w ← RO(1)
c (M∗||m);

11 else z||w ← P(x||y);
12 return z||w;

O−(z, w)

01 M ← T O(1)(w);
02 if M 6=⊥ and |M | = n then
03 x ← IV1 ⊕ M ; y ← IV2;
04 if M 6=⊥ and |M | > n then
05 let M = M∗||m (|m| = n);
06 if unpadS(M∗) = M ′ 6=⊥ then x ← m ⊕ROn(M ′);
07 else x ← m ⊕RO1

n(M∗);

08 y ← RO(1)
c (M∗);

09 else x||y ← P−1(z||w);
10 return x||y;

Fig. 10. Game S1

O+(x, y)

01 M∗ ← T O(1)(y);
02 if y = IV2 then
03 if unpadS(IV1 ⊕ x) = M 6=⊥ then z ← ROn(M);
04 else z ← RO1

n(IV1 ⊕ x);

05 w ← RO(1)
c (x ⊕ IV1);

06 else if M∗ 6=⊥ then
07 if unpad(M∗) = M ′ 6=⊥ then m ← x ⊕ROn(M ′);
08 else m ← x ⊕RO1

n(M∗);
09 if unpadS(M∗||m) = M 6=⊥ then z ← ROn(M);
10 else z ← RO1

n(M∗||m);

11 w ← RO(1)
c (M∗||m);

12 else z||w ← P1(x||y);
13 return z||w;

P1(x)

1 if F+[x] =⊥, ret F+[x];

2 y
$←− {0, 1}b;

3 UpdateP (x, y);
4 return F+[x]

O−(z, w)

01 M ← T O(1)(w);
02 if M 6=⊥ and |M | = n then
03 x ← IV1 ⊕ M ; y ← IV2;
04 else if M 6=⊥ and |M | > n then
05 let M = M∗||m (|m| = n);
06 if unpadS(M∗) = M ′ 6=⊥ then x ← m ⊕ROn(M ′);
07 else x ← m ⊕RO1

n(M∗);

08 y ← RO(1)
c (M∗);

09 else x||y ← P−1
1 (z||w);

10 return x||y;

P−1
1 (y)

1 if F−[y] =⊥, ret F−[y];

2 x
$←− {0, 1}b;

3 UpdateP (x, y);
4 return F−[y];

Fig. 11. Game S2

and F− are (initially everywhere ⊥) tables. UpdateP (x, y) updates the tables F+ and F−: F+[x] ← y and
F−[y] ← x. An output of (P1,P−1

1 ) is randomly chosen from {0, 1}b. Thus if in Game GS2 no collision occurs
for the outputs of (P1,P−1

1 ), Game GS2 is equal to Game GS1. We thus have via a birthday analysis that

Pr[GS1] − Pr[GS2] ≤ q2

2b+1
.

Game S3. In this game, tables TS∗
+

and TS∗
−

are used which record the outputs of O+ and O−. Note that the
procedure UpdateS∗ updates tables T+

S∗ , T−
S∗ , and Path. In Game S2, for a query T O(1)(y) (used in the step

01 in both S+ and S−) if ∃1 M such that F∗
1[M ] = y then M is returned, and otherwise ⊥ is returned. Thus,

for a repeated query to O+ or O− where the response was defined in the steps 02-05, 06-10 of O+, 02-03, or
04-08 of O−, the same value is returned if no collision for RO(1)

c occurs. Since the outputs of (P1,P−1
1 ) are

random values, for a repeated query where the response was defined in the step 11 of O+ or 09 of O−, the
same value is returned if no collision for the outputs of (P1,P−1

1 ) occurs. That is, for a repeated query the
value, which was previously returned, is returned if no collision for the right c bits of O+ or the right c bits
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O+(x, y)

01 if TS∗
+
[x, y] 6=⊥ then return TS∗

+
[x, y];

02 M∗ ← T O(1)(y);
03 if y = IV2 then
04 if unpadS(IV1 ⊕ x) = M 6=⊥ then z ← ROn(M);
05 else z ← RO1

n(IV1 ⊕ x);

06 w ← RO(1)
c (x ⊕ IV1);

07 else if M∗ 6=⊥ then
08 if unpad(M∗) = M ′ 6=⊥ then m ← x ⊕ROn(M ′);
09 else m ← x ⊕RO1

n(M∗);
10 if unpadS(M∗||m) = M 6=⊥ then z ← ROn(M);
11 else z ← RO1

n(M∗||m);

12 w ← RO(1)
c (M∗||m);

13 else z||w ← P1(x||y);
14 UpdateS∗(x, y, z, w);
15 return z||w;

O−(z, w)

01 if TS∗
−

[z, w] 6=⊥ then TS∗
−

[z, w];

02 M ← T O(1)(w);
03 if M 6=⊥ and |M | = n then
04 x ← IV1 ⊕ M ; y ← IV2;
05 else if M 6=⊥ and |M | > n then
06 let M = M∗||m (|m| = n);
07 if unpadS(M∗) = M1 6=⊥ then x ← m ⊕ROn(M1);
08 else x ← m ⊕RO1

n(M∗);

09 y ← RO(1)
c (M∗);

10 else x||y ← P−1
1 (z||w);

11 UpdateS∗(x, y, z, w);
12 return x||y;

Fig. 12. Game S3

O+(x, y)

01 if TS∗
+
[x, y] 6=⊥ then return TS∗

+
[x, y];

02 M∗ ← T O(1)(y);
03 if y = IV2 then
04 if unpadS(IV1 ⊕ x) = M 6=⊥ then z ← ROn(M);
05 else z ← RO1

n(IV1 ⊕ x);

06 w ← RO(1)
c (x ⊕ IV1);

07 else if M∗ 6=⊥ then
08 if unpad(M∗) = M ′ 6=⊥ then m ← x ⊕ROn(M ′);
09 else m ← x ⊕RO1

n(M∗);
10 if unpadS(M∗||m) = M 6=⊥ then z ← ROn(M);
11 else z ← RO1

n(M∗||m);

12 w ← RO(1)
c (M∗||m);

13 else z||w ← P1(x||y);
14 UpdateS∗(x, y, z, w);
15 return z||w;

O−(z, w)

1 if TS∗
−

[z, w] 6=⊥ then TS∗
−

[z, w];

2 x||y ← P−1
1 (z||w);

3 UpdateS∗(x, y, z, w);
4 return x||y;

Fig. 13. Game S4

of O− occurs. In Game S3, new tables TS∗
+

and TS∗
−

are used. Thus, in this game, for a repeated query the
value, which was previously returned, is returned if no collision for the outputs of O+ or the outputs of O−
occurs. Thus in both games, for a repeated query the value which was previously returned is returned if no
collision for the right c bits of O+ or the right c bits of O− occurs. Thus in both games if no collision occurs
for the c bits, this modification does not affect the distinguisher’s view, that is, Game S3 is equal to Game
S2. From a birthday analysis, the collision probability is at most q2/2c+1. We thus have that

Pr[GS2] − Pr[GS3] ≤ q2

2c+1
.

Game S4. In this game, the steps 02-09 of O− are removed. Since for the query O−(z, w), “M (=
T O(1)(w)) 6=⊥” implies that the query RO(1)

c (M) was made by the query O+(x, y) and thus when the
query O−(z, w) is made, the response TS∗

−
[z, w] (= x||y) has been defined. The steps of O− corresponding

with M (= T O(1)(w)) are the steps 02-09. Note that if a collision for the outputs of O+ or the outputs of
O− occurs, then the table TS∗

+
or TS∗

−
is redefined. Thus the modification does not affect the distinguisher’s

view if no collision for the outputs of O+ or the outputs of O− occurs. We thus have via a birthday analysis
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O+(x, y)

01 if TS∗
+
[x, y] 6=⊥ then return TS∗

+
[x, y];

02 if y = IV2 then
03 if unpadS(IV1 ⊕ x) = M 6=⊥ then z ← ROn(M);
04 else z ← RO1

n(IV1 ⊕ x);

05 w ← RO(1)
c (x ⊕ IV1);

06 else if Path[y] = (M∗, z∗) 6=⊥ then
07 if unpad(M∗) = M ′ 6=⊥ then m ← x ⊕ROn(M ′);
08 else m ← x ⊕RO1

n(M∗);
09 if unpadS(M∗||m) = M 6=⊥ then z ← ROn(M);
10 else z ← RO1

n(M∗||m);

11 w ← RO(1)
c (M∗||m);

12 else z||w ← P1(x||y);
13 UpdateS∗(x, y, z, w);
14 return z||w;

O−(z, w)

1 if TS∗
−

[z, w] 6=⊥ then TS∗
−

[z, w];

2 x||y ← P−1
1 (z||w);

3 UpdateS∗(x, y, z, w);
4 return x||y;

Fig. 14. Game S5

O+(x, y)

01 if TS∗
+
[x, y] 6=⊥ then return TS∗

+
[x, y];

02 if y = IV2 then
03 if unpadS(IV1 ⊕ x) = M 6=⊥ then z ← ROn(M);

04 else z
$←− {0, 1}n;

05 else if Path[y] = (M∗, z∗) 6=⊥ then
06 if unpadS(M∗||(z∗ ⊕ x)) = M 6=⊥ then z ← ROn(M);

07 else z
$←− {0, 1}n;

08 else z
$←− {0, 1}n;

09 w
$←− {0, 1}c;

10 UpdateS∗(x, y, z, w);
11 return z||w;

O−(z, w)

1 if TS∗
−

[z, w] 6=⊥ then TS∗
−

[z, w];

2 x
$←− {0, 1}n; y

$←− {0, 1}c;
3 UpdateS∗(x, y, z, w);
4 return x||y;

Fig. 15. Game S6

that

Pr[GS3] − Pr[GS4] ≤ q2

2b+1
.

Game S5. In this game, the table Path is used instead of T O(1). In Game S5, if M∗ 6=⊥ such that
M∗ = T O(1)(y), then Path[y] = (M∗, z∗). And if Path[y] = (M∗, z∗) 6=⊥ and no collision of RO(1)

c occurs,
then M∗ 6=⊥ where M∗ = T O(1)(y). Thus in both games if no collision for RO(1)

c occurs, then Game S5 is
equal to Game S4. We thus have via a birthday analysis

Pr[GS4] − Pr[GS5] ≤ q2

2c+1
.

Game S6. In this game, RO(1)
c ,RO1

n,P and P−1 are removed and z∗ is used in the step 06 of O+. Notice
that in Game S5, z∗ = ROn(M ′) in the step 07 of O+. Thus to use z∗ does not affect the distinguisher’s view.
The outputs of these oracles are random values and for a repeated query the value, which was responded, is
returned. Note that if no collision for the outputs of O+ and the outputs of O− occurs, then the table TS∗

+

and TS∗
−

are not redefined. Thus if no collision occurs, the modification for removing RO(1)
c ,RO1

n,P and
P−1 does not affect the distinguisher’s view, since outputs of these oracles are random values. We thus have
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O+(x, y)

01 if TS∗
+
[x, y] 6=⊥ then return TS∗

+
[x, y];

02 if y = IV2 then
03 if unpadS(IV1 ⊕ x) = M 6=⊥ then z ← ROn(M);

04 else z
$←− {0, 1}n;

05 else if Path[y] = (M∗, z∗) 6=⊥ then
06 if unpadS(M∗||(z∗ ⊕ x)) = M 6=⊥ then z ← ROn(M);

07 else z
$←− {0, 1}n;

08 else z
$←− {0, 1}n;

09 w
$←− {0, 1}c\TF [z];

10 UpdateS∗(x, y, z, w);
11 return z||w;

O−(z, w)

1 if TS∗
−

[z, w] 6=⊥ then TS∗
−

[z, w];

2 x
$←− {0, 1}n; y

$←− {0, 1}c\TI [x];
3 UpdateS∗(x, y, z, w);
4 return x||y;

Fig. 16. Game S7

via a birthday analysis that

Pr[GS5] − Pr[GS6] ≤ q2

2b+1
.

Game S7. In this game the table TF (step 10 of O+) and the table TI (step 2 of O−). Thus if in Game S6
w does not collide with TF [z] in O+ and x does not collide with TI [x], then Game S7 is equal to Game S6.
The number of elements in TF [z] is at most 3q + 1 and the number of elements in TI [x] is at most 2q + 1.
Thus the collision probabilities for TF [z] and TI [x] are q(3q + 1)/2c and q(2q + 1)/2c, respectively. We thus
have

Pr[GS6] − Pr[GS7] ≤ q(5q + 2)
2c

.
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S∗(x, m)

01 if TS∗ [x, m] 6=⊥ then return TS∗ [x, m];
02 if x = IV then
03 z ← ROn(m);

04 w
$←− {0, 1}s\{w′ : w′||z ∈ C ∪ {x}};

05 Path[w||z] ← m;
06 else if Path[x] = M 6=⊥ then
07 z ← ROn(M ||m);

08 w
$←− {0, 1}s\{w′ : w′||z ∈ C ∪ {x}};

09 Path[w||z] ← M ||m;
10 else

11 z
$←− {0, 1}n;

12 w
$←− {0, 1}s\{w′ : w′||z ∈ C ∪ {x}};

13 TS∗ [x, m] ← w||z; C
∪←− {x, z};

14 return w||z;

Fig. 17. Simulator S∗

D Reset Indifferentiability for chop Merkle-Damg̊ard

We prove Theorem 3 by using the strategy shown in Appendix A.
Since the simulator S does not update the internal state, Pr[G0] − Pr[G1] = 0.
We use the result of the indifferentiable security from a RO by Chang and Nandi [15]. They define a

simulator S∗ which is shown in Fig. 9 which simulates a compression function h. TS∗ is (initially everywhere
⊥) tables which records query-response values of S∗. For the query S∗(x,m), the response w||z is recorded
in TS∗

+
[x, y]. Path is a (initially everywhere ⊥) table which records all paths with the Merkle-Damg̊ard

style. If triples (IV,m1, w1||z1), (w1||z1,m2, w2||z2), (w2||z2,m3, w3||z3) are the query-response values where
TS∗ [wj−1||zj−1,mj ] = wj ||zj (j = 1, 2, 3) and w0||z0 = IV , then m1||m2||m3 is recoded in Path[w3||z3]. C
is a (initially empty) set. They show that the advantage p∗ of the indifferentiable security is bounded by
((3n + 1)qh + nqH)/2s + (qH + qh)/2n−1 + (lqH + qh)2/2s+n+1.

We evaluate the difference Pr[G1] − Pr[G2] where a distinguisher interacts with (ROn, S) in Game 1
and (ROn, S∗) in Game 2. Since the difference between Game 1 and Game 2 is a simulator, we consider
the distinguishing game between S and S∗. We evaluate the difference Pr[AS

1 ⇒ 1] − Pr[AS∗

1 ⇒ 1] for any
distinguisher A1 which outputs a bit.

We consider the five games Game C0, Game C1, Game C2, Game C3, Game C4, and Game C5. In each
game, the distinguisher interacts with O shown in Figs. 18, 19, and 20. Game C0 is equal to Game 1 and
Game C5 is equal to Game 2. Let GCj be an event that A1 output 1 in Game Sj. Thus

Pr[G1] − Pr[G2] = Pr[GC0] − Pr[GC4]

=
4∑

j=0

(Pr[GCj] − Pr[GC(j + 1)]).

In the following, we evaluate each difference Pr[GCj] − Pr[GC(j + 1)].

Game C1. In this game, the procedures of RO(1)
s , T O(1), and RO1

n+s are hard-coded in O. The modification
from Game C0 to Game C1 does not affect the distinguisher’s view. Thus Pr[C0] = Pr[C1].

Game C2. In this game, a new table TS∗ is used which is initially everywhere ⊥. The table ensures that for
a repeated query, the value which was previously returned is returned. In Game C1, from the condition of
the step 05, if one of the following two cases occurs then for a repeated query the different value is returned.

– Case 1: a collision for F1 occurs.
– Case 2: F1[x1, m1] = w1||z1 is defined and then F∗

1[w1] = M is defined.
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O(x, m) where x = x1||x2 (|x1| = s, |x2| = n)

01 M ← T O(1)(x1);
02 if x = IV then
03 z ← ROn(m);

04 w ← RO(1)
s (m);

05 else if M 6=⊥ then
06 z ← ROn(M ||m);

07 w ← RO(1)
s (M ||m);

08 else w||z ← RO1
n+s(x, m);

09 return w||z;

O(x, m) where x = x1||x2 (|x1| = s, |x2| = n)

01 if x = IV then
02 z ← ROn(m);

03 if F∗
1[m] =⊥ then F∗

1[m]
$←− {0, 1}s;

04 w ← F∗
1[m];

05 else if ∃1M s.t. F∗
1[M ] = x1 then

06 z ← ROn(M ||m);

07 if F∗
1[M ||m] =⊥ then F∗

1[M ||m]
$←− {0, 1}s;

08 w ← F∗
1[M ||m];

09 else

10 if F1[x, m] =⊥ then F1[x, m]
$←− {0, 1}s+n;

11 w||z ← F1[x, m];
12 TS∗ [x, m] ← w||z;
13 return w||z;

Fig. 18. Game C0 (left) and Game C1 (right)

O(x, m) where x = x1||x2 (|x1| = s, |x2| = n)

01 if TS∗ [x, m] 6=⊥ then return TS∗ [x, m];
02 if x = IV then
03 z ← ROn(m);

04 if F∗
1[m] =⊥ then F∗

1[m]
$←− {0, 1}s;

05 w ← F∗
1[m];

06 else if ∃1M s.t. F∗
1[M ] = x1 then

07 z ← ROn(M ||m);

08 if F∗
1[M ||m] =⊥ then F∗

1[M ||m]
$←− {0, 1}s;

09 w ← F∗
1[M ||m];

10 else

11 if F1[x, m] =⊥ then F1[x, m]
$←− {0, 1}s+n;

12 w||z ← F1[x, m];
13 TS∗ [x, m] ← w||z;
14 return w||z;

O(x, m)

01 if TS∗ [x, m] 6=⊥ then return TS∗ [x, m];
02 if x = IV then
03 z ← ROn(m);

04 if F∗
1[m] =⊥ then F∗

1[m]
$←− {0, 1}s;

05 w ← F∗
1[m];

06 Path[w||z] ← m;
07 else if Path[x] = M 6=⊥ then
08 z ← ROn(M ||m);

09 if F∗
1[M ||m] =⊥ then F∗

1[M ||m]
$←− {0, 1}s;

10 w ← F∗
1[M ||m];

11 Path[w||z] ← M ||m;
12 else

13 if F1[x, m] =⊥ then F1[x, m]
$←− {0, 1}s+n;

14 w||z ← F1[x, m];
15 TS∗ [x, m] ← w||z;
16 return w||z;

Fig. 19. Game C2 (left) and Game C3 (right)

So if the two cases don’t occur then the modification does not affect the distinguisher’s view. The probability
that Case 1 occurs is bounded by q2

h/2s+1 from a birthday analysis. The probability that Case 2 occurs is
bounded by q2

h/2s since the number of queries to S∗ is at most qh. Thus

Pr[C1] − Pr[C2] ≤ 3q2
h

2s+1

Game C3. In this game, a new table Path is used which is initially everywhere ⊥ and recodes paths with
Merkle-Damg̊ard style. In the step 07 Path is used in this game, while F∗

1 is used in Game C2. Note that in
Game C3 if Path[x] = M and no collision occurs for F∗

1 then F∗
1[M ] = x1 where x = x1||x2 and |x1| = s.

Thus if no collision occurs for F∗
1 in Game C3 then this modification does not affect the distinguisher’s view.

We thus have via a birthday analysis that

Pr[C2] − Pr[C3] ≤ q2
h

2s+1
.

Game C4. In this game, tables F1 and F∗
1 are removed. Due to the table TS∗ , for a repeated query, the

steps 02-12 are not executed and the value which was previously returned is returned, that is, these tables
are not used. Thus this modification does not affect the distinguisher’s view and Pr[C3] = Pr[C4].
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O(x, m)

01 if TS∗ [x, m] 6=⊥ then return TS∗ [x, m];
02 if x = IV then
03 z ← ROn(m);

04 w
$←− {0, 1}s;

05 Path[w||z] ← m;
06 else if Path[x] = M 6=⊥ then
07 z ← ROn(M ||m);

08 w
$←− {0, 1}s;

09 Path[w||z] ← M ||m;

10 else w||z $←− {0, 1}s+n;
11 TS∗ [x, m] ← w||z;
12 return w||z;

O(x, m)

01 if TS∗ [x, m] 6=⊥ then return TS∗ [x, m];
02 if x = IV then
03 z ← ROn(m);

04 w
$←− {0, 1}s\{w′ : w′||z ∈ C ∪ {x}};

05 Path[w||z] ← m;
06 else if Path[x] = M 6=⊥ then
07 z ← ROn(M ||m);

08 w
$←− {0, 1}s\{w′ : w′||z ∈ C ∪ {x}};

09 Path[w||z] ← M ||m;
10 else

11 z
$←− {0, 1}n;

12 w
$←− {0, 1}s\{w′ : w′||z ∈ C ∪ {x}};

13 TS∗ [x, m] ← w||z; C
∪←− {x, z};

14 return w||z;

Fig. 20. Game C4 (left) and Game C5 (right)

Game C5. In this game, for a query O(x,m), w is randomly chosen from {0, 1}n\{w′ : w′ ∈ C ∪ {x}},
while in Game C4 it is randomly chosen from {0, 1}n. Thus if in Game C4 w does not collide with one of
{w′ : w′ ∈ C ∪ {x}} then this modification does not affect the distinguisher’s view. The number of elements
in {w′ : w′ ∈ C ∪ {x}} is at most qh + 1. We thus have that

Pr[C4] − Pr[C5] ≤ (qh + 1)2

2n
.
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S∗
+(k, x)

01 if T+
S∗ [k, x] 6=⊥ then return T+

S∗ [k, x];

02 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);

03 y
$←− {0, 1}2n;

04 if t(1)||t(3) = t(2)||t(4) then

05 P ← FindPath(z′, s, k, t(1)||t(3));
06 if P 6= ∅ then
07 let P = (M, a);

08 z ← ROn(s, M); y
$←− β−1

z′,s(z);

09 AddPath(βz′,s(y), z′, s, k, t(1)||t(3));
10 T+

S∗ [k, x] ← y; T−
S∗ [k, y] ← x;

11 return T+
S∗ [k, x]

S∗
−(k, y)

01 if T−
S∗ [k, y] 6=⊥ then return T−

S∗ [k, y];

02 z||s||t(1)||t(2)||t(3)||t(4) ← x
$←− {0, 1}2n;

03 if t(1)||t(3) = t(2)||t(4) then

04 AddPath(βz,s(y), z, s, k, t(1)||t(3));
05 T+

S∗ [k, x] ← y; T−
S∗ [k, y] ← x;

06 return T−
S∗ [k, y];

AddPath(z, h, s, m, t)

01 for all (M, a) ∈ Path[h] do

02 Path[z]
∪←− (M ||m, a||s||m||t);

FindPath(h, s, m, t)

01 P ← ∅;
02 for all (M, a) ∈ Path[h] do
03 if ∃M1 s.t. padBLAKE(s, M1) = a||s||m||t then

04 P
∪←− (M1, a||s||m||t);

05 if P = ∅ then return ⊥;

06 else return (M∗, a∗)
$←− P ;

S+(k, x)

01 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);
02 y ← EI(k, x);

03 if t(1)||t(3) = t(2)||t(4) then

04 a ← T O(1)(z′);
05 if a 6=⊥ or z′ = IV then

06 if ∃M s.t. padBLAKE(s, M) = a||s||k||t(1)||t(3) then
07 z ← ROn(s, M);

08 else z ← RO(1)
n (a||s||k||t(1)||t(3));

09 y1 ← RO(2)
n (k, x); y2 ← y1 ⊕ z′ ⊕ [s]2 ⊕ z; y ← y1||y2;

10 return y;

S−(k, y)

01 k∗||x ← T O(2)(yL);
02 if k∗||x 6=⊥ and k∗ = k then return x;
03 x ← DI(k, y);
04 return x;

Fig. 21. S∗ (left and top of right) and S (right)

E Reset Indifferentiability for the BLAKE Hash Function

First define notations used in this subsection. [x]2 = x||x is the concatenation of two copies of x. If x is of
even length, then xL and xR denote its left and right halves where |xL| = |xR|.

Let the output length of BLAKE be n bits. Then BLAKE takes as input a salt s of n/2 bits (cho-
sen by the user), and a message M of arbitrary length. The evaluation of BLAKEBC2n,2n(s, M) is done
as follows where a block cipher BC2n,2n = (E,D) is used where E is the encryption function and D
is the decryption function with the key size and the plain text size of 2n bits. Firstly, the message M
is padded into message blocks m1, . . . ,mk of 2n bits, where the padding function padB is defined as
padB(M) = M ||10−|M |−n/2−2 mod 2n1||〈|M |〉n/2. Along with these message blocks, counter blocks t1, . . . , tk
of length n/4 bits are generated. This counter keeps track of the number of message bits hashed so far and
equals 0 if the i-th message block contains no message bits. Starting from an initial state value z0 ∈ {0, 1}n,
the message blocks mi and counter blocks ti are compressed iteratively into the state using a compression
function f : {0, 1}n ×{0, 1}n/2 ×{0, 1}2n ×{0, 1}n/4 → {0, 1}n. Here, the second input to f denotes the salt
s. The outcome of the BLAKE hash function is defined as its final state value H(s,M) = zk. f is defined as
Fig. 21. Here C ∈ {0, 1}n is a constant.

f(zi−1, s,mi, cbi)
vi ← (zi−1||s||[tLi ]2||[tRi ]2]) ⊕ (0n||C);
wi ← E(mi, vi);
zi ← wL

i ⊕ wR
i ⊕ zi−1 ⊕ [s]2;

return zi;

We evaluate the reset indifferentiable security from VO for the BLAKE hash function in the ideal cipher
model. We define the parameter of VO as v = 1, n1 = n, u = 2, t = 1 w1 = n, w2 = n, k1 = 2n and m1 = 2n.
Thus in this case, VO.priv = ROn and VO.pub = (ROn, T RO(1)

n , T RO(2)
n , IC

(1)
2n,2n). The following theorem

shows that the BLAKE hash function in the ideal cipher model is reset indifferentiable from VO.
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Theorem 8. Let IC2n,2n = (EI , DI) be an ideal cipher where the length of each elements is of 2n bits. There
exists a simulator S such that for any distinguisher A, the following holds,

Advr-indiff
BLAKEIC2n,2n ,VO,S

(A) ≤ 3
(lqH + qE)(lqH + qE + 1)

2n
+

5q2
E

22n+1
+

q2
E

2n−1
.

where A can make queries to BLAKEIC2n,2n/ROn and IC2n,2n/SBLAKE at most qH , qE times, respectively, and
l is a maximum number of blocks of a query to BLAKEIC2n,2n/ROn. SBLAKE makes at most 2qh queries and
runs in time O(qh). ¨

First, we define a padding function padBLAKE as padBLAKE(s,M) = (s||m1||t1)|| · · · ||(s||mk||tk). We also define
βz,s and β−1

z,s as βz,s(w) = wL⊕wR⊕z⊕[s]2 for w ∈ {0, 1}2n and β−1
z,s (z′) = {w ∈ {0, 1}2n|wL⊕wR⊕z⊕[s]2 =

z′} for z′ ∈ {0, 1}n. In the proof of the theorem, we use the result of the indifferentiable security from a RO
by Andreeva et al. [1] They define a simulator S∗ which can be implemented as Fig. 21. S∗ simulates the
ideal cipher IC2n,2n so that the relation among (BLAKEIC2n,2n , IC2n,2n) holds among (ROn, S∗). S∗

+ and S∗
−

simulate the encryption oracle EI and the decryption oracle DI of IC2n,2n, respectively. In this simulator,
the function FindPath and the procedure AddPath are used.

T+
S∗ and T−

S∗ are (initially everywhere ⊥) tables which record query-response values of S∗. If the query
S∗

+(k, x) is made, the output y is recorded in T+
S∗ [k, x] and x is recoded in T−

S∗ [k, y]. Similarly, the query-
response values for S∗

− are recoded in these tables. Path is a (initially everywhere ∅) table which records
all paths with the BLAKE style. Namely, if (k1, x1, y1) is recoded in T+

S∗ such that T+
S∗ [k1, x1] = y1,

x1 = z0||s1||tL1 ||tL1 ||tR1 ||tR1 , and z1 = βz0,s1(y1), (k1, s1||k1||t1) is recoded in Path[z1] 5. Then, for the
query S∗

+(k2, x2), if the query and some query-response pairs of S∗ have the BLAKE structure, the out-
put is defined by ROn. Namely, if x2 = z1||s2||tL2 ||tL2 ||tR2 ||tR2 , s1 = s2 and there exists M such that
padBLAKE(s2, M) = (s1||k1||t1)||(s2||k2||t2), then the output y2 is randomly chosen from β−1

z1,s2(ROn(s2,M))
to ensure the BLAKE consistency.

The Simulator S. We define the simulator S in Fig. 21. T RO(1)
n and T RO(2)

n realizes the functionality of
recording a path and constructing a new path. For the query S+(k1, x1) where x1 = IV ||s1||t(1)1 ||t(1)1 ||t(3)1 ||t(3)1

and there does not exist M such that padBLAKE(s1,M) = s1||k1||t(1)1 ||t(3)1 , the simulator makes the queries
RO(1)

n (s1||k1||t(1)1 ||t(3)1 ) and RO(2)
n (k1, x1) where the responses are z1 and y1,1, respectively, then y1,2 =

y1,1 ⊕ z ⊕ [s1]2 ⊕ IV and the response y1 of the query S+(k1, x1) is defined by y1 = y1,1||y1,2. Then, for the
query SBLAKE,+(k2, x2) where x2 = z1||s2||t(1)2 ||t(1)2 ||t(3)2 ||t(3)2 and there exists M such that padBLAKE(M) =
s1||k1||t(1)1 ||t(3)1 ||s2||k2||t(1)2 ||t(3)2 , the response y2 of the query S+(k2, x2) is defined by y2,1||y2,2 to ensure
the BLAKE consistency. The simulator can obtain s1||k1||t(1)1 ||t(3)1 by the query T O(1)(z1) and thus can
make the queries ROn(s2,M) and RO(2)

n (k2, x2) where the outputs are z2 and y2,1, respectively, and y2,2 =
y2,1 ⊕ z ⊕ [s2]2 ⊕ z1. Thus the simulator S+ can make a response with the same procedure to S∗

+. For the
inverse query S−(k2, y2), the simulator can obtain x2 by the query T O(2)(yR

2 ). Thus the simulator S− can
also make a response with the same procedure to S∗

−. The formal evaluation of the difference Pr[G1]−Pr[G2]
is given as follows where Pr[G1] − Pr[G2] ≤ 5q2

E/22n+1 + q2
E/2n−1. Since the simulator S does not update

the internal state, Pr[G0] = Pr[G1] (in Subsection ??). The indifferentiable bound from ROn in [1] is
3(lqH + qE)(lqH + qE + 1)/2n. There results yield the bound of Theorem 8.

Proof. We consider ten games, Game B0, Game B1, Game B2, Game B3, Game B4, Game B5, Game B6,
Game B7, Game B8, and Game B9, which are shown in Figs. 22, 23, 24, 25, 26, 27, 28, 29, 30, and 31,
respectively. In each game, the distinguisher A interacts with (O+,O−). (O+,O−) in Game B0 is equal to
the simulator S in Game 1, and (O+,O−) in Game B7 is equal to the simulator S∗ in Game 2. Notice that in
this proof ROn queries are removed, since the difference between Game 1 and Game 2 is just the simulator.

5 Note that in [1], the paths are recorded by using the graph representation, but the table Path realizes the same
role as the graph.
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O+(k, x)

01 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);
02 y ← EI(k, x);

03 if t(1)||t(3) = t(2)||t(4) then

04 a ← T O(1)(z′);
05 if a 6=⊥ or z′ = IV then

06 if ∃M s.t. padBLAKE(s, M) = a||s||k||t(1)||t(3) then
07 z ← ROn(s, M);

08 else z ← RO(1)
n (a||s||k||t(1)||t(3));

09 y1 ← RO(2)
n (k, x); y2 ← y1 ⊕ z′ ⊕ [s]2 ⊕ z; y ← y1||y2;

10 return y;

O−(k, y)

01 k∗||x ← T O(2)(yL);
02 if k∗||x 6=⊥ and k∗ = k then return x;
03 x ← DI(k, y);
04 return x;

Fig. 22. Game B0

O+(k, x)

01 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);
02 y ← E∗(k, x);

03 if t(1)||t(3) = t(2)||t(4) then

04 a ← T O(1)(z′);
05 if a 6=⊥ or z′ = IV then

06 if ∃M s.t. padBLAKE(s, M) = a||s||k||t(1)||t(3) then
07 z ← ROn(s, M);

08 else z ← RO(1)
n (a||s||k||t(1)||t(3));

09 y1 ← RO(2)
n (k, x); y2 ← y1 ⊕ z′ ⊕ [s]2 ⊕ z; y ← y1||y2;

10 return y;

O−(k, y)

01 k∗||x ← T O(2)(yL);
02 if k∗||x 6=⊥ and k∗ = k then return x;
03 x ← D∗(k, y);
04 return x;

E∗(k, x)

01 if E∗[k, x] =⊥ then E∗[k, x]
$←− {0, 1}2n;

02 D∗[k, E∗[k, x]] ← x;
03 return E∗[k, x];

D∗(k, y)

01 if D∗[k, y] =⊥ then D∗[k, y]
$←− {0, 1}2n;

02 E∗[k, D∗[k, y]] ← y;
03 return D∗[k, y];

Fig. 23. Game B1

Let GBj be an event that the distinguisher A output 1 in Game Bj. Thus

Pr[G1] − Pr[G2] = Pr[GB0] − Pr[GB9]

=
8∑

j=0

(Pr[GBj] − Pr[GB(j + 1)]).

In the following, we evaluate the each difference Pr[GBj] − Pr[GB(j + 1)].

Game B1. In Game B0 the ideal cipher (EI , DI) is used, while in Game B1 (E∗, D∗) is used where an
output is randomly chosen from {0, 1}2n. E∗ and D∗ are (initially everywhere ⊥) tables. We thus have via
birthday analysis that

Pr[GB0] − Pr[GB1] ≤ 2q2
E

22n+1
.

Game B2. In this game, new tables T+
S∗ and T−

S∗ are used which are initially everywhere ⊥. In Game B2,
if no collision for the outputs of O+ and the output of O− occurs, for a repeated query, the value which
was previously returned is returned. In Game B1, the procedure of O+ depends on the output of T O(1) and
the procedure of O− depends on the output of T O(2). Thus in Game B1 if no collision for the outputs of
RO(1)

n and the output of RO(2)
n occurs then for a repeated query, the value which was previously returned

is returned. Thus, in both game, if o collision for the outputs of RO(1)
n , the output of RO(2)

n , the outputs
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O+(k, x)

01 if T+
S∗ [k, x] 6=⊥ then return T+

S∗ [k, x];

02 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);
03 y ← E∗(k, x);

04 if t(1)||t(3) = t(2)||t(4) then

05 a ← T O(1)(z′);
06 if a 6=⊥ or z′ = IV then

07 if ∃M s.t. padBLAKE(s, M) = a||s||k||t(1)||t(3) then
08 z ← ROn(s, M);

09 else z ← RO(1)
n (a||s||k||t(1)||t(3));

10 y1 ← RO(2)
n (k, x); y2 ← y1 ⊕ z′ ⊕ [s]2 ⊕ z; y ← y1||y2;

11 T+
S∗ [k, x] ← y; T−

S∗ [k, y] ← x;
12 return T+

S∗ [k, x];

O−(k, y)

01 if T−
S∗ [k, y] 6=⊥ then return T−

S∗ [k, y];

02 k∗||x∗ ← T O(2)(yL);
03 if k∗||x∗ 6=⊥ and k∗ = k then x ← x∗;
04 else x ← D∗(k, y);
05 T+

S∗ [k, x] ← y; T−
S∗ [k, y] ← x;

06 return T−
S∗ [k, y];

E∗(k, x)

01 if E∗[k, x] =⊥ then E∗[k, x]
$←− {0, 1}2n;

02 D∗[k, E∗[k, x]] ← x;
03 return E∗[k, x];

D∗(k, y)

01 if D∗[k, y] =⊥ then D∗[k, y]
$←− {0, 1}2n;

02 E∗[k, D∗[k, y]] ← y;
03 return D∗[k, y];

Fig. 24. Game B2

O+(k, x)

01 if T+
S∗ [k, x] 6=⊥ then return T+

S∗ [k, x];

02 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);

03 y
$←− {0, 1}2n;

04 if t(1)||t(3) = t(2)||t(4) then

05 a ← T O(1)(z′);
06 if a 6=⊥ or z′ = IV then

07 if ∃M s.t. padBLAKE(s, M) = a||s||k||t(1)||t(3) then
08 z ← ROn(s, M);

09 else z ← RO(1)
n (a||s||k||t(1)||t(3));

10 y1 ← RO(2)
n (k, x); y2 ← y1 ⊕ z′ ⊕ [s]2 ⊕ z; y ← y1||y2;

11 T+
S∗ [k, x] ← y; T−

S∗ [k, y] ← x;
12 return T+

S∗ [k, x];

O−(k, y)

01 if T−
S∗ [k, y] 6=⊥ then return T−

S∗ [k, y];

02 k∗||x∗ ← T O(2)(yL);
03 if k∗||x∗ 6=⊥ and k∗ = k then x ← x∗;

04 else x
$←− {0, 1}2n;

05 T+
S∗ [k, x] ← y; T−

S∗ [k, y] ← x;
06 return T−

S∗ [k, y];

Fig. 25. Game B3

of O+ and the output of O−, the modification for Game B2 does not affect the distinguisher’s view and so
Game B2 is equal to Game B1. We thus have via a birthday analysis that

Pr[GB1] − Pr[GB2] ≤ 2q2
E

2n+1
+

2q2
E

22n+1
.

Game B3. In this game, (E∗, D∗) is removed. Outputs of E∗ and D∗ are randomly chosen from {0, 1}2n. In
Game B2, if no collision occurs for O+,O−, for a repeated query, the value which was previously returned
is returned by the tables T+

S∗ and T−
S∗ . Thus in both games if no collision occurs for the outputs of O+ and

the outputs of O−, the modification does not affect the distinguisher’s view. We thus have via a birthday
analysis that

Pr[GB2] − Pr[GB3] ≤ 2q2
E

22n+1
.

Game B4. In this game, T O(2) in O− is removed. k∗||x∗ (= T O(yL) 6=⊥ means that the value corresponding
with the query (k, y) is recoded. If no collision occurs for the output of O+ and the output of O−, for a
repeated query, the value which was previously returned is returned. That is, if no collision occurs, T O(2) is
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O+(k, x)

01 if T+
S∗ [k, x] 6=⊥ then return T+

S∗ [k, x];

02 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);

03 y
$←− {0, 1}2n;

04 if t(1)||t(3) = t(2)||t(4) then

05 a ← T O(1)(z′);
06 if a 6=⊥ or z′ = IV then

07 if ∃M s.t. padBLAKE(s, M) = a||s||k||t(1)||t(3) then
08 z ← ROn(s, M);

09 else z ← RO(1)
n (a||s||k||t(1)||t(3));

10 y1 ← RO(2)
n (k, x); y2 ← y1 ⊕ z′ ⊕ [s]2 ⊕ z; y ← y1||y2;

11 T+
S∗ [k, x] ← y; T−

S∗ [k, y] ← x;
12 return T+

S∗ [k, x];

O−(k, y)

01 if T−
S∗ [k, y] 6=⊥ then return T−

S∗ [k, y];

02 x
$←− {0, 1}2n;

03 T+
S∗ [k, x] ← y; T−

S∗ [k, y] ← x;
04 return T−

S∗ [k, y];

Fig. 26. Game B4

O+(k, x)

01 if T+
S∗ [k, x] 6=⊥ then return T+

S∗ [k, x];

02 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);

03 y
$←− {0, 1}2n;

04 if t(1)||t(3) = t(2)||t(4) then

05 a ← T O(1)(z′);
06 if a 6=⊥ or z′ = IV then

07 if ∃M s.t. padBLAKE(s, M) = a||s||k||t(1)||t(3) then
08 z ← ROn(s, M);

09 else z ← RO(1)
n (a||s||k||t(1)||t(3));

10 y
$←− β−1

z′,s(z);

11 T+
S∗ [k, x] ← y; T−

S∗ [k, y] ← x;
12 return T+

S∗ [k, x];

O−(k, y)

01 if T−
S∗ [k, y] 6=⊥ then return T−

S∗ [k, y];

02 x
$←− {0, 1}2n;

03 T+
S∗ [k, x] ← y; T−

S∗ [k, y] ← x;
04 return T−

S∗ [k, y];

Fig. 27. Game B5

not used and thus Game B3 is equal to Game B2. We thus have via a birthday analysis that

Pr[GB3] − Pr[GB4] ≤ 2q2
E

22n+1
.

Game B5. In this game, RO(2)
n is removed. In both Game B4 and Game B5, y is randomly chosen from

{0, 1}2n with a relation that βz′,s(y) = z. Thus Game B5 is equal to Game B4 and Pr[GB4] = Pr[GB5].

Game B6. In this game, T RO(1)
n is removed. Instead, the functions FindPath1 and AddPath1 are used.

Path is a (initially everywhere ⊥) table. If no collision occurs for the outputs of AddPath1, then AddPath1

and FindPath1 behave as RO(1)
n and T O(1), respectively. That is, if no collision occurs, Game B6 is equal

to Game B5. We thus have via a birthday analysis that

Pr[GB5] − Pr[GB6] ≤ q2
E

2n+1
.

Game B7. In this game, AddPath and FindPath are used instead of AddPath1 and FindPath1. For some
value z, in AddPath1, the number of paths in Path1[z] is at most 1, while in AddPath, the number of paths
in Path[z] not limited. Thus, if for any value z the number of paths in Path[z] is at most 1, Game B7 is
equal to Game B6. That is, if no collision for βz′,s (step 07 in O+) occurs then Game B7 is equal to Game
B6. Since y is randomly chosen from {0, 1}2n, an output of βz′,s is a random value of n bits. We thus via
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O+(k, x)

01 if T+
S∗ [k, x] 6=⊥ then return T+

S∗ [k, x];

02 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);

03 y
$←− {0, 1}2n;

04 if t(1)||t(3) = t(2)||t(4) then
05 a ← FindPath1(z

′);
06 if a 6=⊥ or z′ = IV then

07 if ∃M s.t. padBLAKE(s, M) = a||s||k||t(1)||t(3) then
08 z ← ROn(s, M);

09 else z ← AddPath1(a||s||k||t(1)||t(3));
10 y

$←− β−1
z′,s(z);

11 T+
S∗ [k, x] ← y; T−

S∗ [k, y] ← x;
12 return T+

S∗ [k, x];

O−(k, y)

01 if T−
S∗ [k, y] 6=⊥ then return T−

S∗ [k, y];

02 x
$←− {0, 1}2n;

03 T+
S∗ [k, x] ← y; T−

S∗ [k, y] ← x;
04 return T−

S∗ [k, y];

AddPath1(M)

01 if ∃z s.t. Path1[z] = M then return z;

02 z
$←− {0, 1}n;

03 Path1[z] ← M ;
04 return z;

FindPath1(z)

01 if Path1[z] 6=⊥ then return Path[z];
02 return ⊥;

Fig. 28. Game B6

O+(k, x)

01 if T+
S∗ [k, x] 6=⊥ then return T+

S∗ [k, x];

02 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);

03 y
$←− {0, 1}2n;

04 if t(1)||t(3) = t(2)||t(4) then
05 P ← FindPath(z′, s, k, t);
06 if P 6=⊥ then let P = (M, a); z ← ROn(s, M);

07 else AddPath(βz′,s(y), z′, s, k, t(1)||t(3));
08 T+

S∗ [k, x] ← y; T−
S∗ [k, y] ← x;

09 return T+
S∗ [k, x];

AddPath(z, h, s, m, t)

01 for all (M, a) ∈ Path[h] do

02 Path[z]
∪←− (M ||m, a||s||m||t);

O−(k, y)

01 if T−
S∗ [k, y] 6=⊥ then return T−

S∗ [k, y];

02 x
$←− {0, 1}2n;

03 T+
S∗ [k, x] ← y; T−

S∗ [k, y] ← x;
04 return T−

S∗ [k, y];

FindPath(h, s, m, t)

01 P ← ∅;
02 for all (M, a) ∈ Path[h] do
03 if ∃M1 s.t. padBLAKE(s, M1) = a||s||m||t then

04 P
∪←− (M1, a||s||m||t);

05 if P = ∅ then return ⊥;

06 else return (M∗, a∗)
$←− P ;

Fig. 29. Game B7

birthday analysis that

Pr[GB6] − Pr[GB7] ≤ q2
E

2n+1
.

Game B8. In Game B8, “else” for the step using AddPath is removed. Since padBLAKE is a prefix-free
padding, the path constructed from the value defined the steps 06-08 is not used. Thus the modification does
not affect the distinguisher’s view. So we have that Pr[GB7] = Pr[GB8].

Game B9. In this game, AddPath is added in O−. Since x is randomly chosen from {0, 1}2n, the probability
that in O− a new path is added in the table Path is at most q2

E/2n where the number of paths stored in
Path is at most qE . We thus have that

Pr[GB8] − Pr[GB9] ≤ q2
E

2n
.

ut
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O+
B(k, x)

01 if T+
S∗ [k, x] 6=⊥ then return T+

S∗ [k, x];

02 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);

03 y
$←− {0, 1}2n;

04 if t(1)||t(3) = t(2)||t(4) then

05 P ← FindPath(z′, s, k, t(1)||t(3));
06 if P 6= ∅ then
07 let P = (M, a);

08 z ← ROn(s, M); y
$←− β−1

z′,s(z);

09 AddPath(βz′,s(y), z′, s, k, t(1)||t(3)):
10 T+

S∗ [k, x] ← y; T−
S∗ [k, y] ← x;

11 return T+
S∗ [k, x];

AddPath(z, h, s, m, t)

01 for all (M, a) ∈ Path[h] do

02 Path[z]
∪←− (M ||m, a||s||m||t);

O−
B(k, y)

01 if T−
S∗ [k, y] 6=⊥ then return T−

S∗ [k, y];

02 x
$←− {0, 1}2n;

03 T+
S∗ [k, x] ← y; T−

S∗ [k, y] ← x;
04 return T−

S∗ [k, y];

FindPath(h, s, m, t)

01 P ← ∅;
02 for all (M, a) ∈ Path[h] do
03 if ∃M1 s.t. padBLAKE(s, M1) = a||s||m||t then

04 P
∪←− (M1, a||s||m||t);

05 if P = ∅ then return ⊥;

06 else return (M∗, a∗)
$←− P ;

Fig. 30. Game B8

O+(k, x)

01 if T+
S∗ [k, x] 6=⊥ then return T+

S∗ [k, x];

02 z′||s||t(1)||t(2)||t(3)||t(4) ← x ⊕ (0n||C);

03 y
$←− {0, 1}2n;

04 if t(1)||t(3) = t(2)||t(4) then

05 P ← FindPath(z′, s, k, t(1)||t(3));
06 if P 6= ∅ then
07 let P = (M, a);

08 z ← ROn(s, M); y
$←− β−1

z′,s(z);

09 AddPath(βz′,s(y), z′, s, k, t(1)||t(3)):
10 T+

S∗ [k, x] ← y; T−
S∗ [k, y] ← x;

11 return T+
S∗ [k, x];

AddPath(z, h, s, m, t)

01 for all (M, a) ∈ Path[h] do

02 Path[z]
∪←− (M ||m, a||s||m||t);

O−(k, y)

01 if T−
S∗ [k, y] 6=⊥ then return T−

S∗ [k, y];

02 z||s||t(1)||t(2)||t(3)||t(4) ← x
$←− {0, 1}2n;

03 if t(1)||t(3) = t(2)||t(4) then

04 AddPath(βz,s(y), z, s, k, t(1)||t(3));
05 T+

S∗ [k, x] ← y; T−
S∗ [k, y] ← x;

06 return T−
S∗ [k, y];

FindPath(h, s, m, t)

01 P ← ∅;
02 for all (M, a) ∈ Path[h] do
03 if ∃M1 s.t. padBLAKE(s, M1) = a||s||m||t then

04 P
∪←− (M1, a||s||m||t);

05 if P = ∅ then return ⊥;

06 else return (M∗, a∗)
$←− P ;

Fig. 31. Game B9

F Proof of Theorem 4

We show the following lemma.

Lemma 5. For any CDA1 adversary A1, A2, making ROn queries at most q times, of a PKE scheme AE
where the length of the randomness r is 0, there exists a PRIV adversary B1, B2 of the PKE scheme such
that

Advcda1
AE,ROn

(A1, A2) ≤ Advpriv
AE,ROn

(B1, B2).

A1, A2 can make ROn queries at most q times. The runing time of B1, B2 is at most that of A1, A2. ¨

Proof. We construct the PRIV adversary B1, B2 by using the CDA1 adversary A1, A2. The PRIV adversary
is shown in Fig. 32. The adversary B1 outputs two values, the B1’s output and the A1’s output. B1 uses only
s which one element of the output of A1. B1 defines messages of A1 such that m0 and m1 are bit strings of
length ω and mb[i] 6= mb[j] for all 1 ≤ i < j ≤ ν and all b ∈ {0, 1} such that the source has mini-entropy µ.
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Adversary B1

1 ((m∗
0,m

∗
1), s) ← AROn

1

2 generates (m0,m1) where the bits(mb∗) = b∗ for b∗ = 0, 1.
3 outputs (m0,m1) as the B1’s output.

Adversary B2

1 obtains the cipher text c

2 b′ ← AROn
2 (c)

3 return b′

Fig. 32. PRIV Adversary

A1 and A2 does not share the state and the second adversary A2 obtains just the cipher text c whose the
plain text has mini-entropy µ. Thus A2 does not find that the plain text is defined by B1. The adversary
PRIV B1, B2 wins if the CDA1 adversary wins. ut
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G Proof of Theorem 5

Lemma 6. For any CDA2 adversary A1, A2 of REwH in the ROn model, there exists a CDA adversary
B1, B2 in the ROn model such that

Advcda2
REwH,ROn

(A1, A2) ≤ Advcda
REwH,ROn

(B1, B2).

where the running time of B1, B2 is at most that of A1, A2. ¨

Proof. We consider the following events.

– Event 1: A1 outputs ((m0,m1, r), i) such that biti(mb, r) is some bit of r.
– Event 2: A1 outputs ((m0,m1, r), i) such that biti(mb, r) is some bit of mb.

Let CDA2 be the event that true is returned in the CDA2 security game. Thus we have the following.

Pr[CDA2A1,A2
REwH,ROn

⇒ true] = Pr[CDA2]

≤ Pr[GDA2|Event 1] Pr[Event 1] + Pr[GDA2|Event 2] Pr[Event 2]
= Pr[GDA2|Event 1] × p + Pr[GDA2|Event 2] × (1 − p)

where p = Pr[Event 1].
We evaluate the probability Pr[CDA2|Event 1]. In the CDA2 security game, A2 obtains the cipher text

c where each component is Er(pk,mb[t];ROn(pk||mb[t]||r[t])). Since biti(mb, r) is a random bit and the bit
is hidden by ROn, Pr[CDA2|Event 1] = 1/2.

We evaluate the probability Pr[CDA2|Event 2]. Let CDA1 be the event that the CDA1 adversary A∗
1, A

∗
2

wins the CDA1 security game. Let Event 2’ be the event that in the CDA1 security game A∗
2 outputs

((m0,m1, r), i) such that biti(mb, r) is a bit of mb. From Lemma 1, for any CDA2 adversary A1, A2 there
exists a CDA1 adversary A∗

1, A
∗
2 such that

Pr[CDA2|Event 2] ≤ Pr[CDA1|Event 2’]

Under Event 2’, we can construct a CDA adversary from the CDA1 adversary by using the same proof in
Appendix F. Thus, for any CDA1 adversary A∗

1, A
∗
2, there exists a CDA adversary B1, B2 such that

Pr[CDA1|Event 2’] ≤ Pr[CDAB1,B2
REwH,ROn

⇒ true]

From above discussion, for any CDA2 adversary A1, A2 there exists CDA adversary B1, B2 such that

Pr[CDA2A1,A2
REwH,ROn

⇒ true] ≤ 1
2
× p + Pr[CDAB1,B2

REwH,ROn
⇒ true] × (1 − p)

≤ Pr[CDAB1,B2
REwH,ROn

⇒ true].

ut
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Adversary B1

1 ((m∗
0,m

∗
1, r), s) ← AROn

1

2 generates ((m0, r0), (m1, r1)) such that bits(mb∗ , rb∗) = b∗ for b∗ = 0, 1.
3 outputs ((m0, r0), (m1, r1)) as the B1’s output.

Adversary B2

1 obtains the cipher text c

2 b′ ← AROn
2 (c)

3 return b′

Fig. 33. PRIV Adversary

H Proof of Theorem 6

Lemma 7. For any CDA1 adversary A1, A2 of PtD in the ROn model, there exists a CDA adversary B1, B2

in the ROn model such that

Advcda1
PtD,ROn

(A1, A2) ≤ Advpriv
AEd,ROn

(B1, B2).

where the running time of B1, B2 is at most that of A1, A2. ¨

Proof. We construct the PRIV adversary B1, B2 by using the CDA1 adversary A1, A2. The PRIV adversary
is shown in Fig. 33. B1 uses only s which one element of the output of A1. B1 defines messages of A1

such that m0 and m1 are bit strings of length ω, all components of r0, r1 are bit strings of length ρ, and
(mb[i], rb[i]) 6= (mb[j], rb[j]) for all 1 ≤ i < j ≤ ν and all b ∈ {0, 1} such that the source has mini-entropy
µ. A1 and A2 does not share the state and the second adversary A2 obtains just the cipher text c whose
the plain text has mini-entropy µ. Thus A2 cannot find that the plain text is defined by B1. If the CDA1
adversary wins then the PRIV adversary B1, B2 wins . ut
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