On the Indifferentiable Hash Functions in the Multi-Stage Security Games

Yusuke Naito
Mitsubishi Electric Corporation

Abstract

It had been widely believed that the indifferentiability framework ensures composition in any security game. However, Ristenpart, Shacham, and Shrimpton (EUROCRYPT 2011) demonstrated that for some multi-stage security, there exists a cryptosystem which is secure in the random oracle (RO) model but is broken when some indifferentiable hash function is used. However, this does not imply that for any multi-stage security, any cryptosystem is broken when a RO is replaced with the indifferentiable hash function. They showed that the important multi-stage security: the chosen-distribution attack (CDA) security is preserved for some public key encryption (PKE) schemes when a RO is replaced with the indifferentiable hash function proposed by Dodis, Ristenpart, and Shrimpton (EUROCRYPT 2009). An open problem from their result is the multi-stage security when a RO is replaced with other indifferentiable hash functions. We show that for any PKE scheme, the CDA security, which is a multistage security, is preserved when a RO is replaced with the important indifferentiable hash function, Prefix-free Merkle-Damgård, chop Merkle-Damgård, or Sponge.

Keywords. Indifferentiable Hash Function, Reset Indifferentiable Security, Multi-Stage Security

1 Introduction

The indifferentiable composition theorem of Maurer, Renner, and Holenstein [25] ensures that if a functionality F (e.g., a hash function from an ideal primitive) is indifferentiable from a second functionality F^{\prime} (e.g., a random oracle (RO)), the security of any cryptosystem is preserved when F^{\prime} is replaced with F. The important application of this framework is the RO model security, because many practical cryptosystems e.g., RSA-OAEP [9] and RSA-PSS [10] are designed by the RO methodology. A RO is instantiated by a hash function such as SHA-1 and SHA-256 [29]. However, the Merkle-Damgård hash functions [19, 26] such as SHA-1 and SHA-256, are not indifferentiable from ROs [18]. So many indifferentiable (from a RO) hash functions have been proposed, e.g., the finalists of the SHA-3 competition $[3,12,21,23,31,1,2,11,13,18,17$, 20]. The indifferentiable security is thus an important security of hash functions.

Recently, Ristenpart, Shacham, and Shrimpton [30] showed that in some multi-stage security game some scheme secure in the RO model is broken when some indifferentiable hash function is used. They considered the multi-stage security game called CRP. The CRP security game for the n-bit (output length) hash function H is the two stage security game. In the first stage, for random messages M_{1}, M_{2} of $2 n$ bits, the first stage adversary A_{1} derives the some state st of $2 n$ bits. In the second stage, the second stage adversary A_{2} receives $s t$, and for a random challenge value C of $2 n$ bits outputs an n-bit value z. Then, the adversary wins if $z=H\left(M_{1}\left\|M_{2}\right\| C\right)$. Consider the chop MD hash function chopMD ${ }^{h}\left(M_{1}\left\|M_{2}\right\| C\right)=$ $\operatorname{chop}_{n}\left(h\left(h\left(h\left(I V, M_{1}\right), M_{2}\right), C\right)\right)$ which is indifferentiable from a RO [18], where $h:\{0,1\}^{4 n} \rightarrow\{0,1\}^{2 n}$ is a RO, and chop ${ }_{n}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$ outputs the right n bits of the input. Clearly, the following adversary can win with probability 1 when H is the chop MD hash function. First, A_{1} receives M_{1}, M_{2}, calculates $s t=h\left(h\left(I V, M_{1}\right), M_{2}\right)$, and outputs st. Second, A_{2} receives $s t$, and for a random challenge C, outputs $z=\operatorname{chop}_{n}(h(s t, C))$ which is equal to chopMD ${ }^{h}\left(M_{1}\left\|M_{2}\right\| C\right)$. On the other hand, when H is a RO, since A_{2} cannot receive several value of M_{1}, M_{2}, the probability that the adversary wins is negligible. This result implies that the indifferentiable composition theorem does not ensure any multi-stage security when a RO is replaced with indifferentiable hash functions.

The chosen-distribution attack (CDA) security game is an important multi-stage security game, which is the security goal for deterministic, efficiently searchable [4, $6,14,22,27]$, and hedged [5] public key encryption (PKE), wherein there are several PKE schemes which are proven in the RO model [4,5]. For the CDA secure PKE schemes EwH [4] and REwH1 [5] (in the RO model), Ristenpart et al. salvaged the important indifferentiable hash function, the NMAC-type hash function [20], which was proposed by Dodis, Ristenpart,
and Shrimpton, and which is employed in the SHA-3 finalist Skein [21]. They showed that these PKE schemes are non-adaptive CDA secure in the chosen-plaintext attack (CPA) case when the NMAC-type hash function is used.

The open problem from the paper of Ristenpart et al. is thus the CDA security when a RO replaced with other indifferentiable hash functions. Especially, it is important to consider the security when a RO is replaced with the SHA-3 finalists and the SHA-2 hash functions, because one of the SHA-3 finalists will be published as a standard hash function (FIPS) [28] and the SHA-2 hash functions were published as standard hash functions [29]. We consider the important hash functions, Prefix-free Merkle-Damgård (PFMD) [18], Sponge [11] and chop Merkle-Damgård (chop MD) [18]. The PFMD hash function is employed in the SHA3 finalist BLAKE [3]. The Sponge hash function is employed in the SHA-3 finalist Keccak [12]. The chop Merkle-Damgård hash function is employed in SHA-224 and SHA384 [29]. We show that for any PKE scheme, the CDA security, which is a multi-stage security, is preserved when a RO is replaced with the indifferentiable hash function. The above result covers both the adaptive security and the non-adaptive security and both both chosen-ciphertext attack (CCA) and CPA cases. The advantages of our result to the result of Ristenpart et al. are that (1) our result ensures the stronger security (adaptive and CCA), and (2) our result ensures the CDA security of any PKE scheme. Since several PKE schemes in [5, 4] support the CCA case or the adaptive case, the analysis for the stronger security cases is important.
(Reset) Indifferentiability [30]. To prove the CDA security, we use the reset indifferentiability framework of Ristenpart et al. The reset indifferentiability ensures composition in any security game: if a hash function H^{P} which uses an ideal primitive P is reset indifferentiable from another ideal primitive P^{\prime}, any security of any cryptosystem is preserved when P^{\prime} is replaced with H^{P}.

Recall the original [25] and reset [30] indifferentiability (from a RO) frameworks. The original indifferentiable security game from a RO for H^{P} is that a distinguisher A converses either with $\left(H^{P}, P\right)$ or $\left(R O, S^{R O}\right) . S$ is a simulator which simulates P such that S and P^{\prime} are consistent. If the probability that the distinguisher A hits the conversing world is small, then H^{P} is indifferentiable from a RO. In the reset indifferentiable security game, the distinguisher can reset the initial state of the simulator at arbitrary times.

To prove the original indifferentiable security, the simulator needs to record the query-response history. When for a query $P(x) z$ was returned, for a repeated query $P(x), z$ is returned. So, when for a query $S(x)$ z was returned, for a repeated query $S(x)$, the simulator should return z. When the internal state is reseted, the simulator forgets the value and cannot return. Thus one cannot use the reset indifferentiability from a RO to prove the CDA security when a RO is replaced with the indifferentiable hash function.
Our Approach. We thus use the reset indifferentiability from a variant of a RO. We propose a variant which covers many indifferentiable hash functions. We call the variant "Versatile Oracle" $(\mathcal{V O})$. The $\mathcal{V O}$ consists of a RO and auxiliary oracles. The auxiliary oracles are used to record the query-response history of a simulator. The $\mathcal{V O}$ thus enables to construct a simulator which does not update the internal state and which is unaffected by the reset function. We show that the PFMD hash function, the chop MD hash function ${ }^{1}$, and the Sponge hash function are reset indifferentiable from $\mathcal{V O}$ s. Then, we show that for any PKE scheme, the CDA security is preserved when a RO is replaced with a $\mathcal{V} \mathcal{O}$. The reset indifferentiability composition theorem ensures that the CDA security are preserved when a RO is replaced with the indifferentiable hash function. Note that this is the first time positive result for the reset indifferentiability (from a $\mathcal{V O}$). We note that since $\mathcal{V O}$ is the weaker oracle than $\mathrm{RO}, \mathcal{V O}$ cannot cover all applications of RO. However, $\mathcal{V O}$ covers the CDA security for any PKE scheme. Again, our goal is to prove the CDA security when a RO is replaced with the indifferentiable hash function. Since these hash functions are not reset indifferentiable from ROs (one cannot directly prove from the RO model security by the reset indifferentiability), we use $\mathcal{V O}$ to prove the CDA security.

2 Preliminaries

Notation. For two values $x, y, x \| y$ is the concatenated value of x and y. For some value $y, x \leftarrow y$ means assigning y to x. When X is a non-empty finite set, we write $x \stackrel{\$}{\leftarrow} X$ to mean that a value is sampled

[^0]| | | $E_{t}(k, x)$ |
| :---: | :---: | :---: |
| $\underline{\mathcal{R} \mathcal{O}_{n}(M)}$ | $\underline{\mathcal{R} \mathcal{O}_{w_{i}}^{(i)}(M)}$ | $\overline{1 \text { if } \mathrm{E}_{t}[k, x]}=\perp, y \stackrel{\Phi}{\leftrightarrows}\{0,1\}^{m_{t}} \backslash T_{t}^{+}[k] ;$ |
| $\begin{aligned} & \overline{1} \text { if } \mathrm{F}[M] \\ & 2 \text { return } \mathrm{F}[M] ; \end{aligned}$ | $\begin{aligned} & 1 \text { if } \mathrm{F}_{i}^{*}[M] \neq \perp \text { then } \mathrm{F}_{i}^{*}[M] \stackrel{\oiint}{\leftarrow}\{0,1\}^{w_{i}} ; \\ & 2 \text { return } \mathrm{F}_{i}^{*}[M] ; \end{aligned}$ | $\begin{aligned} & 2 \text { Update } e_{t}(k, x, y) \text {; } \\ & 3 \text { return } \mathrm{E}_{t}[k, x] ; \end{aligned}$ |
| $\underline{\mathcal{R} \mathcal{O}_{n_{j}}^{j}(M)}$ | $\mathcal{T} \mathcal{O}^{(i)}(y)$ | $\underline{D_{t}(y)}$ |
| | $\overline{1 \text { if } \exists_{1} M}$ s.t. $\mathrm{F}_{i}^{*}[M]=y$ then return M 3 return \perp; | $\begin{aligned} & 1 \text { if } \mathrm{D}_{t}[k, y]=\perp, x \stackrel{\&}{\stackrel{\&}{\leftarrow}\{0,1\}^{m_{t}} \backslash T_{t}^{-}[k] ;} \\ & 2 \text { Update }(k, x, y) ; \\ & 3 \text { return } \mathrm{D}_{t}[k, y] ; \end{aligned}$ |

Fig. 1. Versatile Oracle $\mathcal{V O}$
uniformly at random from X and assign to $x . \oplus$ is bitwise exclusive or. $|x|$ is the bit length of x. For sets A and $C, C \stackrel{\cup}{\longleftarrow} A$ means assign $A \cup C$ to C. For $l \times r$-bit value M, $\operatorname{div}(r, M)$ divides M into r-bit values $\left(M_{1}, \ldots, M_{l}\right)$ and outputs them where $M_{1}\|\cdots\| M_{l}=M$. For a formula F, if there exists just a value M such that $F(M)$ is true, we denote $\exists_{1} M$ s.t. $F(M)$. Vectors are written in boldface, e.g., \mathbf{x}. If \mathbf{x} is a vector then $|\mathbf{x}|$ denotes its length and $\mathbf{x}[i]$ denotes its i-th component for $1 \leq i \leq|\mathbf{x}|$. bit ${ }_{j}(\mathbf{x})$ is the left j-th bit of $\mathbf{x}[1]\|\ldots\| \mathbf{x}[|\mathbf{x}|]$.
(Reset) Indifferentiability [25, 30]. In the reset indifferentiability [30], for a functionality F, a private interface F.priv and a public interface F.pub are considered, where adversaries have oracle access to F.pub and other parties (honest parties) have oracle access to F.priv. For example, for a cryptosystem in the F model, an output of the cryptosystem is calculated by accessing F.priv and an adversary has oracle access to F.pub. In the RO model the RO has both interfaces. Let H^{P} be a hash function that utilizes an ideal primitive P. The interfaces of H^{P} are defined by H^{P}. priv $=H^{P}$ and $H^{P} . p u b=P$.

For two functionalities F_{1} (e.g., hash function) and F_{2} (e.g. a variant of a RO), the advantage of the reset indifferentiability for F_{1} from F_{2} is as follows.

$$
\operatorname{Adv}_{F_{1}, F_{2}, S}^{r-\text { indiff }}(A)=\left|\operatorname{Pr}\left[A^{\bar{F}_{1} \cdot p r i v, \bar{F}_{1} \cdot p u b} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{F_{2} \cdot p r i v, \hat{S}^{F_{2} \cdot p u b}} \Rightarrow 1\right]\right|
$$

where $\hat{S}=(S, S . R s t), \bar{F}_{1} \cdot p r i v=F_{1} \cdot p r i v$ and $\bar{F}_{1} \cdot p u b=\left(F_{1} \cdot p u b, n o p\right) . S . R s t$ takes no input and when run reinitializes all of S. nop takes no input and does nothing. We say F_{1} is reset indifferentiable from F_{2} if there exists a simulator S such that for any distinguisher A the advantage of the reset indifferentiability is negligible. This framework ensures that if F_{1} is reset indifferentiable from F_{2} then any stage security of any cryptosystem is preserved when F_{2} is replaced with F_{1}. Please see Theorem 6.1 in the full version of [30].

When S.Rst and nop are removed from the reset indifferentiable security game, it is equal to the original indifferentiable security game [25]. In the original indifferentiable security game, the distinguisher interacts with ($F_{1} . p r i v, F_{1} . p u b$) and $\left(F_{2} . p r i v, S^{F_{2} . p u b}\right)$. We denote the advantage of the indifferentiable security by $\mathrm{Adv}_{F_{1}, F_{2}, S}^{\text {indif }}(A)$ for a distinguisher A. We say F_{1} is indifferentiable from F_{2} if there exists a simulator S such that for any distinguisher A the advantage is negligible.

3 Versatile Oracle

In this section, we propose a versatile oracle $\mathcal{V} \mathcal{O}, \mathcal{V O}$ consists of a $\mathrm{RO} \mathcal{R} \mathcal{O}_{n}, \operatorname{ROs} \mathcal{R} \mathcal{O}_{n_{j}}^{j}(j=1, \ldots, v)$, traceable random oracles $\mathcal{T} \mathcal{R} \mathcal{O}_{w_{i}}^{(i)}(i=1, \ldots, u)$, and ideal ciphers $\mathrm{IC}_{k_{t}, m_{t}}^{(t)}(t=1, \ldots, s)$. The private interface is defined by $\mathcal{V O}$.priv $=\mathcal{R} \mathcal{O}_{n}$ and the public interface is defined by $\mathcal{V O}$.pub $=\left(\mathcal{R} \mathcal{O}_{n}, \mathcal{R} \mathcal{O}_{n_{j}}^{j}(j=\right.$ $\left.1, \ldots, v), \mathcal{T} \mathcal{R} \mathcal{O}_{w_{i}}^{(i)}(i=1, \ldots, u), \mathrm{IC}_{k_{t}, m_{t}}^{(t)}(t=1, \ldots, s)\right) . \mathcal{V} \mathcal{O}$ can be implemented as Fig. 1.
$\mathcal{R} \mathcal{O}_{n}$ is shown in Fig. 1 (Left) where the input length is arbitrary and the output length is n bits. F is a (initially everywhere \perp) table.
$\mathcal{R} \mathcal{O}_{n_{j}}^{j}$ is shown in Fig. 1 (Left) where the input length is arbitrary and the output length is n_{j} bits, and F_{j} is a (initially everywhere \perp) table. Note that n_{j} and v are defined in our proofs.

$$
\begin{array}{ll}
& \frac{S(x, y)}{1 M^{*} \leftarrow \mathcal{T} \mathcal{O}^{(1)}(x) ;} \\
& 2 \text { if } x=I V \text { then } \\
\operatorname{PFMD}^{h}(M) \\
\hline 1\left(M_{1}, \ldots, M_{i}\right) \leftarrow \operatorname{div}(m, \operatorname{pfpad}(M)) & 3 \text { if } \exists M \text { s.t. pfpad }(M)=y \text { then } z \leftarrow \mathcal{R} \mathcal{O}_{n}(M) ; \\
2 x \leftarrow I V ; & 4 \text { else } z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}(y) ; \\
3 \text { For } j=1, \ldots, i, x \leftarrow h\left(x \| M_{j}\right) ; & 5 \text { else if } M^{*} \neq \perp \text { then } \\
4 \text { Ret } x ; & 6 \text { if } \exists M \text { s.t. pfpad }(M)=M^{*} \| y \text { then } z \leftarrow \mathcal{R} \mathcal{O}_{n}(M) ; \\
& 7 \text { else } z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}\left(M^{*} \| y\right) ; \\
& 8 \text { else } z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}(x \| y) ; \\
& 9 \text { return } z ;
\end{array}
$$

Fig. 2. PFMD Hash Function (left) and Simulator S (right)
$\mathcal{T} \mathcal{R} \mathcal{O}_{w_{i}}^{(i)}$ is shown in Fig. 1 (Center) which consists of a $\mathrm{RO} \mathcal{R} \mathcal{O}_{w_{i}}^{(i)}$ and a trace oracle $\mathcal{T} \mathcal{O}^{(i)}$. The output length of $\mathcal{R} \mathcal{O}_{w_{i}}^{(i)}$ and the input length of $\mathcal{T} \mathcal{O}^{(i)}$ are w_{i} bits, and F_{i}^{*} is a (initially everywhere \perp) table. Note that w_{i} and u are defined in our proofs.
$\mathrm{IC}_{k_{t}, m_{t}}^{(t)}$ can be implemented as Fig. 1 (Right) which consists of an encryption oracle E_{t} and a decryption oracle D_{t} where the first input of E_{t} is the key of k_{t} bits and the second input is the plain text of m_{t} bits, and the first input of D_{t} is the key of k_{t} bits and the second input is the cipher text of m_{t} bits. E_{t} and D_{t} are (initially everywhere \perp) tables where for the query $E_{t}(k, x)$ (resp. $D_{t}(k, y)$) the output is recored in $\mathrm{E}_{t}[k, x]$ (resp. $\left.\mathrm{D}_{t}[k, y]\right) . T_{t}^{+}[k]$ and $T_{t}^{-}[k]$ are (initially empty) tables which stores all values of $\mathrm{E}_{t}[k, \cdot]$ and $\mathrm{D}_{t}[k, \cdot]$, respectively. Update $e_{t}(k, x, y)$ is the procedure wherein the tables $\mathrm{E}_{t}, \mathrm{D}_{t}, T_{t}^{+}[k]$ and $T_{t}^{-}[k]$ are updated, $\mathrm{E}_{t}[k, x] \leftarrow y, \mathrm{D}_{t}[k, y] \leftarrow x, T_{t}^{+}[k] \leftarrow\{y\}$ and $T_{t}^{-}[k] \leftarrow\{x\}$. Note that the length k_{t}, m_{t} and s are defined in our proofs.

4 Reset Indifferentiability for Hash Functions

In this section, we consider the reset indifferentiable security of the important hash functions, prefix-free Merkle-Damgård (PFMD) [18], chop Merkle-Damgård (chop MD) [18], and Sponge [11]. We show that these hash functions are reset indifferentiable from $\mathcal{V} \mathcal{O}$ s.

4.1 Reset Indifferentiability for the PFMD Hash Function

The PFMD hash function is employed in the SHA-3 finalist BLAKE hash function [3]. In the document of [3], the indifferentiable security is proven when the compression function is a RO.

The PFMD hash function is illustrated in Fig. 2 (Left) where $I V$ is the initial value of n bits, $h:\{0,1\}^{d} \rightarrow$ $\{0,1\}^{n}$ is a compression function, $d=n+m$, and pfpad : $\{0,1\}^{*} \rightarrow\left(\{0,1\}^{m}\right)^{*}$ is an injective prefix-free padding where for any different values $M, M^{\prime}, \operatorname{pfpad}(M)$ is not a prefix of $\operatorname{pfpad}\left(M^{\prime}\right)$ and the inverse function of pfpad is efficiently computable.

We evaluate the reset indifferentiable security from $\mathcal{V O}$ for the PFMD hash function where h is a RO. We define the parameter of $\mathcal{V O}$ as $v=1, u=1 n_{1}=n$, and $w_{1}=n$. Note that in the reset indifferentiable proof ideal ciphers are not used. Thus in this case, $\mathcal{V O}$.priv $=\mathcal{R} \mathcal{O}_{n}$ and $\mathcal{V O}$.pub $=\left(\mathcal{R} \mathcal{O}_{n}, \mathcal{R} \mathcal{O}_{n}^{1}, \mathcal{T} \mathcal{R} \mathcal{O}_{n}^{(1)}\right)$. The following theorem shows that PFMD^{h} is reset indifferentiable from a $\mathcal{V O}$.

Theorem 1. There exists a simulator S such that for any distinguisher \mathcal{A}, the following holds,

$$
\operatorname{Adv}_{\mathrm{PFMD}^{h}, \mathcal{V O}, S}^{r-\text { indiff }}(\mathcal{A}) \leq \mathcal{O}\left(\frac{\left(l q_{H}+q_{h}\right)^{2}}{2^{n}}\right)
$$

where \mathcal{A} can make queries to $\mathrm{PFMD}^{h} / \mathcal{R} \mathcal{O}_{n}$ and h / S at most q_{H}, q_{h} times, respectively, and l is a maximum number of blocks of a query to $\mathrm{PFMD}^{h} / \mathcal{R} \mathcal{O}_{n}$. S makes at most $2 q_{h}$ queries and runs in time $\mathcal{O}\left(q_{h}\right)$.

The Simulator S. We define the simulator S in Fig. 2 which does not update the internal state to remove the attack using S.Rst. The S 's task is to simulate the compression function h such that $\mathcal{R} \mathcal{O}_{n}$ and S are

Fig. 3. chop MD (left) and S (right)
consistent, that is, for a value $M \operatorname{PFMD}^{S}(M)=\mathcal{R} \mathcal{O}_{n}(M)$. We explain that the simulator S succeeds in the simulation of h. For the ordered queries $S\left(I V, M_{1}\right), S\left(z_{1}, M_{2}\right)$ where $z_{1}=S\left(I V, M_{1}\right), z_{2}=S\left(z_{1}, M_{2}\right)$, if there does not exists M such that $\operatorname{pfpad}(M)=M_{1} \| M_{2}$, then z_{1} and z_{2} are defined by the responses of $\mathcal{R} \mathcal{O}_{n}^{(1)}\left(M_{1}\right)$ and $\mathcal{R} \mathcal{O}_{n}^{(1)}\left(M_{1} \| M_{2}\right)$, respectively, and the Merkle-Damgård style path $\left(M_{1} \| M_{2}, z_{2}\right)$ is recoded in the table F_{1}^{*} of $\mathcal{R} \mathcal{O}_{n}^{(1)}$. Then for the query $S\left(z_{2}, M_{3}\right)$, the response is defined by the output of $\mathcal{R} \mathcal{O}_{n}(M)$ if there exists M such that $\operatorname{pfpad}(M)=M_{1}\left\|M_{2}\right\| M_{3}$. Notice that $M_{1} \| M_{2}$ can be obtained by the query $\mathcal{T} \mathcal{O}^{(1)}\left(z_{2}\right)$. Thus the simulator S succeeds in the simulation of h. The formal proof is given in Appendix A.

Remark 1. The EMD hash function [8] and the MDP hash function [24] are designed from the same design spirit as the PFMD hash function, which are designed to resist the length extension attack. Thus, by the similar proof, one can prove that EMD and MDP are reset indifferentiable from $\mathcal{V O}$ s.

4.2 Reset Indifferentiability for the Chop MD Hash Function

The chop MD hash function is employed in SHA-2 family, SHA-224 and SHA-384 [29].
Fig. 3 illustrates the chop MD hash function chopMD ${ }^{h}:\{0,1\}^{*} \rightarrow\{0,1\}^{n} \cdot h:\{0,1\}^{d+n+s} \rightarrow\{0,1\}^{n+s}$ is a compression function. $\operatorname{pad}_{c}:\{0,1\}^{*} \rightarrow\left(\{0,1\}^{d}\right)^{*}$ is an injective padding function such that the inverse function is efficiently computable.

We evaluate the reset indifferentiable security of the chop MD hash function where h is a RO. We define the parameter $\mathcal{V O}$ as $v=1, u=1, n_{1}=s+n$ and $w_{1}=s$. Note that the ideal ciphers are not used.
 indifferentiable from a $\mathcal{V O}$.
Theorem 2. There exists a simulator S such that for any distinguisher \mathcal{A}, the following holds,

$$
\operatorname{Adv}_{\text {chopMD }}, \underline{\text {-indiff }}, S(\mathcal{A}) \leq \frac{(3 n+1) q_{h}+n q_{H}}{2^{s}}+\frac{\left(q_{H}+q_{h}\right)}{2^{n-1}}+\frac{\left(l q_{H}+q_{h}\right)^{2}}{2^{s+n+1}}+\frac{q_{h}^{2}}{2^{s-1}}+\frac{\left(2 q_{h}+1\right)^{2}}{2^{n}}
$$

where \mathcal{A} can make queries to chop $\mathrm{MD}^{h} / \mathcal{R} \mathcal{O}_{n}$ and h / S at most q_{H}, q_{h} times, respectively, and l is a maximum number of blocks of a query to chopMD ${ }^{h} / \mathcal{R O}_{n}$. S makes at most $3 q_{h}$ queries and runs in time $\mathcal{O}\left(q_{h}\right)$.
The Simulator S. We define the simulator S in Fig. 3 which does not update the internal state to remove the attack using S.Rst. In the proof of Theorem 2, the padding function pad_{c} is removed. Thus the queries to chopMD ${ }^{h}$ and $\mathcal{R} \mathcal{O}_{n}$ are in $\left(\{0,1\}^{d}\right)^{*}$. Note that the chop Merkle-Damgård hash function with the padding function is the special case of that without the padding function. The S 's task is to simulate the compression function h such that $\mathcal{R} \mathcal{O}_{n}$ and S are consistent, that is, for a value $M, \operatorname{chopMD}^{S}(M)=\mathcal{R} \mathcal{O}_{n}(M)$. For the ordered queries $S\left(I V, M_{1}\right), S\left(w_{1} \| z_{1}, M_{2}\right)$ where $w_{1}\left\|z_{1}=S\left(I V, M_{1}\right), w_{2}\right\| z_{2}=S\left(w_{1} \| z_{1}, M_{2}\right)$, the structure of S ensures that $z_{1}=\mathcal{R} \mathcal{O}_{n}\left(M_{1}\right), w_{1}=\mathcal{R} \mathcal{O}_{c}^{(1)}\left(M_{1}\right), z_{2}=\mathcal{R} \mathcal{O}_{n}\left(M_{1} \| M_{2}\right)$, and $w_{2}=\mathcal{R} \mathcal{O}_{c}^{(1)}\left(M_{1} \| M_{2}\right)$. Thus, the path $\left(M_{1}| | M_{2}, w_{2}\right)$ is recoded in the table F_{1}^{*} where $\mathrm{F}_{1}^{*}\left[M_{1}| | M_{2}\right]=w_{2}$. Then, for the query $S\left(w_{2}| | z_{2}, M_{3}\right)$, the response $w_{3} \| z_{3}$ is defined as $z_{3}=\mathcal{R} \mathcal{O}_{n}\left(M_{1} \| M_{2}| | M_{3}\right)$ and $w_{3}=\mathcal{R} \mathcal{O}_{c}^{(1)}\left(M_{1} \| M_{2}| | M_{3}\right)$. Notice that $M_{1} \| M_{2}$ can be obtained by the queries $\mathcal{T} \mathcal{O}^{(1)}\left(w_{2}\right)$. Thus the simulator S succeeds in the simulation of h. The formal proof is given in Appendix B.

```
Algorithm Sponge \({ }^{P}(M)\)
\(1 M^{\prime} \leftarrow \operatorname{pad}_{S}(M)\);
\(2\left(M_{1}, \ldots, M_{i}\right) \leftarrow \operatorname{div}(n, M) ;\)
\(3 s=I V\);
4 for \(i=1, \ldots, i\) do \(s=P\left(s \oplus\left(M_{i} \| 0^{c}\right)\right)\);
5 return the left most \(n\)-bits of \(s\);
\(\frac{S_{-}(z, w)}{01 M \leftarrow \mathcal{T} \mathcal{O}^{(1)}(w) ; ~}\)
02 if \(M \neq \perp\) and \(|M|=n\) then
\(03 \quad x \leftarrow I V_{1} \oplus M ; y \leftarrow I V_{2}\);
04 if \(M \neq \perp\) and \(|M|>n\) then
05 let \(M=M^{*}| | m(|m|=n)\);
\(\frac{S_{+}(x, y)}{01 M^{*}} \leftarrow \mathcal{T} \mathcal{O}^{(1)}(y) ;\)
02 if \(y=I V_{2}\) then
\(06 \quad\) if unpad \({ }_{S}\left(M^{*}\right)=M^{\prime} \neq \perp\) then \(x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}\left(M^{\prime}\right)\);
\(07 \quad\) else \(x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right)\);
\(08 \quad y \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(M^{*}\right)\);
09 else \(x \| y \leftarrow \mathcal{P}^{-1}(z \| w)\);
10 return \(x \| y\);
```

Fig. 4. Sponge Hash Function (left) and Simulator $S\left(S_{+}\right.$in right and S_{-}in left)

4.3 Reset Indifferentiability for the Sponge Hash Function

The Sponge hash function is a permutation-based hash function which employed in the SHA-3 candidate Keccak [12].

Fig. 4 (left) illustrates the Sponge hash function where $I V$ is the initial value of b bits, $\operatorname{pad}_{S}:\{0,1\}^{*} \rightarrow$ $\left(\{0,1\}^{n}\right)^{*}$ is an injective padding function such that the final block message $M_{i} \neq 0, P:\{0,1\}^{b} \rightarrow\{0,1\}^{b}$ is a permutation and $b=n+c$. The inverse function of pad_{S} is denoted by unpad ${ }_{S}:\left(\{0,1\}^{n}\right)^{*} \rightarrow\{0,1\}^{*} \cup\{\perp\}$ efficiently computable. unpad ${ }_{S}\left(M^{*}\right)$ outputs M if there exists M such that pad ${ }_{S}(M)=M^{*}$, and outputs \perp otherwise. Note that the Sponge hash function of Fig. 4 is the special case of the general Sponge hash function where the output length is arbitrary. The output lengths of SHA-3 are 224, 256, 384 and 512 bits and in this case the Keccak hash function has the structure of Fig. $4 .{ }^{2}$ We conjecture that the reset indifferentiable security of the general Sponge hash function can be proven by extending the following analysis of the Sponge hash function. We denote the left most n-bit value and the right most c bit value of $I V$ by $I V_{1}$ and $I V_{2}$, respectively. Namely, $I V=I V_{1} \| I V_{2}$.

We evaluate the reset indifferentiable security of the Sponge hash function in the random permutation model, where P is a forward oracle of the random permutation and P^{-1} is its inverse oracle. ${ }^{3}$ We define the parameter of $\mathcal{V O}$ as $v=1, u=1, s=1, n_{1}=n w_{1}=c$, and $m_{1}=b$. We don't care the key length k_{1}, since in this proof we fix the key by some constant value, that is the fixed key ideal cipher is used, which is a random permutation of b bits. So we use the random permutation $\left(\mathcal{P}, \mathcal{P}^{-1}\right)$ of b bits instead of the ideal cipher $\mathrm{IC}_{k_{1}, b}^{(1)}$ where \mathcal{P} is a forward oracle and \mathcal{P}^{-1} is an inverse oracle. Thus, in this case, $\mathcal{V} \mathcal{O} . p r i v=\mathcal{R} \mathcal{O}_{n}$ and $\mathcal{V O}$. pub $=\left(\mathcal{R} \mathcal{O}_{n}, \mathcal{R} \mathcal{O}_{n}^{1}, \mathcal{T} \mathcal{R} \mathcal{O}_{c}^{(1)}, \mathcal{P}, \mathcal{P}^{-1}\right)$. The following theorem is that the sponge hash function Sponge ${ }^{P}$ is reset indifferentiable from $\mathcal{V O}$.

Theorem 3 (Sponge is reset indifferentiable from a $\mathcal{V O}$). There exists a simulator $S=\left(S_{+}, S_{-}\right)$such that for any distinguisher \mathcal{A}, the following holds.

$$
\operatorname{Adv}_{S p o n g e^{P}, \mathcal{V O}, S}^{r-\text {-indiff }}(\mathcal{A}) \leq \frac{\left(1-2^{-n}\right) q^{2}+\left(1+2^{-n}\right) q}{2^{c+1}}+\frac{q^{2}}{2^{b-3}}+\frac{q(9 q+4)}{2^{c+1}}
$$

where \mathcal{A} can make at most q queries. S makes at most $3 q$ queries and runs in time $\mathcal{O}(q)$.

[^1]| $\mathrm{CDA}_{\mathcal{A E}, F}^{A_{1}, A_{2}}$ |
| :--- |
| $b \stackrel{\&}{\leftarrow}\{0,1\}$ |
| $(p k, s k) \stackrel{\Phi}{\leftarrow} \mathcal{K}$ |
| $\left(\mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{r}\right) \leftarrow \mathcal{A}_{1}^{F . p u b}$ |
| $\mathbf{c} \leftarrow \mathcal{E}^{F . p r i v}\left(p k, \mathbf{m}_{b}, \mathbf{r}\right)$ |
| $b^{\prime} \leftarrow \mathcal{A}_{2}^{F . p u b}(p k, \mathbf{c})$ |
| return $\left(b=b^{\prime}\right)$ |

Fig. 5. CDA Security Game

The Simulator S. We define the simulator S in Fig. 4 which does not update the internal state to remove the attack using S.Rst. The S 's task is to simulate the random permutation (P, P^{-1}) such that $\mathcal{R} \mathcal{O}_{n}$ and S are consistent, that is, for a value $M, \operatorname{Spong} e^{S_{+}}(M)=\mathcal{R} \mathcal{O}_{n}(M) . S_{+}$and S_{-}simulate P and P^{-1}, respectively. For the ordered queries $S_{+}\left(x_{1}, I V_{2}\right), S_{+}\left(x_{2}, w_{1}\right)$ where $z_{1}\left\|w_{1}=S_{+}\left(x_{1}, I V_{2}\right), z_{2}\right\| w_{2}=S_{+}\left(x_{2}, w_{1}\right)$, the structure of S ensures that $w_{1}=\mathcal{R} \mathcal{O}_{c}^{(1)}\left(M_{1}\right)$ and $w_{2}=\mathcal{R} \mathcal{O}_{c}^{(1)}\left(M_{1} \| M_{2}\right)$ where $M_{1}=I V_{1} \oplus x_{1}$ and $M_{2}=z_{1} \oplus x_{2}$. Thus, the path $\left(M_{1} \| M_{2}, w_{2}\right)$ is recoded in the table F_{1}^{*} where $\mathrm{F}_{1}^{*}\left[M_{1} \| M_{2}\right]=w_{2}$. Then, for the query $S_{+}\left(x_{3}, w_{2}\right)$, the response $w_{3} \| z_{3}$ is defined as $w_{3}=\mathcal{R} \mathcal{O}_{n}(M)$ and $z_{3}=\mathcal{R} \mathcal{O}_{c}^{(1)}\left(M_{1}\left\|M_{2}\right\| M_{3}\right)$, if $\operatorname{unpad}_{S}\left(M_{1}\left\|M_{2}\right\| M_{3}\right)=M \neq \perp$ where $M_{3}=z_{2} \oplus x_{3}$. Notice that $M_{1} \| M_{2}$ can be obtained by the queries $\mathcal{T} \mathcal{O}^{(1)}\left(w_{2}\right)$ and z_{2} can be obtained by the query $\mathcal{R} \mathcal{O}_{n}\left(\operatorname{unpad}_{S}\left(M_{1} \| M_{2}\right)\right)$ or the query $\mathcal{R} \mathcal{O}_{n}^{1}\left(M_{1} \| M_{2}\right)$. Thus the simulator S succeeds in the simulation of the random permutation. The formal proof is given in Appendix C.

5 Multi-Stage Security in the $\mathcal{V} \mathcal{O}$ Model

We show that for any PKE scheme, the CDA security [5] (including the PRIV security [4]) is preserved when a RO is replaced with a $\mathcal{V O}$. This ensures both the adaptive case and the non-adaptive case and both the CCA case and the CPA case. Public Key Encryption (PKE). A public key encryption scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ consists of three algorithms. Key generation \mathcal{K} outputs a public key, secret key pair. Encryption \mathcal{E} takes a public key $p k$, a message m, and randomness r and outputs a cipher text. Decryption \mathcal{D} takes a secret key, a cipher text, and outputs a plaintext or a distinguished symbol \perp. For vectors \mathbf{m}, \mathbf{r} with $|\mathbf{m}|=|\mathbf{r}|=l$ which is the size of vectors, we denote by $\mathcal{E}(p k, \mathbf{m} ; \mathbf{r})$ the vector $(\mathcal{E}(p k, \mathbf{m}[1] ; \mathbf{r}[1]), \ldots, \mathcal{E}(p k, \mathbf{m}[l] ; \mathbf{r}[l]))$. We say that $\mathcal{A E}$ is deterministic if \mathcal{E} is deterministic.

CDA Security. We explain the CDA security (we quote the explanation of the CDA security in [30]). Fig. 5 illustrates the non-adaptive CDA game in the CPA case for a PKE scheme $\mathcal{A E}$ using a functionality F. We explain the adaptive case and the CCA case, later. This notion captures the security of a PKE scheme when the randomness \mathbf{r} used may not be a string of uniform bits. For the remainder of this section, fix a randomness length $\rho \geq 0$ and a message length $\omega>0$. An (μ, ν)-mmr-source \mathcal{M} is a randomized algorithm that outputs a triple of vector $\left(\mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{r}\right)$ such that $\left|\mathbf{m}_{0}\right|=\left|\mathbf{m}_{1}\right|=|\mathbf{r}|=\nu$, all components of \mathbf{m}_{0} and \mathbf{m}_{1} are bit strings of length ω, all components of \mathbf{r} are bit strings of length ρ, and $\left(\mathbf{m}_{b}[i], \mathbf{r}[i]\right) \neq\left(\mathbf{m}_{b}[j], \mathbf{r}[j]\right)$ for all $1 \leq i<j \leq \nu$ and all $b \in\{0,1\}$. Moreover, the source has mini-entropy μ, meaning $\operatorname{Pr}\left[\left(\mathbf{m}_{b}[i], \mathbf{r}[i]\right)=\right.$ $\left.\left(m^{\prime}, r^{\prime}\right) \mid\left(\mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{r}\right) \leftarrow \mathcal{M}\right] \leq 2^{-\mu}$ for all $b \in\{0,1\}$, all $1 \leq i \leq \nu$, and all $\left(m^{\prime}, r^{\prime}\right)$. A CDA adversary $\mathcal{A}_{1}, \mathcal{A}_{2}$ is a pair of procedures, the first of which is a (μ, ν)-mmr-source. The CDA advantage for a CDA adversary $\mathcal{A}_{1}, \mathcal{A}_{2}$ against scheme $\mathcal{A E}$ using a functionality F is defined by

$$
\operatorname{Adv}_{\mathcal{A} \mathcal{E}, F}^{\mathrm{cda}}\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)=2 \cdot \operatorname{Pr}\left[\mathrm{CDA}_{\mathcal{A} \mathcal{E}, F}^{\mathcal{A}_{1}, \mathcal{A}_{2}} \Rightarrow \text { true }\right]-1
$$

In the adaptive case, the adversary \mathcal{A}_{1} can select multiple triples $\left(\mathbf{m}_{0,0}, \mathbf{m}_{0,1}, \mathbf{r}_{0}\right), \ldots,\left(\mathbf{m}_{j, 0}, \mathbf{m}_{j, 1}, \mathbf{r}_{j}\right)$ adaptively, where before selecting $\left(\mathbf{m}_{i, 0}, \mathbf{m}_{i, 1}, \mathbf{r}_{i}\right), \mathcal{A}_{1}$ can know cipher texts $\mathbf{c}_{0}, \ldots, \mathbf{c}_{i-1}$ of $\left(\mathbf{m}_{0, b}, \mathbf{r}_{0}\right), \ldots,\left(\mathbf{m}_{i-1, b}, \mathbf{r}_{i-1}\right)$ where $b \in\{0,1\}$. The adversary \mathcal{A}_{2} can receive its cipher texts $\mathbf{c}_{0}, \ldots, \mathbf{c}_{j}$. In the CCA case, the adversary has oracle access to the decryption oracle where the queries don't appear as a component of the cipher text(s). We note that the outputs of \mathcal{A}_{1} are independent of the coins used by F.pub. If this condition is removed, one can easily break the CDA security for any cryptosystem using the indifferentiable hash function. By using

	$\frac{S 1 p u b_{\mathcal{R} \mathcal{O}_{n}}(M)}{\operatorname{Ret} \mathcal{R O}_{n}(M)}$	$\frac{S 2 p u b_{\mathcal{R} \mathcal{O}_{n}}(M)}{\operatorname{Ret} \mathcal{R O}_{n}(M)}$
	$S^{1 p u b} \mathcal{R O}_{\text {O }_{n_{j}}^{j}}(M)$	$S 2 p u b_{\mathcal{R O}_{n_{j}}^{j}}(M)$
$\underline{\mathrm{CDA}_{\mathcal{A E},}^{A_{1}, A_{2}} \mathrm{R}_{n}(M)}$	If $\mathrm{f}_{j}[M]=\perp, \mathrm{f}_{j}[M] \stackrel{\oiint}{\leftarrow}\{0,1\}^{n_{j}} ;$ $\operatorname{Ret} \mathrm{f}_{j}[M]$;	If $\mathrm{ff}_{j}[M]=\perp, \mathrm{ff}_{j}[M] \stackrel{\$}{\leftarrow}\{0,1\}^{n_{j}} ;$ Ret $\mathrm{ff}_{j}[M]$;
$\begin{aligned} & \hline b \stackrel{\&}{\leftarrow}\{0,1\} \\ & (p k, s k) \stackrel{\Phi}{\leftrightarrows} \mathcal{K} \end{aligned}$	${\underline{S 1 p u b}{ }_{\mathcal{R O} \mathcal{O}_{w_{i}}^{(i)}}(M)}^{\text {S }}$	$\underline{S 2 p u b_{\mathcal{R O}_{w_{i}}^{(i)}}(M)}$
$\begin{aligned} & \left(\mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{r}\right) \leftarrow A_{1}^{\mathcal{R} \mathcal{O}_{n}, \mathcal{A}_{1}} \\ & c \leftarrow \mathcal{E}^{\mathcal{R} \mathcal{O}_{n}}\left(p k, \mathbf{m}_{b} ; \mathbf{r}\right) \\ & b^{\prime} \leftarrow A_{2}^{\mathcal{R} \mathcal{O}_{n}, \mathcal{A}_{2}}(p k, c) \end{aligned}$	If $\mathrm{f}_{i}^{*}[M]=\perp, \mathrm{f}_{i}^{*}[M] \stackrel{\Phi}{\leftarrow}\{0,1\}^{w_{i}} ;$ Ret $\mathrm{f}_{i}^{*}[M]$;	If $\mathrm{ff}_{i}^{*}[M]=\perp, \mathrm{ff}_{i}^{*}[M] \stackrel{\$}{\leftarrow}\{0,1\}^{w_{i}}$; Ret $\mathrm{ff}_{i}^{*}[M]$;
$\operatorname{Ret}\left(b=b^{\prime}\right)$	$\frac{{S 1 p u b_{\mathcal{T O}{ }^{(i)}}}(y)}{\text { If } \exists M \text { s.t. } \mathrm{f}_{i}^{*}[M]}=y \text {, ret } M \text {; }$	$\frac{S 2 p u b_{\mathcal{T} \mathcal{O}^{(i)}}(y)}{\text { If } \exists M \text { s.t. } \mathrm{ff}_{i}^{*}[M]}=y, \text { ret } M \text {; }$
$\begin{aligned} & \frac{A_{1}^{\mathcal{R} \mathcal{O}_{n}, \mathcal{A}_{1}}}{\left(\mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{r}\right) \leftarrow \mathcal{A}_{1}^{S 1 p u b}} \\ & \operatorname{Ret}\left(\mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{r}\right) \end{aligned}$	Ret \perp; $\frac{S 1 p u b_{E_{t}}(k, x)}{\text { If } \mathrm{f}_{t}^{+}[k, x]=\perp}$	Ret \perp; $\frac{S 2 p u b_{E_{t}}(k, x)}{\text { If } \mathrm{ff}_{t}^{+}[k, x]=\perp}$
$\frac{A_{2}^{\mathcal{R} \mathcal{O}_{n}, \mathcal{A}_{2}}(p k, c)}{b^{\prime} \leftarrow A_{2}^{S 2 p u b}(p k, c)}$ Ret b^{\prime}	$\begin{aligned} & y \stackrel{\Phi}{\leftarrow}\{0,1\}^{m_{t}} \backslash \mathcal{T} 1_{t}^{+}[k] ; \\ & \mathrm{f}_{t}^{+}[k, x] \leftarrow y ; \mathrm{f}_{t}^{-}[k, y] \leftarrow x ; \\ & \operatorname{Ret}_{\mathrm{f}_{t}^{+}}[k, x] \end{aligned}$	$\begin{aligned} & y \underset{~}{y}\{0,1\}^{m_{t}} \backslash \mathcal{T} 2_{t}^{+}[k] ; \\ & \mathrm{ff}_{t}^{+}[k, x] \leftarrow y ; \mathrm{ff}_{t}^{-}[k, y] \leftarrow x ; \\ & \text { Ret } \mathrm{ff}_{t}^{+}[k, x] \end{aligned}$
	$\begin{aligned} & \frac{S 1 p u b_{D_{t}}(k, y)}{\text { If } \mathrm{f}_{t}^{-}[k, y]=\perp} \\ & \quad x \stackrel{\Phi}{\leftarrow}\{0,1\}^{m_{t}} \backslash \mathcal{T} 1_{t}^{-}[k] ; \\ & \quad \mathrm{f}_{t}^{+}[k, x] \leftarrow y ; \mathfrak{f}_{t}^{-}[k, y] \leftarrow x ; \\ & \text { Ret } \mathrm{f}_{t}^{-}[k, y] ; \end{aligned}$	$\begin{aligned} & \frac{S 2 p u b_{D_{t}}(k, y)}{\text { If ff }_{t}^{-}[k, y]=\perp} \\ & \quad x \leftarrow\{0,1\}^{m_{t}} \backslash \mathcal{T} 2_{t}^{-}[k] ; \\ & \quad \mathrm{ff}_{t}^{+}[k, x] \leftarrow y ; \mathrm{ff}_{t}^{-}[k, y] \leftarrow x ; \\ & \operatorname{Ret}^{\Phi} \mathrm{ff}_{t}^{-},[k, y] ; \end{aligned}$

Fig. 6. CDA game adversary A_{1}, A_{2}
the randomness of the underlying primitive (e.g., a RO compression function), \mathcal{A}_{1} and \mathcal{A}_{2} can easily share the messages $\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{r}$. The definition of the CDA security game in [30] is that the messages are independent of the coins used by F.pub.
PRIV Security. The PRIV security is the special case of the CDA security when the PKE scheme $\mathcal{A E}$ being considered has randomness length $\rho=0$. Thus the PRIV security game for a PKE scheme $\mathcal{A E}$ using a functionality F against adversary $\mathcal{A}_{1}, \mathcal{A}_{2}$ is equal to the CDA game when $\rho=0$. The PRIV advantage for a PRIV adversary $\mathcal{A}_{1}, \mathcal{A}_{2}$ is denoted by $\operatorname{Adv}_{\mathcal{A}, F, F}^{\text {priv }}\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ which is equal to the CDA advantage with $\rho=0$.

The CDA (PRIV) Security When a RO is replaced with a $\mathcal{V O}$. The following theorem shows that for any PKE scheme the adaptive CDA security and the non-adaptive CDA security in both CPA and CCA cases are preserved when a RO is replaced with a $\mathcal{V O}$.

Theorem 4. Let $\mathcal{A E}$ be a PKE scheme. For any $C D A$ adversary $\mathcal{A}_{1}, \mathcal{A}_{2}$ in the $\mathcal{V O}$ model making at most $q_{1}, q_{2}, q_{3}, q_{\mathcal{T} \mathcal{O}}, q_{4}$ queries to $\mathcal{R} \mathcal{O}_{n}, \mathcal{R} \mathcal{O}_{n_{j}}^{j}(j=1, \ldots, v), \mathcal{T} \mathcal{R} \mathcal{O}_{w_{i}}^{(i)}=\left(\mathcal{R} \mathcal{O}_{i}^{(i)}, \mathcal{T} \mathcal{O}^{(i)}\right)(i=1, \ldots, u), \mathrm{IC}_{k_{t}, m_{t}}^{(t)}(t=$ $1, \ldots, s)$, there exists a $C D A$ adversary A_{1}, A_{2} in the $R O$ model such that

$$
\operatorname{Adv}_{\mathcal{A} \mathcal{E}, \mathcal{V O}}^{\text {cda }}\left(A_{1}, A_{2}\right) \leq \operatorname{Adv}_{\mathcal{A} \mathcal{E}, \mathcal{R} \mathcal{O}_{n}}^{\text {cda }}\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)+\min _{i=1, \ldots, u}\left\{\frac{q_{3} \times q_{\mathcal{T} \mathcal{O}^{1}}}{2^{w_{i}-1}}\right\}
$$

A_{1}, A_{2} runs in time that of $\mathcal{A}_{1}, \mathcal{A}_{2}$ plus $\mathcal{O}\left(q_{1}+q_{2}+q_{3}+q_{\mathcal{T} \mathcal{O}}+q_{4}\right)$ and makes at most q_{1} queries to $\mathcal{R} \mathcal{O}_{n}$.
Proof. The following proof is the CPA case. We discuss the CCA case later. Assume that there exists the CDA adversary $\mathcal{A}_{1}, \mathcal{A}_{2}$ against $\mathcal{A E}$ in $\mathcal{V O}$ model. In this proof, we construct a CDA game adversary A_{1}, A_{2} against $\mathcal{A E}$ in the the $\mathrm{RO}\left(\mathcal{R} \mathcal{O}_{n}\right)$ model by using the CDA adversary $\mathcal{A}_{1}, \mathcal{A}_{2} . A_{1}, A_{2}$ is shown in Fig. 6. A_{1} uses $\mathcal{R} \mathcal{O}_{b}$ and \mathcal{A}_{1}, and A_{1} simulates $\mathcal{V O}$.pub $=\left(\mathcal{R} \mathcal{O}_{n}, \mathcal{R} \mathcal{O}_{n_{j}}^{j}(j=1, \ldots, v), \mathcal{T} \mathcal{R} \mathcal{O}_{w_{i}}^{(i)}(i=\right.$
$\left.1, \ldots, u), \mathrm{IC}_{k_{t}, m_{t}}^{(t)}(t=1, \ldots, s)\right)$ where $S 1 p u b=\left(S 1 p u b_{\mathcal{R} \mathcal{O}_{n}}, S 1 p u b_{\mathcal{R O}_{n_{j}}^{j}}, S 1 p u b_{\mathcal{R O}_{w_{i}}^{(i)}}, S 1 p u b_{\mathcal{T O} \mathcal{O}^{(i)}}, S 1 p u b_{E_{t}}\right.$, $S 1 p u b_{D_{t}}$) is its simulation oracle. Similarly, A_{2} uses $\mathcal{R} \mathcal{O}_{n}$ and \mathcal{A}_{2}, and A_{2} simulates $\mathcal{V O}$ where $S 2 p u b$ is its simulation oracle. $\mathrm{f}_{j}, \mathrm{f}_{j}^{*}, \mathrm{f}_{t}^{+}, \mathrm{f}_{t}^{-}, \mathrm{ff}_{j}, \mathrm{ff}_{j}^{*}, \mathrm{ff}_{t}^{+}$, and ff_{t}^{-}are (initially everywhere \perp) tables to simulate these oracles and $\mathcal{T} 1_{t}^{+}, \mathcal{T} 1_{t}^{-}, \mathcal{T} 2_{t}^{+}$, and $\mathcal{T} 2_{t}^{-}$are (initially empty) tables to implement E_{t} and D_{t} where for any k, x such that $\mathrm{f}_{t}^{+}[k, x] \neq \perp, \mathrm{f}_{t}^{+}[k, x] \in \mathcal{T} 1^{+}[k]$, for any k, y such that $\mathrm{f}_{t}^{-}[k, y] \neq \perp, \mathrm{f}_{t}^{-}[k, y] \in \mathcal{T} 1_{t}^{-}[k]$, for any k, x such that $\mathrm{ff}_{t}^{+}[k, x] \neq \perp, \mathrm{ff}_{t}^{+}[k, x] \in \mathcal{T} 2_{t}^{+}[k]$, and for any k, y such that $\mathrm{ff}_{t}^{-}[k, y] \neq \perp, \mathrm{ff}_{t}^{-}[k, y] \in \mathcal{T} 2_{t}^{-}$. Note that this figure illustrates the non-adaptive case. One can easily extend this to the adaptive case by rewriting this figure where A_{1} selects multiple triples adaptively, A_{2} receives its cipher texts, \mathcal{A}_{1} selects multiple triples adaptively, and \mathcal{A}_{2} receives its cipher texts. The following proof can be applied to the adaptive case, since the number of the triples which $\mathcal{A}_{1}\left(A_{1}\right)$ outputs does not effect the simulation of $\mathcal{V O}$.

If the simulation of $\mathcal{V O}$ is success and the adversary $\mathcal{A}_{1}, \mathcal{A}_{2}$ wins the CDA game, the adversary A_{1}, A_{2} wins. We thus show that the probability that the simulation fails is negligible.
$S 1$ pub succeeds in the simulation of $\mathcal{V} \mathcal{O} . p u b . S 2 p u b_{\mathcal{R} \mathcal{O}_{n}}$ succeeds in the simulation of $\mathcal{R} \mathcal{O}_{n} . S 2 p u b_{\mathcal{R O}_{n_{j}}^{j}}$ succeeds in the simulation of $\mathcal{R} \mathcal{O}_{n_{j}}^{j} . S 2 p u b_{\mathcal{R O}_{n_{i}}^{(i)}}$ succeeds in the simulation of $\mathcal{R} \mathcal{O}_{n_{i}}^{i} . S 2 p u b_{E_{t}}$ and $S 2 p u b_{D_{t}}$ succeed in the simulation of E_{t} and D_{t}. Notice that A_{2} cannot see the tables of $S_{1} p u b$ and $S_{2} p u b$. So these simulators of $S 2 p u b$ is not consistent with those of $S 1 p u b$ but \mathcal{A}_{2} cannot find the inconsistency, since \mathcal{A}_{2} is given nothing from \mathcal{A}_{1} and the output of \mathcal{A}_{1} is independent from these simulators due to the definition of the CDA security game (the adversary's output is independent from $\mathcal{V} \mathcal{O} . p u b . S 2 p u b_{\mathcal{T} \mathcal{O}^{(i)}} i=1, \ldots, u$ succeed in the simulation of $\mathcal{T} \mathcal{O}^{(i)}$ with overwhelming probability. Since $S 2 p u b_{\mathcal{R O}_{w_{i}}^{(i)}}$ is not consistent with $S 1 p u b_{\mathcal{R O}_{w_{i}}^{(i)}}$, for the query $S 2 p u b_{\mathcal{T} \mathcal{O}^{(i)}}(y)$ such that there is a value w such that $\mathrm{f}_{i}^{*}[w]=y$, the output is \perp. In this case, thus, we fail the simulation. Since y is randomly chosen from $\{0,1\}^{w_{i}}$ and \mathcal{A}_{2} is given nothing from \mathcal{A}_{1}, the failure probability is $\leq \min _{i=1, \ldots, u}\left\{\frac{q_{3} \times q_{\mathcal{T}}}{2^{w_{i}}}\right\}$.

Thus $\operatorname{Pr}\left[\mathrm{CDA}_{\mathcal{A \mathcal { E } , \mathcal { V } \mathcal { O }}}^{A_{1}, A_{2}} \Rightarrow\right.$ true $] \leq \operatorname{Pr}\left[\mathrm{CDA}_{\mathcal{A} \mathcal{E}, \mathcal{R} \mathcal{O}_{n}}^{\mathcal{A}_{1}, \mathcal{A}_{2}} \Rightarrow \operatorname{true}\right]+\min _{i=1, \ldots, u}\left\{\frac{q_{3} \times q_{\mathcal{T}}}{2^{w_{i}}}\right\}$.
Consider the CCA case. In this case, the adversaries A_{2} and \mathcal{A}_{2} have oracle access to the decryption oracles. Thus, A_{2} simulates the decryption oracle which \mathcal{A}_{2} uses as follows: for the decryption query x from \mathcal{A}_{2}, A_{2} queries x to the decryption oracle. And A_{2} returns the response of the decryption oracle to \mathcal{A}_{2}. Clearly, the above proof works in the CCA case, since the decryption oracle simulation does not affect the simulation of $\mathcal{V O}$ (In $\mathcal{V O}$ model, $\left.\mathcal{R} \mathcal{O}_{n_{j}}^{j}(j=1, \ldots, v), \mathcal{T} \mathcal{R} \mathcal{O}_{w_{i}}^{(i)}(i=1, \ldots, u), \mathrm{IC}_{k_{t}, m_{t}}^{(t)}(t=1, \ldots, s)\right)$ are not used in the PKE scheme).

6 Conclusion and Future Works

We proved that for any PKE scheme the CDA is preserved for the adaptive CDA security and the nonadaptive CDA security in both CPA and CCA cases when a RO is replaced with the indifferentiable hash functions, PFMD, chop MD, and Sponge. First, we proposed the Versatile Oracle $\mathcal{V} \mathcal{O}$, and showed that these hash functions are reset indifferentiable from $\mathcal{V} \mathcal{O}$ s. Second, we proved that for any PKE scheme the CDA security are preserved when a RO is replaced with a $\mathcal{V} \mathcal{O}$. Then the reset indifferentiable composition theorem ensures our result. So far, there is no positive result for the reset indifferentiability. So, our result is the first time positive result.

For other indifferentiable hash functions, e.g., the SHA-3 finalists JH [31] and Grøstl [23], the CDA security is still open. We conjecture that our approach can be applied to the CDA security proof for these indifferentiable hash functions. For other cases, e.g., deterministic and hedged identity-based encryption schemes [7], we can similarly prove the security by our approach.

Acknowledgements

The author would like to thank the anonymous Eurocrypt 2012 and CRYPTO 2012 referees for very useful comments that helped to improve the paper.

References

1. Elena Andreeva, Atul Luykx, and Bart Mennink. Provable Security of BLAKE with Non-Ideal Compression Function, ePrint 2011/620.
2. Elena Andreeva, Bart Mennink, and Bart Preneel. On the Indifferentiability of the Grøstl Hash Function. In SCN, volume 6280 of LNCS, pages 88-105. Springer, 2010.
3. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. SHA-3 proposal BLAKE. Submission to NIST (Round 3). 2010.
4. Mihir Bellare, Alexandra Boldyreva, and Adam O'Neill. Deterministic and Efficiently Searchable Encryption. In CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 535-552. Springer, 2007.
5. Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham, and Scott Yilek. Hedged public-key encryption: How to protect against bad randomness. In ASIACRYPT, volume 5912 of LNCS, pages 232-249. Springer, 2009.
6. Mihir Bellare, Marc Fischlin, Adam O'Neill, and Thomas Ristenpart. Deterministic Encryption: Definitional Equivalences and Constructions without Random Oracles. In CRYPTO, volume 5157 of LNCS, pages 360-378. Springer, 2008.
7. Mihir Bellare, Eike Kiltz, Chris Peikert, and Brent Waters. Identity-Based (Lossy) Trapdoor Functions and Applications. (Ful Version in ePrint 2011/479). In EUROCRYPT, 2012.
8. Mihir Bellare and Thomas Ristenpart. Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 299-314. Springer, 2006.
9. Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryption - How to Encrypt with RSA. In EUROCRYPT, volume 950 of Lecture Notes in Computer Science, pages 92-111. Springer, 1994.
10. Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures - How to Sign with RSA and Rabin. In EUROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages 399-416. Springer, 1996.
11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the Indifferentiability of the Sponge Construction. In EUROCRYPT, pages 181-197, 2008.
12. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak SHA-3 submission. Submission to NIST (Round 3). 2011.
13. Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Security Analysis of the Mode of JH Hash Function. In FSE, volume 6147 of $L N C S$, pages 168-191. Springer, 2010.
14. Alexandra Boldyreva, Serge Fehr, and Adam O'Neill. On Notions of Security for Deterministic Encryption, and Efficient Constructions without Random Oracles. In CRYPTO, volume 5157 of LNCS, pages 335-359. Springer, 2008.
15. Donghoon Chang, Sangjin Lee, Mridul Nandi, and Moti Yung. Indifferentiable Security Analysis of Popular Hash Functions with Prefix-Free Padding. In ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 283-298. Springer, 2006.
16. Donghoon Chang and Mridul Nandi. Improved Indifferentiability Security Analysis of chopMD Hash Functionl. In $F S E$, pages pages 429-443, 2008.
17. Donghoon Chang, Mridul Nandi, and Moti Yung. Indifferentiability of the Hash Algorithm BLAKE, ePrint 2011/623. 2011.
18. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damgård Revisited: How to Construct a Hash Function. In CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 430-448. Springer, 2005.
19. Ivan Damgård. A Design Principle for Hash Functions. In CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 416-427. Springer, 1989.
20. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damgård for Practical Applications. In EUROCRYPT (Full Version in ePrint 2009/177), volume 5479 of Lecture Notes in Computer Science, pages 371-388. Springer, 2009.
21. Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function Family. Submission to NIST (Round 3). 2010.
22. Benjamin Fuller, Adam O'Neill, and Leonid Reyzin. A Unified Approach to Deterministic Encryption: New Constructions and a Connection to Computational Entropy. ePrint 2012/005.
23. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schäffer, and Søren S. Thomsen. Grøstl - a SHA-3 candidate. Submission to NIST (Round 3). 2011.
24. Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the Merkle-Damgård Scheme with a Permutation. In ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 113-129. Springer, 2007.
25. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility Results on Reductions, and Applications to the Random Oracle Methodology. In TCC, volume 2951 of Lecture Notes in Computer Science, pages 21-39. Springer, 2004.
26. Ralph C. Merkle. One Way Hash Functions and DES. In CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 428-446. Springer, 1989.
27. Ilya Mironov, Omkant Pandey, Omer Reingold, and Gil Segev. Incremental Deterministic Public-Key Encryption, (Full Version in ePrint 2012/047). In EUROCRYPT, 2012.
28. National Institute of Standards and Technology. Cryptographic Hash Algorithm Competition.
29. National Institute of Standards and Technoloty. FIPS PUB 180-3 Secure Hash Standard. In FIPS PUB, 2008.
30. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with Composition: Limitations of the Indifferentiability Framework. In EUROCRYPT (Full Version: ePrint 2011/339), volume 6632 of Lecture Notes in Computer Science, pages 487-506. Springer, 2011.
31. Hongjun Wu. The Hash Function JH. Submission to NIST (Round 3). 2011.
```
\(S^{*}(x, y)\)
\(\overline{01 \text { if } T_{S^{*}}}[x, y] \neq \perp\) then return \(T_{S^{*}}[x, y]\);
02 if \(x=I V\) then
```



```
12 else \(z \stackrel{\$}{\leftarrow}\{0,1\}^{n}\);
\(13 T_{S^{*}}[x, y] \leftarrow z\);
14 return \(T_{S^{*}}[x, y]\);
```

```
\(\frac{\mathcal{O}(x, y)}{1 M^{*} \leftarrow \mathcal{T} \mathcal{O}^{(1)}(x) ; ~}\)
```

$\frac{\mathcal{O}(x, y)}{1 M^{*} \leftarrow \mathcal{T} \mathcal{O}^{(1)}(x) ; ~}$
$M^{*} \leftarrow \mathcal{T} \mathcal{O}^{(1)}(x)$
$M^{*} \leftarrow \mathcal{T} \mathcal{O}^{(1)}(x)$
2 if $x=I V$ then
2 if $x=I V$ then
$3 \quad$ if $\exists M$ s.t. $\operatorname{pfpad}(M)=y$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
$3 \quad$ if $\exists M$ s.t. $\operatorname{pfpad}(M)=y$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
$4 \quad$ else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}(y)$;
$4 \quad$ else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}(y)$;
5 else if $M^{*} \neq \perp$ then
5 else if $M^{*} \neq \perp$ then
if $\exists M$ s.t. $\operatorname{pfpad}(M)=M^{*} \| y$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
if $\exists M$ s.t. $\operatorname{pfpad}(M)=M^{*} \| y$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
$7 \quad$ else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}\left(M^{*}| | y\right)$;
$7 \quad$ else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}\left(M^{*}| | y\right)$;
8 else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}(x| | y)$;
8 else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}(x| | y)$;
9 return z;

```
9 return \(z\);
```

Fig. 7. Simulator S^{*} (Left) and Game PF1 (Right)

```
\(\underline{\mathcal{O}(x, y)}\)
\(\frac{O(x, y)}{01 \text { if } x}=I V\) then
    if \(\exists M\) s.t. \(\operatorname{pfpad}(M)=y\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
03 else
\(04 \quad\) if \(\mathbf{F}_{1}^{*}[y]=\perp\) then \(\mathbf{F}_{1}^{*}[y] \stackrel{\$}{\leftarrow}\{0,1\}^{n}\);
\(05 \quad z \leftarrow \mathrm{~F}_{1}^{*}[y]\);
06 else if \(\exists_{1} M^{*}\) s.t. \(\mathrm{F}_{1}^{*}\left[M^{*}\right]=x\) then
    if \(\exists M\) s.t. \(\operatorname{pfpad}(M)=M^{*}| | y\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
    else
            if \(\mathbf{F}_{1}^{*}\left[M^{*} \| y\right]=\perp\) then \(\mathrm{F}_{1}^{*}\left[M^{*} \| y\right] \stackrel{\$}{\leftarrow}\{0,1\}^{n} ;\)
        \(\begin{array}{ll}09 & \text { if } \mathrm{F}_{1}^{*}\left[M^{*} \| y\right]=\perp \\ 10 & z \leftarrow \mathrm{~F}_{1}^{*}\left[M^{*}| | y\right] ;\end{array}\)
11 else
12 if \(\mathrm{F}_{1}[x \| y]=\perp\) then \(\mathrm{F}_{1}[x \| y] \stackrel{\&}{\leftarrow}\{0,1\}^{n}\);
\(13 z \leftarrow \mathrm{~F}_{1}[x| | y]\);
\(14 T_{S^{*}}[x, y] \leftarrow z\);
15 return \(T_{S^{*}}[x, y]\);
```

```
                                \(\mathcal{O}(x, y)\)
```

 \(\mathcal{O}(x, y)\)
    ```
01 if \(T_{S^{*}}[x, y] \neq \perp\) then return \(T_{S^{*}}[x, y]\);
```

01 if $T_{S^{*}}[x, y] \neq \perp$ then return $T_{S^{*}}[x, y]$;
02 if $x=I V$ then
02 if $x=I V$ then
$03 \quad$ if $\exists M$ s.t. $\operatorname{pfpad}(M)=y$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
$03 \quad$ if $\exists M$ s.t. $\operatorname{pfpad}(M)=y$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
04 else
04 else
$05 \quad$ if $\mathbf{F}_{1}^{*}[y]=\perp$ then $\mathbf{F}_{1}^{*}[y] \stackrel{\S}{\leftarrow}\{0,1\}^{n}$;
$05 \quad$ if $\mathbf{F}_{1}^{*}[y]=\perp$ then $\mathbf{F}_{1}^{*}[y] \stackrel{\S}{\leftarrow}\{0,1\}^{n}$;
$06 \quad z \leftarrow \mathrm{~F}_{1}^{*}[y]$;
$06 \quad z \leftarrow \mathrm{~F}_{1}^{*}[y]$;
07 else if $\exists_{1} M^{*}$ s.t. $\mathrm{F}_{1}^{*}\left[M^{*}\right]=x$ then
07 else if $\exists_{1} M^{*}$ s.t. $\mathrm{F}_{1}^{*}\left[M^{*}\right]=x$ then
08 if $\exists M$ s.t. $\operatorname{pfpad}(M)=M^{*} \| y$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
08 if $\exists M$ s.t. $\operatorname{pfpad}(M)=M^{*} \| y$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
09 else
09 else
$10 \quad$ if $\mathrm{F}_{1}^{*}\left[M^{*}| | y\right]=\perp$ then $\mathrm{F}_{1}^{*}\left[M^{*}| | y\right] \stackrel{\oiint}{\leftrightarrows}\{0,1\}^{n}$;
$10 \quad$ if $\mathrm{F}_{1}^{*}\left[M^{*}| | y\right]=\perp$ then $\mathrm{F}_{1}^{*}\left[M^{*}| | y\right] \stackrel{\oiint}{\leftrightarrows}\{0,1\}^{n}$;
$11 \quad z \leftarrow \mathrm{~F}_{1}^{*}\left[M^{*}| | y\right]$;
$11 \quad z \leftarrow \mathrm{~F}_{1}^{*}\left[M^{*}| | y\right]$;
12 else
12 else
13 if $\mathrm{F}_{1}[x \| y]=\perp$ then $\mathrm{F}_{1}[x \| y] \stackrel{\$}{\leftarrow}\{0,1\}^{n}$;
13 if $\mathrm{F}_{1}[x \| y]=\perp$ then $\mathrm{F}_{1}[x \| y] \stackrel{\$}{\leftarrow}\{0,1\}^{n}$;
$14 \quad z \leftarrow \mathrm{~F}_{1}[x \| y]$;
$14 \quad z \leftarrow \mathrm{~F}_{1}[x \| y]$;
$15 T_{S^{*}}[x, y] \leftarrow z$;
$15 T_{S^{*}}[x, y] \leftarrow z$;
16 return $T_{S^{*}}[x, y]$;

```
16 return \(T_{S^{*}}[x, y]\);
```

Fig. 8. Game PF2 (left), and Game PF3 (right)

A Proof of Theorem 1

We prove Theorem 1 by using the strategy in Appendix ??.
Since the simulator S does not update the internal state, $\operatorname{Pr}[G 0]-\operatorname{Pr}[G 1]=0$.
We use the result of the indifferentiable security by Chang et al. [15] They defined a simulator S^{*} which is shown in Fig. 7. $T_{S^{*}}$ is a (initially everywhere \perp) table which records query-response values of S^{*}. For the query $S^{*}(x, y)$, the response is recorded in $T_{S^{*}}[x, y]$. Path is a (initially everywhere \perp) table which records all paths with the Merkle-Damgård style. If triples $\left(z_{0}, y_{1}, z_{1}\right),\left(z_{1}, y_{2}, z_{2}\right),\left(z_{2}, y_{3}, z_{3}\right)$ are recoded in $T_{S^{*}}$ where $T_{S^{*}}\left[z_{j-1}, y_{j}\right]=z_{j}$ and $z_{0}=I V, y_{1}\left\|y_{2}\right\| y_{3}$ is recoded in Path $\left[z_{3}\right] .^{4}$ The task of the simulator S^{*} is to simulate h so that $\mathcal{R} \mathcal{O}_{n}$ and S^{*} are consistent. So the response of $S^{*}(x, y)$ is defined by the output of $\mathcal{R} \mathcal{O}_{n}(M)$ if there exists M^{*} such that $\operatorname{Path}[x]=M^{*}$ and there exists M such that $\operatorname{pfpad}(M)=M^{*} \| y$. They show that the advantage p^{*} of the indifferentiable security is bounded by $\mathcal{O}\left(\left(l q_{H}+q_{h}\right)^{2} / 2^{n}\right)$.

We evaluate the difference $\operatorname{Pr}[G 1]-\operatorname{Pr}[G 2]$ where the distinguisher A_{1} interacts with $\left(\mathcal{R} \mathcal{O}_{n}, S\right)$ in Game 1 and $\left(\mathcal{R} \mathcal{O}_{n}, S^{*}\right)$ in Game 2.

[^2]```
\(\mathcal{O}(x, y)\)
```


















```
\(\frac{\mathcal{O}(x, y)}{01 \text { if } T_{S^{*}}}[x, y] \neq \perp\) then return \(T_{S^{*}}[x, y] ;\)
02 if \(x=I V\) then
\(03 \quad\) if \(\exists M\) s.t. \(\operatorname{pfpad}(M)=y\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
04 else
\(05 \quad z \stackrel{\&}{\leftarrow}\{0,1\}^{n}\);
06 if \(\operatorname{Path}[z]=\perp\) then \(\operatorname{Path}[z] \leftarrow y\);
09 else
07 else if \(\operatorname{Path}[x]=M^{*} \neq \perp\) then
\(08 \quad\) if \(\exists M\) s.t. \(\operatorname{pfpad}(M)=M^{*} \| y\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
09 else
\(10 \quad z \stackrel{\$}{\leftarrow}\{0,1\}^{n}\);
11 if \(\operatorname{Path}[z]=\perp\) then \(\operatorname{Path}[z] \leftarrow M^{*} \| y\);
12 else \(z \stackrel{\Phi}{\leftarrow}\{0,1\}^{n}\);
\(13 T_{S^{*}}[x, y] \leftarrow z\);
```

Fig. 9. Game PF4 (left), and Game PF5 (right)

We consider the five games, Game PF1, Game PF2, Game PF3, Game PF4, and Game PF5. In each game, the distinguisher $A_{1}$ interacts with $\left(\mathcal{R} \mathcal{O}_{n}, \mathcal{O}\right)$ where $\mathcal{O}$ is shown in Figs. 7, 8, and 9 . $\mathcal{O}$ in Game PF1 is equal to $S$ and $\mathcal{O}$ in Game PF5 is equal to $S^{*}$. Let $G P F j$ be an event that in Game $\mathrm{PF} j A_{1}$ outputs 1. Thus

$$
\begin{aligned}
\operatorname{Pr}[G 1]-\operatorname{Pr}[G 2] & =\operatorname{Pr}[G P F 1]-\operatorname{Pr}[G P F 5] \\
& =\sum_{j=1}^{4} \operatorname{Pr}[G P F j]-\operatorname{Pr}[G P F(j+1)]
\end{aligned}
$$

First we evaluate the difference $\operatorname{Pr}[G P F 1]-\operatorname{Pr}[G P F 2]$. In Game PF2, the procedures of $\mathcal{T} \mathcal{R} \mathcal{O}_{n}^{(1)}$ and $\mathcal{R} \mathcal{O}_{n}^{1}$ are hard-coded. Thus this modification does not affect the distinguisher's behavior and $\operatorname{Pr}[G P F 1]=$ $\operatorname{Pr}[G P F 2]$.

We evaluate the difference $\operatorname{Pr}[G P F 2]-\operatorname{Pr}[G P F 3]$. In Game PF3, for any $(x, y)$, the table $T_{S^{*}}[x, y]$ is not redefined, while in Game PF2 there are cases that the table is redefined. For Game PF2 we consider the following cases which cover all cases that the table is redefined. So the modification from Game PF2 to Game PF3 does not affect the distinguisher's behavior if the following cases don't occur.

- Case 1: First $T_{S^{*}}[x, y]$ was defined by a value in the step 05 and then it is redefined due to another step (07, 10, or 13 ).
- Case 2: First $T_{S^{*}}[x, y]$ was defined by a value in the step 07 or 10 and then it is redefined due to another step (05 or 13).
- Case 3: First $T_{S^{*}}[x, y]$ was defined by a value in the step 13 and then it is redefined due to another step ( 05,07 , or 10 ).

Consider Case 1. In this case, $x=I V$. Since for any $y T_{S^{*}}[I V, y]$ is defined by a value from the step 05 , this case does not occurs.
Consider Case 2. In this case, $x \neq I V$. So the table is redefined due to the step 13 . When $T_{S^{*}}[x, y]$ was defined by a value from the step 07 or 10 , there was just a value $M$ such that $\mathrm{F}_{1}^{*}[M]=x$. Thus, when $T_{S^{*}}[x, y]$ is redefined, there is another value $M^{\prime}$ such that $\mathrm{F}_{1}^{*}\left[M^{\prime}\right]=x$. So a collision for $\mathrm{F}_{1}^{*}$ occurs and the collision probability is bounded by $q_{h}^{2} / 2^{n+1}$ from a birthday analysis.
Consider Case 3. Since $T_{S^{*}}[x, y]$ is defined in the step $13, x \neq I V$, that is, $T_{S^{*}}[x, y]$ is not redefined in the step 05 and is redefined in the step 07 or 10 . When $T_{S^{*}}[x, y]$ was defined in the step 13 , there was not a value $M^{*}$ such that $\mathrm{F}_{1}^{*}\left[M^{*}\right]=x$. When $T_{S^{*}}[x, y]$ is redefined in the step 07 or 10 , there is such value. Since $F_{1}^{*}\left[M^{*}\right]$ is uniformly chosen at random from $\{0,1\}^{n}$, this case is that a random value of $n$ bits hits $x$. Since
the number of the $\mathcal{O}$ query is at most $q_{h}$, the probability of Case 2 is bounded by $1-\left(1-q_{h} / 2^{n}\right)^{q_{h}} \leq q_{h}^{2} / 2^{n}$. We thus have

$$
\operatorname{Pr}[G P F 2]-\operatorname{Pr}[G P F 3] \leq \frac{3 q_{h}^{2}}{2^{n+1}}
$$

We evaluate the difference $\operatorname{Pr}[G P F 3]$ - $\operatorname{Pr}[G P F 4]$. In Game PF4, "if" in the steps 05,10 , and 13 is removed. So in Game PF4, $\mathrm{F}_{1}^{*}$ or $\mathrm{F}_{1}$ might be redefined. However, the table $T_{S^{*}}$ prevents the redefinition due to the step 01: For a pair $(x, y), T_{S^{*}}^{*}[x, y]=\mathrm{F}_{1}^{*}[y]$ if $x=I V, T_{S^{*}}^{*}[x, y]=\mathrm{F}_{1}^{*}\left[M^{*} \| y\right]$ if $x \neq I V$ and there exists a value $M^{*}$ such that $\mathrm{F}_{1}^{*}\left[M^{*}\right]=x$, and $T_{S^{*}}^{*}[x, y]=\mathrm{F}_{1}[x \| y]$ otherwise. Thus this modification does not affect the distinguisher's behavior and $\operatorname{Pr}[G P F 3]=\operatorname{Pr}[G P F 4]$.

Finally, we evaluate the difference $\operatorname{Pr}[G P F 4]-\operatorname{Pr}[G P F 5]$. In Game PF4, the table $\mathrm{F}_{1}^{*}$ is replaced with the table Path and $\mathrm{F}_{1}$ is removed. Note that $\mathrm{F}_{1}$ is not used in Game PF4. For a pair $(M, z)$, if $\mathrm{F}_{1}^{*}[M]=z$ and no collision for the table $\mathrm{F}_{1}^{*}$ occurs then $\operatorname{Path}[z]=M$, and if Path $[z]=M$ and no collision for the table $\mathrm{F}_{1}^{*}$ occurs then $\mathrm{F}_{1}^{*}[M]=z$. Thus if no collision for the table $\mathrm{F}_{1}^{*}$ occurs, this modification does not affects the distinguisher's behavior. The collision probability is at most $q_{h}^{2} / 2^{n+1}$ from a birthday analysis. We thus have

$$
\operatorname{Pr}[G P F 4]-\operatorname{Pr}[G P F 5] \leq \frac{q_{h}^{2}}{2^{n+1}}
$$

```
\(\frac{S^{*}(x, m)}{}\)
\(\overline{01}\) if \(T_{S^{*}}[x, m] \neq \perp\) then return \(T_{S^{*}}[x, m]\);
02 if \(x=I V\) then
\(03 z \leftarrow \mathcal{R} \mathcal{O}_{n}(m)\);
\(04 \quad w \stackrel{\$}{\leftarrow}\{0,1\}^{s} \backslash\left\{w^{\prime}: w^{\prime} \| z \in C \cup\{x\}\right\}\);
\(05 \quad \operatorname{Path}[w|\mid z] \leftarrow m\);
06 else if \(\operatorname{Path}[x]=M \neq \perp\) then
\(07 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(M| | m)\);
\(08 \quad w \stackrel{\$}{\leftarrow}\{0,1\}^{s} \backslash\left\{w^{\prime}: w^{\prime} \| z \in C \cup\{x\}\right\}\);
\(09 \quad \operatorname{Path}[w \| z] \leftarrow M \| m\);
10 else
\(z \stackrel{\$}{\leftarrow}\{0,1\}^{n} ;\)
 \(w \stackrel{\Phi}{\leftarrow}\{0,1\}^{s} \backslash\left\{w^{\prime}: w^{\prime} \| z \in C \cup\{x\}\right\} ;\)
 \(T_{S^{*}}[x, m] \leftarrow w \| z ; C \leftarrow\{x, z\} ;\)
 return \(w \| z\);
```

Fig. 10. Simulator $S^{*}$

## B Proof of Theorem 2

We prove Theorem 2 by using the strategy shown in Appendix ??.
Since the simulator $S$ does not update the internal state, $\operatorname{Pr}[G 0]-\operatorname{Pr}[G 1]=0$.
We use the result of the indifferentiable security by Chang and Nandi [16]. They define a simulator $S^{*}$ which is shown in Fig. 10 which simulates a compression function $h . T_{S^{*}}$ is a (initially everywhere $\perp$ ) table which records query-response values of $S^{*}$. For the query $S^{*}(x, m)$, the response $w \| z$ is recorded in $T_{S_{+}^{*}}[x, y]$. Path is a (initially everywhere $\perp$ ) table which records all paths with the Merkle-Damgård style. If triples $\left(I V, m_{1}, w_{1} \| z_{1}\right),\left(w_{1}\left\|z_{1}, m_{2}, w_{2}\right\| z_{2}\right),\left(w_{2}\left\|z_{2}, m_{3}, w_{3}\right\| z_{3}\right)$ are the query-response values where $T_{S^{*}}\left[w_{j-1} \| z_{j-1}, m_{j}\right]=w_{j} \| z_{j}(j=1,2,3)$ and $w_{0} \| z_{0}=I V$, then $m_{1}\left\|m_{2}\right\| m_{3}$ is recoded in Path $\left[w_{3} \| z_{3}\right] . C$ is a (initially empty) set. They show that the advantage $p^{*}$ of the indifferentiable security is bounded by $\left((3 n+1) q_{h}+n q_{H}\right) / 2^{s}+\left(q_{H}+q_{h}\right) / 2^{n-1}+\left(l q_{H}+q_{h}\right)^{2} / 2^{s+n+1}$.

We evaluate the difference $\operatorname{Pr}[G 1]-\operatorname{Pr}[G 2]$ where a distinguisher $A_{1}$ interacts with $\left(\mathcal{R} \mathcal{O}_{n}, S\right)$ in Game 1 and $\left(\mathcal{R} \mathcal{O}_{n}, S^{*}\right)$ in Game 2. We consider the six games Game C0, Game C1, Game C2, Game C3, Game C4, and Game C5. In each game, the distinguisher interacts with $\left(\mathcal{R} \mathcal{O}_{n}, \mathcal{O}\right)$ where $\mathcal{O}$ in each game is shown in Figs. 11, 12, and 13. Game C 0 is equal to Game 1 and Game C 5 is equal to Game 2. Let $G C j$ be an event that $A_{1}$ output 1 in Game $\mathrm{C} j$. Thus

$$
\begin{aligned}
\operatorname{Pr}[G 1]-\operatorname{Pr}[G 2] & =\operatorname{Pr}[G C 0]-\operatorname{Pr}[G C 5] \\
& =\sum_{j=0}^{4}(\operatorname{Pr}[G C j]-\operatorname{Pr}[G C(j+1)]) .
\end{aligned}
$$

In the following, we evaluate each difference $\operatorname{Pr}[G C j]-\operatorname{Pr}[G C(j+1)]$.
Game C1. In this game, the procedures of $\mathcal{R} \mathcal{O}_{s}^{(1)}, \mathcal{T} \mathcal{O}^{(1)}$, and $\mathcal{R} \mathcal{O}_{n+s}^{1}$ are hard-coded in $\mathcal{O}$. The modification from Game C 0 to Game C 1 does not affect the distinguisher's behavior. Thus $\operatorname{Pr}[G C 0]=\operatorname{Pr}[G C 1]$. Note that $T_{S^{*}}$ is a (initially everywhere $\perp$ ) table and this table does not affect this game.

Game C2. In this game, due to the step 01 , the table $\mathrm{F}_{1}^{*}$ is not redefined, while in Game C 1 , there are cases that the table is redefined. For Game C1, we consider the following cases which cover all cases that the table is redefined.

- Case 1: First $T_{S^{*}}[x, m]$ was defined due to a value defined in the steps $01-04$ and then the table is redefined due to the other steps.
- Case 2: First $T_{S^{*}}[x, m]$ was defined due to a value defined in the steps $05-08$ and then the table is redefined due to the other steps.


Fig. 11. Game C0 (left) and Game C1 (right)

	$\mathcal{O}(x, m)$				
$\underline{\mathcal{O}(x, m)}$ where $x=x_{1}\| \| x_{2}\left(\left\|x_{1}\right\|=s,\left\|x_{2}\right\|=n\right)$	01 if $T_{S^{*}}[x, m] \neq \perp$ then return $T_{S^{*}}[x, m]$;				
$\overline{01}$ if $T_{S^{*}}[x, m] \neq \perp$ then return $T_{S^{*}}[x, m]$;	02 if $x=I V$ then				
02 if $x=I V$ then	$03 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(m)$;				
$03 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(m)$;	04 if $\mathrm{F}_{1}^{*}[m]=\perp$ then $\mathrm{F}_{1}^{*}[m] \stackrel{\$}{\leftarrow}\{0,1\}^{s}$;				
04 if $\mathrm{F}_{1}^{*}[m]=\perp$ then $\mathrm{F}_{1}^{*}[m] \stackrel{\$}{\leftarrow}\{0,1\}^{s}$;	$05 \quad w \leftarrow \mathrm{~F}_{1}^{*}[m]$;				
$05 \quad w \leftarrow \mathrm{~F}_{1}^{*}[m]$;	$06 \quad \operatorname{Path}[w \\| z] \leftarrow m ;$				
06 else if $\exists_{1} M$ s.t. $\mathrm{F}_{1}^{*}[M]=x_{1}$ then	07 else if Path $[x]=M \neq \perp$ then				
$07 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(M \\| m)$;	$08 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(M \\| m)$;				
08 if $\mathrm{F}_{1}^{*}[M \\| m]=\perp$ then $\mathrm{F}_{1}^{*}[M \\| m] \stackrel{\oiint}{\leftarrow}\{0,1\}^{s}$;	09 if $\mathrm{F}_{1}^{*}[M \\| m]=\perp$ then $\mathrm{F}_{1}^{*}[M \\| m] \stackrel{\&}{\leftarrow}\{0,1\}^{s}$;				
$09 \quad w \leftarrow \mathrm{~F}_{1}^{*}[M \\| m$;	$10 \quad w \leftarrow \mathrm{~F}_{1}^{*}[M \\| m$;				
10 else	$11 \quad \operatorname{Path}[w \\| z] \leftarrow M \\| m$;				
11 if $\mathrm{F}_{1}[x, m]=\perp$ then $\mathrm{F}_{1}[x, m] \stackrel{\oiint}{\leftarrow}\{0,1\}^{s+n}$;	12 else				
$12 \quad w \\| z \leftarrow \mathrm{~F}_{1}[x, m]$;	13 if $\mathrm{F}_{1}[x, m]=\perp$ then $\mathrm{F}_{1}[x, m] \stackrel{\$}{\leftarrow}\{0,1\}^{s+n}$;				
$13 T_{S^{*}}[x, m] \leftarrow w \\| z$;	$14 \quad w \\| z \leftarrow \mathrm{~F}_{1}[x, m] ;$				
14 return $w \\| z$;	$15 T_{S^{*}}[x, m] \leftarrow w \\| z ;$				

Fig. 12. Game C2 (left) and Game C3 (right)

- Case 3: First $T_{S^{*}}[x, m]$ was defined due to a value defined in the steps $09-11$ and then the table is redefined due to the other steps.

Consider Case 1. In this case, $x=I V$. Since for any $m T_{S^{*}}[I V, m]$ is defined due to a value defined in the steps 01-04, this case does not occur.
Consider Case 2. In this case, $x \neq I V$. So the table is redefined due to the steps 09-11. When $T_{S^{*}}[x, m]$ was defined, there was a value $M$ such that $\mathrm{F}_{1}^{*}[M]=x_{1}$. When the table is redefined, there is another value $M^{\prime}$ such that $\mathrm{F}_{1}^{*}\left[M^{\prime}\right]=x_{1}$. Thus a collision for $\mathrm{F}_{1}^{*}$ occurs and the collision probability is bounded by $q_{h}^{2} / 2^{s+1}$ from a birthday analysis.
Consider Case 3. In this case $x \neq I V$. So $T_{S^{*}}[x, m]$ is not redefined due to a value defined in the steps 01-04, and thus it is redefined due to a value defined in the steps $05-08$. When $T_{S^{*}}[x, m]$ was defined, there was not $M$ such that $\mathrm{F}_{1}^{*}[M]=x_{1}$ and when it is redefined, there is such $M$. Thus this case is that $\mathrm{F}_{1}\left[x_{1}, m_{1}\right]=w_{1} \| z_{1}$ was defined and then $\mathrm{F}_{1}^{*}[M]=x_{1}$ which is uniformly chosen at random from $\{0,1\}^{s}$ is defined. The probability for Case 3 is bounded by $q_{h}^{2} / 2^{s}$ since the number of queries to $S^{*}$ is at most $q_{h}$.

Thus

$$
\operatorname{Pr}[G C 1]-\operatorname{Pr}[G C 2] \leq \frac{3 q_{h}^{2}}{2^{s+1}}
$$

```
O}(x,m
01 if T\mp@subsup{T}{\mp@subsup{S}{}{*}}{}}[x,m]\not=\perp\mathrm{ then return }\mp@subsup{T}{\mp@subsup{S}{}{*}}{}[x,m]
02 if }x=IV\mathrm{ then
03 z
04 w\stackrel{$}{&}{0,1\mp@subsup{}}{}{s};
05 Path[w||z]\leftarrowm;
06 else if Path[x]=M\not=\perp then
07 z
08 w}\stackrel{$}{&}{0,1\mp@subsup{}}{}{s}
09 Path[w|z]\leftarrowM|m;
10 else w|z }\stackrel{&}{\leftarrow}{0,1\mp@subsup{}}{}{s+n}
11 T}\mp@subsup{T}{S}{*}[x,m]\leftarroww|z
12 return w|z;
```

```
\(\mathcal{O}(x, m)\)
```

$\mathcal{O}(x, m)$
$\overline{01 \text { if } T_{S^{*}}}[x, m] \neq \perp$ then return $T_{S^{*}}[x, m]$;
$\overline{01 \text { if } T_{S^{*}}}[x, m] \neq \perp$ then return $T_{S^{*}}[x, m]$;
02 if $x=I V$ then
02 if $x=I V$ then
$03 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(m)$;
$03 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(m)$;
$04 \quad w \stackrel{\$}{\leftarrow}\{0,1\}^{s} \backslash\left\{w^{\prime}: w^{\prime} \| z \in C \cup\{x\}\right\}$;
$04 \quad w \stackrel{\$}{\leftarrow}\{0,1\}^{s} \backslash\left\{w^{\prime}: w^{\prime} \| z \in C \cup\{x\}\right\}$;
$05 \quad$ Path $[w \| z] \leftarrow m$;
$05 \quad$ Path $[w \| z] \leftarrow m$;
06 else if $\operatorname{Path}[x]=M \neq \perp$ then
06 else if $\operatorname{Path}[x]=M \neq \perp$ then
$07 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(M \| m)$;
$07 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(M \| m)$;
$08 \quad w \stackrel{\$}{\leftarrow}\{0,1\}^{s} \backslash\left\{w^{\prime}: w^{\prime} \| z \in C \cup\{x\}\right\}$;
$08 \quad w \stackrel{\$}{\leftarrow}\{0,1\}^{s} \backslash\left\{w^{\prime}: w^{\prime} \| z \in C \cup\{x\}\right\}$;
$09 \quad$ Path $[w \| z] \leftarrow M \| m$;
$09 \quad$ Path $[w \| z] \leftarrow M \| m$;
10 else
10 else
$11 \quad z \stackrel{\Phi}{\leftarrow}\{0,1\}^{n}$;
$11 \quad z \stackrel{\Phi}{\leftarrow}\{0,1\}^{n}$;
$12 \quad w \stackrel{\$}{\leftarrow}\{0,1\}^{s} \backslash\left\{w^{\prime}: w^{\prime} \| z \in C \cup\{x\}\right\}$;
$12 \quad w \stackrel{\$}{\leftarrow}\{0,1\}^{s} \backslash\left\{w^{\prime}: w^{\prime} \| z \in C \cup\{x\}\right\}$;
$13 T_{S^{*}}[x, m] \leftarrow w \| z ; C \leftarrow\{x, z\} ;$
$13 T_{S^{*}}[x, m] \leftarrow w \| z ; C \leftarrow\{x, z\} ;$
14 return $w \| z$;

```
14 return \(w \| z\);
```

Fig. 13. Game C4 (left) and Game C5 (right)

Game C3. In this game, a new table Path is used which is initially everywhere $\perp$ and recodes paths with Merkle-Damgård style. In the step 07, Path is used in this game, while $\mathrm{F}_{1}^{*}$ is used in Game C2. Note that if $\operatorname{Path}[x]=M$ and no collision occurs for $\mathbf{F}_{1}^{*}$ then $\mathbf{F}_{1}^{*}[M]=x_{1}$ where $x=x_{1}| | x_{2}$ and $\left|x_{1}\right|=s$, and if $\mathrm{F}_{1}^{*}[M]=x_{1}$ and no collision occurs for $\mathrm{F}_{1}^{*}$ then Path $[x]=M$. Thus if no collision occurs for $\mathrm{F}_{1}^{*}$ in Game C3 then this modification does not affect the distinguisher's behavior. We thus have via a birthday analysis that

$$
\operatorname{Pr}[G C 2]-\operatorname{Pr}[G C 3] \leq \frac{q_{h}^{2}}{2^{s+1}} .
$$

Game C4. In this game, tables $\mathrm{F}_{1}$ and $\mathbf{F}_{1}^{*}$ are removed. In Game C 3 , for a pair $(x, m)$, if $x=I V$ then $T_{S^{*}}[x, m]=\mathrm{F}_{1}^{*}[m] \| \mathcal{R} \mathcal{O}_{n}(m)$, and if there exists a value $M$ such that $\mathrm{F}_{1}^{*}[M]=x_{1}$ then $T_{S^{*}}[x, m]=$ $\mathrm{F}_{1}^{*}[M \| m] \| \mathcal{R} \mathcal{O}_{n}(M \| m)$, and $T_{S^{*}}[x, m]=\mathrm{F}_{1}[x, m]$ otherwise. Thus due to the step 01 , tables $\mathrm{F}_{1}$ and $\mathrm{F}_{1}^{*}$ are not used and this modification does not affect the distinguisher's behavior. So $\operatorname{Pr}[G C 3]=\operatorname{Pr}[G C 4]$.

Game C5. In this game, for a query $\mathcal{O}(x, m), w$ is uniformly chosen at random from $\{0,1\}^{n} \backslash\left\{w^{\prime}: w^{\prime} \in\right.$ $C \cup\{x\}\}$, while in Game C4 it is uniformly chosen at random from $\{0,1\}^{n}$. Thus if in Game C4 $w$ does not collide with one of $\left\{w^{\prime}: w^{\prime} \in C \cup\{x\}\right\}$ then this modification does not affect the distinguisher's behavior. The number of elements in $\left\{w^{\prime}: w^{\prime} \in C \cup\{x\}\right\}$ is at most $2 q_{h}+1$. We thus have that

$$
\operatorname{Pr}[G C 4]-\operatorname{Pr}[G C 5] \leq \frac{\left(2 q_{h}+1\right)^{2}}{2^{n}}
$$

```
\(\frac{S_{+}^{*}(x, y)}{01 \text { if } T_{S_{+}^{*}}^{*}}[x, y] \neq \perp\) then return \(T_{S_{+}^{*}}[x, y] ;\)
02 if \(y=I V_{2}\) then
03 if \(\operatorname{unpad}_{S}\left(I V_{1} \oplus x\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
04 else \(z \stackrel{\$}{\leftarrow}\{0,1\}^{n}\);
05 else if \(\operatorname{Path}[y] \neq \perp\) then
06 let Path \([y]=\left(M^{*}, z^{*}\right)\);
\(07 \quad\) if unpad \({ }_{S}\left(M^{*}| |\left(z^{*} \oplus x\right)\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M) ; \quad 2 x \stackrel{\$}{\leftarrow}\{0,1\}^{n} ; y \stackrel{\$}{\leftarrow}\{0,1\}^{c} \backslash T_{I}[x]\);
08 else \(z \stackrel{\$}{\leftarrow}\{0,1\}^{n} ; \quad 3 \operatorname{Update}_{S^{*}}(x, y, z, w)\);
09 else \(z \stackrel{₫}{\leftarrow}\{0,1\}^{n} ; \quad 4\) return \(T_{S_{-}^{*}}[z, w]\);
\(10 w \stackrel{\$}{\leftarrow}\{0,1\}^{c} \backslash T_{F}[z]\);
11 Update \(_{S^{*}}(x, y, z, w)\);
12 return \(T_{S_{+}^{*}}[x, y]\);
```

Fig. 14. Simulator $S^{*}$

## C Proof of Theorem 3

We prove Theorem 3 by using the strategy in Appendix ??.
Since the simulator $S$ does not update the internal state, $\operatorname{Pr}[G 0]-\operatorname{Pr}[G 1]=0$.
We use the result of the indifferentiable security by Bertoni et al. [11]. They define a simulator $S^{*}=$ $\left(S_{+}^{*}, S_{-}^{*}\right)$ which is shown in Fig. 14. $S_{+}^{*}$ and $S_{-}^{*}$ simulate the random permutation $P$ and its inverse $P^{-1}$, respectively. $T_{S_{+}^{*}}$ and $T_{S_{-}^{*}}$ are (initially everywhere $\perp$ ) tables which records query-response values of $S_{+}^{*}$ and $S_{-}^{*}$. For the query $S_{+}^{*}(x, y)$, the response $z \| w$ is recorded in $T_{S_{+}^{*}}[x, y]$ and $x \| y$ is recoded in $T_{S_{-}^{*}}[z, w]$. Similarly, the response $z \| w$ of the query $S_{-}^{*}(x, y)$ and $x \| y$ are recoded in these tables. Path is a (initially everywhere $\perp$ ) table which records all paths with the Sponge style. If triples $\left(x_{1}, w_{0}, z_{1}, w_{1}\right),\left(x_{2}, w_{1}, z_{2}, w_{2}\right),\left(x_{3}, w_{2}, z_{3}, w_{3}\right)$ are the query-response values where $T_{S_{+}^{*}}\left[x_{j}, w_{j-1}\right]=z_{j} \| w_{j}(j=1,2,3)$ and $w_{0}=I V_{2}$, then $\left(x_{1} \oplus I V_{1}\right) \|\left(x_{2} \oplus\right.$ $\left.z_{1}\right) \|\left(x_{3} \oplus z_{2}\right)$ and $z_{3}$ is recoded in $\operatorname{Path}\left[w_{3}\right] . T_{F}$ and $T_{I}$ are (initially everywhere empty) tables. $T_{F}[z]$ includes values which are all $y^{\prime}$ such that $T_{S_{+}^{*}}\left[\cdot, y^{\prime}\right] \neq \perp, I V_{2}$, all $y^{\prime \prime}$ such that $\operatorname{Path}\left[y^{\prime \prime}\right] \neq \perp$, and all $w^{\prime}$ such that $T_{S_{-}^{*}}\left[z, w^{\prime}\right] \neq \perp . T_{I}[x]$ includes values which are $I V_{2}$, all $y^{\prime}$ such that $\operatorname{Path}\left[y^{\prime}\right] \neq \perp$, and all $y^{\prime \prime}$ such that $T_{S_{+}^{*}}\left[x, y^{\prime \prime}\right] \neq \perp$. Update $_{S^{*}}(x, y, z, w)$ is a procedure that the tables $T_{S_{+}^{*}}, T_{S_{-}^{*}}$, and Path are updated by using $(x, y, z, w)$, namely, $T_{S_{+}^{*}}[x, y] \leftarrow z \| w, T_{S_{-}^{*}}[z, w] \leftarrow x| | y$, and if Path[y] $=\left(M, z^{*}\right) \neq \perp$ then Path $[w] \leftarrow\left(M \|\left(x \oplus z^{*}\right), z\right)^{5}$. Notice that the tables $T_{F}$ and $T_{I}$ are used to avoid that a multipath is defined in Path. They show that the advantage $p^{*}$ of the indifferentiable security is bounded by $\left(\left(1-2^{-n}\right) q^{2}+\left(1+2^{-n}\right) q\right) / 2^{c+1}$.

We evaluate the difference $\operatorname{Pr}[G 1]-\operatorname{Pr}[G 2]$ where a distinguisher $A_{1}$ interacts with $\left(\mathcal{R} \mathcal{O}_{n}, S\right)$ in Game 1 and $\left(\mathcal{R O}_{n}, S^{*}\right)$ in Game 2.

We consider the seven games Game S1, Game S2, Game S3, Game S4, Game S5, Game S6, and Game S7. In each game, the distinguisher interacts with $\left(\mathcal{R} \mathcal{O}_{n}, \mathcal{O}_{+}, \mathcal{O}_{-}\right)$where $\left(\mathcal{O}_{+}, \mathcal{O}_{-}\right)$is shown in Figs. 15, 16, $1718,19,20$, and 21. Game S 1 is equal to Game 1 and Game S 7 is equal to Game 2. Let $G S j$ be an event that $A_{1}$ output 1 in Game $\mathrm{S} j$. Thus

$$
\begin{aligned}
\operatorname{Pr}[G 1]-\operatorname{Pr}[G 2] & =\operatorname{Pr}[G S 1]-\operatorname{Pr}[G S 7] \\
& =\sum_{j=1}^{6}(\operatorname{Pr}[G S j]-\operatorname{Pr}[G S(j+1)]) .
\end{aligned}
$$

In the following, we evaluate each difference $\operatorname{Pr}[G S j]-\operatorname{Pr}[G S(j+1)]$.
Game S2. In this game, a random permutation $\left(\mathcal{P}, \mathcal{P}^{-1}\right)$ is replaced with a new function $\left(\mathcal{P}_{1}, \mathcal{P}_{1}^{-1}\right)$. $\mathrm{F}^{+}$

[^3]```
\(\underline{\mathcal{O}_{+}(x, y)}\)
\(\overline{01 M^{*}} \leftarrow \mathcal{T} \mathcal{O}^{(1)}(y)\);
02 if \(y=I V_{2}\) then
03 if unpad \(\left(I V_{1} \oplus x\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
\(04 \quad\) else \(z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(I V_{1} \oplus x\right)\);
\(05 \quad w \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(x \oplus I V_{1}\right)\);
06 else if \(M^{*} \neq \perp\) then
07 if unpad \(\left(M^{*}\right)=M^{\prime} \neq \perp\) then \(m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}\left(M^{\prime}\right)\);
\(08 \quad\) else \(m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right)\);
\(09 \quad\) if \(\operatorname{unpad}_{S}\left(M^{*} \| m\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
\(10 \quad\) else \(z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*} \| m\right)\);
\(11 \quad w \leftarrow \mathcal{R O}_{c}^{(1)}\left(M^{*}| | m\right)\);
12 else \(z \| w \leftarrow \mathcal{P}(x \| y)\);
13 return \(z \| w\);
```

$\frac{\mathcal{O}_{-}(z, w)}{01 M \leftarrow \mathcal{T} \mathcal{O}^{(1)}(w) ; ~}$
02 if $M \neq \perp$ and $|M|=n$ then
$03 \quad x \leftarrow I V_{1} \oplus M ; y \leftarrow I V_{2}$;
04 if $M \neq \perp$ and $|M|>n$ then
05 let $M=M^{*}| | m(|m|=n)$;
06 if unpad ${ }_{S}\left(M^{*}\right)=M^{\prime} \neq \perp$ then $x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}\left(M^{\prime}\right)$;
$07 \quad$ else $x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right)$;
$08 \quad y \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(M^{*}\right)$;
09 else $x \| y \leftarrow \mathcal{P}^{-1}(z \| w)$;
10 return $x \| y$;

```
- \(\mid y\),
```

Fig. 15. Game S1

```
\(\underline{\mathcal{O}_{+}(x, y)}\)
```

$\underline{\mathcal{O}_{+}(x, y)}$
$\overline{01 M^{*} \leftarrow \mathcal{T} \mathcal{O}^{(1)}(y) ; ~}$
$\overline{01 M^{*} \leftarrow \mathcal{T} \mathcal{O}^{(1)}(y) ; ~}$
02 if $y=I V_{2}$ then
02 if $y=I V_{2}$ then
03 if unpad ${ }_{S}\left(I V_{1} \oplus x\right)=M \neq \perp$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
03 if unpad ${ }_{S}\left(I V_{1} \oplus x\right)=M \neq \perp$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
04 else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(I V_{1} \oplus x\right)$;
04 else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(I V_{1} \oplus x\right)$;
$05 \quad w \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(x \oplus I V_{1}\right)$;
$05 \quad w \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(x \oplus I V_{1}\right)$;
06 else if $M^{*} \neq \perp$ then
06 else if $M^{*} \neq \perp$ then
07 if $\operatorname{unpad}\left(M^{*}\right)=M^{\prime} \neq \perp$ then $m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}\left(M^{\prime}\right)$;
07 if $\operatorname{unpad}\left(M^{*}\right)=M^{\prime} \neq \perp$ then $m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}\left(M^{\prime}\right)$;
$08 \quad$ else $m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right)$;
$08 \quad$ else $m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right)$;
$09 \quad$ if $\operatorname{unpad}_{S}\left(M^{*} \| m\right)=M \neq \perp$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
$09 \quad$ if $\operatorname{unpad}_{S}\left(M^{*} \| m\right)=M \neq \perp$ then $z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)$;
$10 \quad$ else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*} \| m\right)$;
$10 \quad$ else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*} \| m\right)$;
$11 \quad w \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(M^{*}| | m\right)$;
$11 \quad w \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(M^{*}| | m\right)$;
12 else $z \| w \leftarrow \mathcal{P}_{1}(x \| y)$;
12 else $z \| w \leftarrow \mathcal{P}_{1}(x \| y)$;
13 Update $_{S^{*}}(x, y, z, w)$;
13 Update $_{S^{*}}(x, y, z, w)$;
14 return $T_{S_{+}^{*}}[x, y]$;
14 return $T_{S_{+}^{*}}[x, y]$;
$\underline{\mathcal{P}_{1}(x)}$
$\underline{\mathcal{P}_{1}(x)}$
$\overline{1 \text { if } \mathrm{F}^{+}}[x]=\perp$, ret $\mathrm{F}^{+}[x]$;
$\overline{1 \text { if } \mathrm{F}^{+}}[x]=\perp$, ret $\mathrm{F}^{+}[x]$;
$2 y \stackrel{\$}{\leftarrow}\{0,1\}^{b}$;
$2 y \stackrel{\$}{\leftarrow}\{0,1\}^{b}$;
3 Update $_{P}(x, y)$;
3 Update $_{P}(x, y)$;
4 return $\mathrm{F}^{+}[x]$
4 return $\mathrm{F}^{+}[x]$
$\underline{\mathcal{O}_{-}(z, w)}$
$\underline{\mathcal{O}_{-}(z, w)}$
$\overline{01 M \leftarrow \mathcal{T}} \mathcal{O}^{(1)}(w)$;
$\overline{01 M \leftarrow \mathcal{T}} \mathcal{O}^{(1)}(w)$;
02 if $M \neq \perp$ and $|M|=n$ then
02 if $M \neq \perp$ and $|M|=n$ then
$03 \quad x \leftarrow I V_{1} \oplus M ; y \leftarrow I V_{2}$;
$03 \quad x \leftarrow I V_{1} \oplus M ; y \leftarrow I V_{2}$;
04 else if $M \neq \perp$ and $|M|>n$ then
04 else if $M \neq \perp$ and $|M|>n$ then
05 let $M=M^{*}| | m(|m|=n)$;
05 let $M=M^{*}| | m(|m|=n)$;
06 if unpad $S_{S}\left(M^{*}\right)=M^{\prime} \neq \perp$ then $x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}\left(M^{\prime}\right)$;
06 if unpad $S_{S}\left(M^{*}\right)=M^{\prime} \neq \perp$ then $x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}\left(M^{\prime}\right)$;
$07 \quad$ else $x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right) ;$
$07 \quad$ else $x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right) ;$
$08 \quad y \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(M^{*}\right)$;
$08 \quad y \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(M^{*}\right)$;
09 else $x \| y \leftarrow \mathcal{P}_{1}^{-1}(z \| w)$;
09 else $x \| y \leftarrow \mathcal{P}_{1}^{-1}(z \| w)$;
10 Update $_{S^{*}}(x, y, z, w)$;
10 Update $_{S^{*}}(x, y, z, w)$;
11 return $T_{S_{-}^{*}}[z, w]$;
11 return $T_{S_{-}^{*}}[z, w]$;
$\frac{\mathcal{P}_{1}^{-1}(y)}{1 \text { if } \mathrm{F}^{-}[y]}=\perp$, ret $\mathrm{F}^{-}[y]$;

```
    \(\frac{\mathcal{P}_{1}^{-1}(y)}{1 \text { if } \mathrm{F}^{-}[y]}=\perp\), ret \(\mathrm{F}^{-}[y]\);
```



```
    3 Update \(_{P}(x, y)\);
```

 3 Update \(_{P}(x, y)\);
 4 return \(\mathrm{F}^{-}[y]\);
    ```
    4 return \(\mathrm{F}^{-}[y]\);
```

Fig. 16. Game S2
and F^{-}are (initially everywhere \perp) tables. $\operatorname{Update}_{P}(x, y)$ updates the tables F^{+}and $\mathrm{F}^{-}: \mathrm{F}^{+}[x] \leftarrow y$ and $\mathrm{F}^{-}[y] \leftarrow x$. An output of $\left(\mathcal{P}_{1}, \mathcal{P}_{1}^{-1}\right)$ is uniformly chosen at random from $\{0,1\}^{b}$. Thus if in Game GS2 no collision occurs for the outputs of \mathcal{P}_{1} and the outputs of \mathcal{P}_{1}^{-1}, the modification from Game GS1 to Game GS1 does not affect the distinguisher's behavior. Since the number of the outputs of \mathcal{P}_{1} is at most q, the probability that a collision occurs for the outputs of \mathcal{P}_{1} is at most $q^{2} / 2^{b}$. Similarly, the probability that a collision occurs for the outputs of \mathcal{P}_{1}^{-1} is at most $q^{2} / 2^{b}$. We thus have that

$$
\operatorname{Pr}[G S 1]-\operatorname{Pr}[G S 2] \leq \frac{q^{2}}{2^{b-1}}
$$

Note that the procedure Update $_{S^{*}}$ updates tables $T_{S^{*}}^{+}, T_{S^{*}}^{-}$, and Path.
Game S3. In Game S3, the step 01 of \mathcal{O}_{+}and the step 01 of \mathcal{O}_{-}are new steps. The tables $T_{S_{+}^{*}}$ and $T_{S_{-}^{*}}$ are not redefined if no collision for the outputs of \mathcal{O}_{+}or the outputs of \mathcal{O}_{-}occurs. In Game S 2 , we show that if the following events don't occur then the tables $T_{S_{+}^{*}}$ and $T_{S_{-}^{*}}$ are not redefined.

```
\(\underline{\mathcal{O}_{+}(x, y)}\)
01 if \(T_{S_{+}^{*}}[x, y] \neq \perp\) then return \(T_{S_{+}^{*}}[x, y]\);
\(02 M^{*} \leftarrow \mathcal{T} \mathcal{O}^{(1)}(y)\);
03 if \(y=I V_{2}\) then
\(04 \quad\) if unpad \({ }_{S}\left(I V_{1} \oplus x\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
\(05 \quad\) else \(z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(I V_{1} \oplus x\right)\);
\(06 \quad w \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(x \oplus I V_{1}\right)\);
07 else if \(M^{*} \neq \perp\) then
08 if unpad \(\left(M^{*}\right)=M^{\prime} \neq \perp\) then \(m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}\left(M^{\prime}\right)\);
\(09 \quad\) else \(m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right)\);
\(10 \quad\) if \(\operatorname{unpad}_{S}\left(M^{*} \| m\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
\(11 \quad\) else \(z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*} \| m\right)\);
\(12 \quad w \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(M^{*} \| m\right) ;\)
13 else \(z \| w \leftarrow \mathcal{P}_{1}(x \| y)\);
\(14 \operatorname{Update}_{S^{*}}(x, y, z, w)\);
15 return \(T_{S_{+}^{*}}[x, y]\);
```

```
\(\underline{\mathcal{O}_{-}(z, w)}\)
```

$\underline{\mathcal{O}_{-}(z, w)}$
$\overline{01 \text { if } T_{S_{-}^{*}}}[z, w] \neq \perp$ then $T_{S_{-}^{*}}[z, w]$;
$\overline{01 \text { if } T_{S_{-}^{*}}}[z, w] \neq \perp$ then $T_{S_{-}^{*}}[z, w]$;
$02 M \leftarrow \mathcal{T} \mathcal{O}^{(1)}(w)$;
$02 M \leftarrow \mathcal{T} \mathcal{O}^{(1)}(w)$;
03 if $M \neq \perp$ and $|M|=n$ then
03 if $M \neq \perp$ and $|M|=n$ then
$04 \quad x \leftarrow I V_{1} \oplus M ; y \leftarrow I V_{2}$;
$04 \quad x \leftarrow I V_{1} \oplus M ; y \leftarrow I V_{2}$;
05 else if $M \neq \perp$ and $|M|>n$ then
05 else if $M \neq \perp$ and $|M|>n$ then
06 let $M=M^{*}| | m(|m|=n)$;
06 let $M=M^{*}| | m(|m|=n)$;
$07 \quad$ if $\operatorname{unpad}_{S}\left(M^{*}\right)=M_{1} \neq \perp$ then $x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}\left(M_{1}\right)$;
$07 \quad$ if $\operatorname{unpad}_{S}\left(M^{*}\right)=M_{1} \neq \perp$ then $x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}\left(M_{1}\right)$;
$08 \quad$ else $x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right)$;
$08 \quad$ else $x \leftarrow m \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right)$;
$09 \quad y \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(M^{*}\right)$;
$09 \quad y \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(M^{*}\right)$;
10 else $x \| y \leftarrow \mathcal{P}_{1}^{-1}(z \| w)$;
10 else $x \| y \leftarrow \mathcal{P}_{1}^{-1}(z \| w)$;
11 Update $_{S^{*}}(x, y, z, w)$;
11 Update $_{S^{*}}(x, y, z, w)$;
12 return $T_{S_{-}^{*}}[z, w]$;

```
12 return \(T_{S_{-}^{*}}[z, w]\);
```

Fig. 17. Game S3

- Event 1: A collision for $\mathcal{R} \mathcal{O}_{c}^{(1)}$ occurs.
- Event 2: A random value of c bits hits a value in at most q values.
- Event 3: A random value of c bits hits $I V_{2}$.

One of the following cases occurs when $T_{S_{+}^{*}}$ or $T_{S_{-}^{*}}$ are redefined.

- Case 1: First, for query $\mathcal{O}_{+}(x, y), T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were defined due to the steps 02-05 where $T_{S_{+}^{*}}[x, y]=z \| w$ and $T_{S_{-}^{*}}[z, w]=x \| y$, and then $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined by a new value due to other steps.
In this case $y=I V_{2}$. So the redefined steps are not the steps $06-11$ and 12 of \mathcal{O}_{+}. And when $T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were defined, $\mathrm{F}_{1}^{*}[y]=z$ where $|y|=n$. So the redefined steps are not the steps $02-03$, and 04-08 of \mathcal{O}_{-}. That is, the redefined step is just the step 09 of \mathcal{O}_{-}.
- Case 2: First, for query $\mathcal{O}_{+}(x, y), T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were defined due to the steps 06-11 where $T_{S_{+}^{*}}[x, y]=z \| w$ and $T_{S_{-}^{*}}[z, w]=x \| y$, and then $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined by a new value due to other steps.
In this case, $y \neq I V_{2}$. So the redefined steps are not the steps $02-05$ of \mathcal{O}_{+}. And after $T_{S_{+}^{*}}[x, y]$ defined, there is a value M such that $\mathrm{F}_{1}^{*}[M]=w$ and $|M|>n$. So the redefined steps are not the steps $02-03$, and $04-08$ of \mathcal{O}_{-}. That is, the redefined steps are the step 12 of \mathcal{O}_{+}or the step 09 of \mathcal{O}_{-}.
- Case 3: First, for query $\mathcal{O}_{+}(x, y), T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were defined due to the step 12 where $T_{S_{+}^{*}}[x, y]=$ $z \| w$ and $T_{S_{-}^{*}}[z, w]=x \| y$, and then $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined by a new value due to other steps. In this case, $y \neq I V_{2}$. So the redefined steps are not the steps $02-05$, that is the steps are the steps 06-11 of \mathcal{O}_{+}, the steps $02-03,04-08$, or 09 of \mathcal{O}_{-}.
- Case 4: First, for query $\mathcal{O}_{-}(z, w), T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were defined due to the steps 02-03 where $T_{S_{+}^{*}}[x, y]=z \| w$ and $T_{S_{-}^{*}}[z, w]=x \| y$, and then $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined by a new value in other steps.
In this case, when the steps $02-03$ were executed, $\mathrm{F}_{1}^{*}[M](=w)$ had been already defined. The defined steps are the steps 02-05 of \mathcal{O}_{+}. Thus $T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were already defined in the steps 02-05 of \mathcal{O}_{+}. So this case does not occur.
- Case 5: First, for query $\mathcal{O}_{-}(z, w), T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were defined due to the steps 04-08 where $T_{S_{+}^{*}}[x, y]=z \| w$ and $T_{S_{-}^{*}}[z, w]=x \| y$, and then $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined by a new value in other steps.
In this case, when the steps $04-08$ were executed, $\mathrm{F}_{1}^{*}[M](=w)$ had been defined where $|M|>n$. The steps where $\mathrm{F}_{1}^{*}[M]$ defined are the steps $06-11$. Thus $T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were already defined in the steps $06-11$ of \mathcal{O}_{+}. So this case does not occur.
- Case 6: First, for query $\mathcal{O}_{-}(z, w), T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were defined due to the step 09 where $T_{S_{+}^{*}}[x, y]=z \| w$ and $T_{S_{-}^{*}}[z, w]=x \| y$, and then $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined by a new value in other steps.

We show that in each case some of events occurs.
First, consider Case 1. When $T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were defined, $\mathrm{F}_{1}^{*}[y]=z$ where $|y|=n$. However, when $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined, $\mathcal{T} \mathcal{O}^{(1)}(w)=\perp$. Thus in this case, a collision for $\mathcal{R} \mathcal{O}_{c}^{(1)}$ occurs, that is Event 1 occurs.

Consider Case 2. When $T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were defined, $\mathrm{F}_{1}^{*}\left[M^{*}\right](=y)$ had been defined and $\mathrm{F}_{1}^{*}[M](=$ $w)$ was defined where $|M|>n$. However, when $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined due to the step 12 of \mathcal{O}_{+}, $\mathcal{T} \mathcal{O}^{(1)}(y)=\perp$, and when $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined due to the step 09 of $\mathcal{O}_{-}, \mathcal{T} \mathcal{O}^{(1)}(w)=\perp$. Thus in this case, a collision for $\mathcal{R} \mathcal{O}_{c}^{(1)}$ occurs, that is Event 1 occurs.

Consider Case 3. When $T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were defined, there did not exist M^{*} such that $\mathrm{F}_{1}^{*}\left[M^{*}\right]=y$. (Case 3-1) $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined in the steps $06-11$ of \mathcal{O}_{+}. In this case, there is a value M^{*} such that $\mathrm{F}_{1}^{*}\left[M^{*}\right]=y$. Thus in this case, first y was defined, and then a random value hits y. Since the number of such y is at most q, when Case $3-1$ occurs then Event 2 occurs.
(Case 3-2) $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined in the steps $02-03$ of \mathcal{O}_{-}. In this case, there is a value M such that $\mathrm{F}_{1}^{*}[M]=w$ and $|M|=n . \mathrm{F}_{1}^{*}[M](=w)$ was defined in the steps $02-05$ of \mathcal{O}_{+}. This implies that $y=I V_{2}$. This contradicts that $y \neq I V_{2}$ and thus this case does not occur.
(Case 3-3) $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined in the steps $04-08$ of \mathcal{O}_{-}. In this case, there is a value M such that $\mathrm{F}_{1}^{*}[M]=w$ and $|M|>n . \mathrm{F}_{1}^{*}[M](=w)$ was defined in the steps $06-11$ and thus $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ was redefined the steps 06-11. Thus this case does not occur.
(Case 3-4) $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined in the step 09 of \mathcal{O}_{-}. Since an output of \mathcal{P}_{1}^{-1} is a random value of b bits, this case is that the random value hits $x \| y$. Since the number of such y is at most q, when Case 3-4 occurs then Event 2 occurs.

Consider Case 6. When $T_{S_{+}^{*}}[x, y]$ and $T_{S_{-}^{*}}[z, w]$ were defined, there does not exist M such that $\mathrm{F}_{1}^{*}[M]=w$. (Case 6-1) $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined due to the steps $02-05$ of \mathcal{O}_{+}. In this case, $y=I V_{2}$. Since an output of \mathcal{P}_{1}^{-1} is a random value of b bits, this case is that the left c bit value of the output hits $I V_{2}$, which is Event 3.
(Case 6-2) $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined due to the steps $06-11$ of \mathcal{O}_{+}. In this case, there is a value M^{*} such that $\mathrm{F}_{1}^{*}\left[M^{*}\right]=y$. Note that $\mathrm{F}_{1}^{*}\left[M^{*}\right](=y)$ and $T_{S_{-}^{*}}[z, w](=x \| y)$ are independent random values. Thus this case is that a random value of c bits hits one of q values, which is equal to Event 2.
(Case 6-3) $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined due to the step 12 of \mathcal{O}_{+}. Since an output of \mathcal{P}_{1} is a random value of b bits, this case is that a random value of b bits hits $z \| w$. So Event 2 occurs.
(Case 6-4) $T_{S_{+}^{*}}[x, y]$ or $T_{S_{-}^{*}}[z, w]$ is redefined due to the steps $02-03$ or $04-08$ of \mathcal{O}_{-}. In this case, there is a value M such that $\mathrm{F}_{1}^{*}[M]=w$. Thus this case is that first w is defined and then a random value of c bits hits w. This is equal to Event 2.

Thus if the following events don't occur then the modification from Game S 2 to Game S 3 does not affect the distinguisher's behavior. The first three events are due to Game S2 and the last two events are due to Game S3.

- Event 1: A collision for $\mathcal{R} \mathcal{O}_{c}^{(1)}$ occurs.
- Event 2: A random value of c bits hits a value in at most q values.
- Event 3: A random value of c bits hits $I V_{2}$.
- Event 4: A collision for the output of \mathcal{O}_{+}occurs.
- Event 5: A collision for the output of \mathcal{O}_{-}occurs.

From a birthday analysis, the probability that Event 1 occurs is at most $q^{2} / 2^{c+1}$. For Event 2, the number of a random value is at most q. So the probability that Event 2 occurs is at most $q^{2} / 2^{c}$. For Event 3 , the number of a random value is at most q. So the probability that Event 3 occurs is at most $q / 2^{c}$. For Event 4, since the number of outputs of \mathcal{O}_{+}is at most q, this event is that a random value of b bits collides with some of the q values. Since the number of the random values is at most q, the probability that Event 4 occurs is

```
\(\mathcal{O}_{+}(x, y)\)
\(\overline{01 \text { if } T_{S_{+}^{*}}}[x, y] \neq \perp\) then return \(T_{S_{+}^{*}}[x, y]\);
\(02 M^{*} \leftarrow \mathcal{T} \mathcal{O}^{(1)}(y)\);
03 if \(y=I V_{2}\) then
\(04 \quad\) if unpad \({ }_{S}\left(I V_{1} \oplus x\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
05 else \(z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(I V_{1} \oplus x\right) ; \quad \mathcal{O}_{-}(z, w)\)
\(06 \quad w \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(x \oplus I V_{1}\right)\);
07 else if \(M^{*} \neq \perp\) then
08 if unpad \(\left(M^{*}\right)=M^{\prime} \neq \perp\) then \(m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}\left(M^{\prime}\right)\);
\(09 \quad\) else \(m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right)\);
\(10 \quad\) if \(\operatorname{unpad}_{S}\left(M^{*} \| m\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
11 else \(z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*} \| m\right)\);
\(12 \quad w \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(M^{*}| | m\right)\);
13 else \(z \| w \leftarrow \mathcal{P}_{1}(x \| y)\);
14 Update \(_{S^{*}}(x, y, z, w)\);
15 return \(T_{S_{+}^{*}}[x, y]\);
```

Fig. 18. Game S4

```
\(\mathcal{O}_{+}(x, y)\)
\(\overline{01 \text { if } T_{S_{+}^{*}}}[x, y] \neq \perp\) then return \(T_{S_{+}^{*}}[x, y]\);
02 if \(y=I V_{2}\) then
03 if unpad \(\left(I V_{1} \oplus x\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
\(04 \quad\) else \(z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(I V_{1} \oplus x\right)\);
\(05 \quad w \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(x \oplus I V_{1}\right) ; \quad \quad \underline{\mathcal{O}_{-}(z, w)}\)
06 else if \(\operatorname{Path}[y]=\left(M^{*}, z^{*}\right) \neq \perp\) then \(\quad \overline{1 \text { if } T_{S_{-}^{*}}}[z, w] \neq \perp\) then \(T_{S_{-}^{*}}[z, w]\);
\(07 \quad\) if \(\operatorname{unpad}\left(M^{*}\right)=M^{\prime} \neq \perp\) then \(m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}\left(M^{\prime}\right) ; \quad 2 x \| y \leftarrow \mathcal{P}_{1}^{-1}(z \| w)\);
08 else \(m \leftarrow x \oplus \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*}\right)\); \(\quad 3 \operatorname{Update}_{S^{*}}(x, y, z, w)\);
09 if unpad \({ }_{S}\left(M^{*} \| m\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M) ; \quad 4\) return \(x \| y\);
\(10 \quad\) else \(z \leftarrow \mathcal{R} \mathcal{O}_{n}^{1}\left(M^{*} \| m\right)\);
\(11 \quad w \leftarrow \mathcal{R} \mathcal{O}_{c}^{(1)}\left(M^{*} \| m\right)\);
12 else \(z \| w \leftarrow \mathcal{P}_{1}(x \| y)\);
13 Update \(_{S^{*}}(x, y, z, w)\);
14 return \(z \| w\);
```

Fig. 19. Game S5
at most $q^{2} / 2^{b}$. The probability that Event 5 occurs is the same as that for Event 4 . We thus have that

$$
\operatorname{Pr}[G S 2]-\operatorname{Pr}[G S 3] \leq \frac{3 q^{2}+2 q}{2^{c+1}}+\frac{q^{2}}{2^{b-1}}
$$

Game S4. In this game, the steps $02-09$ of \mathcal{O}_{-}are removed. Since for the query $\mathcal{O}_{-}(z, w)$, " M (= $\left.\mathcal{T} \mathcal{O}^{(1)}(w)\right) \neq \perp "$ implies that the query $\mathcal{R} \mathcal{O}_{c}^{(1)}(M)$ was made by the query $\mathcal{O}_{+}(x, y)$ and thus when the query $\mathcal{O}_{-}(z, w)$ is made, the response $T_{S_{-}^{*}}[z, w](=x \| y)$ has been defined. So the steps 02-09 are not executed. Note that if no collision for the outputs of \mathcal{O}_{+}and the outputs of \mathcal{O}_{-}occurs, then the table $T_{S_{+}^{*}}$ and $T_{S_{-}^{*}}$ are not redefined. Thus the modification does not affect the distinguisher's behavior if no collision occurs. For the collision event for the outputs of \mathcal{O}_{+}, since the number of the outputs is at most q, the probability is at most $q^{2} / 2^{b}$. Similarly, the probability that a collision for the outputs of \mathcal{O}_{-}occurs is at most $q^{2} / 2^{b}$. We thus have that

$$
\operatorname{Pr}[G S 3]-\operatorname{Pr}[G S 4] \leq \frac{q^{2}}{2^{b-1}}
$$

Game S5. In this game, the table Path is used instead of $\mathcal{T} \mathcal{O}^{(1)}$. In Game S 5 , if $M^{*}\left(=\mathcal{T} \mathcal{O}^{(1)}(y)\right) \neq \perp$, then

```
\(\mathcal{O}_{+}(x, y)\)
\(\overline{01 \text { if } T_{S_{+}^{*}}}[x, y] \neq \perp\) then return \(T_{S_{+}^{*}}[x, y]\);
02 if \(y=I V_{2}\) then
03 if unpad \({ }_{S}\left(I V_{1} \oplus x\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
```



```
05 else if \(\operatorname{Path}[y]=\left(M^{*}, z^{*}\right) \neq \perp\) then
\(06 \quad\) if \(\operatorname{unpad}_{S}\left(M^{*} \|\left(z^{*} \oplus x\right)\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(M)\);
07 else \(z \stackrel{\$}{\leftarrow}\{0,1\}^{n}\);
08 else \(z \stackrel{\&}{\leftarrow}\{0,1\}^{n}\);
\(09 w \stackrel{\$}{\leftarrow}\{0,1\}^{c}\);
10 Update \(_{S^{*}}(x, y, z, w)\);
11 return \(z \| w\);
```

Fig. 20. Game S6

```
\(\mathcal{O}_{+}(x, y)\)
01 if \(T_{S_{+}^{*}}[x, y] \neq \perp\) then return \(T_{S_{+}^{*}}[x, y]\);
02 if \(y=I V_{2}\) then
```



```
04 else \(z \stackrel{\&}{\natural}\{0,1\}^{n}\);
05 else if \(\operatorname{Path}[y]=\left(M^{*}, z^{*}\right) \neq \perp\) then
\(06 \quad\) if unpad \({ }_{S}\left(M^{*}| |\left(z^{*} \oplus x\right)\right)=M \neq \perp\) then \(z \leftarrow \mathcal{R O}_{n}(M)\);
07 else \(z \stackrel{\mathscr{\&}}{\mathscr{S}^{-}\{0,1\}^{n} \text {; }}\)
08 else \(z \stackrel{\&}{\leftarrow}\{0,1\}^{n}\);
\(09 w \stackrel{\&}{\stackrel{\&}{ }}\{0,1\}^{c} \backslash T_{F}[z]\);
10 Update \(_{S^{*}}(x, y, z, w)\);
11 return \(z \| w\);
```

Fig. 21. Game S7
$\operatorname{Path}[y]=\left(M^{*}, z^{*}\right)$. And if $\operatorname{Path}[y]=\left(M^{*}, z^{*}\right) \neq \perp$ and no collision of $\mathcal{R} \mathcal{O}_{c}^{(1)}$ occurs, then $M^{*} \neq \perp$ where $M^{*}=\mathcal{T} \mathcal{O}^{(1)}(y)$. Thus in both games if no collision for $\mathcal{R} \mathcal{O}_{c}^{(1)}$ occurs, then the modification from Game S4 to Game S5 does not affect the distinguisher's behavior. We thus have via a birthday analysis

$$
\operatorname{Pr}[G S 4]-\operatorname{Pr}[G S 5] \leq \frac{q^{2}}{2^{c+1}}
$$

Game S6. In this game, $\mathcal{R} \mathcal{O}_{c}^{(1)}, \mathcal{R} \mathcal{O}_{n}^{1}, \mathcal{P}$ and \mathcal{P}^{-1} are removed and z^{*} is used in the step 06 of \mathcal{O}_{+}. Notice that $z^{*}=\mathcal{R} \mathcal{O}_{n}\left(M^{\prime}\right)$ in the step 05 of \mathcal{O}_{+}where unpad $_{S}\left(M^{*}\right)=M^{\prime}$. Thus the use of z^{*} does not affect the distinguisher's behavior. Since outputs of $\mathcal{R} \mathcal{O}_{c}^{(1)}, \mathcal{R} \mathcal{O}_{n}^{1}, \mathcal{P}_{1}$, and \mathcal{P}_{1}^{-1} are random values, the modification from Game S 5 to Game S 6 does not affect the distinguisher's behavior, if no collision for the outputs of \mathcal{O}_{+} and the outputs of \mathcal{O}_{-}occurs. Notice that if the table $T_{S_{+}^{*}}$ and $T_{S_{-}^{*}}$ are redefined then the collision occurs. We thus have that

$$
\operatorname{Pr}[G S 5]-\operatorname{Pr}[G S 6] \leq \frac{q^{2}}{2^{b-1}}
$$

Game S7. In this game the table T_{F} (step 10 of \mathcal{O}_{+}) and the table T_{I} (step 2 of \mathcal{O}_{-}). Thus if in Game S6 w does not collide with $T_{F}[z]$ in \mathcal{O}_{+}and y does not collide with $T_{I}[x]$, then Game S 7 is equal to Game S6. The number of elements in $T_{F}[z]$ is at most $3 q+1$ and the number of elements in $T_{I}[x]$ is at most $2 q+1$. Thus the collision probabilities for $T_{F}[z]$ and $T_{I}[x]$ are $q(3 q+1) / 2^{c}$ and $q(2 q+1) / 2^{c}$, respectively. We thus
have that

$$
\operatorname{Pr}[G S 6]-\operatorname{Pr}[G S 7] \leq \frac{q(5 q+2)}{2^{c}}
$$

$S_{+}^{*}(k, x)$
$S_{+}^{*}(k, x)$
01 if $T_{S^{*}}^{+}[k, x] \neq \perp$ then return $T_{S^{*}}^{+}[k, x]$;
01 if $T_{S^{*}}^{+}[k, x] \neq \perp$ then return $T_{S^{*}}^{+}[k, x]$;
$02 z^{\prime}\|s\| t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \oplus\left(0^{n} \| C\right) ;$
$02 z^{\prime}\|s\| t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \oplus\left(0^{n} \| C\right) ;$

04 if $t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)}$ then
04 if $t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)}$ then
$05 \quad P \leftarrow$ FindPath $\left(z^{\prime}, s, k, t^{(1)} \| t^{(3)}\right)$;
$05 \quad P \leftarrow$ FindPath $\left(z^{\prime}, s, k, t^{(1)} \| t^{(3)}\right)$;
$06 \quad$ if $P \neq \emptyset$ then
$06 \quad$ if $P \neq \emptyset$ then
07 let $P=(M, a)$;
07 let $P=(M, a)$;
$08 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M) ; y \stackrel{\oiint}{\leftarrow} \beta_{z^{\prime}, s}^{-1}(z)$;
$08 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M) ; y \stackrel{\oiint}{\leftarrow} \beta_{z^{\prime}, s}^{-1}(z)$;
$09 \operatorname{AddPath}\left(\beta_{z^{\prime}, s}(y), z^{\prime}, s, k, t^{(1)} \| t^{(3)}\right)$;
$09 \operatorname{AddPath}\left(\beta_{z^{\prime}, s}(y), z^{\prime}, s, k, t^{(1)} \| t^{(3)}\right)$;
$10 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x$;
$10 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x$;
11 return $T_{S^{*}}^{+}[k, x]$
11 return $T_{S^{*}}^{+}[k, x]$
$S_{-}^{*}(k, y)$
$S_{-}^{*}(k, y)$
$\overline{01}$ if $T_{S^{*}}^{-}[k, y] \neq \perp$ then return $T_{S^{*}}^{-}[k, y]$;
$\overline{01}$ if $T_{S^{*}}^{-}[k, y] \neq \perp$ then return $T_{S^{*}}^{-}[k, y]$;
$02 z\|s\| t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \stackrel{\$}{\leftarrow}\{0,1\}^{2 n} ;$
$02 z\|s\| t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \stackrel{\$}{\leftarrow}\{0,1\}^{2 n} ;$
03 if $t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)}$ then
03 if $t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)}$ then
$04 \operatorname{AddPath}\left(\beta_{z, s}(y), z, s, k, t^{(1)} \| t^{(3)}\right)$;
$04 \operatorname{AddPath}\left(\beta_{z, s}(y), z, s, k, t^{(1)} \| t^{(3)}\right)$;
$05 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x$;
$05 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x$;
06 return $T_{S^{*}}^{-}[k, y]$;
06 return $T_{S^{*}}^{-}[k, y]$;
$\operatorname{AddPath}(z, h, s, m, t)$
$\operatorname{AddPath}(z, h, s, m, t)$
$\overline{01}$ for all $(M, a) \in P a t h[h]$ do
$\overline{01}$ for all $(M, a) \in P a t h[h]$ do
$02 \operatorname{Path}[z] \longleftarrow(M\|m, a\| s\|m\| t)$;
$02 \operatorname{Path}[z] \longleftarrow(M\|m, a\| s\|m\| t)$;

```
FindPath \((h, s, m, t)\)
```

FindPath (h, s, m, t)
$01 P \leftarrow \emptyset$;
$01 P \leftarrow \emptyset$;
02 for all $(M, a) \in \operatorname{Path}[h]$ do
02 for all $(M, a) \in \operatorname{Path}[h]$ do
if $\exists M_{1}$ s.t. $\operatorname{pad}_{\text {BLAKE }}\left(s, M_{1}\right)=a\|s\| m \| t$ then
if $\exists M_{1}$ s.t. $\operatorname{pad}_{\text {BLAKE }}\left(s, M_{1}\right)=a\|s\| m \| t$ then
$P \longleftarrow\left(M_{1}, a| | s| | m| | t\right) ;$
$P \longleftarrow\left(M_{1}, a| | s| | m| | t\right) ;$
05 if $P=\emptyset$ then return \perp;
05 if $P=\emptyset$ then return \perp;
06 else return $\left(M^{*}, a^{*}\right) \stackrel{\$}{\leftarrow} P$;
06 else return $\left(M^{*}, a^{*}\right) \stackrel{\$}{\leftarrow} P$;
$\frac{S_{+}(k, x)}{01 z^{\prime}\|s\|} t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \oplus\left(0^{n} \| C\right) ;$
$\frac{S_{+}(k, x)}{01 z^{\prime}\|s\|} t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \oplus\left(0^{n} \| C\right) ;$
$02 y \leftarrow E_{I}(k, x)$;
$02 y \leftarrow E_{I}(k, x)$;
03 if $t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)}$ then
03 if $t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)}$ then
$a \leftarrow \mathcal{T} \mathcal{O}^{(1)}\left(z^{\prime}\right) ;$
$a \leftarrow \mathcal{T} \mathcal{O}^{(1)}\left(z^{\prime}\right) ;$
if $a \neq \perp$ or $z^{\prime}=I V$ then
if $a \neq \perp$ or $z^{\prime}=I V$ then
if $\exists M$ s.t. $\operatorname{pad}_{\text {BLAKE }}(s, M)=a\|s\| k\left\|t^{(1)}\right\| t^{(3)}$ then
if $\exists M$ s.t. $\operatorname{pad}_{\text {BLAKE }}(s, M)=a\|s\| k\left\|t^{(1)}\right\| t^{(3)}$ then
$z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M) ;$
$z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M) ;$
else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}\left(a\|s\| k\left\|t^{(1)}\right\| t^{(3)}\right)$;
else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}\left(a\|s\| k\left\|t^{(1)}\right\| t^{(3)}\right)$;
$y_{1} \leftarrow \mathcal{R} \mathcal{O}_{n}^{(2)}(k, x) ; y_{2} \leftarrow y_{1} \oplus z^{\prime} \oplus[s]_{2} \oplus z ; y \leftarrow y_{1} \| y_{2} ;$
$y_{1} \leftarrow \mathcal{R} \mathcal{O}_{n}^{(2)}(k, x) ; y_{2} \leftarrow y_{1} \oplus z^{\prime} \oplus[s]_{2} \oplus z ; y \leftarrow y_{1} \| y_{2} ;$
return y;
return y;
$\frac{S_{-}(k, y)}{01 k^{*}| | x} \leftarrow \mathcal{T} \mathcal{O}^{(2)}\left(y^{L}\right) ;$
$\frac{S_{-}(k, y)}{01 k^{*}| | x} \leftarrow \mathcal{T} \mathcal{O}^{(2)}\left(y^{L}\right) ;$
02 if $k^{*} \| x \neq \perp$ and $k^{*}=k$ then return x;
02 if $k^{*} \| x \neq \perp$ and $k^{*}=k$ then return x;
$03 x \leftarrow D_{I}(k, y)$;
$03 x \leftarrow D_{I}(k, y)$;
04 return x;

```
04 return \(x\);
```

Fig. 22. S^{*} (left and top of right) and S (right)

D Reset Indifferentiability for the BLAKE Hash Function

First define notations used in this subsection. $[x]_{2}=x \| x$ is the concatenation of two copies of x. If x is of even length, then x^{L} and x^{R} denote its left and right halves where $\left|x^{L}\right|=\left|x^{R}\right|$.

Let the output length of BLAKE be n bits. Then BLAKE takes as input a salt s of $n / 2$ bits (chosen by the user), and a message M of arbitrary length. The evaluation of $\operatorname{BLAKE}^{\mathrm{BC}_{2 n, 2 n}}(\mathrm{~s}, M)$ is done as follows where a block cipher $\mathrm{BC}_{2 n, 2 n}=(E, D)$ is used where E is the encryption function and D is the decryption function with the key size and the plain text size of $2 n$ bits. Firstly, the message M is padded into message blocks m_{1}, \ldots, m_{k} of $2 n$ bits, where the padding function pad ${ }_{B}$ is defined as $\operatorname{pad}_{B}(M)=M| | 10^{-|M|-n / 2-2 \bmod 2 n} 1| |\langle | M| \rangle_{n / 2}$. Along with these message blocks, counter blocks t_{1}, \ldots, t_{k} of length $n / 4$ bits are generated. This counter keeps track of the number of message bits hashed so far and equals 0 if the i-th message block contains no message bits. Starting from an initial state value $z_{0} \in\{0,1\}^{n}$, the message blocks m_{i} and counter blocks t_{i} are compressed iteratively into the state using a compression function $f:\{0,1\}^{n} \times\{0,1\}^{n / 2} \times\{0,1\}^{2 n} \times\{0,1\}^{n / 4} \rightarrow\{0,1\}^{n}$. Here, the second input to f denotes the salt s. The outcome of the BLAKE hash function is defined as its final state value $H(\mathrm{~s}, M)=z_{k}$. f is defined as Fig. 22. Here $C \in\{0,1\}^{n}$ is a constant.

$$
\begin{aligned}
& \frac{f\left(z_{i-1}, \mathbf{s}, m_{i}, t_{i}\right)}{\left.v_{i} \leftarrow\left(z_{i-1}\|\mathbf{s}\|\left[t_{i}^{L}\right]_{2} \|\left[t_{i}^{R}\right]_{2}\right]\right) \oplus\left(0^{n} \| C\right) ;} \\
& w_{i} \leftarrow E\left(m_{i}, v_{i}\right) ; \\
& z_{i} \leftarrow w_{i}^{L} \oplus w_{i}^{R} \oplus z_{i-1} \oplus[\mathbf{s}]_{2} ; \\
& \text { return } z_{i} ;
\end{aligned}
$$

We evaluate the reset indifferentiable security from $\mathcal{V} \mathcal{O}$ for the BLAKE hash function in the ideal cipher model. We define the parameter of $\mathcal{V O}$ as $v=1, n_{1}=n, u=2, t=1 w_{1}=n, w_{2}=n, k_{1}=2 n$ and $m_{1}=2 n$. Thus in this case, $\mathcal{V} \mathcal{O}$.priv $=\mathcal{R} \mathcal{O}_{n}$ and $\mathcal{V O}$.pub $=\left(\mathcal{R} \mathcal{O}_{n}, \mathcal{T} \mathcal{R} \mathcal{O}_{n}^{(1)}, \mathcal{T} \mathcal{R} \mathcal{O}_{n}^{(2)}, \mathrm{IC}_{2 n, 2 n}^{(1)}\right)$. The following theorem shows that the BLAKE hash function in the ideal cipher model is reset indifferentiable from a $\mathcal{V O}$.

Theorem 5. Let $\mathrm{IC}_{2 n, 2 n}=\left(E_{I}, D_{I}\right)$ be an ideal cipher where the length of each elements is of $2 n$ bits. There exists a simulator S such that for any distinguisher \mathcal{A}, the following holds,

$$
\operatorname{Adv}_{\mathrm{BLAKE}^{\mathrm{I}} \mathrm{IC}_{2 n, 2 n}, \mathcal{V O}, S}(\mathcal{A}) \leq 3 \frac{\left(l q_{H}+q_{E}\right)\left(l q_{H}+q_{E}+1\right)}{2^{n}}+\frac{5 q_{E}^{2}}{2^{2 n+1}}+\frac{q_{E}^{2}}{2^{n-1}}
$$

where \mathcal{A} can make queries to $\mathrm{BLAKE}^{\mathrm{IC}} \mathrm{C}_{2 n, 2 n} / \mathcal{R} \mathcal{O}_{n}$ and $\mathrm{IC}_{2 n, 2 n} / S_{\mathrm{BLAKE}}$ at most q_{H}, q_{E} times, respectively, and l is a maximum number of blocks of a query to $\mathrm{BLAKE}^{\mathrm{IC}} \mathrm{Cn}_{2 n} / \mathcal{R} \mathcal{O}_{n}$. $S_{\text {BLAKE }}$ makes at most $2 q_{h}$ queries and runs in time $\mathcal{O}\left(q_{h}\right)$.

First, we define a padding function $\operatorname{pad}_{\text {BLAKE }}$ as $\operatorname{pad}_{\text {BLAKE }}(\mathbf{s}, M)=\left(\mathbf{s}\left\|m_{1}\right\| t_{1}\right)\|\cdots\|\left(s\left\|m_{k}\right\| t_{k}\right)$. We also define $\beta_{z, \mathrm{~s}}$ and $\beta_{z, \mathrm{~s}}^{-1}$ as $\beta_{z, \mathrm{~s}}(w)=w^{L} \oplus w^{R} \oplus z \oplus[\mathbf{s}]_{2}$ for $w \in\{0,1\}^{2 n}$ and $\beta_{z, \mathrm{~s}}^{-1}\left(z^{\prime}\right)=\left\{w \in\{0,1\}^{2 n} \mid w^{L} \oplus w^{R} \oplus z \oplus[\mathbf{s}]_{2}=\right.$ $\left.z^{\prime}\right\}$ for $z^{\prime} \in\{0,1\}^{n}$. In the proof of the theorem, we use the result of the indifferentiable security from a RO by Andreeva et al. [1] They define a simulator S^{*} which can be implemented as Fig. 22. S^{*} simulates the ideal cipher $\mathrm{IC}_{2 n, 2 n}$ so that $\mathcal{R} \mathcal{O}_{n}$ and S^{*} are consistent. S_{+}^{*} and S_{-}^{*} simulate the encryption oracle E_{I} and the decryption oracle D_{I} of $\mathrm{IC}_{2 n, 2 n}$, respectively. In this simulator, the function FindPath and the procedure AddPath are used.
$T_{S^{*}}^{+}$and $T_{S^{*}}^{-}$are (initially everywhere \perp) tables which record query-response values of S^{*}. If the query $S_{+}^{*}(k, x)$ is made, the output y is recorded in $T_{S^{*}}^{+}[k, x]$ and x is recoded in $T_{S^{*}}^{-}[k, y]$. Similarly, the queryresponse values for S_{-}^{*} are recoded in these tables. Path is a (initially everywhere \emptyset) table which records all paths with the BLAKE style. Namely, if $\left(k_{1}, x_{1}, y_{1}\right)$ is recoded in $T_{S^{*}}^{+}$such that $T_{S^{*}}^{+}\left[k_{1}, x_{1}\right]=y_{1}$, $x_{1}=z_{0}\left\|\mathrm{~s}_{1}\right\| t_{1}^{L}\left\|t_{1}^{L}\right\| t_{1}^{R} \| t_{1}^{R}$, and $z_{1}=\beta_{z_{0}, \mathrm{~s}_{1}}\left(y_{1}\right),\left(k_{1}, \mathrm{~s}_{1}\left\|k_{1}\right\| t_{1}\right)$ is recoded in $\operatorname{Path}\left[z_{1}\right]{ }^{6}$. Then, for the query $S_{+}^{*}\left(k_{2}, x_{2}\right)$, if the query and some query-response pairs of S^{*} have the BLAKE structure, the output is defined by $\mathcal{R} \mathcal{O}_{n}$. Namely, if $x_{2}=z_{1}\left\|\mathrm{~s}_{2}\right\| t_{2}^{L}\left\|t_{2}^{L}\right\| t_{2}^{R} \| t_{2}^{R}, \mathrm{~s}_{1}=\mathrm{s}_{2}$ and there exists M such that $\operatorname{pad}_{\text {BLAKE }}\left(\mathrm{s}_{2}, M\right)=$ $\left(\mathrm{s}_{1}\left\|k_{1}\right\| t_{1}\right) \|\left(\mathrm{s}_{2}\left\|k_{2}\right\| t_{2}\right)$, then the output y_{2} is uniformly chosen at random from $\beta_{z_{1}, \mathbf{s}_{2}}^{-1}\left(\mathcal{R} \mathcal{O}_{n}\left(\mathrm{~s}_{2}, M\right)\right)$ to ensure the BLAKE consistency.

The Simulator S. We define the simulator S in Fig. 22. $\mathcal{T} \mathcal{R} \mathcal{O}_{n}^{(1)}$ and $\mathcal{T} \mathcal{R} \mathcal{O}_{n}^{(2)}$ realizes the functionality of recording a path and constructing a new path. For the query $S_{+}\left(k_{1}, x_{1}\right)$ where $x_{1}=I V\left\|\mathbf{s}_{1}\right\| t_{1}^{(1)}\left\|t_{1}^{(1)}\right\| t_{1}^{(3)} \| t_{1}^{(3)}$ and there does not exist M such that $\operatorname{pad}_{\text {BLAKE }}\left(\mathrm{s}_{1}, M\right)=\mathrm{s}_{1}\left\|k_{1}\right\| t_{1}^{(1)} \| t_{1}^{(3)}$, the simulator makes the queries $\mathcal{R} \mathcal{O}_{n}^{(1)}\left(s_{1}\left\|k_{1}\right\| t_{1}^{(1)} \| t_{1}^{(3)}\right)$ and $\mathcal{R} \mathcal{O}_{n}^{(2)}\left(k_{1}, x_{1}\right)$ where the responses are z_{1} and $y_{1,1}$, respectively, then $y_{1,2}=$ $y_{1,1} \oplus z \oplus\left[\mathrm{~s}_{1}\right]_{2} \oplus I V$ and the response y_{1} of the query $S_{+}\left(k_{1}, x_{1}\right)$ is defined by $y_{1}=y_{1,1} \| y_{1,2}$. Then, for the query $S_{\text {BLAKE, }+}\left(k_{2}, x_{2}\right)$ where $x_{2}=z_{1}\left\|\mathbf{s}_{2}\right\| t_{2}^{(1)}\left\|t_{2}^{(1)}\right\| t_{2}^{(3)} \| t_{2}^{(3)}$ and there exists M such that pad $\operatorname{mLAKE}(M)=$ $\mathrm{s}_{1}\left\|k_{1}\right\| t_{1}^{(1)}\left\|t_{1}^{(3)}\right\| \mathrm{s}_{2}\left\|k_{2}\right\| t_{2}^{(1)} \| t_{2}^{(3)}$, the response y_{2} of the query $S_{+}\left(k_{2}, x_{2}\right)$ is defined by $y_{2,1} \| y_{2,2}$ to ensure the BLAKE consistency. The simulator can obtain $\mathrm{s}_{1}\left\|k_{1}\right\| t_{1}^{(1)} \| t_{1}^{(3)}$ by the query $\mathcal{T} \mathcal{O}^{(1)}\left(z_{1}\right)$ and thus can make the queries $\mathcal{R} \mathcal{O}_{n}\left(\mathrm{~s}_{2}, M\right)$ and $\mathcal{R} \mathcal{O}_{n}^{(2)}\left(k_{2}, x_{2}\right)$ where the outputs are z_{2} and $y_{2,1}$, respectively, and $y_{2,2}=$ $y_{2,1} \oplus z \oplus\left[\mathrm{~s}_{2}\right]_{2} \oplus z_{1}$. Thus the simulator S_{+}can make a response with the same procedure to S_{+}^{*}. For the inverse query $S_{-}\left(k_{2}, y_{2}\right)$, the simulator can obtain x_{2} by the query $\mathcal{T} \mathcal{O}^{(2)}\left(y_{2}^{R}\right)$. Thus the simulator S_{-}can also make a response with the same procedure to S_{-}^{*}. The formal evaluation of the difference $\operatorname{Pr}[G 1]-\operatorname{Pr}[G 2]$ is given as follows where $\operatorname{Pr}[G 1]-\operatorname{Pr}[G 2] \leq 5 q_{E}^{2} / 2^{2 n+1}+q_{E}^{2} / 2^{n-1}$. Since the simulator S does not update the internal state, $\operatorname{Pr}[G 0]=\operatorname{Pr}[G 1]$ (in Subsection ??). The indifferentiable bound from $\mathcal{R} \mathcal{O}_{n}$ in [1] is $3\left(l q_{H}+q_{E}\right)\left(l q_{H}+q_{E}+1\right) / 2^{n}$. There results yield the bound of Theorem 5.

Proof. We consider ten games, Game B0, Game B1, Game B2, Game B3, Game B4, Game B5, Game B6, Game B7, Game B8, and Game B9, which are shown in Figs. 23, 24, 25, 26, 27, 28, 29, 30, 31, and 32, respectively. In each game, the distinguisher \mathcal{A} interacts with $\left(\mathcal{O}_{+}, \mathcal{O}_{-}\right)$. $\left(\mathcal{O}_{+}, \mathcal{O}_{-}\right)$in Game B 0 is equal to the simulator S in Game 1, and $\left(\mathcal{O}_{+}, \mathcal{O}_{-}\right)$in Game B 7 is equal to the simulator S^{*} in Game 2 . Notice that in this proof $\mathcal{R} \mathcal{O}_{n}$ queries are removed, since the difference between Game 1 and Game 2 is just the simulator.

[^4]\[

$$
\begin{array}{ll}
\frac{\mathcal{O}_{+}(k, x)}{01 z^{\prime}\|s\| t} t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \oplus\left(0^{n} \| C\right) ; & \\
02 y \leftarrow E_{I}(k, x) ; & \\
03 \text { if } t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)} \text { then } & \frac{\mathcal{O}_{-}(k, y)}{01 k^{*} \| x} \leftarrow \mathcal{T} \mathcal{O}^{(2)}\left(y^{L}\right) ; \\
04 & a \leftarrow \mathcal{T} \mathcal{O}^{(1)}\left(z^{\prime}\right) ; \\
05 & \text { if } a \neq \perp \text { or } z^{\prime}=I V \text { then } \\
06 & \text { if } \exists M \text { s.t. } \operatorname{pad}_{\text {BLAKE }}(s, M)=a\|s\| k\left\|t^{(1)}\right\| t^{(3)} \text { then } \\
07 & z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M) ; \\
02 \text { if } k^{*} \| x \neq \perp \text { and } k^{*}=k \text { then return } x ; \\
08 & \text { else } z \leftarrow \mathcal{R O}_{n}^{(1)}\left(a\|s\| k\left\|t^{(1)}\right\| t^{(3)}\right) ; \\
09 & y_{1} \leftarrow \mathcal{R O}_{n}^{(2)}(k, x) ; y_{2} \leftarrow y_{1} \oplus z^{\prime} \oplus[s]_{2} \oplus z ; y \leftarrow y_{1} \| y_{2} ;
\end{array}
$$
\]

Fig. 23. Game B0

	$\underline{\mathcal{O}_{-}(k, y)}$						
	$\overline{01 k^{*}\| \| x} \leftarrow \mathcal{T} \mathcal{O}^{(2)}\left(y^{L}\right)$;						
$\underline{\mathcal{O}_{+}(k, x)}$	02 if $k^{*} \\| x \neq \perp$ and $k^{*}=k$ then return x;						
$\overline{01 z^{\prime}\\|s\\| t} t^{(1)}\left\\|t^{(2)}\right\\| t^{(3)} \\| t^{(4)} \leftarrow x \oplus\left(0^{n} \\| C\right) ;$	$03 x \leftarrow D^{*}(k, y)$;						
$02 y \leftarrow E^{*}(k, x)$;	04 return x;						
03 if $t^{(1)}\left\\|t^{(3)}=t^{(2)}\right\\| t^{(4)}$ then							
$04 \quad a \leftarrow \mathcal{T} \mathcal{O}^{(1)}\left(z^{\prime}\right)$;	$\underline{E^{*}(k, x)}$						
05 if $a \neq \perp$ or $z^{\prime}=I V$ then	01 if $\mathrm{E}^{*}[k, x]=\perp$ then $\mathrm{E}^{*}[k, x] \stackrel{\$}{\leftarrow}\{0,1\}^{2 n}$;						
06 if $\exists M$ s.t. $\operatorname{pad}_{\text {BLAKE }}(s, M)=a\\|s\\| k\left\\|t^{(1)}\right\\| t^{(3)}$ then	$02 \mathrm{D}^{*}\left[k, \mathrm{E}^{*}[k, x]\right] \leftarrow x$;						
$07 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M)$;	03 return $\mathrm{E}^{*}[k, x]$;						
$08 \quad$ else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}\left(a\\|s\\| k\left\\|t^{(1)}\right\\| t^{(3)}\right)$;							
$09 \quad y_{1} \leftarrow \mathcal{R} \mathcal{O}_{n}^{(2)}(k, x) ; y_{2} \leftarrow y_{1} \oplus z^{\prime} \oplus[s]_{2} \oplus z ; y \leftarrow y_{1} \\| y_{2} ;$	$\underline{D^{*}(k, y)}$						
10 return y;	$\begin{aligned} & 01 \text { if } \mathrm{D}^{*}[k, y]=\perp \text { then } \mathrm{D}^{*}[k, y] \stackrel{\$}{\leftarrow}\{0,1\}^{2 n} ; \\ & 02 \mathrm{E}^{*}\left[k, \mathrm{D}^{*}[k, y]\right] \leftarrow y ; \\ & 03 \text { return } \mathrm{D}^{*}[k, y] ; \end{aligned}$						

Fig. 24. Game B1

Let $G B j$ be an event that the distinguisher \mathcal{A} output 1 in Game $\mathrm{B} j$. Thus

$$
\begin{aligned}
\operatorname{Pr}[G 1]-\operatorname{Pr}[G 2] & =\operatorname{Pr}[G B 0]-\operatorname{Pr}[G B 9] \\
& =\sum_{j=0}^{8}(\operatorname{Pr}[G B j]-\operatorname{Pr}[G B(j+1)])
\end{aligned}
$$

In the following, we evaluate the each difference $\operatorname{Pr}[G B j]-\operatorname{Pr}[G B(j+1)]$.
Game B1. In Game B0 the ideal cipher $\left(E_{I}, D_{I}\right)$ is used, while in Game $\mathrm{B} 1\left(E^{*}, D^{*}\right)$ is used where an output is uniformly chosen at random from $\{0,1\}^{2 n}$. E^{*} and D^{*} are (initially everywhere \perp) tables. We thus have via birthday analysis that

$$
\operatorname{Pr}[G B 0]-\operatorname{Pr}[G B 1] \leq \frac{2 q_{E}^{2}}{2^{2 n+1}}
$$

Game B2. In this game, new tables $T_{S^{*}}^{+}$and $T_{S^{*}}^{-}$are used which are initially everywhere \perp. In Game B2, if no collision for the outputs of \mathcal{O}_{+}and the output of \mathcal{O}_{-}occurs, for a repeated query, the value which was previously returned is returned. In Game B1, the procedure of \mathcal{O}_{+}depends on the output of $\mathcal{T} \mathcal{O}^{(1)}$ and the procedure of \mathcal{O}_{-}depends on the output of $\mathcal{T} \mathcal{O}^{(2)}$. Thus in Game B1 if no collision for the outputs of $\mathcal{R} \mathcal{O}_{n}^{(1)}$ and the output of $\mathcal{R} \mathcal{O}_{n}^{(2)}$ occurs then for a repeated query, the value which was previously returned is returned. Thus, in both game, if o collision for the outputs of $\mathcal{R} \mathcal{O}_{n}^{(1)}$, the output of $\mathcal{R} \mathcal{O}_{n}^{(2)}$, the outputs of

	$\mathcal{O}_{-}(k, y)$						
$\mathcal{O}_{+}(k, x)$	$\begin{aligned} & 01 \text { if } T_{S^{*}}^{-}[k, y] \neq \perp \text { then return } T_{S^{*}}^{-}[k, y] ; \\ & 02 k^{*} \\| x^{*} \leftarrow \mathcal{T} \mathcal{O}^{(2)}\left(y^{L}\right) ; \end{aligned}$						
$\overline{01}$ if $T_{S^{*}}^{+}[k, x] \neq \perp$ then return $T_{S^{*}}^{+}[k, x]$;	03 if $k^{*} \\| x^{*} \neq \perp$ and $k^{*}=k$ then $x \leftarrow x^{*}$;						
$02 z^{\prime}\\|s\\| t^{(1)}\left\\|t^{(2)}\right\\| t^{(3)} \\| t^{(4)} \leftarrow x \oplus\left(0^{n} \\| C\right) ;$	04 else $x \leftarrow D^{*}(k, y)$;						
$03 y \leftarrow E^{*}(k, x)$;	$05 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x$;						
04 if $t^{(1)}\left\\|t^{(3)}=t^{(2)}\right\\| t^{(4)}$ then	06 return $T_{S^{*}}^{-}[k, y]$;						
$05 \quad a \leftarrow \mathcal{T} \mathcal{O}^{(1)}\left(z^{\prime}\right) ;$;	$E^{*}(k, x)$						
06 if $a \neq \perp$ or $z^{\prime}=I V$ then	$\underline{E(k, x)}$						
$07 \quad$ if $\exists M$ s.t. $\operatorname{pad}_{\text {BLAKE }}(s, M)=a\\|s\\| k\left\\|t^{(1)}\right\\| t^{(3)}$ then	01 if $\mathrm{E}^{*}[k, x]=\perp$ then $\mathrm{E}^{*}[k, x] \stackrel{\$}{\leftarrow}\{0,1\}^{2 n}$;						
$08 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M)$;	$02 \mathrm{D}^{*}\left[k, \mathrm{E}^{*}[k, x]\right] \leftarrow x$;						
$09 \quad$ else $z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}\left(a\\|s\\| k\left\\|t^{(1)}\right\\| t^{(3)}\right)$;	03 return $\mathrm{E}^{*}[k, x]$;						
$\begin{aligned} & 10 \quad y_{1} \leftarrow \mathcal{R} \mathcal{O}_{n}^{(2)}(k, x) ; y_{2} \leftarrow y_{1} \oplus z^{\prime} \oplus[s]_{2} \oplus z ; y \leftarrow y_{1} \\| y_{2} ; \\ & 11 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x ; \end{aligned}$	$\underline{D^{*}(k, y)}$						
12 return $T_{S^{*}}^{+}[k, x]$;	$\begin{aligned} & 01 \text { if } \mathrm{D}^{*}[k, y]=\perp \text { then } \mathrm{D}^{*}[k, y] \stackrel{\oplus}{\leftarrow}\{0,1\}^{2 n} ; \\ & 02 \mathrm{E}^{*}\left[k, \mathrm{D}^{*}[k, y]\right] \leftarrow y ; \\ & 03 \text { return } \mathrm{D}^{*}[k, y] ; \end{aligned}$						

Fig. 25. Game B2

```
\(\frac{\mathcal{O}_{+}(k, x)}{01 \text { if } T^{+}}\)
01 if \(T_{S^{*}}^{+}[k, x] \neq \perp\) then return \(T_{S^{*}}^{+}[k, x]\);
\(02 z^{\prime}\|s\| t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \oplus\left(0^{n} \| C\right) ;\)
\(03 y \stackrel{\$}{\leftrightarrows}\{0,1\}^{2 n}\);
04 if \(t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)}\) then
\(05 \quad a \leftarrow \mathcal{T} \mathcal{O}^{(1)}\left(z^{\prime}\right) ; \quad 02 k^{*} \| x^{*} \leftarrow \mathcal{T} \mathcal{O}^{(2)}\left(y^{L}\right)\);
06 if \(a \neq \perp\) or \(z^{\prime}=I V\) then \(\quad 03\) if \(k^{*} \| x^{*} \neq \perp\) and \(k^{*}=k\) then \(x \leftarrow x^{*}\);
\(07 \quad\) if \(\exists M\) s.t. \(\operatorname{pad}_{\text {BLAKE }}(s, M)=a\|s\| k\left\|t^{(1)}\right\| t^{(3)}\) then \(\quad 04\) else \(x \stackrel{\$}{\leftarrow}\{0,1\}^{2 n}\);
\(08 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M)\);
\(09 \quad\) else \(z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}\left(a\|s\| k\left\|t^{(1)}\right\| t^{(3)}\right) ; \quad 06\) return \(T_{S^{*}}^{-}[k, y]\);
\(10 \quad y_{1} \leftarrow \mathcal{R} \mathcal{O}_{n}^{(2)}(k, x) ; y_{2} \leftarrow y_{1} \oplus z^{\prime} \oplus[s]_{2} \oplus z ; y \leftarrow y_{1} \| y_{2} ;\)
\(11 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x ;\)
12 return \(T_{S^{*}}^{+}[k, x]\);
```

Fig. 26. Game B3
\mathcal{O}_{+}and the output of \mathcal{O}_{-}, the modification for Game B2 does not affect the distinguisher's behavior and so Game B2 is equal to Game B1. We thus have via a birthday analysis that

$$
\operatorname{Pr}[G B 1]-\operatorname{Pr}[G B 2] \leq \frac{2 q_{E}^{2}}{2^{n+1}}+\frac{2 q_{E}^{2}}{2^{2 n+1}}
$$

Game B3. In this game, $\left(E^{*}, D^{*}\right)$ is removed. Outputs of E^{*} and D^{*} are uniformly chosen at random from $\{0,1\}^{2 n}$. In Game B2, if no collision occurs for $\mathcal{O}_{+}, \mathcal{O}_{-}$, for a repeated query, the value which was previously returned is returned by the tables $T_{S^{*}}^{+}$and $T_{S^{*}}^{-}$. Thus in both games if no collision occurs for the outputs of \mathcal{O}_{+}and the outputs of \mathcal{O}_{-}, the modification does not affect the distinguisher's behavior. We thus have via a birthday analysis that

$$
\operatorname{Pr}[G B 2]-\operatorname{Pr}[G B 3] \leq \frac{2 q_{E}^{2}}{2^{2 n+1}}
$$

Game B4. In this game, $\mathcal{T} \mathcal{O}^{(2)}$ in \mathcal{O}_{-}is removed. $k^{*} \| x^{*}\left(=\mathcal{T} \mathcal{O}\left(y^{L}\right) \neq \perp\right.$ means that the value corresponding with the query (k, y) is recoded. If no collision occurs for the output of \mathcal{O}_{+}and the output of \mathcal{O}_{-}, for a repeated query, the value which was previously returned is returned. That is, if no collision occurs, $\mathcal{T} \mathcal{O}^{(2)}$ is

```
\(\mathcal{O}_{+}(k, x)\)
01 if \(T_{S^{*}}^{+}[k, x] \neq \perp\) then return \(T_{S^{*}}^{+}[k, x]\);
\(02 z^{\prime}\|s\| t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \oplus\left(0^{n} \| C\right) ;\)
\(03 y \stackrel{\$}{\leftarrow}\{0,1\}^{2 n}\);
04 if \(t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)}\) then \(\quad \mathcal{O}_{-}(k, y)\)
\(05 \quad a \leftarrow \mathcal{T} \mathcal{O}^{(1)}\left(z^{\prime}\right) ; \quad \overline{01 \text { if } T_{S^{*}}^{-}}[k, y] \neq \perp\) then return \(T_{S^{*}}^{-}[k, y]\);
06 if \(a \neq \perp\) or \(z^{\prime}=I V\) then \(02 x \stackrel{\$}{\leftarrow}\{0,1\}^{2 n}\);
\(07 \quad\) if \(\exists M\) s.t. \(\operatorname{pad}_{\text {BLAKE }}(s, M)=a\|s\| k\left\|t^{(1)}\right\| t^{(3)}\) then \(\quad 03 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x\);
\(08 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M) ; \quad 04\) return \(T_{S^{*}}^{-}[k, y]\);
\(09 \quad\) else \(z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}\left(a\|s\| k\left\|t^{(1)}\right\| t^{(3)}\right)\);
\(10 \quad y_{1} \leftarrow \mathcal{R} \mathcal{O}_{n}^{(2)}(k, x) ; y_{2} \leftarrow y_{1} \oplus z^{\prime} \oplus[s]_{2} \oplus z ; y \leftarrow y_{1} \| y_{2} ;\)
\(11 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x ;\)
12 return \(T_{S^{*}}^{+}[k, x]\);
```

Fig. 27. Game B4

```
\(\mathcal{O}_{+}(k, x)\)
01 if \(T_{S^{*}}^{+}[k, x] \neq \perp\) then return \(T_{S^{*}}^{+}[k, x]\);
\(02 z^{\prime}\|s\| t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \oplus\left(0^{n} \| C\right) ;\)
\(03 y \stackrel{\$}{\leftarrow}\{0,1\}^{2 n}\);
04 if \(t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)}\) then \(\quad \frac{\mathcal{O}_{-}(k, y)}{01 \text { if } T^{-}}\)
\(05 \quad a \leftarrow \mathcal{T} \mathcal{O}^{(1)}\left(z^{\prime}\right) ; \quad \quad \overline{01}\) if \(T_{S^{*}}^{-}[k, y] \neq \perp\) then return \(T_{S^{*}}^{-}[k, y]\);
06 if \(a \neq \perp\) or \(z^{\prime}=I V\) then
\(07 \quad\) if \(\exists M\) s.t. \(\operatorname{pad}_{\text {BLAKE }}(s, M)=a\|s\| k\left\|t^{(1)}\right\| t^{(3)}\) then
                \(z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M) ;\)
        else \(z \leftarrow \mathcal{R} \mathcal{O}_{n}^{(1)}\left(a\|s\| k\left\|t^{(1)}\right\| t^{(3)}\right) ;\)
        \(y \stackrel{\&}{\leftarrow} \beta_{z^{\prime}, s}^{-1}(z) ;\)
\(11 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x ;\)
12 return \(T_{S^{*}}^{+}[k, x]\);
```

Fig. 28. Game B5
not used and thus Game B3 is equal to Game B2. We thus have via a birthday analysis that

$$
\operatorname{Pr}[G B 3]-\operatorname{Pr}[G B 4] \leq \frac{2 q_{E}^{2}}{2^{2 n+1}}
$$

Game B5. In this game, $\mathcal{R} \mathcal{O}_{n}^{(2)}$ is removed. In both Game B4 and Game B5, y is uniformly chosen at random from $\{0,1\}^{2 n}$ with a relation that $\beta_{z^{\prime}, s}(y)=z$. Thus Game B5 is equal to Game B 4 and $\operatorname{Pr}[G B 4]=\operatorname{Pr}[G B 5]$.

Game B6. In this game, $\mathcal{T} \mathcal{R} \mathcal{O}_{n}^{(1)}$ is removed. Instead, the functions $F_{i n d P a t h_{1}}$ and AddPath $_{1}$ are used. Path is a (initially everywhere \perp) table. If no collision occurs for the outputs of AddPath $_{1}$, then AddPath $_{1}$ and FindPath h_{1} behave as $\mathcal{R} \mathcal{O}_{n}^{(1)}$ and $\mathcal{T} \mathcal{O}^{(1)}$, respectively. That is, if no collision occurs, Game B6 is equal to Game B5. We thus have via a birthday analysis that

$$
\operatorname{Pr}[G B 5]-\operatorname{Pr}[G B 6] \leq \frac{q_{E}^{2}}{2^{n+1}}
$$

Game B7. In this game, AddPath and FindPath are used instead of AddPath ${ }_{1}$ and FindPath $_{1}$. For some value z, in $A d d P a t h_{1}$, the number of paths in $P a t h_{1}[z]$ is at most 1 , while in $A d d P a t h$, the number of paths in Path[z] not limited. Thus, if for any value z the number of paths in Path[z] is at most 1, Game B7 is equal to Game B6. That is, if no collision for $\beta_{z^{\prime}, s}$ (step 07 in \mathcal{O}_{+}) occurs then Game B7 is equal to Game B6. Since y is uniformly chosen at random from $\{0,1\}^{2 n}$, an output of $\beta_{z^{\prime}, s}$ is a random value of n bits. We

$$
\begin{aligned}
& \frac{\mathcal{O}_{+}(k, x)}{01 \text { if } T_{S^{*}}^{+}}[k, x] \neq \perp \text { then return } T_{S^{*}}^{+}[k, x] ; \\
& 02 z^{\prime}\|s\| t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \oplus\left(0^{n} \| C\right) ; \\
& 03 y \underset{ }{\leftrightarrows}\{0,1\}^{2 n} ; \\
& 04 \text { if } t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)} \text { then } \\
& 05 \quad a \leftarrow F i n d P a t h_{1}\left(z^{\prime}\right) ; \\
& 06 \quad \text { if } a \neq \perp \text { or } z^{\prime}=I V \text { then } \\
& 07 \quad \text { if } \exists M \text { s.t. } \operatorname{pad}_{\text {BLAKE }}(s, M)=a\|s\| k\left\|t^{(1)}\right\| t^{(3)} \text { then } \\
& 08 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M) ; \\
& 09 \quad \quad \text { else } z \leftarrow \operatorname{AddPath}_{1}\left(a\|s\| k\left\|t^{(1)}\right\| t^{(3)}\right) ; \\
& 10 \quad y \stackrel{\Phi}{\leftarrow} \beta_{z^{\prime}, s}^{-1}(z) ; \\
& 11 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x ; \\
& 12 \text { return } T_{S^{*}}^{+}[k, x] ;
\end{aligned}
$$

Fig. 29. Game B6

$\underline{\mathcal{O}_{+}(k, x)}$	$\mathcal{O}_{-}(k, y)$					
$01 \text { if } T_{S^{*}}^{+}[k, x] \neq \perp \text { then return } T_{S^{*}}^{+}[k, x] ;$	$\frac{\mathcal{O}^{-}(k, y)}{01 \text { if } T_{S^{*}}^{-}}[k, y] \neq \perp$ then return $T_{S^{*}}^{-}[k, y] ;$					
$02 z^{\prime}\left\\|\underset{\$}{\| \| t} t^{(1)}\right\\|\left\|t^{(2)}\left\\|\mid t^{(3)}\right\\| t^{(4)} \leftarrow x \oplus\left(0^{n} \\| C\right) ;\right.$	$02 x \stackrel{\&}{\leftrightarrows}\{0,1\}^{2 n}$					
$03 y \stackrel{\mathbb{\&}}{\leftrightarrows}\{0,1\}^{2 n} ;$	$03 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x$					
04 if $t^{(1)}\left\\|t^{(3)}=t^{(2)}\right\\| t^{(4)}$ then $05 \quad P \leftarrow \operatorname{FindPath}\left(z^{\prime}, s, k, t\right)$;	$04 \text { return } T_{S^{*}}^{-}[k, y] ;$					
06 if $P \neq \perp$ then let $P=(M, a) ; z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M)$;	FindPath ($h, s, m, t)$					
07 else AddPath($\left.\beta_{z^{\prime}, s}(y), z^{\prime}, s, k, t^{(1)} \\| t^{(3)}\right)$;	$\overline{01 P \leftarrow \emptyset ; ~}$					
$08 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x$;	02 for all $(M, a) \in \operatorname{Path}[h]$ do					
09 return $T_{S^{*}}^{+}[k, x]$;	03 if $\exists M_{1}$ s.t. $\operatorname{pad}_{\text {BLAKE }}\left(s, M_{1}\right)=a\\|s\\| m \\| t$ then					
$\operatorname{AddPath}(z, h, s, m, t)$	$04 \quad P \stackrel{\leftarrow}{\leftarrow}\left(M_{1}, a\\|s\\|^{\prime} m \\| t\right)$;					
01 for all $(M, a) \in P a t h[h] ~ d o ~$	05 if $P=\emptyset$ then return $\stackrel{\perp}{\$}$;					
$02 \quad \operatorname{Path}[z] \stackrel{\cup}{\leftarrow}(M\\|m, a\| \| s\\| m \\| t) ;$	06 else return $\left(M^{*}, a^{*}\right) \stackrel{\text { r }}{ } \stackrel{\text { d }}{ }$					

Fig. 30. Game B7
thus via birthday analysis that

$$
\operatorname{Pr}[G B 6]-\operatorname{Pr}[G B 7] \leq \frac{q_{E}^{2}}{2^{n+1}}
$$

Game B8. In Game B8, "else" for the step using AddPath is removed. Since pad ${ }_{\text {BLAKE }}$ is a prefix-free padding, the path constructed from the value defined the steps 06-08 is not used. Thus the modification does not affect the distinguisher's behavior. So we have that $\operatorname{Pr}[G B 7]=\operatorname{Pr}[G B 8]$.

Game B9. In this game, $A d d P a t h$ is added in \mathcal{O}_{-}. Since x is uniformly chosen at random from $\{0,1\}^{2 n}$, the probability that in \mathcal{O}_{-}a new path is added in the table Path is at most $q_{E}^{2} / 2^{n}$ where the number of paths stored in Path is at most q_{E}. We thus have that

$$
\operatorname{Pr}[G B 8]-\operatorname{Pr}[G B 9] \leq \frac{q_{E}^{2}}{2^{n}}
$$

```
\(\underline{\mathcal{O}_{B}^{+}(k, x)}\)
\(\begin{aligned} & \overline{01} \text { if } T_{S^{*}}^{+}\end{aligned}[k, x] \neq \perp\) then return \(T_{S^{*}}^{+}[k, x] ;\)
\(\overline{01}\) if \(T_{S^{*}}^{+}\)
\(\left.02 z^{\prime} \| s, x\right] \neq \perp\) then return \(T_{S^{*}}^{+}[k, x] ;\)
\(t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \oplus\left(0^{n} \| C\right) ;\)
\(03 y \stackrel{\$}{\leftrightarrows}\{0,1\}^{2 n}\);
04 if \(t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)}\) then
\(05 \quad P \leftarrow \operatorname{FindPath}\left(z^{\prime}, s, k, t^{(1)} \| t^{(3)}\right)\);
\(06 \quad\) if \(P \neq \emptyset\) then
07 let \(P=(M, a)\);
\(08 \quad z \leftarrow \mathcal{R} \mathcal{O}_{n}(s, M) ; y \stackrel{\$}{\leftarrow} \beta_{z^{\prime}, s}^{-1}(z)\);
\(09 \quad \operatorname{AddPath}\left(\beta_{z^{\prime}, s}(y), z^{\prime}, s, k, t^{(1)} \| t^{(3)}\right)\) :
\(10 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x ;\)
11 return \(T_{S^{*}}^{+}[k, x]\);
\(\operatorname{AddPath}(z, h, s, m, t)\)
\(\overline{01}\) for all \((M, a) \in \operatorname{Pa} t h[h]\) do
\(\underline{\mathcal{O}_{B}^{-}(k, y)}\)
\(\frac{B 1 \text { if } T_{S^{*}}^{-}}{}[k, y] \neq \perp\) then return \(T_{S^{*}}^{-}[k, y]\);
\(02 x \stackrel{\$}{\leftarrow}\{0,1\}^{2 n}\);
\(02 \quad \operatorname{Path}[z] \leftarrow(M\|m, a\| s\|m\| t) ;\)
```

Fig. 31. Game B8


```
\(\mathcal{O}_{-}(k, y)\)
\(\overline{01 \text { if } T_{S^{*}}^{-}}[k, y] \neq \perp\) then return \(T_{S^{*}}^{-}[k, y]\);
\(02 z\|s\| t^{(1)}\left\|t^{(2)}\right\| t^{(3)} \| t^{(4)} \leftarrow x \stackrel{\$}{\leftarrow}\{0,1\}^{2 n} ;\)
03 if \(t^{(1)}\left\|t^{(3)}=t^{(2)}\right\| t^{(4)}\) then
\(04 \operatorname{AddPath}\left(\beta_{z, s}(y), z, s, k, t^{(1)} \| t^{(3)}\right)\);
\(05 T_{S^{*}}^{+}[k, x] \leftarrow y ; T_{S^{*}}^{-}[k, y] \leftarrow x\);
06 return \(T_{S^{*}}^{-}[k, y]\);
FindPath \((h, s, m, t)\)
\(01 P \leftarrow \emptyset\);
02 for all \((M, a) \in \operatorname{Path}[h]\) do
03 if \(\exists M_{1}\) s.t. \(\operatorname{pad}_{\text {BLAKE }}\left(s, M_{1}\right)=a\|s\| m \| t\) then
\(04 \quad P \stackrel{\cup}{\longleftarrow}\left(M_{1}, a| | s| | m \| t\right)\);
05 if \(P=\emptyset\) then return \(\perp\);
06 else return \(\left(M^{*}, a^{*}\right) \stackrel{\oiint}{\leftarrow} P\);
```

Fig. 32. Game B9

[^0]: ${ }^{1}$ Recently, Andreeva et al. [1] and Chang et al. [17] consider the indifferentiable security of the BLAKE hash function with the more concrete structure than PFMD. In the appendix D, we prove that the BLAKE hash function with the concrete structure is reset indifferentiable from a $\mathcal{V O}$.

[^1]: ${ }^{2}$ In the Keccak case, $b=1600$ and $c=576$. So, the output length of Keccak is shorter than n. Since a chopped RO is also a RO, the reset indifferentiable security of Sponge with the n-bits output length implies that of Sponge with the shorter output length.
 ${ }^{3}$ The security of the Sponge hash function was evaluated in the random permutation model [11].

[^2]: ${ }^{4}$ Note that in [15], the paths are recorded by using another formula, which is a relation \mathcal{R}, but the table $P a t h$ realizes the same role as the relation.

[^3]: ${ }^{5}$ Note that in [11], the paths and the query-response values are recorded by using a graph representation, but the table Path and the tables $T_{S_{+}^{*}}, T_{S_{-}^{*}}$ realizes the same role as the graph.

[^4]: ${ }^{6}$ Note that in [1], the paths are recorded by using the graph representation, but the table Path realizes the same role as the graph.

