
On Indifferentiable Hash Functions in Multi-Stage Security Games

Yusuke Naito and Kazuki Yoneyama

Mitsubishi Electric Corporation and NTT Corporation

Abstract. It had been widely believed that the indifferentiability framework ensures composition in
any security game. However, Ristenpart, Shacham, and Shrimpton (EUROCRYPT 2011) demonstrated
that for some multi-stage security, there exists a cryptosystem which is secure in the random oracle (RO)
model but is broken when some indifferentiable hash function is used. However, this does not imply that
for any multi-stage security, any cryptosystem is broken when a RO is replaced with the indifferentiable
hash function. They showed that the important multi-stage security, the chosen-distribution attack
(CDA) security, is preserved for some public key encryption (PKE) schemes when a RO is replaced
with the indifferentiable hash function proposed by Dodis, Ristenpart, and Shrimpton (EUROCRYPT
2009). An open problem from their result is how to obtain the multi-stage security when a RO is
replaced with other indifferentiable hash functions. In this paper, we positively solve this problem so
that for some PKE scheme the CDA security is obtained even when the RO is replaced with important
indifferentiable hash functions, Prefix-free Merkle-Damg̊ard, chop Merkle-Damg̊ard, or Sponge. First,
we introduce a new weakened RO model, called Versatile Oracle (VO) model, as a tool for bridging the
multi-stage security and such hash functions. We prove reset indifferentiablity of these hash functions
from a VO; thus, if a cryptosystem is secure in the VO model, then it is also secure when instantiating
the VO by these hash functions. Next, we show that if a cryptosystem satisfies an weak property, the
IND-SIM security, in the RO model, then it is also CDA secure in the VO model. Combining these
two results, we have that for PKE schemes satisfiying the IND-SIM security in the RO model the CDA
security is guaranteed when the RO is replaced with a large class of practical hash functions.

Keywords. Indifferentiable Hash Function, Reset Indifferentiable Security, Multi-Stage Security

1 Introduction

The indifferentiable composition theorem of Maurer, Renner, and Holenstein [22] ensures that if a func-
tionality F (e.g., a hash function from an ideal primitive) is indifferentiable from a second functionality F ′

(e.g., a random oracle (RO)), the security of any cryptosystem is preserved when F ′ is replaced with F . The
important application of this framework is the RO model security, because many practical cryptosystems
e.g., RSA-OAEP [8] and RSA-PSS [9] are designed by the RO methodology. A RO is instantiated by a hash
function such as SHA-1 and SHA-256 [26]. However, the Merkle-Damg̊ard hash functions [16, 23] such as
SHA-1 and SHA-256, are not indifferentiable from ROs [15]. So many indifferentiable (from a RO) hash
functions have been proposed, e.g., the finalists of the SHA-3 competition [3, 11, 18, 20, 28, 1, 2, 10, 12, 15, 14,
17]. The indifferentiable security is thus an important security of hash functions.

Recently, Ristenpart, Shacham, and Shrimpton [27] showed that in some multi-stage security game some
scheme secure in the RO model is broken when some indifferentiable hash function is used. They considered
the multi-stage security game called CRP. The CRP security game for the n-bit (output length) hash
function H is the two stage security game. In the first stage, for random messages M1,M2 of 2n bits,
the first stage adversary A1 derives the some state st of 2n bits. In the second stage, the second stage
adversary A2 receives st, and for a random challenge value C of 2n bits outputs an n-bit value z. Then,
the adversary wins if z = H(M1||M2||C). Consider the chop MD hash function chopMDh(M1||M2||C) =
chopn(h(h(h(IV,M1),M2), C)) which is indifferentiable from a RO [15], where h : {0, 1}4n → {0, 1}2n is a
RO, and chopn : {0, 1}2n → {0, 1}n outputs the right n bits of the input. Clearly, the following adversary
can win with probability 1 when H is the chop MD hash function. First, A1 receives M1,M2, calculates
st = h(h(IV,M1),M2), and outputs st. Second, A2 receives st, and for a random challenge C, outputs
z = chopn(h(st, C)) which is equal to chopMDh(M1||M2||C). On the other hand, when H is a RO, since
A2 cannot receive several value of M1, M2, the probability that the adversary wins is negligible. This result

implies that the indifferentiable composition theorem does not ensure any multi-stage security when a RO
is replaced with indifferentiable hash functions.

The chosen-distribution attack (CDA) security game is an important multi-stage security game, which is
the security goal for deterministic, efficiently searchable [4, 6, 13, 19, 24], and hedged [5] public key encryption
(PKE), wherein there are several PKE schemes which are proven in the RO model [4, 5]. For the CDA
secure PKE schemes EwH [4] and REwH1 [5] (in the RO model), Ristenpart et al. salvaged the important
indifferentiable hash function, the NMAC-type hash function [17], which was proposed by Dodis, Ristenpart,
and Shrimpton, and which is employed in the SHA-3 finalist Skein [18]. They showed that these PKE schemes
are non-adaptive CDA secure in the chosen-plaintext attack (CPA) case when the NMAC-type hash function
is used.

The open problem from the paper of Ristenpart et al. is thus the CDA security when a RO replaced
with other indifferentiable hash functions. Especially, it is important to consider the security when a RO is
replaced with the SHA-3 finalists and the SHA-2 hash functions, because one of the SHA-3 finalists will be
published as a standard hash function (FIPS) [25] and the SHA-2 hash functions were published as standard
hash functions [26]. We consider the important hash functions, Prefix-free Merkle-Damg̊ard (PFMD) [15],
Sponge [10] and chop Merkle-Damg̊ard (chop MD) [15]. The PFMD hash function is employed in the SHA-3
finalist BLAKE [3]. The Sponge hash function is employed in the SHA-3 finalist Keccak [11]. The chop
Merkle-Damg̊ard hash function is employed in SHA-224 and SHA-384 [26]. We show that for the same class
of PKE schemes as the Ristenpart et al.’s result, the CDA security is guaranteed when a RO is replaced
with these indifferentiable hash functions. The above result covers the non-adaptive security in the CPA case
(i.e., the same setting as [27]). The advantages of our result to the result of Ristenpart et al. are that our
result can salvage other types of practical hash functions to obtain the CDA security.

(Reset) Indifferentiability [27]. To prove the CDA security, we use the reset indifferentiability framework
of Ristenpart et al. The reset indifferentiability ensures composition in any security game: if a hash function
HP which uses an ideal primitive P is reset indifferentiable from another ideal primitive P ′, any security of
any cryptosystem is preserved when P ′ is replaced with HP .

Recall the original [22] and reset [27] indifferentiability (from a RO) frameworks. The original indif-
ferentiable security game from a RO for HP is that a distinguisher A converses either with (HP , P) or
(RO,SRO). S is a simulator which simulates P such that S and P ′ are consistent. If the probability that
the distinguisher A hits the conversing world is small, then HP is indifferentiable from a RO. In the reset
indifferentiable security game, the distinguisher can reset the initial state of the simulator at arbitrary times.

To prove the original indifferentiable security, the simulator needs to record the query-response history.
When for a query P (x) z was returned, for a repeated query P (x), z is returned. So, when for a query S(x)
z was returned, for a repeated query S(x), the simulator should return z. When the internal state is reseted,
the simulator forgets the value and cannot return. Thus one cannot use the reset indifferentiability from a
RO to prove the CDA security when a RO is replaced with the indifferentiable hash function.

Our Approach. First, we thus use the reset indifferentiability from a variant of a RO. We propose an
weakened variant which covers many indifferentiable hash functions. We call the variant “Versatile Oracle”
(VO). The VO consists of a RO and auxiliary oracles. The auxiliary oracles are used to record the query-
response history of a simulator. The VO thus enables to construct a simulator which does not update the
internal state and which is unaffected by the reset function. We show that the PFMD hash function, the
chop MD hash function 1, and the Sponge hash function are reset indifferentiable from VOs.

Next, we show that some PKE scheme satisfies the CDA security in the VO model. The reset indiffer-
entiability composition theorem ensures that the CDA security are preserved when a VO is replaced with
the indifferentiable hash function (i.e., PFMD, Chop MD, and Sponge). This is a positive result for appli-
cability of the reset indifferentiability (from a VO). We note that since VO is the weaker oracle than RO,
VO cannot cover all applications of RO. However, we can show that VO covers the CDA security for PKE
schemes satisfying an weak property, called the IND-SIM security. Thus, PKE schemes which are proved to
be IND-SIM secure such as EwH [4] and REwH1 [5] are also CDA secure in the VO model.
1 Recently, Andreeva et al. [1] and Chang et al. [14] consider the indifferentiable security of the BLAKE hash function

with the more concrete structure than PFMD. Similarly, one can prove that the BLAKE hash function is reset
indifferentiable from a VO.

2

Again, our goal is to prove the CDA security when a RO is replaced with the indifferentiable hash
function. Though these hash functions are not reset indifferentiable from ROs (one cannot directly prove
from the RO model security by the reset indifferentiability), our first result ensures that these hash functions
are reset indifferentiable from VOs. Therefore, we have that some PKE scheme is CDA secure when a RO is
replaced with practical hash functions.

2 Preliminaries

Notation. For two values x, y, x||y is the concatenated value of x and y. For some value y, x ← y means

assigning y to x. When X is a non-empty finite set, we write x
$←− X to mean that a value is sampled

uniformly at random from X and assign to x. ⊕ is bitwise exclusive or. |x| is the bit length of x. For sets
A and C, C

∪←− A means assign A ∪ C to C. For l × r-bit value M , div(r,M) divides M into r-bit values
(M1, . . . ,Ml) and outputs them where M1|| · · · ||Ml = M . For a formula F , if there exists just a value M
such that F (M) is true, we denote ∃1M s.t. F (M). Vectors are written in boldface, e.g., x. If x is a vector
then |x| denotes its length and x[i] denotes its i-th component for 1 ≤ i ≤ |x|. bitj(x) is the left j-th bit of
x[1]|| . . . ||x[|x|].

(Reset) Indifferentiability [22, 27]. In the reset indifferentiability [27], for a functionality F , a private
interface F.priv and a public interface F.pub are considered, where adversaries have oracle access to F.pub
and other parties (honest parties) have oracle access to F.priv. For example, for a cryptosystem in the F
model, an output of the cryptosystem is calculated by accessing F.priv and an adversary has oracle access
to F.pub. In the RO model the RO has both interfaces. Let HP be a hash function that utilizes an ideal
primitive P . The interfaces of HP are defined by HP .priv = HP and HP .pub = P .

For two functionalities F1 (e.g., hash function) and F2 (e.g. a variant of a RO), the advantage of the reset
indifferentiability for F1 from F2 is as follows.

Advr-indiff,F2
F1,S (A) = |Pr[AF̄1.priv,F̄1.pub ⇒ 1] − Pr[AF2.priv,ŜF2.pub

⇒ 1]|

where Ŝ = (S, S.Rst), F̄1.priv = F1.priv and F̄1.pub = (F1.pub, nop). S.Rst takes no input and when run
reinitializes all of S. nop takes no input and does nothing. We say F1 is reset indifferentiable from F2 if
there exists a simulator S such that for any distinguisher A the advantage of the reset indifferentiability is
negligible. This framework ensures that if F1 is reset indifferentiable from F2 then any stage security of any
cryptosystem is preserved when F2 is replaced with F1. Please see Theorem 6.1 in the full version of [27].

When S.Rst and nop are removed from the reset indifferentiable security game, it is equal to the original
indifferentiable security game [22]. In the original indifferentiable security game, the distinguisher interacts
with (F1.priv, F1.pub) and (F2.priv, SF2.pub). We denote the advantage of the indifferentiable security by
Advindif

F1,F2,S(A) for a distinguisher A. We say F1 is indifferentiable from F2 if there exists a simulator S such
that for any distinguisher A the advantage is negligible.

3 Versatile Oracle

In this section, we propose a versatile oracle VO. VO consists of a RO ROn, a RO RO∗
v, a traceable random

oracle T ROw, and ideal ciphers ICa,b. The private interface is defined by VO.priv = ROn and the public
interface is defined by VO.pub = (ROn,RO∗

v, T ROw, ICa,b). VO can be implemented as Fig. 1.
ROn is shown in Fig. 1 (Left) where the input length is arbitrary and the output length is n bits. F is a

(initially everywhere ⊥) table.
RO∗

v is shown in Fig. 1 (Left) where the input length is arbitrary and the output length is v bits, and
F∗ is a (initially everywhere ⊥) table. Note that v is defined in each hash function.

T ROw is shown in Fig. 1 (Center) which consists of a RO ROT
w and a trace oracle T O. The output

length of ROT
w and the input length of T O are w bits, and F∗

i is a (initially everywhere ⊥) table. Note that
w is defined in each hash function.

ICa,b can be implemented as Fig. 1 (Right) which consists of an encryption oracle E and a decryption
oracle D where the first input of E is the key of a bits and the second input is the plain text of b bits,

3

ROn(M)

1 if F[M] =⊥, F[M]
$←− {0, 1}n;

2 return F[M];

RO∗
v(M)

1 If F∗[M] 6=⊥, F∗[M]
$←− {0, 1}v;

2 return F∗[M];

ROT
w(M)

1 if FT [M] 6=⊥ then FT [M]
$←− {0, 1}w;

2 return FT [M];

T O(y)

1 if ∃1M s.t. FT [M] = y then return M ;
3 return ⊥;

E(k, x)

1 if E[k, x] =⊥, y
$←− {0, 1}b\T+[k];

2 Update(k, x, y);
3 return E[k, x];

D(y)

1 if D[k, y] =⊥, x
$←− {0, 1}b\T−[k];

2 Update(k, x, y);
3 return D[k, y];

Fig. 1. Versatile Oracle VO

PFMDh(M)

1 (M1, . . . , Mi) ← div(d, pfpad(M))
2 x ← IV ;
3 For j = 1, . . . , i, x ← h(x||Mj);
4 return x;

S(x, m)

1 M∗ ← T O(x);
2 if x = IV then
3 if ∃M s.t. pfpad(M) = m then y ← ROn(M);
4 else y ← ROT

n (m);
5 else if M∗ 6=⊥ then
6 if ∃M s.t. pfpad(M) = M∗||m then y ← ROn(M);
7 else y ← ROT

n (M∗||m);
8 else y ← RO∗

n(x, m);
9 return y;

Fig. 2. PFMD Hash Function (left) and Simulator S (right)

and the first input of D is the key of a bits and the second input is the cipher text of b bits. E and D
are (initially everywhere ⊥) tables where for the query E(k, x) (resp. D(k, y)) the output is recored in
E[k, x] (resp. D[k, y]). T+[k] and T−[k] are (initially empty) tables which store all values of E[k, ·] and
D[k, ·], respectively. Update(k, x, y) is the procedure wherein the tables E, D, T+[k] and T−[k] are updated,
E[k, x] ← y, D[k, y] ← x, T+[k] ∪←− {y} and T−[k] ∪←− {x}. Note that the length a, b, are defined in each hash
function.

4 Reset Indifferentiability for Hash Functions

In this section, we consider the reset indifferentiable security of the important hash functions, prefix-free
Merkle-Damg̊ard (PFMD) [15], chop Merkle-Damg̊ard (chop MD) [15], and Sponge [10]. We show that these
hash functions are reset indifferentiable from VOs.

4.1 Reset Indifferentiability for the PFMD Hash Function

The PFMD hash function is employed in the SHA-3 finalist BLAKE hash function [3]. In the document of
[3], the indifferentiable security is proven when the compression function is a RO.

The PFMD hash function is illustrated in Fig. 2 (Left) where IV is the initial value of n bits, h :
{0, 1}n+d → {0, 1}n is a compression function, and pfpad : {0, 1}∗ → ({0, 1}d)∗ is an injective prefix-free
padding where for any different values M,M ′, pfpad(M) is not a prefix of pfpad(M ′) and the inverse function
of pfpad is efficiently computable.

We show that PFMDh is reset indifferentiable from VO where h is a RO. We define the parameter of VO
as v = n and w = n. Note that in the reset indifferentiable proof ideal ciphers are not used. Thus in this
case, VO.priv = ROn and VO.pub = (ROn,RO∗

n, T ROT
n).

Theorem 1. There exists a simulator S such that for any distinguisher A, the following holds,

Advr-indiff,VO
PFMDh,S

(A) ≤ 2σ(σ + 2) + qR(qR + 1)
2n

4

where A can make queries to left oracle L = PFMDh/ROn (left queries) and right oracle R = h/S (right
queries) at most qL, qR times, respectively, and l is a maximum number of blocks of a left query. σ = lqL+qR.
S makes at most 2qR queries and runs in time O(qR). ¨

We define a graph G, which is initialized with a single node IV . Edges and nodes in this graph are defined
by right query-responses which follow the MD structure. The nodes are chaining values and the edges are
message blocks. For example, if (x1, m1, y1), (x2,m2, y2), (x3,m3, y3) are query-responses of R such that
x1 = IV , y1 = x2 and y2 = x3 then IV, y1, y2, y3 are the nodes of G amd m1, m2,m3 are the edges. We

denote the MD path by IV
m1−−→ y1

m2−−→ y2
m3−−→ y3 or IV

m1||m2||m3−−−−−−−→ y3. If there exists M such that
pfpad(M) = m1||m2||m3, then we call the MD path “PFMD path”.

The Simulator S. We define a simulator S in Fig. 2 which does not update the internal state to remove
the attack using S.Rst. The S’s task is to simulate the compression function h such that S is consistent
with ROn, namely, any PFMD path IV

M∗

−−→ y is such that y = ROn(M) where M∗ = pfpad(M). For the
ordered queries S(IV,m1), S(y1, m2) where y1 = S(IV,m1), y2 = S(y1,m2), if there does not exists M such
that pfpad(M) = m1||m2, then y1 and y2 are defined by the responses of ROT

n (m1) and ROT
n (m1||m2),

respectively. Then for the query S(y2,m3), the response is defined by the output of ROn(M) if there exists
M such that pfpad(M) = m1||m2||m3. Notice that m1||m2 can be obtained by the query T O(y2). So the

path IV
m1||m2||m3−−−−−−−→ y3 is such that y3 = ROn(M) where pfpad(M) = m1||m2||m3. Thus the simulator S

succeeds in the simulation of h. The proof is given as follows.

Proof. To evaluate the indifferentiable advantage, we consider seven games. In each game, distinguisher A
has oracle access to left oracle L and right oracle R.

– Game 1 is the VO world, that is, (L,R) = (ROn, S) and A has oracle access to S.Rst.
– Game 2 is (L,R) = (ROn, S). Note that S.Rst is removed.
– Game 3 is (L, R) = (ROn, S1). S1 keeps all query-responses. For query S1(x,m), if there is a tuple

(x,m, y) in the query-response history, then S1 returns y, otherwise, S1 returns S(x,m).
– Game 4 is (L,R) = (L1, S1), where on query L1(M) L1 first makes queries to S1 which correspond with

the calculation of PFMDS1(M) then returns ROn(M).
– Game 5 is (L,R) = (PFMDS1 , S1).
– Game 6 is (L,R) = (PFMDh, h).
– Game 7 is the PFMD world, that is, (L,R) = (PFMDh, h) and A has oracle access to nop.

Let Gi be an event that A outputs 1 in Game i. We thus have that

Advr-indiff,VO
PFMDh,S

(A) ≤
6∑

i=1

|Pr[Gi] − Pr[Gi+1]| ≤
2σ(σ + 2) + qR(qR + 1)

2n
.

In the following, we justify the above bound by evaluating each difference. Since S does not update the
internal state, S.Rst does not affect the A’s behavior and thus Pr[G1] = Pr[G2]. Since nop does noting,
Pr[G6] = Pr[G7]. We thus consider game sequences Game 2, Game 3, Game 4, Game 5, and Game 6.

Game 2 ⇒ Game 3. In Game 3, use of the history ensures that for any repeated query R(x,m) the same
value y is responded, while in Game 2 there is a case that for some repeated query R(x,m) where y was
responded, different value y∗ (6= y) is responded due to the definition of T O. The difference |Pr[G2]−Pr[G3]|
is bounded by the probability that in Game 2 the different value is responded. The different value are not
responded unless an event Badj occurs: Let Ti be a list which records all responses y of S and the first values x
of all queries to S before the i-th query to S. Badj is that in Game j for some i-th query S(xi,mi) the response
yi collides with some value in Ti. This is because an output of T O(x) is determined by responses of ROT

n

and the query x to T O is the first value of the query to S. We thus have that |Pr[G2]−Pr[G3]| ≤ Pr[Bad2].
Since S is called at most qR time and outputs of S are chosen uniformly at random from {0, 1}n,

Pr[Bad2] ≤
∑qR

i=2 2i/2n = (qR − 1)(qR + 2)/2n. We thus have that |Pr[G2] − Pr[G3]| ≤ qR(qR + 1)/2n.

Game 3 ⇒ Game 4. The difference between Game 3 and Game 4 is that in Game 3 L does not make a

5

right query, while in Game 4 L makes additional right queries corresponding with PFMDS1(M). Note that
A cannot find the additional right query-responses but can find those by making corresponding right queries.
So we must show that the additional right queries and the responses that A obtains don’t affect the A’s
behavior. We show Lemma 1 where for any PFMD path IV

M∗

−−→ y where M∗ = pfpad(M), y = ROn(M)
unless Badj or Bad∗j occurs where Bad∗j is an event that in Game j the response of some query S(x,m)
collides with IV . Namely, unless the bad event occurs, in the both games, responses which are leafs in PFMD
paths2 are defined by ROn, and other responses are defined by random choices of ROT

n or RO∗
n. Namely,

unless the bad event occurs, the responses of the additional right queries which A obtains are chosen from
the same distribution as in Game 3. Thus, the difference |Pr[G3] − Pr[G4]| is bounded by the probability of
occurring the bad event. Let badj = Badj ∨ Bad∗j . We thus have that

|Pr[G3] − Pr[G4]| =|Pr[bad3 ∧ G3] + Pr[G3|¬bad3]Pr[¬bad3] − (Pr[bad4 ∧ G4] + Pr[G4|¬bad4]Pr[¬bad4])|
≤|Pr[bad3 ∧ G3] − Pr[bad4 ∧ G4] − Pr[G3|¬bad3](Pr[bad3] − Pr[bad4])|

≤max{Pr[bad3], Pr[bad4]} ≤ σ(σ + 2)
2n

where Pr[G3|¬bad3] = Pr[G4|¬bad4] from Lemma 1 and Pr[bad3] ≤ Pr[bad4]. We justify the bound later.

Lemma 1. In Game j, unless badj occurs, for any PFMD path IV
M∗

−−→ y y = ROn(M) where M∗ =
pfpad(M). ¨

Proof of Lemma 1. Assume that badj does not occur. Let IV
M∗

−−→ y be any PFMD path. We show
that y = ROn(M) where M∗ = pfpad(M). Let (x1,m1, y1), . . . , (xj ,mj , yj) be query-responses of S which
correspond with the PFMD path where x1 = IV , xi = yi−1 (i = 2, . . . , j), yj = y, and M∗ = m1|| . . . ||mj .

If j = 1 then y = ROn(M).
We consider the case that j ≥ 2.
If some triple (xi,mi, yi) is defined after (xi+1,mi+1, yi+1) was defined, the assumption ensures that

(xi,mi, yi) does not connect with (xi+1,mi+1, yi+1), namely, yi 6= xi. So (x1,m1, y1), . . . , (xj ,mj , yj) are
defined by this order.

Since ROT
n is used to define an output of S, the assumption ensures that no collision for ROT

n occurs
and no output of ROT

n collides with IV . Thus for the query S(xj , mj), T O(xj) responses m1|| . . . ||mj−1

and then the response yi is the output of ROn(M). ut

Evaluation of Pr[Bad3], Pr[Bad4],Pr[Bad∗3], Pr[Bad∗
4]. Since in Game 3 and Game 4 S is called at most qR

and σ times, respectively, and for any query to S the response is chosen uniformly at random from {0, 1}n and
is independent from the table Ti due to the prefix-free padding, Pr[Bad3] ≤

∑qR

i=2 2i/2n = (qR−1)(qR+2)/2n

and Pr[Bad4] ≤
∑σ

i=2 2i/2n = (σ − 1)(σ + 2)/2n. Pr[Bad∗3] ≤ qR/2n and Pr[Bad∗4] ≤ σ/2n.

Game 4 ⇒ Game 5. The difference between Game 4 and Game 5 is the left oracle L where in Game 4
L(M) returns ROn(M), while in Game 5 L(M) returns PFMDS1(M). Thus, the difference does not change
behavior of A iff in Game 5 for any query L(M), L(M) returns ROn(M). From Lemma 1, for any PFMD

path IV
M∗

−−→ z, z = ROn(M) unless the bad event bad5 occurs in Game 5, where M∗ = pfpad(M). We have
that |Pr[G4] − Pr[G5]| ≤ Pr[Bad5] ≤ σ(σ + 2)/2n.

In the following, we justify the bound. In Game 5 R is called at most σ times and for any query to S the
response is chosen uniformly at random from {0, 1}n. We thus have that Pr[bad5] ≤ ((σ− 1)(σ + 2) + σ)/2n.

Game 5 ⇒ Game 6. Since outputs of S are uniformly chosen at random from {0, 1}n, the difference for R
does not affect the A’s behavior. We thus have that Pr[G5] = Pr[G6]. ut

Remark 1. The EMD hash function [7] and the MDP hash function [21] are designed from the same design
spirit as the PFMD hash function, which are designed to resist the length extension attack. Thus, by the
similar proof, one can prove that EMD and MDP are reset indifferentiable from VOs.

2 A leaf of a PFMD path IV
M∗
−−→ y is y.

6

chopMDh(M)

1 M ′ ← padc(M);
2 (M1, . . . , Mi) ← div(d, M ′);
3 x ← IV ;
4 for j = 1, . . . , i do x ← h(x, Mj);
5 return x[s + 1, s + n];

S(x, m) where x = x1||x2 (|x1| = s, |x2| = n)

01 M ← T O(x1);
02 if x = IV then
03 z ← ROn(m);
04 w ← ROT

s (m);
05 else if M 6=⊥ then
06 z ← ROn(M ||m);
07 w ← ROT

s (M ||m);
08 else w||z ← RO∗

n+s(x, m);
09 return w||z;

Fig. 3. chop MD (left) and S (right)

4.2 Reset Indifferentiability for the Chop MD Hash Function

The chop MD hash function is employed in SHA-2 family, SHA-224 and SHA-384 [26].
Fig. 3 illustrates the chop MD hash function chopMDh : {0, 1}∗ → {0, 1}n. h : {0, 1}d+n+s → {0, 1}n+s

is a compression function. padc : {0, 1}∗ → ({0, 1}d)∗ is an injective padding function such that the inverse
function is efficiently computable.

We evaluate the reset indifferentiable security of the chop MD hash function where h is a RO. We define
the parameter of VO as w = s and v = n+s. Note that the ideal cipher in VO is not used. Thus, in this case,
VO = (ROn,RO∗

s+n, T ROs). The following theorem shows that chopMDh is reset indifferentiable from VO.

Theorem 2. There exists a simulator S such that for any distinguisher A, the following holds,

Advr-indiff,VO
chopMDh,S

(A) ≤ 2σ(σ + 1) + qR(qR + 1)
2s

+
σ

2s+n

where A can make queries to left oracle L = chopMDh/ROn (left queries) and right oracle R = h/S
(right queries) at most qL, qR times, respectively, and l is a maximum number of blocks of a query to
chopMDh/ROn. S makes at most 3qh queries and runs in time O(qh). ¨

In the following proof, we use the graph G which are defined in the Subsection 4.1. The graph is constructed
from right query-responses.

The Simulator S. We define the simulator S in Fig. 3 which does not update the internal state to remove
the attack using S.Rst. In the proof of Theorem 2, the padding function padc is removed. Thus the left queries
should be in ({0, 1}d)∗. Note that the chop MD hash function with the padding function is the special case
of one without the padding function. Thus the security of the chop MD hash function without the padding
function ensures the security of one with the padding function. The S’s task is to simulate the compression
function h such that ROn and S are consistent, that is, for any MD path IV

M−→ z, z[s+1, n+s] = ROn(M).
For the ordered queries S(IV,M1), S(w1||z1, M2) where w1||z1 = S(IV,M1), w2||z2 = S(w1||z1, M2), the
structure of S ensures that z1 = ROn(M1), w1 = ROT

s (M1), z2 = ROn(M1||M2), and w2 = ROT
s (M1||M2).

Thus, the path (M1||M2, w2) is recorded in the table FT where FT [M1||M2] = w2. Then, for the query
S(w2||z2,M3), the response w3||z3 is defined as z3 = ROn(M1||M2||M3) and w3 = ROT

s (M1||M2||M3).

Notice that M1||M2 can be obtained by the queries T O(w2). So the path IV
M1||M2||M3−−−−−−−−→ w3||z3 is such that

z3 = ROn(M1||M2||M3). Thus the simulator S succeeds in the simulation. The proof is given as follows.

Proof. To evaluate the indifferentiable advantage, we consider seven games. In each game, distinguisher A
has oracle access to left oracle L and right oracle R.

– Game 1 is the VO world, that is, (L,R) = (ROn, S) and A has oracle access to S.Rst.
– Game 2 is (L,R) = (ROn, S). Note that S.Rst is removed.
– Game 3 is (L,R) = (ROn, S1), where S1 keeps all query-responses (x, m, y). For the query S1(x,m), if

there is (x,m, y) in the query-response history, then S1 returns y, otherwise, S1 returns S(x,m).

7

– Game 4 is (L,R) = (L1, S1), where on a query L1(M) L1 first makes queries to S1 which correspond
with chopMDS1(M) then returns ROn(M).

– Game 5 is (L,R) = (chopMDS1 , S1).
– Game 6 is (L,R) = (chopMDh, h).
– Game 7 is the chop MD world, that is, (L,R) = (chopMDh, h) and A has oracle access to nop.

Let Gi be an event that A outputs 1 in Game i. We thus have that

Advr-indiff,VO
PFMDh,S

(A) ≤
6∑

i=1

|Pr[Gi] − Pr[Gi+1]| ≤
2σ(σ + 1) + qR(qR + 1)

2s
+

σ

2s+n
.

In the following, we justify the above bound by evaluating each difference. Since S does not update the
internal state, S.Rst does not affect A’s behavior between Game 1 and Game 2 and thus Pr[G1] = Pr[G2].
Since nop does noting, Pr[G6] = Pr[G7]. We thus consider game sequences Game 2, Game 3, Game 4, Game
5, and Game 6.

Game 2 ⇒ Game 3. In Game 3, use of the history ensures that R(x,m) the same value y is responded,
while in Game 2 there is a case that for some repeated query R(x, m) where y was responded, different
value y∗ (6= y) is responded due to the definition of T O. The difference |Pr[G2]−Pr[G3]| is bounded by the
probability that in Game 2 the different value is responded. The different value are not responded unless an
event Badj occurs: Let Ti be a list which records the s-bit values y[1, s] of all responses y of S and the s-bit
value x[1, s] of all queries x to S before the i-th query to S. Badj is that in Game j for some i-th query
S(x,m) the s-bit value y[1, s] of the responses y collides with some value in Ti. This is because an output of
T O(x1) is determined by responses of ROT

n and the query x1 to T O is x[1, s] where x is the first value of
the query to S. We thus have that |Pr[G2] − Pr[G3]| ≤ Pr[Bad2].

Since S is called at most qR time and outputs of S are chosen uniformly at random from {0, 1}s+n,
Pr[Bad2] ≤

∑qR

i=2 2i/2s = (qR − 1)(qR + 2)/2s. We thus have that |Pr[G2] − Pr[G3]| ≤ qR(qR + 1)/2s.

Game 3 ⇒ Game 4. The difference between Game 3 and Game 4 is that for a left query L(M), in Game
3 L does not make a right query, while in Game 4 L makes additional right queries corresponding with
chopMDS1(M). Note that A cannot find the additional right query-responses but can find those by making
corresponding right queries. So we must show that the additional right queries and responses that A obtains
don’t affect the A’s behavior. We show Lemma 2 where for any MD path IV

M−→ z, z[s+1, n+s] = ROn(M)
unless Badj or Bad∗

j occurs where Bad∗
j is that in Game j for some query S(x,m) the response y collides with

IV . This ensures that unless the bad event occurs, in both games responses which are leafs of MD paths3 are
defined by ROT

s and ROn, and other responses are defined by RO∗
n+s. Namely, unless the bad event occurs,

the responses of the additional right queries which A obtains are chosen from the same distribution as in
Game 3. Thus, the difference |Pr[G3]−Pr[G4]| is bounded by the probability of occurring the bad event. Let
badj = Badj ∨Bad∗

j . We thus have that |Pr[G3]−Pr[G4]| ≤ max{Pr[bad3], Pr[bad4]} ≤ σ(σ+1)/2s +σ/2s+n

where Pr[G3|¬bad3] = Pr[G4|¬bad4] from Lemma 1 and Pr[bad3] ≤ Pr[bad4]. We justify the bound later.

Lemma 2. In Game j, unless badj occurs, for any MD path IV
M−→ y y[s + 1, n + s] = ROn(M). ¨

Proof of Lemma 2. Assume that badj does not occur. Let IV
M−→ y be any MD path. We show that

y[s + 1, n + s] = ROn(M). Let (x1,m1, y1), . . . , (xj , mj , yj) be query-responses of S which correspond with
the MD path where x1 = IV , xi = yi−1 (i = 2, . . . , j), yj = y, and M = m1|| . . . ||mj .

When j = 1, y[s + 1, n + s] = ROn(M).
We consider the case that j ≥ 2.
If some triple (xi,mi, yi) is defined after (xi+1,mi+1, yi+1) was defined, the assumption ensures that

(xi,mi, yi) does not connect with (xi+1,mi+1, yi+1), namely, yi 6= xi. So (x1,m1, y1), . . . , (xj ,mj , yj) are
defined by this order.

Since ROT
n is used to define outputs of S, the assumption ensures that no collision for ROT

n occurs. And
no output of S collides with IV . Thus for the query S(xj ,mj), T O(xj) responses m1|| . . . ||mj−1 and then
for the response yi yi[s + 1, n + s] is the output of ROn(M). ut
3 A leaf of the MD path IV

M−→ z is z.

8

Algorithm SpongeP (M)

1 M ′ ← padS(M);
2 (M1, . . . , Mi) ← div(n, M);
3 s = IV ;
4 for i = 1, . . . , i do
5 s = P (s ⊕ (Mi||0c));
6 return s[1, n];

SF (X) where x = X[1, n], y = Y [n + 1, d]

1 M ← T O(y);
2 if y = IV2 then
3 z ← ROn(x ⊕ IV1); w ← ROT

c (x ⊕ IV1);
4 else if M 6=⊥ then
5 m ← x ⊕ROn(M);
6 z ← ROn(M ||m); w ← ROT

c (M ||m);
7 else z||w ← P(x||y);
8 return z||w;

SI(Y) where z = Y [1, n], w = Y [n + 1, d]

1 M ← T O(w);
2 if M 6=⊥ and |M | = n then
3 x ← IV1 ⊕ M ; y ← IV2;
4 if M 6=⊥ and |M | > n then
5 let M = M∗||m (|m| = n);
6 x ← m ⊕ROn(M); y ← ROT

c (M∗);
7 else x||y ← P−1(z||w);
8 return x||y;

Fig. 4. Sponge Hash Function (left) and Simulator S (SF in center and SI in right)

Evaluation of Pr[Bad3], Pr[Bad4],Pr[Bad∗3], Pr[Bad∗
4]. Since in Game 3 and Game 4 S is called at most qR

and σ times, respectively, and for any query to S the response is chosen uniformly at random from {0, 1}n

and is independent from the list Ti, Pr[Bad3] ≤
∑qR

i=2 2i/2s = (qR−1)(qR +2)/2s, Pr[Bad4] ≤
∑σ

i=2 2i/2s =
(σ − 1)(σ + 2)/2s, Pr[Bad∗3] ≤ qR/2s+n, and Pr[Bad∗4] ≤ σ/2s+n.

Game 4 ⇒ Game 5. The difference between Game 4 and Game 5 is the left oracle L where in Game 4
L(M) returns ROn(M), while in Game 5 L(M) returns chopMDS1(M). Thus, the difference does not change
behavior of A iff in Game 5 for any query L(M), L(M) returns ROn(M). From Lemma 2, for any MD path
IV

M−→ z, z[s + 1, s + n] = ROn(M) unless the bad event bad5 occurs. We have that |Pr[G4] − Pr[G5]| ≤
Pr[bad5] ≤ σ(σ + 1)/2s + σ/2n+s. In the following, we justify the bound. In Game 5 R is called at most σ
times and for any query to S the response is chosen uniformly at random from {0, 1}n+s. We thus have that
Pr[Bad5] ≤ (σ − 1)(σ + 2)/2s + σ/2n+s.

Game 5 ⇒ Game 6. Since outputs of S are uniformly chosen at random from {0, 1}n, the difference of R
does not affect the A’s behavior. We thus have that Pr[G5] = Pr[G6]. ut

4.3 Reset Indifferentiability for the Sponge Hash Function

The Sponge hash function is a permutation-based hash function which employed in the SHA-3 candidate
Keccak [11].

Fig. 4 (left) illustrates the Sponge hash function where IV is the initial value of d bits, padS : {0, 1}∗ →
({0, 1}n)∗ is an injective padding function such that the final block message Mi 6= 0, P : {0, 1}b → {0, 1}b is
a permutation and d = n+ c. The inverse function of padS is denoted by unpadS : ({0, 1}n)∗ → {0, 1}∗∪{⊥}
efficiently computable. unpadS(M∗) outputs M if there exists M such that padS(M) = M∗, and outputs ⊥
otherwise. Note that the Sponge hash function of Fig. 4 is the special case of the general Sponge hash function
where the output length is arbitrary. The output lengths of SHA-3 are 224, 256, 384 and 512 bits and in this
case the Keccak hash function has the structure of Fig. 4.4 We conjecture that the reset indifferentiable
security of the general Sponge hash function can be proven by extending the following analysis of the Sponge
hash function. We denote the left most n-bit value and the right most c bit value of IV by IV1 and IV2,
respectively. Namely, IV = IV1||IV2.

We evaluate the reset indifferentiable security of the Sponge hash function in the random permutation
model, where P is a random permutation and P−1 is its inverse oracle.5 We define the parameter of VO as
w = c and b = d. We don’t care the key length a, since in this proof we fix the key by some constant value,
that is the fixed key ideal cipher is used, which is a random permutation of d bits. So we use the random
permutation (P,P−1) of d bits instead of the ideal cipher ICa,b where P is a forward oracle and P−1 is an
inverse oracle. Note that in this proof random oracles RO∗ are not used. Thus, in this case, VO.priv = ROn

4 In the Keccak case, b = 1600 and c = 576. So, the output length of Keccak is shorter than n. Since a chopped
RO is also a RO, the reset indifferentiable security of Sponge with the n-bits output length implies that of Sponge
with the shorter output length.

5 The security of the Sponge hash function was evaluated in the random permutation model [10].

9

P1(X)

1 if ∃(j, X, Y) ∈ Q then return Y ;

2 Y
$←− {0, 1}d; Q ∪←− (t, X, Y); t ← t + 1;

3 return Y ;

P−1
1 (X)

1 if ∃(j, X, Y) ∈ Q then return X;

2 X
$←− {0, 1}d; Q ∪←− (t, X, Y); t ← t + 1;

3 return X;

Fig. 4.3. Q is a (initially empty) list and initially t = 1. In the step 1 of P1,P−1
1 , j is a maximum value.

and VO.pub = (ROn, T ROc,P,P−1). The following theorem is that the sponge hash function SpongeP is
reset indifferentiable from VO.

Theorem 3 (Sponge is reset indifferentiable from a VO). There exists a simulator S = (SF , SI) such
that for any distinguisher A, the following holds.

Advr-indiff,VO
SpongeP ,S

(A) ≤ 2σ2 + q(q + 1)
2c

+
σ(σ + 1) + q(q + 1)

2d+1

where A can make at most qL, qF and qI queries to left L = SpongeP /ROn (left queries) and right RF =
P/SF , RI = P−1/SI oracles (right queries). σ = lqL + qF + qI and q = qF + qI . S makes at most 7q queries
and runs in time O(q). ¨
We define a graph G, which is initialized with the single node IV . Edges and nodes in this graph are
defined by right query-responses which follows the Sponge structure. The nodes are chaining values and
the edges are message blocks. For example, if (X1, Y1), (X2, Y2), (X3, Y3) are query-responses of R such that
X1[n + 1, c + n] = IV2, Y1[n + 1, c + n] = X2[n + 1, c + n] and Y2[n + 1, c + n] = X3[n + 1, c + n] then
IV, Y1, Y2, Y3 are the nodes of G and M1,M2,M3 are the edges where M1 = IV1 ⊕ X1[1, n]. We denote the

path by IV
M1−−→ Y1

M2−−→ Y2
M3−−→ Y3 or IV

M1||M2||M3−−−−−−−−→ Y3. We call the path “Sponge path”.

The Simulator S. We define the simulator S in Fig. 4 which does not update the internal state to remove the
attack using S.Rst. The S’s task is to simulate (P, P−1) such that ROn and S are consistent, that is, for any
Sponge path IV

M−→ Y , Y [1, n] = ROn(M). In the proof of Theorem 3, the padding function padS is removed.
Thus the left queries should be in ({0, 1}n)∗. Note that the Sponge with the padding function is the special
case of one without the padding function. Thus the security of the Sponge without the padding function
ensures the security of one with the padding function. SF and SI simulate P and P−1, respectively. For the
ordered queries SF (x1||IV2), SF (x2||w1) where z1||w1 = SF (x1||IV), z2||w2 = SF (x2||w1), the structure of S
ensures that w1 = ROT

c (M1) and w2 = ROT
c (M1||M2) where M1 = IV1⊕x1 and M2 = z1⊕x2. Then, for the

query SF (x3||w2), the response z3||w3 is defined as z3 = ROn(M1||M2||M3) and w3 = ROT
c (M1||M2||M3)

where M3 = z2 ⊕ x3. Notice that M1||M2 can be obtained by the queries T O(w2) and z2 can be obtained
by the query ROn(M1||M2). Thus the simulator S succeeds in the simulation of the random permutation.
The proof is given as follows.

Proof. To evaluate the indifferentiable bound, we consider eight games. In each game, distinguisher A has
oracle access to the left oracle L and the right oracles RF , RI .

– Game 1 is the VO world, that is, (L,RF , RI) = (ROn, SF , SI) and A has oracle access to S.Rst.
– Game 2 is (L,RF , RI) = (ROn, SF , SI). Note that S.Rst is removed.
– Game 3 is that a random permutation P and its inverse P−1 are changed into P1 and P−1

1 , respectively.
So the simulator uses (P1,P−1

1) instead of (P,P−1). (P1,P−1
1) are implemented as in Figure. 4.3.

– Game 4 is (L,RF , RI) = (ROn, S1F , S1I), where S1 keeps all query-responses (X,Y) where Y = S1F (X)
or X = S1I(Y). For query S1F (X), if there is (X,Y) in the query-response history, then S1F returns Y ,
otherwise, S1F returns SF (X). For query S1I(Y), if there is (X,Y) in the query-response history, then
S1I returns X, otherwise, S1I returns SI(Y).

– Game 5 is (L,RF , RI) = (L1, S1F , S1I), where on a query L1(M) L1 first makes S1F queries which
correspond with SpongeS1F (M) then returns ROn(M).

– Game 6 is (L,RF , RI) = (SpongeS1F , S1F , S1I).
– Game 7 is (L,RF , RI) = (SpongeP , P, P−1).

10

– Game 8 is the Sponge world, that is, (L,RF , RI) = (SpongeP , P, P−1) and A has oracle access to nop.

Let Gi be an event that A outputs 1 in Game i. We thus have that

Advr-indiff,VO
SpongeP ,S

(A) ≤
7∑

i=1

|Pr[Gi] − Pr[Gi+1]| ≤
2σ2 + q(q + 1)

2c
+

σ(σ + 1) + q(q + 1)
2d+1

.

In the following, we justify the above bound by evaluating each difference. Since S does not update the internal
state, S.Rst does not affect the A’s behavior between Game 1 and Game 2 and thus Pr[G1] = Pr[G2]. Since
nop does noting, Pr[G7] = Pr[G8]. We thus consider Games 2, 3, 4, 5, 6, 7. We call a query to RF “forward
query” and a query to RI “inverse query”.

Game 2 ⇒ Game 3. In Game 2, a random permutation P and its inverse P−1 are uses, while in Game 3,
P1 and P−1

1 are used where the outputs are uniformly chosen at random from {0, 1}d. Thus |Pr[G2]−Pr[G3]|
is bounded by a collision probability of (P1,P−1

1). Since P1 and P−1
1 are called at most q times, |Pr[G2] −

Pr[G3]| ≤
∑q

t=2 t/2d = q(q + 1)/2d+1.

Game 3 ⇒ Game 4. In Game 4, use of the history ensures that for any repeated query RF (X) (resp.
RI(Y)) the same value Y (resp. X) is responded, while in Game 3 there is a case due to the definition of
T O where for some repeated query RF (X) (or RI(Y)) where Y (or X) was responded, different value Y ∗

(or X∗) is responded. The difference |Pr[G2] − Pr[G3]| is bounded by the probability that in Game 2 the
different value is responded. The different value are not responded unless an event Badj occurs: Let Ti be
a list which records the c-bit values X[n + 1, d], Y [n + 1, d] of all query-responses (X,Y) of SF , SI before
the i-th query to S. Badj is that in Game j for some i-th query S(Xi) Yi[n + 1, d] where Yi is the response
collides with some value in Ti or for some i-th query SI(Yi) Xi[n + 1, d] where Xi is the response collides
with some value in Ti. This is because outputs of T O(y) (or T O(w)) are determined by query-responses
of ROT

n and the value y (or w) which is a query to T O is X[n + 1, d] (or Y [n + 1, d]) where (X,Y) is the
query-response of the simulator. We thus have that |Pr[G3] − Pr[G4]| ≤ Pr[Bad3].

Since the simulator is called at most q time and outputs of SF and SI are chosen uniformly at random
from {0, 1}d, Pr[Bad3] ≤

∑q
i=2 2i/2c = q(q + 1)/2c. We thus have that |Pr[G3] − Pr[G4]| ≤ q(q + 1)/2c.

Game 4 ⇒ Game 5. The difference between Game 4 and Game 5 is that in Game 4 L does not make
a right query, while in Game 5 L makes additional right queries corresponding with SpongeS1F (M). Note
that A cannot find the additional right query-responses but can find those by making corresponding right
queries. So we must show that the additional right queries and responses that A obtains don’t affect the A’s
behavior. We show Lemma 3 where for any Sponge path IV

M−→ z, z[1, n] = ROn(M) unless Badj or Bad∗j
occur where Bad∗j is an event that in Game j, for some query SF (X) Y [n + 1, d] where Y is the response
collides with IV2 or for some query SI(Y) X[n+1, d] where X is the response collides with IV2. This ensures
that unless Badj or Bad∗j occurs, responses which are leafs of Sponge paths6 are defined by ROT

c and ROn,
and other responses are defined by random choices of P1 or P−1

1 . Namely, unless the bad event occurs,
the responses of the additional right queries which A obtains are chosen from the same distribution as in
Game 4. Thus, the difference |Pr[G4]−Pr[G5]| is bounded by the probability of occurring the bad event. Let
badj = Badj ∨ Bad∗j . We thus have that |Pr[G4] − Pr[G5]| ≤ max{Pr[bad4],Pr[bad5]} ≤ σ(σ + 1)/2c + σ/2c

where Pr[G4|¬bad4] = Pr[G5|¬bad5] from Lemma 3 and Pr[bad4] ≤ Pr[bad5]. We justify the bound later.

Lemma 3. In Game j, unless badj occurs, for any Sponge path IV
M−→ z z[1, n] = ROn(M). ¨

Proof of Lemma 3. Assume that badj does not occur. Then no pair (X,Y) which is defined by an inverse

query connects IV . Thus any path IV
M−→ z such that |M | = n is defined by a forward query. And no pair

(X,Y) which is defined by an inverse query connects the leaf z of some sponge path IV
M−→ z. Thus any

path IV
M−→ z such that |M | > n is defined by forward queries. So, any pair in any sponge path is defined

by forward queries.

6 The leaf of the Sponge path IV
M−→ Y is Y .

11

The assumption ensures that no pair which is defined by a forward query connect another pair, namely,
the pair (X,Y) which is defined by a forward query is such that Y [n+1, d] 6= X∗[n+1, d] where (X∗, Y ∗) is
any pair defined before (X,Y) is defined. Let IV

M−→ z be any sponge path and (X1, Y1), . . . , (Xt, Yt) be the
corresponding pairs where X1[n+1, d] = IV2, Xi[n+1, d] = Yi−1[n+1, d] (i = 2, . . . , t), Yt[n+1, d] = z, and
M = M1|| . . . ||Mt where M1 = IV1 ⊕X1[1, n], · · · ,Mt = Yt−1[1, n]⊕Xt[1, n]. Thus (X1, Y1), . . . , (Xt, Yt) are
defined by this order and forward queries.

The assumption ensures that for any i-th query-response (X,Y) such that it is defined by a forward query
Y [n+1, d] does not collide with IV2 or some value in Ti. Since ROT

c are used as defining the right c-bit values
of outputs of SF , the assumption ensures that no collision occur for ROT

c . Thus for a forward query RF (Xt),
SF can obtain M1|| . . . ||Mt−1 by the query T O(y) where y = Xt[n + 1, d]. Thus Yt[1, n] = ROn(M). ut

Evaluation of Pr[Bad4], Pr[Bad5],Pr[Bad∗4], Pr[Bad∗
5]. Since in Game 4 and Game 5 the simulator is called

at most q and σ times, respectively, and for any query to S the right c-bit value of the response is chosen
uniformly at random from {0, 1}c, Pr[Bad4] ≤

∑q
i=2 2i/2c = q(q − 1)/2c, Pr[Bad5] ≤

∑σ
i=2 2i/2c = σ(σ −

1)/2c, Pr[Bad∗4] ≤ q/2c, and Pr[Bad∗5] ≤ σ/2c.

Game 5 ⇒ Game 6. The difference between Game 5 and Game 6 is the left oracle L where in Game
5 L(M) returns ROn(M), while in Game 6 L(M) returns SpongeS1(M). Thus, the difference does not
change behavior of A iff in Game 6 for any query L(M), L(M) returns ROn(M). From Lemma 3, for any
Sponge path IV

M−→ z the relation z[1, n] = ROn(M) holds unless the bad event bad6 occurs. We have that
|Pr[G5] − Pr[G6]| ≤ Pr[bad6] ≤ σ(σ + 1)/2c + σ/2c.

In the following, we justify the bound. In Game 6 R is called at most σ times and for any query to S the
response is chosen uniformly at random from {0, 1}c. We thus have that Pr[Bad5] ≤ σ(σ + 1)/2c + σ/2c.

Game 6 ⇒ Game 7. In Game 6, outputs of RF and RI are chosen uniformly at random from {0, 1}d, while
in Game 7, those are a random permutation and its inverse oracle. We thus have that |Pr[G6] − Pr[G7]| ≤∑σ

i=2 i/2d = σ(σ + 1)/2d+1.
ut

5 Multi-Stage Security in the VO Model

In this section, we show that there are cryptographic primitives satsfying multi-stage security in the VO
model. Specifically, we show that for any PKE scheme, the non-adaptive CDA security [5] (including the
PRIV security [4]) in the VO model is obtained by assuming an weak property, IND-SIM security in the RO
model. The previous work [27] showed the non-adaptive CDA security for PKE schemes based on the same
assumption (IND-SIM) with a specific structured preimage aware [17] hash function. Our work focuses on
how we obtain CDA secure PKE schemes with large class of hash functions. If a PKE scheme is IND-SIM
secure in the RO model, then it is CDA secure in the VO model. Combining with our results on reset
indifferentiable hash functions in Sec. 4, the scheme is CDA secure with these hash functions. Hash functions
we prove reset indifferentiabiluty cover other types of functions compared with the result in [27].

Public Key Encryption (PKE). A public key encryption scheme AE = (K, E ,D) consists of three
algorithms. Key generation K outputs a public key, secret key pair. Encryption E takes a public key pk, a
message m, and randomness r and outputs a cipher text. Decryption D takes a secret key, a cipher text,
and outputs a plaintext or a distinguished symbol ⊥. For vectors m, r with |m| = |r| = l which is the size
of vectors, we denote by E(pk,m; r) the vector (E(pk,m[1]; r[1]), . . . , E(pk,m[l]; r[l])). We say that AE is
deterministic if E is deterministic.

CDA Security. We explain the CDA security (we quote the explanation of the CDA security in [27]). Fig.
5 illustrates the non-adaptive CDA game in the CPA case for a PKE scheme AE using a functionality F .
This notion captures the security of a PKE scheme when the randomness r used may not be a string of
uniform bits. For the remainder of this section, fix a randomness length ρ ≥ 0 and a message length ω > 0.
An (µ, ν)-mmr-source M is a randomized algorithm that outputs a triple of vector (m0,m1, r) such that

12

CDAA1,A2
AE,F

β
$←− {0, 1}

(pk, sk)
$←− K

(m0,m1, r) ← AF.pub
1

c ← EF.priv(pk,mβ , r)

β′ ← AF.pub
2 (pk, c)

return (β = β′)

IND-SIMB
AE,S,F

β
$←− {0, 1}

(pk, sk)
$←− K

β′ ← BRoS,F.pub(pk)
return (β = β′)

RoS(m, r)

If β = 1 then return EF.priv(pk, m, r)
Otherwise return SF.priv(pk, |m|)

Fig. 5. CDA game and IND-SIM game

|m0| = |m1| = |r| = ν, all components of m0 and m1 are bit strings of length ω, all components of r are bit
strings of length ρ, and (mβ [i], r[i]) 6= (mβ [j], r[j]) for all 1 ≤ i < j ≤ ν and all β ∈ {0, 1}. Moreover, the
source has min-entropy µ, meaning Pr[(mβ [i], r[i]) = (m′, r′)|(m0,m1, r) ← M] ≤ 2−µ for all β ∈ {0, 1}, all
1 ≤ i ≤ ν, and all (m′, r′). A CDA adversary A1,A2 is a pair of procedures, the first of which is a (µ, ν)-
mmr-source. The CDA advantage for a CDA adversary A1,A2 against scheme AE using a functionality F
is defined by

Advcda
AE,F (A1,A2) = 2 · Pr[CDAA1,A2

AE,F ⇒ true] − 1.

As noted in [5], in the RO model, mmr-sources have access to the RO. In this setting, the min-entropy
requirement is independent of the coins used by the RO, meaning the bound must hold for any fixed choice of
function as the RO. If this condition is removed, one can easily break the CDA security for any cryptosystem
using the indifferentiable hash function. That is, A1 and A2 can easily share the messages (m1,m2, r).

PRIV Security. The PRIV security is the special case of the CDA security when the PKE scheme AE
being considered has randomness length ρ = 0. Thus the PRIV security game for a PKE scheme AE using
a functionality F against adversary A1,A2 is equal to the CDA game when ρ = 0. The PRIV advantage for
a PRIV adversary A1,A2 is denoted by Advpriv

AE,F (A1,A2) which is equal to the CDA advantage with ρ = 0.

IND-SIM Security. The IND-SIM security is a special notion for PKE schemes. It captures that an
adversary cannot distinguish outputs from the encryption algorythm and from a simulator S even if the
adversary can choose message and randomness. Fig. 5 shows the IND-SIM game. We define the IND-SIM
advantage of an adversary B by

Advind-sim
AE,S,F (B) = 2 · Pr[IND-SIMB

AE,F ⇒ true] − 1.

As noted in [27], in the standard model this security goal is not achievable because AE uses no randomness
beyond that input. In the RO model, we will use it when the adversary does not make any RO queries. A
variety of PKE schemes is shown to satisfy IND-SIM security in the RO model.

The CDA (PRIV) Security When a RO is replaced with a VO. The following theorem shows that
for any PKE scheme the non-adaptive CDA security in the CPA case in the VO model is obtained from
IND-SIM security in the RO model.

Theorem 4. Let AE be a PKE scheme. Let A1,A2 be a CDA adversary (A1,A2) in the VO model making
at most qRO, qRO∗ , qROT , qT O, qE , qD queries to ROn,RO∗

v, T ROw = (ROT
w, T O), ICa,b = (E,D). For any

simulator S there exists an IND-SIM adversary B such that

Advcda
AE,VO(A1,A2) ≤ Advind-sim

AE,S,ROn
(B) +

νqRO

2µ
.

B makes no RO queries, makes ν RoS-queries, and runs in time that of (A1,A2) plus O(qRO + qRO∗ +
qROT + qT O + qE + qD). ¨

Proof. The proof outline is as follows: First, we start with game G0 which is exactly the same game as the
CDA game in the VO model. Secondly, we transform G0 to game G1 so that ciphertext c is generated from a

13

Game G1

β
$←− {0, 1}

(pk, sk)
$←− K

(m0,m1, r) ← AROn,RO∗
v,T ROw,ICa,b

1

c ← EF.priv(pk,mβ , r)
c′ ← SROn(pk, ω)

β′ ← AROn,RO∗
v ,T ROw,ICa,b

2 (pk, c′)
return (β = β′)

BRoS(pk)

β
$←− {0, 1}

(pk, sk)
$←− K

(m0,m1, r) ← ASimB
1

c ← RoS(mβ , r)

β′ ← ASimB
2 (pk, c)

If β = β′ then return 1
Otherwise return 0

SimBRO(M)

If F[M] =⊥, F[M]
$←− {0, 1}n

return F[M]

SimBRO∗(M)

If F∗[M] 6=⊥, F∗[M]
$←− {0, 1}v

return F∗[M];

SimBROT (M)

If FT [M] 6=⊥ then FT [M]
$←− {0, 1}w

return FT [M];

SimBT O(y)

If ∃1M s.t. FT [M] = y then return M
Otherwise return ⊥

SimBE(k, x)

If E[k, x] =⊥,

y
$←− {0, 1}b\T+[k]

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return E[k, x]

SimBD(k, y)

If D[k, y] =⊥,

x
$←− {0, 1}b\T−[k];

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return D[k, y]

Fig. 6. game G1 and adversary B

simulator S in the IND-SIM game. In game G1, ciphertext c does not contain any information about outputs
of A1. Thus, A1 cannot hand over any information to A2 with c. Thirdly, we transform G1 to game G2 so
that the table of inputs and outputs of each oracle in VO (except ROn) for A1 is independent of the table
for A2. In game G2, queries to oracles for A2 does not contain any information about that of A1. Thus, A1

cannot hand over any information to A2 with VO. Finally, we estimate that bad events in G2 occurs only
with negligible probability.

We denote Adv(A,Gi) by the advantage of the adversary A when participating in experiment Gi. It
means Adv(A,G0) = Advcda

AE,F (A1,A2).

Game G1: Ciphertext c ← EROn(pk,mb, r) is replaced with outputs of a simulator SROn(pk, ω) in the
IND-SIM game. All other procedures are computed as the same way in G0.

Lemma 4. |Adv(A,G1) − Adv(A,G0)| ≤ Advind-sim
AE,S,ROn

(B).

Proof. We show that if |Adv(A,G1)−Adv(A,G0)| is non-negligible, for any simulator S we can construct an
adversary B breaking IND-SIM security of AE in the RO model. Fig. 6 shows game G1, the construction of B,
and the simulation SimB = (SimBRO, SimBRO∗ ,SimBROT , SimBT O,SimBE ,SimBD) of VO by B respectively.
Note that B makes no RO queries, and EF.priv(pk,mβ , r) is executed with return value ignored. B simulates
all queries to VO for A1 and A2 with simulation SimB. SimB is identical with the definition of VO. Also,
queries to ROn by E is contained both in G0 and G1. Thus, A cannot distinguish game G0 and G1 from the
simulation on the interface of VO. If β = 1 in IND-SIM game, it is clear that all interfaces for A is exactly
same as game G0. If β = 0 in IND-SIM game, it is clear that all interfaces for A is exactly same as game
G1.

Therefore, if |Adv(A,G1) − Adv(A,G0)| is non-negligible, B also breaks IND-SIM security of AE . ut

Game G2: Outputs of RO∗
v, T ROw = (ROT

w, T O) and ICa,b = (E,D) for A1 and for A2 are changed to
be independent. That is, tables F∗, FT ,E and D are not preserved for A1 and A2. All other procedures are
computed as the same way in G1.

Lemma 5. |Adv(A,G2) − Adv(A,G1)| = 0.

Proof. In game G1 and G2, ciphertext c does not give any information about (m0,m1, r) and queries to VO
by A1 to A2. On queries to ROn, interfaces of A2 in G1 and G2 are identical. On queries to RO∗ and ROT ,
A2 cannot find inconsistency even if A1 and A2 pose a common input to these oracles. On queries to T O, E

14

and D, A2 may find inconsistency so that outputs of T O is inconsistent to inputs to ROT by A1, or outputs
of D is inconsistent to inputs to E by A1. However, since A2 does not have any information of obtained
outputs of ROT and E by A1, she still cannot find inconsistency. Therefore, |Adv(A,G2)−Adv(A,G1)| = 0.

ut
We estimate Adv(A,G2). The only way to win in game G2 is if A2 poses some message M to ROn and

M is also posed to ROn by E . The probability this event occurs can be bounded by νqRO
2µ based on the fact

that A1 is an mmr-source with min-entropy µ as Theorem 9.1 in [27]. Therefore, Adv(A,G2) ≤ νqRO
2µ .

To conclude, we have Advcda
AE,VO(A1,A2) ≤ Advind-sim

AE,S,ROn
(B) + νqRO

2µ .
ut

References

1. Elena Andreeva, Atul Luykx, and Bart Mennink. Provable Security of BLAKE with Non-Ideal Compression
Function, ePrint 2011/620.

2. Elena Andreeva, Bart Mennink, and Bart Preneel. On the Indifferentiability of the Grøstl Hash Function. In
SCN, volume 6280 of LNCS, pages 88–105. Springer, 2010.

3. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. SHA-3 proposal BLAKE. Sub-
mission to NIST (Round 3). 2010.

4. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and Efficiently Searchable Encryption. In
CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 535–552. Springer, 2007.

5. Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham, and Scott Yilek.
Hedged public-key encryption: How to protect against bad randomness. In ASIACRYPT, volume 5912 of LNCS,
pages 232–249. Springer, 2009.

6. Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. Deterministic Encryption: Definitional
Equivalences and Constructions without Random Oracles. In CRYPTO, volume 5157 of LNCS, pages 360–378.
Springer, 2008.

7. Mihir Bellare and Thomas Ristenpart. Multi-Property-Preserving Hash Domain Extension and the EMD Trans-
form. In ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 299–314. Springer, 2006.

8. Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryption – How to Encrypt with RSA. In EURO-
CRYPT, volume 950 of Lecture Notes in Computer Science, pages 92–111. Springer, 1994.

9. Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures - How to Sign with RSA and Rabin.
In EUROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages 399–416. Springer, 1996.

10. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the Indifferentiability of the Sponge
Construction. In EUROCRYPT, pages 181–197, 2008.

11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak SHA-3 submission. Submission
to NIST (Round 3). 2011.

12. Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Security Analysis of the Mode of JH Hash Function.
In FSE, volume 6147 of LNCS, pages 168–191. Springer, 2010.

13. Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On Notions of Security for Deterministic Encryption, and
Efficient Constructions without Random Oracles. In CRYPTO, volume 5157 of LNCS, pages 335–359. Springer,
2008.

14. Donghoon Chang, Mridul Nandi, and Moti Yung. Indifferentiability of the Hash Algorithm BLAKE, ePrint
2011/623. 2011.

15. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 430–448.
Springer, 2005.

16. Ivan Damg̊ard. A Design Principle for Hash Functions. In CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 416–427. Springer, 1989.

17. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damg̊ard for Practical Applica-
tions. In EUROCRYPT (Full Version in ePrint 2009/177), volume 5479 of Lecture Notes in Computer Science,
pages 371–388. Springer, 2009.

18. Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, and
Jesse Walker. The Skein Hash Function Family. Submission to NIST (Round 3). 2010.

19. Benjamin Fuller, Adam O’Neill, and Leonid Reyzin. A Unified Approach to Deterministic Encryption: New
Constructions and a Connection to Computational Entropy. ePrint 2012/005.

20. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin
Schäffer, and Søren S. Thomsen. Grøstl – a SHA-3 candidate. Submission to NIST (Round 3). 2011.

15

21. Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the Merkle-Damg̊ard Scheme with a
Permutation. In ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 113–129. Springer,
2007.

22. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility Results on Reductions,
and Applications to the Random Oracle Methodology. In TCC, volume 2951 of Lecture Notes in Computer
Science, pages 21–39. Springer, 2004.

23. Ralph C. Merkle. One Way Hash Functions and DES. In CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 428–446. Springer, 1989.

24. Ilya Mironov, Omkant Pandey, Omer Reingold, and Gil Segev. Incremental Deterministic Public-Key Encryption,
(Full Version in ePrint 2012/047). In EUROCRYPT, 2012.

25. National Institute of Standards and Technology. Cryptographic Hash Algorithm Competition.
26. National Institute of Standards and Technoloty. FIPS PUB 180-3 Secure Hash Standard. In FIPS PUB, 2008.
27. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with Composition: Limitations of the

Indifferentiability Framework. In EUROCRYPT (Full Version: ePrint 2011/339), volume 6632 of Lecture Notes
in Computer Science, pages 487–506. Springer, 2011.

28. Hongjun Wu. The Hash Function JH. Submission to NIST (Round 3). 2011.

16

