
On Indifferentiable Hash Functions in Multi-Stage Security Games

Yusuke Naito and Kazuki Yoneyama

Mitsubishi Electric Corporation and NTT Corporation

Abstract. Ristenpart, Shacham, and Shrimpton (EUROCRYPT 2011) demonstrated that for multi-
stage security games, composability of indifferentiable hash functions does not sufficiently work. An
open problem from their result is how to obtain multi-stage security when a random oracle (RO) is
replaced with indifferentiable hash functions. In this paper, we positively solve this problem so that
for a large class of public key encryption (PKE) scheme and ID-based encryption (IBE) scheme an
important multi-stage security, the CDA security, is obtained even when the RO is replaced with im-
portant indifferentiable hash functions, Sponge, Prefix-free Merkle-Damg̊ard, or chop Merkle-Damg̊ard.
Especially, Sponge is employed in the SHA-3 winner Keccak. First, we introduce a new weakened RO
model, called Versatile Oracle (VO) model, as a tool for bridging the multi-stage security and such hash
functions. We prove reset indifferentiability of these hash functions from a VO; thus, if a cryptosystem
is secure in the VO model, then it is also secure when instantiating the VO by these hash functions.
Next, we show that if a PKE or IBE scheme satisfies the CPA security in the RO model, then there
exists a CDA secure PKE or IBE scheme in the VO model. Combining these two results, we have that
for a large class of PKE and IBE schemes the CDA security is guaranteed when the RO is replaced
with a large class of practical hash functions.

Keywords. Indifferentiable hash function, reset indifferentiability, multi-stage security, Sponge, ChopMD,
PFMD, deterministic PKE, hedged PKE, deterministic IBE, hedged IBE.

1 Introduction

The indifferentiability of Maurer, Renner, and Holenstein (MRH) [23] ensures the reducibility from one
system to another system: Let C(·) be a cryptosystem with access to a hash function H, denoted C(H). Then
the MRH theorem is the following.

H is indifferentiable from a random oracle RO (denoted H @ RO)
⇒ C(H) is at least as secure as C(RO) (denoted C(H) Â C(RO)).

The indifferentiability is important, because many practical cryptosystems e.g., RSA-OAEP [6] and RSA-
PSS [7] are designed by the RO methodology, while the RO is instantiated by a hash function H such as
SHA-1 and SHA-256 [28]. However, the Merkle-Damg̊ard hash functions [17, 24] such as SHA-1 and SHA-
256, are not indifferentiable from ROs [16]. So many indifferentiable (from a RO) hash functions have been
proposed, e.g., Sponge [8] which is employed in the SHA-3 winner Keccak [9], Chop Merkle-Damg̊ard (denoted
ChopMD) [16], and prefix-free Merkle-Damg̊ard (denoted PFMD) [16]. The indifferentiable security is thus
an important criterion for the security of hash functions.

It has been widely believed that the equation of C(H) Â C(RO) ensures any security. However, Ristenpart,
Shacham, and Shrimpton (RSS) [29] showed the following for some indifferentiable hash function H.

∃C such that C(RO) is secure but C(H) is insecure (RSS result 1)

where C(·) is a hash based authentication scheme and the security game is a multi-stage security game. This
security game is a two-stage security game where for n-bit (output length) hash function F , this game is
defined as follows. In the first stage, for random messages M1,M2 of 2n bits, a first stage adversary A1

derives the some state st of 2n bits. In the second stage, a second stage adversary A2 receives st, and for a
random challenge value C of 2n bits outputs an n-bit value z. Then, the adversary wins if z = F (M1||M2||C).
Consider ChopMD chopMDh(M1||M2||C) = chopn(h(h(h(IV,M1),M2), C)) which is indifferentiable from a
RO [16], where h : {0, 1}4n → {0, 1}2n is a RO, and chopn : {0, 1}2n → {0, 1}n outputs the right n bits
of the input. Clearly, the following adversary can win with probability 1 when F = chopMDh. First, A1

receives M1,M2, calculates st = h(h(IV,M1),M2), and outputs st. Second, A2 receives st, and for a random
challenge C, outputs z = chopn(h(st, C)) which is equal to the output of chopMDh(M1||M2||C). On the
other hand, when F = RO, the probability that the adversary wins is negligible, since A2 cannot receive
several bits of M1,M2.

The RSS result 1 implies the following for any multi-stage security.1

H @ RO 6⇒ C(H) Â C(RO).

However, this does not imply that the multi-stage security of C(H) is broken. The RSS result 1 thus left the
following open problem.

Can we prove the multi-stage security of C(H)?

Ristenpart et al. [29] solved this problem for Chosen-Distribution Attack (CDA) security and NMAC hash
function [18] (RSS result 2). The NMAC hash function is employed in the SHA-3 finalist Skein [19]. The
CDA security notion is an important multi-stage security notion, which is the security goal for deterministic,
efficiently searchable [2, 4, 10, 20, 25], and hedged [3] public key encryption (PKE), wherein there are several
PKE schemes which are proven in the RO model [2, 3]. For the CDA secure PKE schemes EwH [2] and
REwH1 [3] (in the RO model), they directly proved the CDA security of these PKE schemes using NMAC.

The RSS result 2 motivates us to solve the following problem which is still open.

Can we prove the multi-stage security for other indifferentiable hash functions?

1.1 Our Contributions

In this paper, we answer the question for important indifferentiable hash functions, Sponge, ChopMD, and
PFMD. Especially, it is important to discuss about Sponge, because Sponge is employed in the SHA-3
winner Keccak and will be published as a standard hash function (FIPS) [27]. Also, ChopMD and PFMD
are important, because these hash functions are the SHA-3 finalists [1, 21, 31]: Grøstl [21], and JH [31] have
the ChopMD(-like) structure and BLAKE has the PFMD(-like) structure. We clarify that a large class of
PKE and ID-based encryption (IBE) can be CDA secure even when a RO is instantiated with such a large
class of hash functions. The previous result covers only PKE (i.e., not mentioned about IBE) for instantiation
with only NMAC. The class of PKE and IBE, which we cover, is CPA secure schemes in the RO model.
There are a lot of practical CPA secure PKE and IBE schemes in the RO model; thus, such a large class of
schemes benefits from our result.

An essential difference between our result and the previous result is as follows: As the RSS result 2, we
could “directly” prove the security of cryptosystems C1, . . . , Cj in each hash function H1, . . . ,Hi, while this
approach needs to prove “many” cryptosystems C1(H1),. . .,C1(Hi),. . .,Cj(H1),. . ., Cj(Hi).2 Moreover, when
designing a hash function, we have to care the structures of all cryptosystems (for multi-stage security),
and when designing a cryptosystem for multi-stage security, we have to care the structures of all hash
functions. To avoid many proofs, we propose a “modular” approach, which uses a new security notion,
called reset indifferentiability from Versatile Oracle (denoted VO). The new security notion uses the reset
indifferentiability framework [29].

(Reset) Indifferentiability [29]. Let Hf be a hash function which uses an ideal primitive f and let F ′ be
another ideal primitive. Then the reset indifferentiability ensures the following for any cryptosystem C and
any (single-stage or multi-stage) security.

Hf is reset indifferentiable from F ′ (denoted Hf @r F ′) ⇒ C(Hf) Â C(F ′) (RSS theorem).

1 Note that the MRH theorem guarantees any single-stage security.
2 In [18], the multi-stage security is directly proven from the NMAC structure H(M) = g(h(M)), where g is a fixed

input length RO and h is any Preimage Aware Function which does not use g. We note that this approach restricts
the hash structure as g(h(M)), which does not cover many hash functions, e.g., Sponge, ChopMD, and PFMD.
On the other hand, our approach covers these hash functions, Sponge, ChopMD, and PFMD.

2

We explain the original [23] and reset [29] indifferentiability. The original indifferentiable security game
is that a distinguisher A converses either with (Hf , f) or (F ′, SF ′

). S is a simulator which simulates f such
that S is consistent with F ′. If the probability that the distinguisher A hits the conversing world is small,
then HP @ RO. In the reset indifferentiable security game, A can reset the initial state of the simulator at
arbitrary times.

Our Approach and Our Results. To prove indifferentiable from RO security such as Sponge, ChopMD,
and PFMD, S needs to record query-responses of S [8, 16, 14]. However, in the reset indifferentiable security
game, query-responses are eliminated. We thus define VO such that recording the query-response history
is “outsourced”. The VO consists of a RO and auxiliary oracles. The auxiliary oracles are used to record
the query-response history of S. The VO thus enables to construct S which does not update the internal
state and which is unaffected by the reset function. Our approach using the indifferentiability from VO is as
follows.

1. Prove that Hf @r VO.
2. Prove that C(VO) is secure.

Then Hf can be plugged into C(·) and the (multi-stage) security is ensured by the RSS theorem. This
approach can divide the security proof of C(Hf) into the hash proof and the proof of the cryptosystem.
When designing a hash function, we don’t have to care the structures of cryptosystems, and when designing
a cryptosystem, we don’t have to care the structures of hash functions. Thus the modular approach can
avoid many proofs of the direct proof approach.

We prove that

1. Sponge @r VO, chopMD @r VO, and PFMD @r VO, and
2. Any CPA secure PKE and IBE scheme in the RO model can be converted to be CDA secure in the VO

model.

For PKE schemes, we show that a scheme is CDA secure in the VO model if the scheme satisfies an weak
property, called the IND-SIM security. Since [29] shows EwH [2] and REwH1 [3] are IND-SIM secure if an
underlying PKE scheme is CPA secure in the RO model, we obtain CDA secure PKE in the VO model by
combining these. For IBE schemes, we propose a generic compiler of IBE, IDREwH1. We show that IDREwH1
is ID-based CDA (ID-CDA) secure in the VO model if an underlying IBE scheme is ID-based CPA (ID-CPA)
secure in the RO model. As far as we know, our result of IBE is the first explicit formulation and construction
of hedged IBE. It may be an independent interest.

1.2 Paper Organization.

In Section 2, we introduce some notation and explain the (reset) indifferentiability framework. In Section
3, we propose a new security notion, Reset Indifferentiability from VO. In Section 4, we show that Sponge,
ChopMD, and PFMD are reset indifferentiable from VOs. In Section 5, we show that there exist a large class
of CDA secure PKE and IBE schemes in the VO model.

2 Preliminaries

Notation. For two values x, y, x||y is the concatenated value of x and y. For some value y, x ← y means

assigning y to x. When X is a non-empty finite set, we write x
$←− X to mean that a value is sampled

uniformly at random from X and assign to x. ⊕ is bitwise exclusive or. |x| is the bit length of x. For sets
A and C, C

∪←− A means assign A ∪ C to C. For l × r-bit value M , div(r,M) divides M into r-bit values
(M1, . . . ,Ml) and outputs them where M1|| · · · ||Ml = M . For a b-bit value x, x[i, j] is the value from (left)
i-th bit to (left) j-th bit where 1 ≤ i ≤ j ≤ b. For example, let x = 01101001, x[3, 5] = 101. For a formula
F , if there exists just a value M such that F (M) is true, we denote ∃1M s.t. F (M). Vectors are written in
boldface, e.g., x. If x is a vector then |x| denotes its length and x[i] denotes its i-th component for 1 ≤ i ≤ |x|.
bitj(x) is the left j-th bit of x[1]|| . . . ||x[|x|].

3

Algorithm SpongeP (M)

1 M ′ ← padS(M);
2 (M1, . . . , Mi) ← div(n, M ′);
3 s = IV ;
4 for i = 1, . . . , i do
5 s = P (s ⊕ (Mi||0c));
6 return s[1, n];

Fig. 1. Sponge

chopMDh(M)

1 M ′ ← padc(M);
2 (M1, . . . , Mi) ← div(d, M ′);
3 x ← IV ;
4 for j = 1, . . . , i do x ← h(x, Mj);
5 return x[s + 1, s + n];

Fig. 2. Chop Merkle-Damg̊ard

PFMDh(M)

1 (M1, . . . , Mi) ← div(d, pfpad(M))
2 x ← IV ;
3 For j = 1, . . . , i, x ← h(x||Mj);
4 return x;

Fig. 3. Prefix-free Merkle-Damg̊ard

Throughout this paper, we assume that any algorithm and game is implicitly given a security parameter
as input if we do not explicitly state.

(Reset) Indifferentiability [23, 29]. In the reset indifferentiability [29], for a functionality F , a private
interface F.priv and a public interface F.pub are considered, where adversaries have oracle access to F.pub
and other parties (honest parties) have oracle access to F.priv. Let Hf be a hash function that utilizes an
ideal primitive f . The interfaces of Hf are defined by Hf .priv = Hf and Hf .pub = f .

For two functionalities F1 (e.g., hash function) and F2 (e.g. a variant of a RO), the advantage of the reset
indifferentiability for F1 from F2 is as follows.

Advr-indiff,F2
F1,S (A) = |Pr[AF1.priv,F1.pub,nop ⇒ 1] − Pr[AF2.priv,SF2.pub,S.Rst ⇒ 1]|.

S.Rst takes no input and reinitializes all of S. nop takes no input and does nothing. We say F1 is reset
indifferentiable from F2 if there exists a simulator S such that for any distinguisher A the advantage of the
reset indifferentiability is negligible. This framework ensures that if F1 is reset indifferentiable from F2 then
any (single-stage or multi-stage) security of any cryptosystem is preserved when F2 is replaced with F1.
Please see Theorem 6.1 in the full version of [29].

When S.Rst and nop are removed from the reset indifferentiable security game, it is equal to the original
indifferentiable security game [23]. We say F1 is indifferentiable from F2 if there exists a simulator S such
that for any distinguisher A the advantage is negligible. The original indifferentiability guarantees only single
stage security [23].

Hereafter, we call the F1 world “Real World” where A interacts with (F1.priv, F1.pub), and the F2 world
“Ideal World” where A interacts with (F2.priv, F2.pub). We call the oracle F1.priv/F2.priv “Left Oracle”
(denoted L) and the oracle F1.pub/S “Right Oracle” (denoted R). Thus distinguisher A interacts with (L,R)
(and nop/S.Rst in the reset indifferentiability). We call a query to L a “left query” (or L query). Similarly
we call a query to R a ‘right query” (or R query).

3 Definitions for Hash Functions

In this section, we give descriptions of hash functions, Sponge [8], chop Merkle-Damg̊ard (ChopMD) [16],
and prefix-free Merkle-Damg̊ard (PFMD) [16]. Also, we define Sponge Graph and Merkle-Damg̊ard Graph,
which are used in the proofs of hash functions in this paper.

3.1 Descriptions of Hash Functions

Sponge. Let P be an encryption of a (fixed key) blockcipher (or a permutation) of d bits.3 The hash function
SpongeP : {0, 1}∗ → {0, 1}n is defined in Fig. 1 such that n < d.4 Let c = d − n. padS : {0, 1}∗ → ({0, 1}n)∗

3 Since Sponge is in the “fixed key” setting, we don’t care the key and the key length. Thus we omit the key in P .
4 Note that if the output length (denoted l) is smaller than n, the output length is achieved by returning s[1, l] at

the step 6. Also note that the Sponge hash function of Fig. 1 is the special case of the general Sponge hash function
where the output length is arbitrary. The output lengths of SHA-3 are 224, 256, 384 and 512 bits and in this case
the Keccak hash function has the structure of Fig. 1. We conjecture that the reset indifferentiable security of the
general Sponge hash function can be proven by extending the analysis of the fixed output length case.

4

Fig. 4. Figure of Sponge Fig. 5. Figure of Merkle-Damg̊ard

is an injective padding function such that the last n-bit value is not 0. IV is a constant value of d bits.
IV1 = IV [1, n] and IV2 = IV [n + 1, d]. For example, padS(M) = M ||1||0i where i is a smallest value such
that the length of M ||1||0i is a multiple of n.

ChopMD. Let h be a compression function which maps a value of d+n+s bits to a value of n+s bits. The
hash function chopMDh : {0, 1}∗ → {0, 1}n is defined in Fig. 2. padc : {0, 1}∗ → ({0, 1}d)∗ is an injective
padding function such that its inverse is efficiently computable. IV is a constant value of n + s bits.

PFMD. Let h be a compression function which maps a value of d + n bits to a value of n bits. pfpad :
{0, 1}∗ → ({0, 1}d)∗ is an injective prefix-free padding function such that for any different two values M,M ′

pfpad(M) is not a prefix of pfpad(M ′) and its inverse is efficiently computable. IV is a constant value of n
bits.

3.2 Graph Representations for Sponge and Merkle-Damg̊ard

Sponge Graph. The proof of the indifferentiability from a RO of Sponge is in the (fixed key) ideal cipher
model (random permutation model) [8], where P is an encryption oracle of an (fixed key) ideal cipher (or
a random permutation) and P−1 be a decryption oracle with fixed key (or an inverse oracle). The proof of
the reset indifferentiability of Sponge is thus in the (fixed key) ideal cipher model. In the real world, the left
oracle L = SpongeP , and the right oracles (RF , RI) = (P, P−1) (F means “forward” and I means “inverse”).
In the ideal world, (L, RF , RI) = (RO, SF , SI) where SF is a simulator for P and SI is a simulator for P−1.

We define a graph GS , which is initialized with the single node IV . Edges and nodes in this graph
are defined by right query-responses which follow the Sponge structure. The nodes are chaining values and
the edges are message blocks. For example, if (X1, Y1), (X2, Y2) are query-responses of RF or RI such that
X1[n + 1, d] = IV2 and Y1[n + 1, d] = X2[n + 1, d] then IV, Y1, Y2 are the nodes of GS and M1,M2 are the
edges where M1 = IV1 ⊕ X1[1, n] and M2 = Y1[1, n] ⊕ X2[1, n]. We denote the path by IV

M1−−→ Y1
M2−−→ Y2

or IV
M1||M2−−−−−→ Y2 (Fig. 4 may help to understand the graph). We call a path following the Sponge structure

“Sponge path”.

Merkle-Damg̊ard Graph. In the proofs of the indifferentiability from ROs of ChopMD and PFMD [14–
16], the compression function h is a (fixed input length) RO. The proofs of the reset indifferentiability of
ChopMD and FPMD are thus in the RO model. So in the real world, the left oracle L = chopMDh/PFMDh,
and the right oracle R = h. In the ideal world, (L, R) = (RO, S) where S is a simulator for h.

We define a graph GMD, which is initialized with a single node IV . Edges and nodes in this graph are
defined by right query-responses which follow the MD structure. The nodes are chaining values and the
edges are message blocks. For example, if (IV,m1, y1), (y1,m2, y2) are query-responses of R, IV, y1, y2 are

the nodes of G amd m1,m2 are the edges. We denote the MD path by IV
m1−−→ y1

m2−−→ y2 or IV
m1||m2−−−−−→ y2

(Fig. 5 may help to understand the path).
This graph is used in the proofs of ChopMD (Theorem 2) and PFMD (Theorem 3). For a MD path

IV
M∗

−−→ y, if ∃M s.t. pfpad(M) = M∗, then we call the MD path “PFMD path”.

5

4 Reset Indifferentiability from Versatile Oracle

Indifferentiability [23] does not guarantee multi-stage security [29]. Hash functions relying on the indiffer-
entiability are, for example, Sponge [8], ChopMD [16], and PFMD [16]. In this section, we introduce a new
security notion, called reset indifferentiability from Versatile Oracle (denoted VO) to guarantee multi-stage
security when using the indifferentiable hash function, e.g, Sponge, ChopMD, and PFMD.

4.1 On the Indifferentiable Security Proof

Before defining reset indifferentiability from VO, we recall the proof of indifferentiability from RO. To
ensure indifferentiable from RO security, the query-responses of S have to be satisfy two conditions. In this
subsection, we explain the two conditions. After this subsection, we point out that the conditions cannot be
achieved on the reset indifferentiable from RO security game. Then we propose VO so that the conditions
can be achieved.

Let Hf be a target hash function and f is its underlying primitive. In the real world (L,R) = (Hf , f),
outputs of L are calculated by using R, while in the ideal world (L,R) = (RO, SRO), outputs of L are
calculated without using R. Thus S should simulate the relation between Hf and f . Also since for a repeated
query to f the same value is responded, S should return the same value for a repeated query. Therefore, the
following two conditions are required on query-responses of S to ensure indifferentiable from RO security.

– Condition 1: For a repeated query S(x) where y was responded, the same value y must be responded.
– Condition 2: S has to be consistent with RO as well as (Hf , f).

In the indifferentiable security game, the condition 1 can be achieved by recording all query-responses.
The condition 2 depends on the hash structure H. For example, Merkle-Damg̊ard does not achieve the

condition 2 by the length extension attack [16]. Sponge, ChopMD, and PFMD are designed so that the
condition 2 can be satisfied. Hereafter, we give an example of the condition 2 for Sponge.

Sponge for Condition 2. We omit the padding function (the step 1 of Fig. 1) to simply the discussion.
Thus the input of SpongeP is a multiple of n. The condition 2 is that S has to be consistent with RO. This
means that since in the real world for any sponge path IV

M−→ Y the equation L(M) = Y [1, n] holds, this
equation should be hold in the ideal world.

Here, we explain that in the ideal world S can be constructed with the consistency. We consider the case
that there is a path IV

M1−−→ Y1 and the query SF (X2) is made such that X2[n + 1, d] = Y1[n + 1, d]. In this
case, the response Y2 should be such that Y2[1, n] = L(M1||M2), where M2 = X2[1, n] ⊕ Y1[1, n]. Since the
graph GS consists of right query-responses (query-responses for S), S can find the path IV

M1−−→ Y1 by using
X2 (due to the fact that X2[n + 1, d] = Y1[n + 1, d]). Then the output of L(M1||M2) can be obtained.5 S

can thus define Y2 such that the path IV
M1−−→ Y1

M2−−→ Y2 satisfies the relation Y2[1, n] = L(M1||M2). Thus
we can construct S which is consistent with RO.6

4.2 The Conditions on Reset Indifferentiability

Problems. To satisfy these conditions, S has to record the query-responses. However, in the reset indif-
ferentiable from RO setting, S.Rst eliminates the query-responses. Thus, a new methodology to record the
query-responses (and paths) is required.

5 Note that if there are two collision paths, IV
M1−−→ Y1 and IV

M∗
1−−→ Y1, the simulator cannot find a valid path. In

this case, the simulator cannot ensure the consistency. However, this collision probability is negligible which was
proven in [8].

6 We note that there is a case that when the query SF (X1) was made, the path IV
M1−−→ Y1 is not defined. After this

query, this path is defined. Also note that there is a case that the response of a RI query SI(Y2) connects with the

path IV
M1−−→ Y1. In these cases, S cannot ensure the consistency. But these probabilities are negligible which was

proven in [8].

6

ROn(M)

1 if F[M] =⊥, F[M]
$←− {0, 1}n;

2 return F[M];

RO∗
v(M)

1 If F∗[M] =⊥, F∗[M]
$←− {0, 1}v;

2 return F∗[M];

ROT
w(M)

1 if FT [M] =⊥ then FT [M]
$←− {0, 1}w;

2 return FT [M];

T O(y)

1 if ∃1M s.t. FT [M] = y then return M ;
3 return ⊥;

E(k, x)

1 if E[k, x] =⊥, y
$←− {0, 1}b\T+[k];

2 Update(k, x, y);
3 return E[k, x];

D(y)

1 if D[k, y] =⊥, x
$←− {0, 1}b\T−[k];

2 Update(k, x, y);
3 return D[k, y];

Fig. 6. Versatile Oracle VO

New Methodology. We define a new oracle Versatile Oracle (denoted VO) which consists of a random
oracle RO and auxiliary oracles which are used to record the query-responses (and paths) of S. Here, we
discuss about auxiliary oracles to achieve the conditions.

We first consider the condition 1. The underlying primitives of Sponge is an (fixed key) ideal cipher and
the underlying primitive of ChopMD and PFMD is a (fixed input length) RO. We thus define an ideal cipher
IC and a random oracle RO∗ as the auxiliary oracles. Then we can outsource defining responses of S in the
auxiliary oracles. For example, consider the case that S simulates a fixed input length RO. S satisfying the
condition 1 can be constructed as follows: For a query S(x), S returned the response of RO∗(x). Then for
the repeated query S(x), S returns the response of RO∗(x). So a simulator can be constructed such that
the condition 1 is satisfied. Note that query-responses for the condition 1 are not related with the condition
2. Query-responses related with the condition 2 are discussed as follows.

As the example of Sponge for the condition 2, for query S(X2) S has to find the path IV
M1−−→ Y1 where

X2[n + 1, d] = Y1[n + 1, d]. To achieve the condition 2, an oracle recording paths is required. Traceable
Random Oracle (denoted TRO) proposed by Naito et al. [26] achieves this requirement. A TRO consists of
a RO (denoted ROT) and a Traceable Oracle (denoted T O). For a query T O(y), if the query ROT (M)
was made such that the response is y, T O returns M . For a path IV

M1−−→ Y1, S defines Y1 such that
Y1[n + 1, d] = ROT (M1). Then S can obtain M1 by the query T O(X2[n + 1, d]). Finally, S defines the
response Y2 so that Y2[1, n] = L(M1||M2) = RO(M1||M2). We can thus outsource recording paths in a TRO
and a simulator can be constructed such that the condition 2 can be satisfied.

We thus define the auxiliary oracles which consists of an ideal cipher IC, a RO RO∗, and a TRO T RO.
In the next subsection, we give a concrete implementation of VO.

4.3 Implementation of VO

VO consists of a RO ROn, a RO RO∗
v, a TRO T ROw, and ideal ciphers ICa,b. The private interface is

defined by VO.priv = ROn and the public interface is defined by VO.pub = (ROn,RO∗
v, T ROw, ICa,b). VO

can be implemented as Fig. 6.
ROn is shown in Fig. 6 (Left) where the input length is arbitrary and the output length is n bits. F is a

(initially everywhere ⊥) table.
RO∗

v is shown in Fig. 6 (Left) where the input length is arbitrary and the output length is v bits, and
F∗ is a (initially everywhere ⊥) table. Note that v is defined in each hash function.

T ROw is shown in Fig. 6 (Center) which consists of a RO ROT
w and a Trace Oracle T O. The input

length of ROT
w is arbitrary. The output length of ROT

w and the input length of T O are w bits, and FT is a
(initially everywhere ⊥) table. Note that w is defined in each hash function.

ICa,b can be implemented as Fig. 6 (Right) which consists of an encryption oracle E and a decryption
oracle D where the first input of E is the key of a bits and the second input is the plain text of b bits,
and the first input of D is the key of a bits and the second input is the cipher text of b bits. E and D
are (initially everywhere ⊥) tables where for the query E(k, x) (resp. D(k, y)) the output is recored in
E[k, x] (resp. D[k, y]). T+[k] and T−[k] are (initially empty) tables which store all values of E[k, ·] and
D[k, ·], respectively. Update(k, x, y) is the procedure wherein the tables E, D, T+[k] and T−[k] are updated,

7

E[k, x] ← y, D[k, y] ← x, T+[k] ∪←− {y} and T−[k] ∪←− {x}. Note that the a, b, are defined in each hash
function.

4.4 Reset Indifferentiability from VO

Let Hf be a target hash function and f is an underlying primitive. Then the advantage of the reset indiffer-
entiability from a VO is defined as follows.

Advr-indiff,VO
Hf ,S

(A) = |Pr[AHf ,f,nop ⇒ 1] − Pr[AROn,SVO.pub,S.Rst ⇒ 1]|.

The reset indifferentiable theorem ensures that if Hf is reset indifferentiable from a VO, any security of any
cryptosystem is preserved when VO is replaces with Hf .

5 Reset Indifferentiability for Hash Functions

In this section, we show that Sponge [8], ChopMD [16], and PFMD [16] are reset indifferentiable from VOs.
Then, these hash functions can be used as VOs (in multi-stage security games). In the next section, we show
that there exists a large class of CDA secure PKE and IBE schemes in the VO model.

5.1 Reset Indifferentiability for Sponge

We define the parameter of VO as w = c and b = d. We don’t care the key length a, since Sponge uses an
ideal cipher with a fixed key k∗. We denote E(k∗, ·) by P(·) and D(k∗, ·) by P−1(·). Thus, P is a random
permutation P of d bits and P−1 is its inverse oracle. Note that in this proof, RO∗

v are not used. Thus, in
this case, VO.priv = ROn and VO.pub = (ROn, T ROc,P,P−1).

Theorem 1. There exists a simulator S = (SF , SI) such that for any distinguisher A, the following holds.

Advr-indiff,VO
SpongeP ,S

(A) ≤ 2σ(σ + 1) + q(q − 1)
2c

+
σ(σ − 1) + q(q − 1)

2d+1

where A can make at most qL, qF and qI queries to left L = SpongeP /ROn and right oracles RF =
P/SF , RI = P−1/SI . l is a maximum number of blocks of a query to L. σ = lqL + qF + qI and q = qF + qI .
S makes at most 3q queries and runs in time O(q). ¨

As the discussion in Subsection 4.2, we can construct a simulator satisfying the conditions 1 and 2. So, we
can prove that Sponge is reset indifferentiable from VO. The proof is shown in Appendix A.

5.2 Reset Indifferentiability for ChopMD

We define the parameter of VO as w = s and v = n + s. Note that ICa,b is not used. Thus, in this case,
VO = (ROn,RO∗

s+n, T ROs).

Theorem 2. There exists a simulator S such that for any distinguisher A, the following holds.

Advr-indiff,VO
chopMDh,S

(A) ≤ 3qR(qR − 1)
2s+1

+
qR(qR + 3)

2n+s+1
+

σ(σ + 1)
2s+n

where A can make queries to left oracle L = chopMDh/ROn and right oracle R = h/S at most qL, qR times,
respectively, and l is a maximum number of blocks of a query to L. σ = lqL + qR. S makes at most 3qR

queries and runs in time O(qR). ¨

Similar to the reset indifferentiability for Sponge, a simulator can be constructed so that the conditions 1
and 2 are satisfied. The condition 1 can be achieved by using RO∗

s+n. The condition 2 can be achieved by
using T ROs which records paths. The proof is given in Appendix B.

8

5.3 Reset Indifferentiability for PFMD

We define the parameter of VO as v = n and w = n. Note that in the reset indifferentiable proof ideal
ciphers are not used. Thus in this case, VO.priv = ROn and VO.pub = (ROn,RO∗

n, T ROn).

Theorem 3. There exists a simulator S such that for any distinguisher A, the following holds,

Advr-indiff,VO
PFMDh,S

(A) ≤ 2σ(σ + 1) + qR(qR − 1)
2n

where A can make queries to left oracle L = PFMDh/ROn and right oracle R = h/S at most qL, qR times,
respectively, and l is a maximum number of blocks of a left query. σ = lqL +qR. S makes at most 2qR queries
and runs in time O(qR). ¨

The PFMD case is also similar to the reset indifferentiability for Sponge. A simulator can be constructed so
that the conditions 1 and 2 are satisfied. The condition 1 can be achieved by using RO∗

n. The condition 2
can be achieved by using T ROn which records paths. The proof is given in Appendix C.

Remark 1. EMD [5] and MDP [22] are designed from the same design spirit as PFMD, which are designed
to resist the length extension attack. Thus, by the similar proof, one can prove that EMD and MDP are
reset indifferentiable from VOs.

6 Multi-Stage Security in the VO Model

In this section, we show cryptographic primitives satisfying multi-stage security in the VO model. Specifically,
we show that for any PKE scheme, the non-adaptive CDA security [3] (including the PRIV security [2]) in
the VO model is obtained by assuming an weak property, IND-SIM security in the RO model. Also, we
show that a generic conversion of IBE scheme to satisfy the non-adaptive ID-based CDA (ID-CDA) security
in the VO model. The previous work [29] showed the non-adaptive CDA security for PKE schemes based
on the same assumption (IND-SIM) with a specific structured preimage aware hash function [18]. There
was no mention about IBE. Our work focuses on how we obtain CDA secure PKE schemes and ID-CDA
secure IBE schemes with large class of hash functions. For PKE, we show that if a PKE scheme is IND-SIM
secure in the RO model, then it is CDA secure in the VO model. It is shown that EwH [2] and REwH1 [3]
satisfy IND-SIM security [29]; thus, any CPA secure PKE scheme can be converted into IND-SIM secure
scheme. For IBE, we show a generic conversion of IBE, called IDREwH1 which is an analogy of REwH1, and
is ID-CDA secure in the VO model if underlying IBE scheme is ID-CPA secure in the RO model. Therefore,
any CPA secure PKE and ID-CPA secure IBE in the RO model can be converted into CDA secure PKE and
ID-CDA secure IBE in the VO model. Combining with our results on reset indifferentiable hash functions in
Sec. 5, such a scheme remains CDA or ID-CDA security even if VO is replaced with these functions. Reset
indifferentiable hash functions which we prove cover wide and practical types of functions including SHA-3
though the previous result in [29] does not salvage SHA-3.

6.1 CDA Secure PKE in the VO Model

Public Key Encryption (PKE). A public key encryption scheme AE = (Gen,Enc, Dec) consists of
three algorithms. Key generation algorithm Gen outputs public key pk and secret key sk. Encryption al-
gorithm Enc takes public key pk, plaintext m, and randomness r, and outputs ciphertext c. Decryption
algorithm Dec takes secret key sk and ciphertext c, and outputs plaintext m or distinguished symbol ⊥.
For vectors m, r with |m| = |r| = l which is the size of vectors, we denote by Enc(pk,m; r) the vector
(Enc(pk,m[1]; r[1]), . . . , Enc(pk,m[l]; r[l])). We say that AE is deterministic if Enc is deterministic.

CDA Security. We explain the CDA security (we quote the explanation of the CDA security in [29]).
Fig. 7 illustrates the non-adaptive CDA game in the CPA case for a PKE scheme AE using a functionality
F . This notion captures the security of a PKE scheme when randomness r used in encryption may not be
a string of uniform bits. For the remainder of this section, fix a randomness length ρ ≥ 0 and a plaintext
length ω > 0. An (µ, ν)-mmr-source M is a randomized algorithm that outputs a triple of vector (m0,m1, r)

9

CDAA1,A2
AE,F

β
$←− {0, 1}

(pk, sk)
$←− Gen

(m0,m1, r) ← AF.pub
1

c ← EncF.priv(pk,mβ ; r)

β′ ← AF.pub
2 (pk, c)

return (β = β′)

IND-SIMB
AE,S,F

β
$←− {0, 1}

(pk, sk)
$←− Gen

β′ ← BRoS,F.pub(pk)
return (β = β′)

RoS(m, r)

If β = 1 then return EncF.priv(pk, m; r)
Otherwise return SF.priv(pk, |m|)

Fig. 7. CDA game and IND-SIM game

such that |m0| = |m1| = |r| = ν, all components of m0 and m1 are bit strings of length ω, all components
of r are bit strings of length ρ, and (mβ [i], r[i]) 6= (mβ [j], r[j]) for all 1 ≤ i < j ≤ ν and all β ∈ {0, 1}.
Moreover, the source has min-entropy µ, meaning Pr[(mβ [i], r[i]) = (m′, r′)|(m0,m1, r) ← M] ≤ 2−µ for
all β ∈ {0, 1}, all 1 ≤ i ≤ ν, and all (m′, r′). A CDA adversary A1,A2 is a pair of procedures, the first of
which is a (µ, ν)-mmr-source. The CDA advantage for a CDA adversary A1,A2 against scheme AE using a
functionality F is defined by

Advcda
AE,F (A1,A2) = 2 · Pr[CDAA1,A2

AE,F ⇒ true] − 1.

As noted in [3], in the RO model, mmr-sources have access to the RO. In this setting, the min-entropy
requirement is independent of the coins used by the RO, meaning the bound must hold for any fixed choice of
function as the RO. If this condition is removed, one can easily break the CDA security for any cryptosystem
using the indifferentiable hash function. That is, A1 and A2 can easily share the messages (m1,m2, r).

PRIV Security. The PRIV security is the special case of the CDA security when the PKE scheme AE
being considered has randomness length ρ = 0. Thus the PRIV security game for a PKE scheme AE using
a functionality F against adversary A1,A2 is equal to the CDA game when ρ = 0. The PRIV advantage
for a PRIV adversary A1,A2 is denoted by Advpriv

AE,F (A1,A2) which is equal to the CDA advantage with
ρ = 0. Since the PRIV security is for deterministic encryption, our result also covers a class of deterministic
encryption.

IND-SIM Security. The IND-SIM security is a special notion for PKE schemes. It captures that an
adversary cannot distinguish outputs from the encryption algorithm and from a simulator S even if the
adversary can choose plaintext and randomness. Fig. 7 shows the IND-SIM game. We define the IND-SIM
advantage of an adversary B by

Advind-sim
AE,S,F (B) = 2 · Pr[IND-SIMB

AE,F ⇒ true] − 1.

As noted in [29], in the standard model this security goal is not achievable because AE uses no randomness
beyond that input. In the RO model, we will use it when the adversary does not make any RO queries. A
variety of PKE schemes is shown to satisfy IND-SIM security in the RO model.

CDA Security in the VO Model. The following theorem shows that for any PKE scheme the non-adaptive
CDA security in the CPA case in the VO model is obtained from IND-SIM security in the RO model.

Theorem 4. Let AE be a PKE scheme. Let (A1,A2) be a CDA adversary in the VO model making at
most qRO, qRO∗ , qROT , qT O, qE , qD queries to ROn,RO∗

v, T ROw = (ROT
w, T O), ICa,b = (E,D). For any

simulator S there exists an IND-SIM adversary B such that

Advcda
AE,VO(A1,A2) ≤ Advind-sim

AE,S,ROn
(B) + qRO · maxpkAE +

qRO + 4q2
RO∗ + 4q2

ROT + 4q2
T O + 4q2

E + 4q2
D

2µ
.

B makes no RO queries, makes ν RoS-queries, and runs in time that of (A1,A2) plus O(qRO + qRO∗ +
qROT + qT O + qE + qD). maxpkAE is the maximum public key collision probability defined as maxpkAE =

max
γ∈{0,1}∗

Pr[pk = γ : (pk, sk) $←− Gen]. ¨

10

ID-CPAB
IBE,F

β
$←− {0, 1}

If selective-ID setting

id∗ ← BF.pub

(params, msk)
$←− IBE.Setup

If selective-ID setting

(m0,m1) ← BF.pub,IBE.Gen(·)(params)
If full-ID setting

(m0,m1, id
∗) ← BF.pub,IBE.Gen(·)(params)

r
$←− ({0, 1}ρ)l

c ← IBE.EncF.priv(params, id∗,mβ ; r)

β′ ← BF.pub,IBE.Gen(·)(c)
return (β = β′)

ID-CDAA1,A2
IBE,F

β
$←− {0, 1}

If selective-ID setting

id∗ ← AF.pub
1

(params, msk)
$←− IBE.Setup

If selective-ID setting

(m0,m1, r) ← AF.pub,IBE.Gen(·)
1

If full-ID setting

(m0,m1, id
∗, r) ← AF.pub,IBE.Gen(·)

1

c ← IBE.EncF.priv(params, id∗,mβ ; r)

β′ ← AF.pub,IBE.Gen(·)
2 (params, id∗, c)

return (β = β′)

Fig. 8. ID-CPA and ID-CDA game

The proof outline is as follows: First, we start with game G0 which is exactly the same game as the CDA
game in the VO model. Secondly, we transform G0 to game G1 so that ROn returns a random value for a
message posed by Enc. In game G1, outputs of ROn does not contain any information about computations
to generate the challenge ciphertext. Thirdly, we transform G1 to game G2 so that ciphertext c is generated
from a simulator S in the IND-SIM game. In game G2, ciphertext c does not contain any information about
outputs of A1. Thus, A1 cannot hand over any information to A2 with c. Finally, we transform G2 to game
G3 so that the table of inputs and outputs of each oracle in VO (except ROn) for A1 is independent of
the table for A2 according to the output of A1. In game G3, queries to oracles for A2 does not contain any
information about the output of A1, and A1 cannot hand over any information to A2 with VO. Thus, the
advantage of A2 in G3 is nothing.

The proof of Theorem 4 is shown in Appendix D.

6.2 ID-CDA Secure IBE in the VO Model

ID-based Encryption (IBE). An ID-based encryption scheme IBE = (IBE.Setup, IBE.Gen, IBE.Enc, IBE.Dec)
consists of four algorithms. Setup algorithm IBE.Setup outputs public parameter params and master secret
key msk. Key generation algorithm IBE.Gen takes public parameter params, master secrete key msk and
ID id, and outputs secret key sk for id. Encryption algorithm IBE.Enc takes public parameter params, ID
id, plaintext m, and randomness r, and outputs ciphertext c. Decryption algorithm IBE.Dec takes public
parameter params, secret key sk, and ciphertext c, and outputs plaintext m or distinguished symbol ⊥. For
vectors m, r with |m| = |r| = l which is the size of vectors, we denote by IBE.Enc(params, id,m; r) the vec-
tor (IBE.Enc(params, id,m[1]; r[1]), . . . , IBE.Enc(params, id, m[l]; r[l])). We say that IBE is deterministic
if IBE.Enc is deterministic.

ID-based CPA and CDA Security. We define the ID-CPA and the (non-adaptive) ID-CDA security. The
ID-CPA security is a standard one [11–13] except that an adversary can pose multiple challenge plaintext
pairs. It is known that the CPA game with multiple challenge is polynomial-time reducible to the game
with single challenge. Let CH be the challenger of the ID-CPA game. The ID-CDA security is based on the
CDA security. Fig. 8 illustrates the ID-CPA game and the non-adaptive ID-CDA game in the CPA case for
IBE using a functionality F . As the CDA security, the ID-CDA adversary A1 is a (µ, ν)-mmr-source. The
advantage for an ID-CPA adversary B against scheme IBE using a functionality F is defined by

Advid-cpa
IBE,F (B) = 2 · Pr[ID-CPAB

IBE,F ⇒ true] − 1.

The advantage for an ID-CDA adversary (A1,A2) against scheme IBE using a functionality F is defined by

Advid-cda
IBE,F (A1,A2) = 2 · Pr[ID-CDAA1,A2

IBE,F ⇒ true] − 1.

11

Hedged ID-based Encryption IDREwH1. We show an example of ID-CDA secure hedged IBE, IDREwH1.
The proposed scheme is a simple extension of REwH1 [3].

Let IBEr = (IBE.Setupr, IBE.Genr, IBE.Encr, IBE.Decr) be an IBE scheme with plaintext length λ and
randomness length ρ. ROn has range size ρ = n bits. IDREwH1 = (IBE.Setupr, IBE.Genr, IBE.Enc, IBE.Decr)
uses same algorithms as IBEr except IBE.Enc which is defined as

IBE.EncROn(params, id,m; r) = IBE.Encr(params, id,m;ROn(params, id,m, r)).

If |ρ| = 0, we can obtain an ID-based version of a deterministic encryption scheme, Encrypt-with-Hash.
Our theorems about IDREwH1 also works for deterministic encryption.

ID-CPA Security in the VO Model. We prove the ID-CPA security of IDREwH1; that is, we show that
IDREwH1 is selective (resp. full) ID-CPA secure in the VO model if IBEr is selective (resp. full) ID-CPA
secure in the RO model,

Theorem 5. Let IBEr be an IBE scheme. Let B be a selective (resp. full) CPA adversary for IDREwH1
in the VO model, which makes at most qRO, qRO∗ , qROT , qT O, qE , qD queries to ROn,RO∗

v, T ROw =
(ROT

w, T O), ICa,b = (E,D). Then, there exists a selective (resp. full) CPA adversary C for IBEr such
that

Advid-cpa
IDREwH1,VO(B) ≤ Advid-cpa

IBEr,RO(C) +
qRO

2ρ
.

C runs in time that of B plus O(qRO + qRO∗ + qROT + qT O + qE + qD). ¨

The proof outline is as follows: First, we start with game G0 which is exactly the same game as the ID-
CPA game in the VO model. Next, we transform G0 to game G1 so that challenge ciphertext c is generated
from fresh randomness instead of the output of ROn. In game G1, c is generated by the exactly same manner
as the ID-CPA game for IBEr. Also, oracle queries to VO except ROn is perfectly simulated because IBE.Enc
algorithm never use RO∗

v,ROT
w, T O, E,D. Thus, B can be constructed with C.

The proof of Theorem 5 is shown in Appendix E.

ID-CDA Security in the VO Model. We prove the ID-CDA security of IDREwH1; that is, we show that
IDREwH1 is selective (resp. full) ID-CDA secure in the VO model if IBEr is selective (resp. full) ID-CPA
secure in the RO model.

Theorem 6. Let IBEr be an IBE scheme. Let (A1,A2) be a selective (resp. full) CDA adversary for
IDREwH1 in the VO model, which makes at most qRO, qRO∗ , qROT , qT O, qE , qD queries to ROn,RO∗

v, T ROw =
(ROT

w, T O), ICa,b = (E,D). Then, there exists a selective (resp. full) CPA adversary C for IBEr such that

Advid-cda
IDREwH1,VO(A1,A2) ≤ 2Advid-cpa

IBEr,RO(C) + qRO · maxparamsIBEr
+

qRO + 4q2
RO∗ + 4q2

ROT + 4q2
T O + 4q2

E + 4q2
D

2µ
.

C runs in time that of (A1,A2) plus O(qRO + qRO∗ + qROT + qT O + qE + qD). maxparamsIBEr
is the

maximum public-parameter collision probability defined as maxparamsIBEr
= max

γ∈{0,1}∗
Pr[params = γ :

(params,msk) $←− IBE.Setup]. ¨

The proof outline is as follows: First, we start with game G0 which is exactly the same game as the
ID-CDA game in the VO model. Secondly, we transform G0 to game G1 so that challenge ciphertext c is
generated from fresh randomness instead of the output of ROn. Thirdly, we transform G1 to game G2 so
that challenge ciphertext c is generated from all zero messages instead of given messages from A1. In game
G2, ciphertext c does not contain any information about outputs of A1. Finally, we transform G2 to game
G3 so that the table of inputs and outputs of each oracle in VO (except ROn) for A1 is independent of
the table for A2 according to the output of A1. In game G3, queries to oracles for A2 does not contain any
information about the output of A1, and A1 cannot hand over any information to A2 with VO. Thus, the
advantage of A2 in G3 is nothing.

The proof of Theorem 6 is shown in Appendix F.

12

References

1. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. SHA-3 proposal BLAKE. Sub-
mission to NIST (Round 3). 2010.

2. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and Efficiently Searchable Encryption. In
CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 535–552. Springer, 2007.

3. Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham, and Scott Yilek.
Hedged public-key encryption: How to protect against bad randomness. In ASIACRYPT, volume 5912 of LNCS,
pages 232–249. Springer, 2009.

4. Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. Deterministic Encryption: Definitional
Equivalences and Constructions without Random Oracles. In CRYPTO, volume 5157 of LNCS, pages 360–378.
Springer, 2008.

5. Mihir Bellare and Thomas Ristenpart. Multi-Property-Preserving Hash Domain Extension and the EMD Trans-
form. In ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 299–314. Springer, 2006.

6. Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryption – How to Encrypt with RSA. In EURO-
CRYPT, volume 950 of Lecture Notes in Computer Science, pages 92–111. Springer, 1994.

7. Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures - How to Sign with RSA and Rabin.
In EUROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages 399–416. Springer, 1996.

8. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the Indifferentiability of the Sponge
Construction. In EUROCRYPT, pages 181–197, 2008.

9. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak SHA-3 submission. Submission
to NIST (Round 3). 2011.

10. Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On Notions of Security for Deterministic Encryption, and
Efficient Constructions without Random Oracles. In CRYPTO, volume 5157 of LNCS, pages 335–359. Springer,
2008.

11. Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pairing. In CRYPTO 2001,
pages 213–229, 2001.

12. Ran Canetti, Shai Halevi, and Jonathan Katz. A Forward-Secure Public-Key Encryption Scheme. In EURO-
CRYPT 2003, pages 255–271, 2003.

13. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext Security from Identity-Based Encryption. In
EUROCRYPT 2004, pages 207–222, 2004.

14. Donghoon Chang, Sangjin Lee, Mridul Nandi, and Moti Yung. Indifferentiable Security Analysis of Popular Hash
Functions with Prefix-Free Padding. In ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages
283–298. Springer, 2006.

15. Donghoon Chang and Mridul Nandi. Improved Indifferentiability Security Analysis of chopMD Hash Functionl.
In FSE, pages pages 429–443, 2008.

16. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 430–448.
Springer, 2005.

17. Ivan Damg̊ard. A Design Principle for Hash Functions. In CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 416–427. Springer, 1989.

18. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damg̊ard for Practical Applica-
tions. In EUROCRYPT (Full Version in ePrint 2009/177), volume 5479 of Lecture Notes in Computer Science,
pages 371–388. Springer, 2009.

19. Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas, and
Jesse Walker. The Skein Hash Function Family. Submission to NIST (Round 3). 2010.

20. Benjamin Fuller, Adam O’Neill, and Leonid Reyzin. A Unified Approach to Deterministic Encryption: New
Constructions and a Connection to Computational Entropy. ePrint 2012/005.

21. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin
Schäffer, and Søren S. Thomsen. Grøstl – a SHA-3 candidate. Submission to NIST (Round 3). 2011.

22. Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the Merkle-Damg̊ard Scheme with a
Permutation. In ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 113–129. Springer,
2007.

23. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility Results on Reductions,
and Applications to the Random Oracle Methodology. In TCC, volume 2951 of Lecture Notes in Computer
Science, pages 21–39. Springer, 2004.

24. Ralph C. Merkle. One Way Hash Functions and DES. In CRYPTO, volume 435 of Lecture Notes in Computer
Science, pages 428–446. Springer, 1989.

25. Ilya Mironov, Omkant Pandey, Omer Reingold, and Gil Segev. Incremental Deterministic Public-Key Encryption,
(Full Version in ePrint 2012/047). In EUROCRYPT, 2012.

13

SF (X) where x = X[1, n], y = Y [n + 1, d]

1 M ← T O(y);
2 if y = IV2 then
3 z ← ROn(x ⊕ IV1); w ← ROT

c (x ⊕ IV1);
4 else if M 6=⊥ then
5 m ← x ⊕ROn(M);
6 z ← ROn(M ||m); w ← ROT

c (M ||m);
7 else z||w ← P(x||y);
8 return z||w;

SI(Y) where z = Y [1, n], w = Y [n + 1, d]

1 M ← T O(w);
2 if M 6=⊥ and |M | = n then
3 x ← IV1 ⊕ M ; y ← IV2;
4 if M 6=⊥ and |M | > n then
5 let M = M∗||m (|m| = n);
6 x ← m ⊕ROn(M); y ← ROT

c (M∗);
7 else x||y ← P−1(z||w);
8 return x||y;

Fig. 9. Simulator SF (left) and SI (right)

P1(X)

1 if ∃(j, X, Y) ∈ Q then return Y ;

2 Y
$←− {0, 1}d; Q ∪←− (t, X, Y); t ← t + 1;

3 return Y ;

P−1
1 (X)

1 if ∃(j, X, Y) ∈ Q then return X;

2 X
$←− {0, 1}d; Q ∪←− (t, X, Y); t ← t + 1;

3 return X;

Fig. 10. Q is a (initially empty) list and initially t = 1. In the step 1 of P1,P−1
1 , j is a maximum value.

26. Yusuke Naito, Kazuki Yoneyama, Lei Wang, and Kazuo Ohta. How to Confirm Cryptosystems Security: the
Original Merkle-Damg̊ard is Still Alive! In ASIACRYPT, volume 5912 of Lecture Notes in Computer Science.
Springer, 2009.

27. National Institute of Standards and Technology. Cryptographic Hash Algorithm Competition.
http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html.

28. National Institute of Standards and Technoloty. FIPS PUB 180-3 Secure Hash Standard. In FIPS PUB, 2008.
29. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with Composition: Limitations of the

Indifferentiability Framework. In EUROCRYPT (Full Version: ePrint 2011/339), volume 6632 of Lecture Notes
in Computer Science, pages 487–506. Springer, 2011.

30. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. In Cryptology ePrint Archive:
2004/332, 2004. http://eprint.iacr.org/2004/332.

31. Hongjun Wu. The Hash Function JH. Submission to NIST (Round 3). 2011.

A Proof of Theorem 1

In this proof, we use the Sponge graph described in Subsection 3.2.

Simulator S. We define a simulator S in Fig. 9 which does not update the internal state to remove the
attack using S.Rst. The S’s task is to simulate (P, P−1) such that S is consistent with ROn, that is,
for any Sponge path IV

M−→ Y , Y [1, n] = ROn(M). In this proof, we omit the padding function padS .
Thus the left queries must be in ({0, 1}n)∗. Note that the Sponge with the padding function is the special
case of one without the padding function. Thus the security of the Sponge without the padding function
ensures the security of one with the padding function. SF and SI simulate P and P−1, respectively. The
simulator in Fig. 9 is consistent with ROn. For example, for the ordered queries SF (x1||IV2), SF (x2||w1)
where z1||w1 = SF (x1||IV2), z2||w2 = SF (x2||w1), the structure of S ensures that w1 = ROT

c (M1) (the step
3 of SF) and w2 = ROT

c (M1||M2) (the step 6 of SF) where M1 = IV1 ⊕ x1 and M2 = z1 ⊕ x2. Then, for a
query SF (x3||w2), the response z3||w3 is defined such that z3 = ROn(M1||M2||M3) (the step 6 of SF) where
M3 = z2 ⊕ x3. Notice that M1||M2 can be obtained by the queries T O(w2) (the step 1 of SF) and z2 can be
obtained by the query ROn(M1||M2) (the step 5 of SF). Thus the simulator S succeeds in the simulation of
the random permutation.

Detail. The proof is given as follows. To evaluate the indifferentiable bound, we consider eight games. In
each game, distinguisher A has oracle access to the left oracle L and the right oracles RF , RI .

– Game 1 is the ideal world, that is, (L,RF , RI) = (ROn, SF , SI) and A has oracle access to S.Rst.

14

– Game 2 is (L,RF , RI) = (ROn, SF , SI). Note that S.Rst is removed.
– Game 3 is that a random permutation P and its inverse P−1 are changed into P1 and P−1

1 , respectively.
So the simulator has oracle access to (P1,P−1

1) instead of (P,P−1). (P1,P−1
1) are implemented as in

Figure. 10.
– Game 4 is (L,RF , RI) = (ROn, S1F , S1I), where S1 keeps all query-responses (X,Y) where Y = S1F (X)

or X = S1I(Y). For query S1F (X), if there is (X,Y) in the query-response history, then S1F returns Y ,
otherwise, S1F returns SF (X). For query S1I(Y), if there is (X,Y) in the query-response history, then
S1I returns X, otherwise, S1I returns SI(Y).

– Game 5 is (L,RF , RI) = (L1, S1F , S1I), where on a query L1(M) L1 first makes S1F queries which
correspond with SpongeS1F (M) then returns ROn(M).

– Game 6 is (L,RF , RI) = (SpongeS1F , S1F , S1I).
– Game 7 is (L,RF , RI) = (SpongeP , P, P−1).
– Game 8 is the real world, that is, (L,RF , RI) = (SpongeP , P, P−1) and A has oracle access to nop.

Let Gi be an event that A outputs 1 in Game i. We thus have that

Advr-indiff,VO
SpongeP ,S

(A) ≤
7∑

i=1

|Pr[Gi] − Pr[Gi+1]| ≤
2σ(σ + 1) + q(q − 1)

2c
+

σ(σ − 1) + q(q − 1)
2d+1

.

In the following, we justify the above bound by evaluating each difference. Since S does not update the
internal state, S.Rst does not give an advantage to A. Thus Pr[G1] = Pr[G2]. Since nop does noting, it does
not give an advantage to A. Thus Pr[G7] = Pr[G8]. We thus consider Games 2, 3, 4, 5, 6, and 7.

Game 2 ⇒ Game 3. In Game 2, a random permutation P and its inverse P−1 are uses, while in Game 3,
P1 and P−1

1 are used where the outputs are uniformly chosen at random from {0, 1}d. Thus |Pr[G2]−Pr[G3]|
is bounded by the collision probability of (P1,P−1

1). Since P1 and P−1
1 are called at most q times,

|Pr[G2] − Pr[G3]| ≤
q∑

i=1

i − 1
2d

=
q(q − 1)

2d+1
.

Game 3 ⇒ Game 4. In Game 4, use of the history ensures that for any repeated query RF (X) (resp.
RI(Y)) the same value Y (resp. X) is responded, while in Game 3 there is a case due to the definition of
T O where for some repeated query RF (X) (or RI(Y)) where Y (or X) was responded, different value Y ∗

(or X∗) is responded. The difference |Pr[G2] − Pr[G3]| is thus bounded by the probability that in Game 3
the different value is responded. We call the event “Diff”. Since selecting a procedure defining an output is
controlled by T O, if Diff occurs, the following event occurs.

– For a repeated query T O(y) where w was responded before, a different value w∗ is responded, where if
w =⊥ then w∗ 6=⊥ (denoted Diff1), and if w 6=⊥ then w∗ =⊥ (denoted Diff2), from the definition of
T RO.

We thus have that

|Pr[G2] − Pr[G3]| ≤ Pr[Diff1] + Pr[Diff2] ≤
q(q − 1)

2c
.

We justify the bound as follows.
Consider Diff1. When the query T O(y) was made, no query ROT

c (w∗) such that y = ROT
c (w∗) had

been made. And when the repeated query T O(y) is made, the query ROT
c (w∗) such that y = ROT

c (w∗) was
made. Thus Pr[Diff1] is bounded by the probability that some output of ROT

c (w∗) (c-bit random value)
hits a fixed value y. Since the numbers of queries to ROT

c and T O are at most q times,

Pr[Diff1] ≤
q∑

i=1

i − 1
2c

≤ q(q − 1)
2c+1

.

15

Consider Diff2. From the definition of T O, if Diff2 occurs, a collision of ROT
c occurs, We thus have that

Pr[Diff2] ≤
q∑

i=1

i − 1
2c

≤ q(q − 1)
2c+1

.

Game 4 ⇒ Game 5. The difference between Game 4 and Game 5 is that in Game 4 L does not make a
right query, while in Game 5 L makes additional right queries corresponding with SpongeS1F (M). Note that
A cannot find the additional right query-responses directly but can find those by making the corresponding
right queries. So we must show that the additional right query-responses that A obtains don’t affect the A’s
behavior. We show Lemma 1 where for any Sponge path IV

M−→ z, z[1, n] = ROn(M) unless Badj occurs.
Let Ti be a table which stores all values Xt[n + 1, d] and Yt[n + 1, d] for t = 1, . . . , i − 1 where (Xt, Yt) is a
query-response pair defined by the t-th RF or RI query.

– Badj is that in Game j, for some i-th query SF (Xi) where Yi is the response, Yi[n + 1, d] collides with
some value in Ti ∪ {Xi[n + 1, d]} ∪ {IV2}, or
for some i-th query SI(Yi) where Xi is the response, Xi[n +1, d] collides with some value in Ti ∪{Yi[n +
1, d]} ∪ {IV2}.

Lemma 1 ensures that in Game 5, unless Badj occurs, responses which are leafs of Sponge paths7 are defined
by the same queries to ROT

c and ROn as in Game 4. Namely, unless the bad event occurs, the responses of
the additional right queries don’t affect the A’s view. Thus, the difference |Pr[G4] − Pr[G5]| is bounded by
the probability of occurring the bad event. We thus have that

|Pr[G4] − Pr[G5]| ≤|Pr[G4|Bad4]Pr[Bad4] + Pr[G4|¬Bad4]Pr[¬Bad4]
− (Pr[G5|Bad5]Pr[Bad5] + Pr[G5|¬Bad5]Pr[¬Bad5])|

≤|Pr[G4|¬Bad4](Pr[Bad5] − Pr[Bad4])
+ (Pr[G4|Bad4]Pr[Bad4] − Pr[G5|Bad5]Pr[Bad5])|

≤max{Pr[Bad4],Pr[Bad5]} ≤ σ(σ + 1)
2c

where Pr[G4|¬Bad4] = Pr[G5|¬Bad5] from Lemma 1. We justify the bound later.

Lemma 1. In Game j, unless Badj occurs, for any Sponge path IV
M−→ z z[1, n] = ROn(M). ¨

Proof of Lemma 1. Assume that Badj does not occur. Let IV
M−→ z be any sponge path and (X1, Y1), . . . , (Xt, Yt)

be the corresponding pairs where X1[n+1, d] = IV2, Xi[n+1, d] = Yi−1[n+1, d] (i = 2, . . . , t), Yt[n+1, d] = z,
and M = M1|| . . . ||Mt where M1 = IV1 ⊕ X1[1, n], · · · ,Mt = Yt−1[1, n] ⊕ Xt[1, n]. We show that z[1, n] =
ROn(M).

Consider the case that t = 1. Then no pair (X,Y) which is defined by an RI query (X = RI(Y)) connects
IV . Thus any path IV

M−→ z such that |M | = n is defined by a RF query. Then z[1, n] = ROn(M).
Consider the case that t ≥ 2.
No pair (X,Y) which is defined by an RI query connects the leaf z of some sponge path IV

M−→ z. Thus
any path IV

M−→ z such that |M | > n is defined by RF queries. So, all pairs in any sponge path are defined
by RF queries.

The assumption ensures that no pair which is defined by a RF query is connected with another pair: a
path Y

M∗

−−→ Y ∗ was defined then a path X
M−→ Y is defined. More formally, the pair (X,Y) which is defined

by a RF query is such that Y [n + 1, d] 6= X∗[n + 1, d] where (X∗, Y ∗) is any pair defined before (X,Y) is
defined. Thus (X1, Y1), . . . , (Xt, Yt) are defined by the ordered RF queries RF (X1), . . . , RF (Xt).

The assumption ensures that all pairs are different, since no pair is connected with oneself. Thus for any
i, j ∈ {1, . . . , t} (Xi, Yi) 6= (Xj , Yj).

7 The leaf of the Sponge path IV
M−→ Y is Y .

16

S(x, m) where x = x1||x2 (|x1| = s, |x2| = n)

1 M ← T O(x1);
2 if x = IV then
3 z ← ROn(m);
4 w ← ROT

s (m);
5 else if M 6=⊥ then
6 z ← ROn(M ||m);
7 w ← ROT

s (M ||m);
8 else w||z ← RO∗

n+s(x, m);
9 return w||z;

Fig. 11. Simulator S

The assumption ensures that for any i-th query-response (X,Y) defined by a RF query, Y [n + 1, d] does
not collide with IV2 or some value in Ti. Since ROT

c are used as defining the right c-bit values of outputs of
SF , the assumption ensures that no collision occur for ROT

c .
Thus, pairs (X1, Y1), . . . , (Xt, Yt) are defined by this order such that for any i, j ∈ {1, . . . , t} (Xi, Yi) 6=

(Xj , Yj). And no collision for ROT
c occurs and all outputs of ROT

c does not collide with IV2.
From above discussions, for a RF query RF (Xt), SF can obtain M1|| . . . ||Mt−1 by the query T O(y)

where y = Xt[n + 1, d]. Thus Yt[1, n] = ROn(M).
ut

Evaluation of Pr[Bad4], Pr[Bad5]. Since in Game 4 and Game 5 the simulator is called at most q and σ
times, respectively, and for any query to S the right c-bit value of the response is chosen uniformly at random
from {0, 1}c,

Pr[Bad4] ≤
q∑

i=1

(2(i − 1) + 2)
2c

=
q(q + 1)

2c
, Pr[Bad5] ≤

σ∑
i=1

(2(i − 1) + 2)
2c

=
σ(σ + 1)

2c

Game 5 ⇒ Game 6. The difference between Game 5 and Game 6 is the left oracle L where in Game 5
L(M) returns ROn(M), while in Game 6 L(M) returns SpongeS1(M). Thus, the difference does not change
behavior of A iff in Game 6 for any query L(M), L(M) returns ROn(M). From Lemma 1, for any Sponge
path IV

M−→ z the relation z[1, n] = ROn(M) holds unless the bad event Bad6 occurs. In Game 6 R is called
at most σ times and for any query to S the response is chosen uniformly at random from {0, 1}c. We have
that

|Pr[G5] − Pr[G6]| ≤ Pr[Bad6] ≤
σ(σ + 1)

2c
.

Game 6 ⇒ Game 7. In Game 6, outputs of RF and RI are chosen uniformly at random from {0, 1}d,
while in Game 7, those are a random permutation and its inverse oracle. The difference is thus bounded by
the collision probability of RF and RI in Game 6. We thus have that

|Pr[G6] − Pr[G7]| ≤
σ∑

i=1

i − 1
2d

=
σ(σ − 1)

2d+1
.

ut

B Proof of Theorem 2

In this proof, we use the MD graph described in Subsection 3.2.

Simulator S. We define a simulator S in Fig. 11 which does not update the internal state to remove the

17

attack using S.Rst. In this proof, the padding function padc is removed. Thus the left queries should be
in ({0, 1}d)∗. Note that the chop MD hash function with the padding function is the special case of one
without the padding function. Thus the security of the chop MD hash function without the padding function
ensures the security of one with the padding function. The S’s task is to simulate the compression function
h such that ROn and S are consistent, that is, for any MD path IV

M−→ z, z[s + 1, n + s] = ROn(M).
The simulator S is consistent with ROn. For example, for the ordered queries S(IV,M1), S(w1||z1, M2)
where w1||z1 = S(IV,M1), w2||z2 = S(w1||z1,M2), the structure of S ensures that w1 = ROT

s (M1) (the
step 3), and w2 = ROT

s (M1||M2) (the step 7). Thus, the path (M1||M2, w2) is recorded in the table FT

where FT [M1||M2] = w2. Then, for the query S(w2||z2,M3), the response w3||z3 is defined such that z3 =
ROn(M1||M2||M3) (the step 6). Notice that M1||M2 can be obtained by the queries T O(w2) (the step 1). So

we can construct a simulator such that the path IV
M1||M2||M3−−−−−−−−→ w3||z3 is such that z3 = ROn(M1||M2||M3).

Thus we can ensure the consistency.

Detail. To evaluate the indifferentiable advantage, we consider seven games. In each game, distinguisher A
has oracle access to left oracle L and right oracle R.

– Game 1 is the ideal world, that is, (L,R) = (ROn, S) and A has oracle access to S.Rst.
– Game 2 is (L,R) = (ROn, S). Note that S.Rst is removed.
– Game 3 is (L,R) = (ROn, S1), where S1 keeps all query-responses (x, m, y). For the query S1(x,m), if

there is (x,m, y) in the query-response history, then S1 returns y, otherwise, S1 returns S(x,m).
– Game 4 is (L,R) = (L1, S1), where on a query L1(M) L1 first makes queries to S1 which correspond

with chopMDS1(M) then returns ROn(M).
– Game 5 is (L,R) = (chopMDS1 , S1).
– Game 6 is (L,R) = (chopMDh, h).
– Game 7 is the real world, that is, (L,R) = (chopMDh, h) and A has oracle access to nop.

Let Gi be an event that A outputs 1 in Game i. We thus have that

Advr-indiff,VO
chopMDh,S

(A) ≤
6∑

i=1

|Pr[Gi] − Pr[Gi+1]| ≤
3qR(qR − 1)

2s+1
+

qR(qR + 3)
2n+s+1

+
σ(σ + 1)

2s+n
.

In the following, we justify the above bound by evaluating each difference. Since S does not update the
internal state, S.Rst does not give an advantage to A. Thus Pr[G1] = Pr[G2]. Since nop does noting, it does
not give an advantage to A. Thus Pr[G6] = Pr[G7]. We thus consider game sequences Game 2, Game 3,
Game 4, Game 5, and Game 6.

Game 2 ⇒ Game 3. In Game 3, use of the history ensures that for a repeated query R(x,m) the same value
is responded, while in Game 2 there is a case that for some repeated query R(x,m) where y was responded,
different value y∗ (6= y) is responded due to the definition of T O. The difference |Pr[G2] − Pr[G3]| is thus
bounded by the probability that in Game 2 the different value is responded. We call the event “Diff”. Since
selecting a procedure defining an output is controlled by T O, if Diff occurs, the following event occurs.

– For a repeated query T O(y) where w was responded, a different value w∗ is responded, where if w =⊥
then w∗ 6=⊥ (denoted Diff1) , and if w 6=⊥ then w∗ =⊥ (denoted Diff2), from the definition of T RO.

We thus have that

|Pr[G2] − Pr[G3]| ≤ Pr[Diff1] + Pr[Diff2] ≤
qR(qR − 1)

2s
.

We justify the bound as follows.
Consider Diff1. When the query T O(y) was made, no query ROT

s (w∗) such that y = ROT
s (w∗) had

been made. And when the repeated query T O(y) is made, the query ROT
s (w∗) such that y = ROT

s (w∗) was
made. Thus Pr[Diff1] is bounded by the probability that some output of ROT

s (w∗) (s-bit random value)
hits a fixed value y. Since the numbers of queries to ROT

s and T O are at most qR times,

Pr[Diff1] ≤
qR∑
i=1

i − 1
2s

≤ qR(qR − 1)
2s+1

.

18

Consider Diff2. From the definition of T O, if Diff2 occurs, a collision of ROT
s occurs, We thus have that

Pr[Diff2] ≤
qR∑
i=1

i − 1
2s

≤ qR(qR − 1)
2s+1

.

Game 3 ⇒ Game 4. The difference between Game 3 and Game 4 is that for a left query L(M), in Game
3 L does not make a right query, while in Game 4 L makes additional right queries corresponding with
chopMDS1(M). Note that A cannot find the additional right query-responses directly but can find those by
making the corresponding right queries. So we must show that the additional right query-responses that A
obtains don’t affect the A’s behavior. We show Lemma 2 where for any MD path IV

M−→ z, z[s + 1, n + s] =
ROn(M) unless Badj occurs. Let Ti be a list which records (xt, yt) for t = 1, . . . , i − 1 where (xt,mt, yt) is
a t-th R query-response (yt = R(xt,mt)).

– Badj is that in Game j for some i-th query R(xi,mi) the response yi collides with some value in
Ti ∪ {xi} ∪ {IV }.

This ensures that unless the bad event occurs, in both games responses which are leafs of MD paths8 are
defined by the same query to ROT

s and ROn. Namely, in Game 4, unless the bad event occurs, the responses
of the additional right queries which A obtains are chosen from the same distribution as in Game 3. Thus,
the difference |Pr[G3]−Pr[G4]| is bounded by the probability of occurring the bad event. We thus have that

|Pr[G3] − Pr[G4]| ≤ max{Pr[Bad3], Pr[Bad4]} ≤ qR(qR − 1)
2s+1

+
qR(qR + 3)

2n+s+1

where Pr[G3|¬Bad3] = Pr[G4|¬Bad4] from Lemma 2. We justify the bound later.

Lemma 2. In Game j, unless Badj occurs, for any MD path IV
M−→ y y[s + 1, n + s] = ROn(M). ¨

Proof of Lemma 2. Assume that Badj does not occur. Let IV
M−→ y be any MD path. We show that

y[s + 1, n + s] = ROn(M). Let (x1,m1, y1), . . . , (xj , mj , yj) be query-responses of S which correspond with
the MD path where x1 = IV , xi = yi−1 (i = 2, . . . , j), yj = y, and M = m1|| . . . ||mj .

When j = 1, y[s + 1, n + s] = ROn(M) (see the steps 2-4).
We consider the case that j ≥ 2.
The assumption ensures that the case that some triple (xi,mi, yi) is defined after (xi+1, mi+1, yi+1) was

defined does not occur. So (x1,m1, y1), . . . , (xj ,mj , yj) are defined by this order.
The assumption ensures that for any u, v ∈ {1, . . . , j} (xu,mu, yu) 6= (xv,mv, yv).
The assumption ensures that no collision for ROT

n occurs.
From the above discussions, for the query S(xj ,mj), T O(xj) returns m1|| . . . ||mj−1 (the step 1) and

then the response yi is defined such that yi[s + 1, n + s] = ROn(M) (the step 6).
ut

Evaluation of Pr[Bad3],Pr[Bad4]. In Game 3 and Game 4 S is called at most qR and σ times, respectively.
The output of R is uniformly chosen at random from {0, 1}n+s. Note that in Game 3, since L = ROn, by a
L query, A can obtain the right n-bit value of the response of some R query in advance. On the other hand,
the right s-bit value cannot be obtained in advance. We thus have that

Pr[Bad3] ≤
qR∑
i=1

(
i − 1
2s

+
i − 1 + 2

2n+s

)
=

qR(qR − 1)
2s+1

+
qR(qR + 3)

2n+s+1
,

Pr[Bad4] ≤
σ∑

i=1

2(i − 1) + 2
2n+s

=
σ(σ + 1)

2n+s
.

Game 4 ⇒ Game 5. The difference between Game 4 and Game 5 is the left oracle L where in Game 4

8 A leaf of the MD path IV
M−→ z is z.

19

S(x, m)

1 M∗ ← T O(x);
2 if x = IV then
3 if ∃M s.t. pfpad(M) = m then y ← ROn(M);
4 else y ← ROT

n (m);
5 else if M∗ 6=⊥ then
6 if ∃M s.t. pfpad(M) = M∗||m then y ← ROn(M);
7 else y ← ROT

n (M∗||m);
8 else y ← RO∗

n(x, m);
9 return y;

Fig. 12. Simulator S

L(M) returns ROn(M), while in Game 5 L(M) returns chopMDS1(M). Thus, the difference does not change
behavior of A iff in Game 5 for any query L(M), L(M) returns ROn(M). From Lemma 2, for any MD path
IV

M−→ z, z[s + 1, s + n] = ROn(M) unless the bad event Bad5 occurs. Since R is called at most σ times,
we have that

|Pr[G4] − Pr[G5]| ≤ Pr[Bad5] ≤
σ(σ + 1)

2n+s
.

Game 5 ⇒ Game 6. Since outputs of S are uniformly chosen at random from {0, 1}n, the difference of R
does not affect the A’s behavior. We thus have that Pr[G5] = Pr[G6]. ut

C Proof of Theorem 3

In this proof, we use the MD graph described in Subsection 3.2.

Simulator S. We define a simulator S in Fig. 12 which does not update the internal state to remove
the attack using S.Rst. The S’s task is to simulate the compression function h such that S is consistent
with ROn, namely, any PFMD path IV

M∗

−−→ y is such that y = ROn(M) where M∗ = pfpad(M). S
in Fig. 12 is consistent with ROn. For example, for the ordered queries S(IV,m1), S(y1,m2) where y1 =
S(IV,m1), y2 = S(y1, m2), if there does not exists M such that pfpad(M) = m1||m2, then y1 and y2 are
defined by the responses of ROT

n (m1) (the step 4) and ROT
n (m1||m2) (the step 7), respectively. Then for

the query S(y2,m3), the response is defined by the output of ROn(M) (the step 6) if there exists M such
that pfpad(M) = m1||m2||m3. Notice that m1||m2 can be obtained by the query T O(y2) (the step 1). So

the PFMD path IV
m1||m2||m3−−−−−−−→ y3 is such that y3 = ROn(M) where pfpad(M) = m1||m2||m3. Thus the

simulator S succeeds in the simulation of h.

Detail. To evaluate the indifferentiable advantage, we consider seven games. In each game, distinguisher A
has oracle access to left oracle L and right oracle R.

– Game 1 is the ideal world, that is, (L,R) = (ROn, S) and A has oracle access to S.Rst.
– Game 2 is (L,R) = (ROn, S). Note that S.Rst is removed.
– Game 3 is (L, R) = (ROn, S1). S1 keeps all query-responses. For query S1(x,m), if there is a tuple

(x,m, y) in the query-response history, then S1 returns y, otherwise, S1 returns S(x,m).
– Game 4 is (L,R) = (L1, S1), where on query L1(M) L1 first makes queries to S1 which correspond with

PFMDS1(M) then returns ROn(M).
– Game 5 is (L,R) = (PFMDS1 , S1).
– Game 6 is (L,R) = (PFMDh, h).
– Game 7 is the real world, that is, (L,R) = (PFMDh, h) and A has oracle access to nop.

20

Let Gi be an event that A outputs 1 in Game i. We thus have that

Advr-indiff,VO
PFMDh,S

(A) ≤
6∑

i=1

|Pr[Gi] − Pr[Gi+1]| ≤
2σ(σ + 1) + qR(qR − 1)

2n
.

In the following, we justify the above bound by evaluating each difference. Since S does not update the
internal state, S.Rst does not give an advantage to A. Thus Pr[G1] = Pr[G2]. Since nop does noting, it does
not give an advantage to A. Thus Pr[G6] = Pr[G7]. We thus consider game sequences Game 2, Game 3,
Game 4, Game 5, and Game 6.

Game 2 ⇒ Game 3. In Game 3, use of the history ensures that for any repeated query R(x,m) the same
value y is responded, while in Game 2 there is a case that for some repeated query R(x,m) where y was
responded, different value y∗ (6= y) is responded due to the definition of T O. The difference |Pr[G2]−Pr[G3]|
is thus bounded by the probability that in Game 2 the different value is responded. We call the event “Diff”.
Since selecting a procedure defining an output is controlled by T O, if Diff occurs, the following event occurs.

– For a repeated query T O(y) where w was responded, a different value w∗ is responded, where if w =⊥
then w∗ 6=⊥ (denoted Diff1) , and if w 6=⊥ then w∗ =⊥ (denoted Diff2), from the definition of T RO.

We thus have that

|Pr[G2] − Pr[G3]| ≤ Pr[Diff1] + Pr[Diff2] ≤
qR(qR − 1)

2n
.

We justify the bound as follows.
Consider Diff1. When the query T O(y) was made, no query ROT

n (w∗) such that y = ROT
n (w∗) had

been made. And when the repeated query T O(y) is made, the query ROT
n (w∗) such that y = ROT

n (w∗) was
made. Thus Pr[Diff1] is bounded by the probability that some output of ROT

n (w∗) (n-bit random value)
hits a fixed value y. Since the numbers of queries to ROT

n and T O are at most qR times,

Pr[Diff1] ≤
qR∑
i=1

i − 1
2n

≤ qR(qR − 1)
2n+1

.

Consider Diff2. From the definition of T O, if Diff2 occurs, a collision of ROT
n occurs, We thus have that

Pr[Diff2] ≤
qR∑
i=1

i − 1
2n

≤ qR(qR − 1)
2n+1

.

Game 3 ⇒ Game 4. The difference between Game 3 and Game 4 is that in Game 3 L does not make
a right query, while in Game 4 L makes additional right queries corresponding with PFMDS1(M). Note
that A cannot find the additional right query-responses directly but can find those by making corresponding
right queries. So we must show that the additional right query-responses that A obtains don’t affect the A’s
behavior. We show Lemma 3 where for any PFMD path IV

M∗

−−→ y where M∗ = pfpad(M), y = ROn(M)
unless Badj . Let Ti be a list which records (xt, yt) for t = 1, . . . , i − 1 where (xt,mt, yt) is a t-th R query-
response (yt = R(xt,mt)).

– Badj is that in Game j for some i-th query R(xi,mi) the response yi collides with some value in
Ti ∪ {xi} ∪ {IV }.

This ensures that unless the bad event occurs, in both games responses which are leafs of MD paths9 are
defined by the same query to ROT

n and ROn. Namely, in Game 4, unless the bad event occurs, the responses
of the additional right queries which A obtains are chosen from the same distribution as in Game 3. Thus,
the difference |Pr[G3]−Pr[G4]| is bounded by the probability of occurring the bad event. We thus have that

|Pr[G3] − Pr[G4]| ≤ max{Pr[Bad3], Pr[Bad4]} ≤ σ(σ + 1)
2n

where Pr[G3|¬Bad3] = Pr[G4|¬Bad4] from Lemma 3. We justify the bound later.
9 A leaf of the MD path IV

M−→ z is z.

21

Lemma 3. In Game j, unless Badj occurs, for any PFMD path IV
M∗

−−→ y y = ROn(M) where M∗ =
pfpad(M). ¨

Proof of Lemma 3. Assume that Badj does not occur. Let IV
M∗

−−→ y be any PFMD path. We show
that y = ROn(M) where M∗ = pfpad(M). Let (x1,m1, y1), . . . , (xj ,mj , yj) be query-responses of S which
correspond with the PFMD path where x1 = IV , xi = yi−1 (i = 2, . . . , j), yj = y, and M∗ = m1|| . . . ||mj .

When j = 1, y = ROn(M) (due to the step 1).
We consider the case that j ≥ 2.
If some triple (xi,mi, yi) is defined after (xi+1,mi+1, yi+1) was defined, the assumption ensures that

(xi,mi, yi) does not connect with (xi+1,mi+1, yi+1). So (x1,m1, y1), . . . , (xj ,mj , yj) are defined by this order.
The assumption ensures that no triple connects with oneself, namely any triple (xi,mi, yi) is such that

xi 6= yi. Thus no triple appears twice in the PFMD path IV
M∗

−−→ y.
Since ROT

n is used to define an output of S, the assumption ensures that no collision for ROT
n occurs.

From the above discussions, for the query S(xj ,mj), T O(xj) responses m1|| . . . ||mj−1 (the step 1) and
then the response yi is defined such that yi = ROn(M) (the step 3). ut

Evaluation of Pr[Bad3], Pr[Bad4]. Since in Game 3 and Game 4 S is called at most qR and σ times, respec-
tively, and for any query to S the response is chosen uniformly at random from {0, 1}n and is independent
from the table Ti due to the prefix-free padding,

Pr[Bad3] ≤
qR∑
i=1

2(i − 1) + 2
2n

=
qR(qR + 1)

2n
, Pr[Bad4] ≤

σ∑
i=1

2(i − 1) + 2)
2n

=
σ(σ + 1)

2n
.

Game 4 ⇒ Game 5. The difference between Game 4 and Game 5 is the left oracle L where in Game 4
L(M) returns ROn(M), while in Game 5 L(M) returns PFMDS1(M). Thus, the difference does not change
behavior of A iff in Game 5 for any query L(M), L(M) returns ROn(M). From Lemma 3, for any PFMD

path IV
M∗

−−→ z, z = ROn(M) unless the bad event Bad5, where M∗ = pfpad(M). Since in Game 5 R is
called at most σ times and for any query to S the response is chosen uniformly at random from {0, 1}n, we
thus have that

|Pr[G4] − Pr[G5]| ≤ Pr[Bad5] ≤
σ(σ + 1)

2n
.

Game 5 ⇒ Game 6. Since outputs of S are uniformly chosen at random from {0, 1}n, the difference for R
does not affect the A’s behavior. We thus have that Pr[G5] = Pr[G6].

ut

D Proof of Theorem 4

Proof. We denote Adv(A,Gi) by the advantage of the adversary A when participating in experiment Gi.
We start with game G0 which is exactly the same game as the CDA game in the VO model. It means
Adv(A,G0) = Advcda

AE,VO(A1,A2).

Game G1: ROn returns a random value if one of following events occur:

– Bad1 : A1 poses a message M to ROn where M is posed to ROn by Enc to generate the challenge
ciphertext.

– Bad2 : A2 poses a message M to ROn where M is posed to ROn by Enc to generate the challenge
ciphertext.

All other procedures are computed as the same way in G0.

Lemma 4. |Adv(A,G1) − Adv(A,G0)| ≤ qRO
2µ + qRO · maxpkAE .

22

Game G2

β
$←− {0, 1}

(pk, sk)
$←− Gen

(m0,m1, r) ← AROn,RO∗
v,T ROw,ICa,b

1

c ← EncF.priv(pk,mβ ; r)
c′ ← SROn(pk, ω)

β′ ← AROn,RO∗
v ,T ROw,ICa,b

2 (pk, c′)
return (β = β′)

BRoS(pk)

β
$←− {0, 1}

(m0,m1, r) ← ASimB
1

c ← RoS(mβ , r)

β′ ← ASimB
2 (pk, c)

If β = β′ then return 1
Otherwise return 0

SimBROn(M)

If F[M] =⊥, F[M]
$←− {0, 1}n

If F[M] 6=⊥, and M is posed by Enc,

F[M]
$←− {0, 1}n

return F[M]

SimBRO∗
v
(M)

If F∗[M] =⊥, F∗[M]
$←− {0, 1}v

return F∗[M];

SimBROT
w

(M)

If FT [M] =⊥ then FT [M]
$←− {0, 1}w

return FT [M];

SimBT O(y)

If ∃1M s.t. FT [M] = y then return M
Otherwise return ⊥

SimBE(k, x)

If E[k, x] =⊥,

y
$←− {0, 1}b\T+[k]

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return E[k, x]

SimBD(k, y)

If D[k, y] =⊥,

x
$←− {0, 1}b\T−[k];

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return D[k, y]

Fig. 13. game G2 and simulation SimB by adversary B

Proof. The difference between G0 and G1 only occurs in Bad1 and Bad2. From Difference Lemma [30], we
have that |Adv(B,G1) − Adv(B,G0)| ≤ Pr[Bad1 ∨ Bad2] ≤ Pr[Bad1] + Pr[Bad2].

First, we estimate Pr[Bad1]. Since pk is not given for A1 and is included in each query to ROn by
Enc, the only way to pose (pk, ∗, ∗) to ROn is choosing pk randomly qRO times. We have that Pr[Bad1] ≤
qRO · maxpkAE .

Next, we estimate Pr[Bad2]. Since ROn is a truly random function and r (which is used to generate
challenge ciphertext c) is included in each query to ROn by Enc, A2 cannot obtain more information of r than
min-entropy µ from challenge ciphertext even if A2 could obtain some information about ROn(pk,mβ ; r)
from c. Thus, the only way to pose (∗, ∗, r) to ROn is guessing r under min-entropy µ qRO times. We have
that Pr[Bad2] ≤ qRO

2µ . ut

Game G2: Ciphertext c ← EncROn(pk,mb; r) is replaced with outputs of a simulator SROn(pk, ω) in the
IND-SIM game. All other procedures are computed as the same way in G1.

Lemma 5. |Adv(A,G2) − Adv(A,G1)| ≤ Advind-sim
AE,S,ROn

(B).

Proof. We show that if |Adv(A,G2)−Adv(A,G1)| is non-negligible, for any simulator S we can construct an
adversary B breaking IND-SIM security of AE in the RO model. Fig. 13 shows game G2, the construction of
B, and the simulation SimB = (SimBROn , SimBRO∗

v
,SimBROT

w
,SimBT O,SimBE ,SimBD) of VO by B respec-

tively. Note that B makes no RO queries, and EncF.priv(pk,mβ ; r) is executed with return value ignored. B
simulates all queries to VO for A1 and A2 with simulation SimB. SimB is identical with the definition of VO.
Also, queries to ROn by Enc is contained both in G1 and G2. Thus, A cannot distinguish game G1 and G2

from the simulation on the interface of VO. If β = 1 in IND-SIM game, it is clear that all interfaces for A is
exactly same as game G1. If β = 0 in IND-SIM game, it is clear that all interfaces for A is exactly same as
game G2.

Therefore, if |Adv(A,G2) − Adv(A,G1)| is non-negligible, B also breaks IND-SIM security of AE . ut

Game G3: When A2 poses a query related to (m0,m1, r) (which is the output of A1) to RO∗
v, T ROw =

(ROT
w, T O) or ICa,b = (E,D), then outputs are randomly chosen. That is, tables F∗,FT , E and D are not

preserved for A1 and A2 according to (m0,m1, r). All other procedures are computed as the same way in
G2.

23

Lemma 6. |Adv(A,G3) − Adv(A,G2)| ≤
4q2

RO∗+4q2
ROT +4q2

T O+4q2
E+4q2

D

2µ .

Proof. The difference between G2 and G3 only occurs when A1 and A2 poses a same query related to
(m0,m1, r) to RO∗

v, T ROw = (ROT
w, T O) or ICa,b = (E,D). We denote the event that a common query

related to (m0,m1, r) is posed to RO∗
v by A1 and A2 as BadRO∗ . Similarly, we define events BadROT , BadT O,

BadE , and BadD. From Difference Lemma [30], we have that |Adv(B,G3) − Adv(B,G2)| ≤ Pr[BadRO∗ ∨
BadROT ∨ BadT O ∨ BadE ∨ BadD] ≤ Pr[BadRO∗] + Pr[BadROT] + Pr[BadT O] + Pr[BadE] + Pr[BadD].

In game G2 and G3, ciphertext c does not give any information about (m0,m1, r) and queries to VO
by A1 to A2. On queries to ROn, interfaces of A2 in G2 and G3 are identical. Thus, the only way to
pose such a query is guessing under min-entropy µ. According to the birthday paradox, for each oracle
the probability of collisions in guessing is at most (2qRO∗)2/2µ, (2qROT)2/2µ, (2qT O)2/2µ, (2qE)2/2µ, and
(2qD)2/2µ, respectively. Therefore, |Adv(A,G3)−Adv(A,G2)| ≤ (4q2

RO∗ + 4q2
ROT + 4q2

T O + 4q2
E + 4q2

D)/2µ.
ut

We estimate Adv(A,G3). Ciphertext c does not give any information about (m0,m1, r). Also, outputs
of VO is independent of (m0,m1, r) for A2. Thus, the only way to win in game G3 is randomly guessing β.
Therefore, Adv(A,G3) = 0.

To conclude, we have Advcda
AE,VO(A1,A2) ≤ Advind-sim

AE,S,ROn
(B)+ qRO ·maxpkAE +(qRO +4q2

RO∗ +4q2
ROT +

4q2
T O + 4q2

E + 4q2
D)/2µ.

ut

E Proof of Theorem 5

Proof. We denote Adv(B,Gi) by the advantage of adversary B when participating in experiment Gi. We
start with game G0 which is exactly the same game as the ID-CPA game in the VO model. It means
Adv(B,G0) = Advid-cpa

IDREwH1,VO(B).

Game G1: Challenge ciphertext c ← IBE.Encr(params, id∗,mβ ;RO(params, id∗,mβ ; r)) is replaced with
c ← IBE.Encr(params, id∗,mβ ; r′) for randomly chosen r′. All other procedures are computed as the same
way in G0.

Lemma 7. |Adv(B,G1) − Adv(B,G0)| ≤ qRO
2ρ .

Proof. The difference between G0 and G1 only occurs when adversary B poses (params, id∗, mβ , r) to ROn

where where mβ ∈ mβ , r ∈ r, and r is the randomness vector used to generate challenge ciphertext c. We
denote this event as Bad. From Difference Lemma [30], we have that |Adv(B,G1) − Adv(B,G0)| ≤ Pr[Bad].

We estimate Pr[Bad]. Since ROn is a truly random function, B cannot know r (which is used to gen-
erate challenge ciphertext c) from challenge ciphertext even if B could obtain some information about
ROn(params, id∗,mβ ; r) from c. Thus, the only way to pose (params, id∗,mβ , r) to ROn is choosing r
randomly qRO times. We have that Pr[Bad] ≤ qRO

2ρ . ut

We estimate Adv(B,G1). We assume that there exists B with Adv(B,G1). Then, we construct adversary
C against IBEr with the same advantage as Adv(B,G1). The simulation SimC by C is given in Fig. 14.

Since the generation of the challenge ciphertext is exactly same between G0 and the ID-CPA game for
IBEr, C just forwards the challenge ciphertext to B. The simulation of VO is perfect because the challenger
CH never uses all components of VO with the private channel. Therefore, Adv(B,G1) = Advid-cpa

IBEr,RO(C).
To conclude, we have Advid-cpa

IDREwH1,VO(B) ≤ Advid-cpa
IBEr,RO(C) + qRO

2ρ . ut

F Proof of Theorem 6

Proof. We denote Adv(A,Gi) by the advantage of adversary (A1,A2) when participating in experiment Gi.
We start with game G0 which is exactly the same game as the ID-CDA game in the VO model. It means
Adv(A,G0) = Advid-cda

IDREwH1,VO(A1,A2).

Game G1: Challenge ciphertext c ← IBE.Encr(params, id∗,mβ ;ROn(params, id∗,mβ ; r)) is replaced with
c ← IBE.Encr(params, id∗,mβ ; r′) for randomly chosen r′. All other procedures are computed as the same
way in G0.

24

SimCmain

If selective-ID setting
receive id∗ from B
send id∗ to CH

receive params from CH
send params to B
If selective-ID setting

(m0,m1) ← B
send (m0,m1) to CH

If full-ID setting
(m0,m1, id

∗) ← B
send (m0,m1, id

∗) to CH
receive c from CH
send c to B
receive β′ from B
return β′

SimCIBE.Gen(id)

send id to IBE.Gen oracle
receive skid from IBE.Gen oracle
return skid

SimCROn(M)

send M to RO
receive F[M] from RO
return F[M]

SimCRO∗
v
(M)

If F∗[M] =⊥, F∗[M]
$←− {0, 1}v

return F∗[M];

SimCROT
w

(M)

If FT [M] =⊥ then FT [M]
$←− {0, 1}w

return FT [M];

SimCT O(y)

If ∃1M s.t. FT [M] = y then return M
Otherwise return ⊥

SimCE(k, x)

If E[k, x] =⊥,

y
$←− {0, 1}b\T+[k]

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return E[k, x]

SimCD(k, y)

If D[k, y] =⊥,

x
$←− {0, 1}b\T−[k];

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return D[k, y]

Fig. 14. Simulation SimC by adversary C

Lemma 8. |Adv(A,G1) − Adv(A,G0)| ≤ qRO
2µ + qRO · maxparamsIBEr

.

Proof. The difference between G0 and G1 only occurs in two cases: One is the case when adversary A1

(i.e., without knowledge of params) poses (params, id∗, mβ , r) to ROn where mβ ∈ mβ and r ∈ r. The
other is the case when adversary A2 (i.e., with knowledge of params) poses (params, id∗,mβ , r) to ROn

where mβ ∈ mβ and r ∈ r. We denote the former event as Bad1, and the other as Bad2. From Difference
Lemma [30], we have that |Adv(B,G1) − Adv(B,G0)| ≤ Pr[Bad1 ∨ Bad2] ≤ Pr[Bad1] + Pr[Bad2].

First, we estimate Pr[Bad1]. Since params is not given for A1, the only way to pose (params, id∗,mβ , r)
to ROn is choosing params randomly qRO times. We have that Pr[Bad1] ≤ qRO · maxparamsIBEr

.
Next, we estimate Pr[Bad2]. Since ROn is a truly random function, A2 cannot obtain more information

of r (which is used to generate challenge ciphertext c) than min-entropy µ from challenge ciphertext even
if A2 could obtain some information about ROn(params, id∗,mβ ; r) from c. Thus, the only way to pose
(params, id∗, mβ , r) to ROn is guessing r under min-entropy µ qRO times. We have that Pr[Bad2] ≤ qRO

2µ .
ut

Game G2: Challenge ciphertext c ← IBE.Encr(params, id∗,mβ ; r′) is replaced with c ← IBE.Encr(params,
id∗,0; r′) for randomly chosen r′ where 0 is a vector of l zero strings of length λ. All other procedures are
computed as the same way in G1.

Lemma 9. |Adv(A,G2) − Adv(A,G1)| ≤ 2Advid-cpa
IBEr,RO(C).

Proof. We show that if |Adv(A,G2)−Adv(A,G1)| is non-negligible, we can construct an adversary C breaking
ID-CPA security of IBEr in the RO model. Fig. 15 shows simulation SimC′ = (SimC′

main, SimC′
IBE.Gen, SimC′

RO,
SimC′

RO∗ , SimC′
ROT , SimC′

T O, SimC′
E , SimC′

D) by C respectively.
C simulates all queries to VO for A1 and A2 with simulation SimC′. SimC′ is identical with the definition

of VO. Thus, A cannot distinguish game G1 and G2 from the simulation on the interface of VO. If β = 1 in
ID-CPA game for IBEr, it is clear that all interfaces for A is exactly same as game G2. If β = 0 in ID-CPA
game for IBEr, it is clear that all interfaces for A is exactly same as game G1 if β = β′′.

Therefore, if |Adv(A,G1) − Adv(A,G0)| is non-negligible, C also breaks ID-CPA security of IBEr if
β = β′′ (i.e., with probability 1/2). We have that |Adv(A,G2) − Adv(A,G1)| ≤ 2Advid-cpa

IBEr,RO(C). ut

Game G3: When A2 poses a query related to (m0,m1, r) (which is the output of A1) to RO∗
v, T ROw =

(ROT
w, T O) or ICa,b = (E,D), then outputs are randomly chosen. That is, tables F∗,FT , E and D are not

preserved for A1 and A2 according to (m0,m1, r). All other procedures are computed as the same way in
G2.

25

SimC′
main

β′′ $←− {0, 1}
If selective-ID setting

receive id∗ from A1

send id∗ to CH
receive params from CH
If selective-ID setting

(m0,m1, r) ← A1

send (m′′
β ,0) to CH

receive c from CH
If full-ID setting

(m0,m1, r, id
∗) ← A1

send (m′′
β ,0, id∗) to CH

receive c from CH
send (params, c, id∗) to A2

receive β′ from A2

return 0 if β′ = β′′ and 1 otherwise

SimC′
IBE.Gen(id)

send id to IBE.Gen oracle
receive skid from IBE.Gen oracle
return skid

SimC′
ROn

(M)

send M to RO
receive F[M] from RO
return F[M]

SimC′
RO∗

v
(M)

If F∗[M] =⊥, F∗[M]
$←− {0, 1}v

return F∗[M];

SimC′
ROT

w
(M)

If FT [M] =⊥ then FT [M]
$←− {0, 1}w

return FT [M];

SimC′
T O(y)

If ∃1M s.t. FT [M] = y then return M
Otherwise return ⊥

SimC′
E(k, x)

If E[k, x] =⊥,

y
$←− {0, 1}b\T+[k]

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return E[k, x]

SimC′
D(k, y)

If D[k, y] =⊥,

x
$←− {0, 1}b\T−[k];

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return D[k, y]

Fig. 15. Simulation SimC′ by adversary C

Lemma 10. |Adv(A,G3) − Adv(A,G2)| ≤
4q2

RO∗+4q2
ROT +4q2

T O+4q2
E+4q2

D

2µ .

Proof. The difference between G2 and G3 only occurs when A1 and A2 poses a same query related to
(m0,m1, r) to RO∗

v, T ROw = (ROT
w, T O) or ICa,b = (E,D). We denote the event that a common query

related to (m0,m1, r) is posed to RO∗
v by A1 and A2 as BadRO∗ . Similarly, we define events BadROT , BadT O,

BadE , and BadD. From Difference Lemma [30], we have that |Adv(B,G3) − Adv(B,G2)| ≤ Pr[BadRO∗ ∨
BadROT ∨ BadT O ∨ BadE ∨ BadD] ≤ Pr[BadRO∗] + Pr[BadROT] + Pr[BadT O] + Pr[BadE] + Pr[BadD].

In game G2 and G3, ciphertext c does not give any information about (m0,m1, r) and queries to VO
by A1 to A2. On queries to ROn, interfaces of A2 in G2 and G3 are identical. Thus, the only way to
pose such a query is guessing under min-entropy µ. According to the birthday paradox, for each oracle
the probability of collisions in guessing is at most (2qRO∗)2/2µ, (2qROT)2/2µ, (2qT O)2/2µ, (2qE)2/2µ, and
(2qD)2/2µ, respectively. Therefore, |Adv(A,G3)−Adv(A,G2)| ≤ (4q2

RO∗ + 4q2
ROT + 4q2

T O + 4q2
E + 4q2

D)/2µ.
ut

We estimate Adv(A,G3). Ciphertext c does not give any information about (m0,m1, r). Also, outputs
of VO is independent of (m0,m1, r) for A2. Thus, the only way to win in game G3 is randomly guessing β.
Therefore, Adv(A,G3) = 0.

To conclude, we have Advid-cda
IDREwH1,VO(A1,A2) ≤ 2Advid-cpa

IBEr,RO(C)+qRO ·maxparamsIBEr
+(qRO+4q2

RO∗ +
4q2

ROT + 4q2
T O + 4q2

E + 4q2
D)/2µ. ut

26

