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Abstract. Ristenpart, Shacham, and Shrimpton (RSS) demonstrated that there exists a cryptosystem C
which is secure in a certain multi-stage game in the random oracle (RO) model but insecure even when
using an indifferentiable (from a RO) hash function H such as the chop Merkle-Damg̊ard hash function
(ChopMDHF) and the fixed output length Sponge hash function (FOLSpongeHF). However, the RSS result
does not imply that for every cryptosystem C which is secure in a multi-stage game in the RO model,
C(H) is always insecure. There might exist a cryptosystem C which is secure in a multi-stage game when
using H. In this paper, we show that for each of cryptosystems EwH, REwH1 and IDREwH1 and each of
the FOLSpongeHF and the ChopMDHF C(H) is secure in the Chosen Distribution Attack (CDA) game.
EwH and REwH1 are public key encryption schemes. IDREwH1 is an ID-based encryption scheme which is
an ID-based version of REwH1. To prove the security, we propose a modular approach by adopting the reset
indifferentiability framework of RSS, which covers all games. Firstly, we introduce a new weakened RO,
called “Versatile Oracle” (VO), since H might not be used as a RO in the CDA game. Secondly, we show
that H are reset indifferentiable from a VO. That is, H can be used as a VO. Finally, we show that C(VO)
are CDA secure. Consequently, the reset indifferentiability framework ensures that C(H) is CDA secure.
Keywords. Indifferentiable hash function, reset indifferentiability, multi-stage game, Sponge, ChopMD.

1 Introduction

The indifferentiability framework of Maurer, Renner, and Holenstein (MRH) [19] ensures reducibility
from one system to another system. Coron el al. suggested applying the indifferentiability framework
to hash function design [13]. Let C(·) be a cryptosystem with access to a hash function H, denoted by
C(H). The MRH theorem states that

H is indifferentiable from a random oracle (RO), denoted H @ RO
⇒ For any cryptosystem C(RO) which is S secure, C(H) is S secure, denoted C(H) Â C(RO).

Note that we say a cryptosystem C(H) is S secure if there does not exist an adversary which wins a
game S. After their suggestion, several hash constructions which are indifferentiable from ROs have
been proposed such as the Sponge construction [5] and the chop Merkle-Damg̊ard (ChopMD) construc-
tion [13]. Hereafter, we omit the term “from a RO”. It has been widely believed that the MRH theorem
ensures all games.

However, Ristenpart, Shacham, and Shrimpton (RSS) [23] gave a counter example of the MRH
theorem: Let H be an indifferentiable hash function such as the Sponge hash function (SpongeHF) and
the ChopMD hash function (ChopMDHF).

∃C such that C(RO) is S secure but C(H) is insecure, even though H @ RO.

RSS considered a hash based authentication protocol as C. The client sends a random challenge C to the
server; the server proves possession of the file M by computing z = H(M ||C) where H is a hash function
and the client compares the result to that sent by the server. In this case, the server cannot cheat in the
RO model, while the server can cheat when using an indifferentiable hash function. Consider the case
that |M | = |C| = 4n and H is the ChopMDHF, chopMDf (M ||C) = chopn(f(f(IV ||M)||C)), where
f : {0, 1}6n → {0, 1}2n is a RO and chopn returns the first n bits. The server can response a valid value
for a challenge C by possessing only the chaining value cv = f(IV ||M). That is, he can discard M .
RSS formalized this situation as the following game S: In this game, two adversaries A1 and A2 are
appeared. In the first stage, A1 receives a random file M of 4n bit and outputs a value v such that
|v| ≤ 2n. In the second stage, A2 receives the value v and a random challenge C of 4n bit and outputs



an n-bit value z. An adversary wins if z = H(M ||C). When H = RO, an adversary cannot win, while
when H = chopMDf , he wins, since A1 can send cv = f(IV ||M) to A2.

The above game is a member of multi-stage games, where there are multi adversaries and the size of
a value sent from some-stage adversary to the next-stage adversary is restricted. From the RSS result,
it is doubtful whether the MRH theorem supports multi-stage games or not. RSS revisited the MRH
theorem and found that the MRH theorem supports only single-stage games. On the other hand, the
RSS result does not imply that for every cryptosystem C which has been proven secure in a multi-stage
game S in the RO model, C(H) is always insecure. There might exist cryptosystems C that remain S
secure when using an indifferentiable hash function H. Thus it is important to verify whether C(H)
remains S secure or not.

There are several multi-stage games such as the Chosen Distribution Attack (CDA) game [1, 2].
The CDA notion captures message privacy of a public key encryption (PKE) scheme when messages
and randomness are (jointly) unpredictable. There are two PKE settings in the CDA game, which
are a deterministic public key encryption (DPKE) setting [1, 3, 7, 16, 20] and a hedged PKE (HPKE)
setting [2]. DPKE schemes don’t use randomness, while HPKE schemes use randomness. Note that when
considering a DPKE scheme in the CDA game, randomness is omitted. CDA secure DPKE schemes
realize efficient searchable PKE schemes. CDA secure HPKE schemes can ensure message privacy from
bad randomness. Therefore, CDA secure schemes can be used in many practical cases. Thus, it is
important to consider the CDA secure schemes as the above cryptosystem C.

Let Cpke be a PKE scheme which uses a semantically secure (CPA secure) PKE scheme Ccpa and a
hash function H as building blocks, denoted by Cpke(Ccpa,H). Several CDA secure PKE schemes such
as the EwH DPKE scheme [1] and the REwH1 PKE scheme [2] have been proposed. EwH(Ccpa,H) and
REwH1(Ccpa,H) are CDA secure if H is a RO. Therefore, EwH (resp. REwH1) can generically convert a
CPA secure PKE scheme to a CDA secure DPKE (resp. HPKE) scheme. If H @ RO and EwH(Ccpa, H)
and REwH1(Ccpa,H) are CDA secure, H can be used as hash functions in many CDA secure PKE
schemes via EwH and REwH1. Because, we have thousands of CPA secure PKE schemes. Thus it is
important to consider EwH and REwH1.

The above case considers a PKE setting, while it is natural to consider an extension to an ID-based
setting. It is a meaningful and interesting problem to clarify if we generically construct an ID-based CDA
(ID-CDA) secure ID-based encryption (IBE) scheme C ibe(C idcpa,H) from an ID-based CPA (ID-CPA)
secure IBE C idcpa and an indifferentiable hash function H, similarly.

RSS [23] directly proved that EwH(Ccpa,H) and REwH1(Ccpa,H) are CDA secure if H is the NMAC
hash function [15]. On the other hand, it is unclear whether or not the same results hold when H is
an indifferentiable hash function other than NMAC. Also, RSS did not consider the ID-based setting.
Especially, it is important to consider the fixed output length Sponge (FOLSponge) construction and the
ChopMD construction which are employed in standard hash functions: FOLSponge, which is the special
case of Sponge, is employed in the SHA-3 hash functions Keccak-l l = 224, 256, 384, 512 [6], and ChopMD
is employed in SHA-512/224 and SHA-512/256 [22]. Moreover, the RSS approach requires complex and
many proofs: it makes proofs complex that the structures of a hash function and of a cryptosystem
must be considered at the same time, and when considering cryptosystems Ci (i = 1, . . . , a) and hash
functions Hj (j = 1, . . . , b), we need many distinct proofs because the security of Ci(Hj) has to be
proven for each i, j respectively. Therefore, it is desirable to consider how to avoid the direct proofs by
taking a modular approach.

Our Result. In this paper, we solve the open problem related to the RSS result. We show that for
each H of the FOLSponge hash function (FOLSpongeHF) and the ChopMDHF, and each Cpke of EwH
and REwH1, Cpke(Ccpa,H) is CDA secure.

We also consider an ID-based setting. We find an IBE scheme C ibe(C idcpa,H) which is ID-CDA secure
for each H of the FOLSpongeHF and the ChopMDHF. We introduce a new IBE scheme IDREwH1 which
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is an ID-based version of REwH1. IDREwH1 ensures that any ID-CPA secure IBE can be converted to
ID-CDA secure. So, we can construct various ID-CDA secure IBE with the FOLSpongeHF and the
ChopMDHF via IDREwH1, since we have hundreds of ID-CPA secure IBE schemes.

Our Approach. In this paper, we propose a “modular” approach. Since indifferentiable hash functions
such as the ChopMDHF and the FOLSpongeHF cannot be used as ROs in a certain multi-stage game
from the RSS result, we weaken a RO such that (1) indifferentiable hash functions H can be used
as weakened ROs (WROs) in all games, and (2) it is sufficient to prove that target cryptosystems C
are (ID-)CDA secure in the WRO model. Hereafter, we assume that when considering a PKE scheme
such as EwH and REwH1, C(·) = Cpke(Ccpa, ·), and when considering a IBE scheme such as IDREwH1,
C(·) = C ibe(C idcpa, ·). Though EwH and REwH1 have been proven to be CDA secure in the RO model, we
will prove that the similar result in the WRO model. Since the reset indifferentiability framework [23]
introduced by RSS fits this approach, we use this framework to combine the point (1) with the point
(2). See the following explanation of this framework.

In the point (1), we will define a WRO WRO such that H can be used as a WRO. WRO consists
of a RO RO and a sub oracle O∗. O∗ leaks several values of RO such as query-responses of RO. On
the other hand, in the point (2), a CDA adversary might obtain advantages to win the CDA game from
O∗. Therefore, we must carefully define WRO such that both the point (1) and the point (2) hold,
simultaneously.

By the modular approach, we can avoid complex and many proofs.

– Our approach can avoid complex proofs, since the structure of C and the structure of H separately
via the WRO model.

– Our approach can avoid many proofs, since what we have to prove is only that (1) for each i,
Ci(WRO) is secure in the (ID-)CDA game, and (2) for each j, Hj can be used as a WRO.

Reset Indifferentiability [23]. The reset indifferentiability framework is an extension of the original
indifferentiability framework [19]. This framework ensures that for all games

H is reset indifferentiable from an oracle O (denoted H @r O) ⇒ C(H) Â C(O).

In this paper, we discuss WRO as O. Therefore, the point (1) is to show that H @r WRO, and thus,
we can combine the point (1) with the point (2) from the reset indifferentiability framework.

Roughly speaking, H using an underlying primitive U (denoted by HU ) is reset indifferentiable from
a WRO if there exists a simulator S such that no distinguisher A can distinguish a real world from an
ideal world. A interacts with a left oracle L and a right oracle R. In the real world, (L,R) = (H,U)
and A has access to nop which does nothing. In the ideal world, (L,R) = (RO, S) and A has access
to S.Ret which reinitializes the internal values of S to the initial values. The role of S is to simulate
U such that S is consistent with RO as the real world. That is, since in the real world, the relation
L(M) (= HU (M)) = HR(M) holds, S must ensure that this relation must be hold in the ideal world.
Note that HR(M) means that all query-response values to calculate HR(M) are obtained by only R
queries. Note that A does not have oracle access to O∗ and S has oracle access RO and O∗.

In this paper, we consider a stateless simulator for simplicity. Under a stateless simulator, we can omit
S.Rst and nop. The reset indifferentiable security with S.Rst and nop can be ensured by one without
S.Rst and nop where S is stateless, since we restrict the structure of S and a stateless simulator is not
affected by S.Rst.

Versatile Oracle. We define WRO such that the two points hold: (1) HU @r WRO and (2) the target
cryptosystems C are CDA secure in the WRO model. We call the WRO “Versatile Oracle” denoted by
VO. “Versatile” means that VO supports several hash constructions such as FOLSponge and ChopMD.
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For the point (1), to prove that HU @r VO, we must construct a stateless simulator S which
achieves two situations, extractable and unchangeable situations. In order for a simulator to realize these
situations, we define a sub oracle as O∗ = (T RO,RO∗, IC) where IC is an ideal cipher, RO∗ is a RO
and T RO is a traceable RO (TRO) introduced by Naito et al. [21] (See the following)

– Extractable Situation was pointed out by Dodis et al. [15], where S needs to extract a message
from a query to ensure the consistency with RO. Consider the NMAC construction Hg,h(M) =
g(h(M)) as an example case. In this case, a simulator S = (Sh, Sg) must be such that for any M the
relation L(M) (= RO(M)) = Sg(Sh(M)) holds. Sg is a simulator of g and Sh is a simulator of h.
When a query Sg(z) is made such that z = Sh(M), Sg needs to extract M from the query-response
pair (M, z) of Sh to define the response which is equal to the output of RO(M). However, since a
stateless simulator S cannot record its query-response pairs, S cannot extract M .
In order for S to achieve the extractable situation, we add T RO to O∗. T RO consists of a RO
ROT and a trace oracle T O, where for a query T O(z), if a query ROT (M) which is equal to z was
already made, T O returns M , and otherwise, T O returns ⊥. By using T RO, S can extract M from
z. Consider the NMAC case, again. First, for a query Sh(M) Sh returns z = ROT (M). Then, for a
query Sg(z) Sg can extract M by the query T O(z) and returns z = RO(M). That is, S can achieve
the extractable situation. Note that in this case, S does not use memory.

– Unchangeable Situation is that for a repeated query to a simulator S S must respond the
same value which was returned before. Usually, the underlying primitives U of indifferentiable hash
functions are an ideal cipher, a random permutation and a fixed input length RO (FILRO). These
ideal primitives are such that when a query U(w) was already made and the response was v, the
response of the repeated query U(w) is v. On the other hand, since a stateless simulator S cannot
record query-response values, for a repeated query to S, S cannot response the same value which
was returned before.
In order for S to realize the unchangeable situation, we add an ideal cipher IC and a RO RO∗ .
Consider the case that S simulates a FILRO. For a query S(w) S returns v = RO∗(w). For a repeated
query S(w), S can respond the same value v by setting v = RO∗(w). Note that in this case, the
simulator does not use memory. Similarly, by using IC, we can construct a stateless simulator which
achieves the unchangeable situation, when simulating an ideal cipher or a random permutation.

For the point (2), we must ensure that the sub oracle O∗ gives no advantage to an adversary in
the CDA game. The CDA game consists of two stages, where a first stage adversary A1 sends no value
to a second stage adversary A2.1 First, we suppose that the challenge ciphertext cβ does not leak any
information of messages (m0,m1) even with access to RO. This property is guaranteed by assuming
that a scheme satisfies some weak properties such as the IND-SIM security [23] in the RO model. Then,
since ROT of T RO, RO∗ are ideal primitives whose outputs do not leak no information for the inputs,
these oracles give no advantage to the adversary. A1 might deliver some information about messages
via interfaces of T O and IC by posing a value to ROT , E, or D, where E is an encryption oracle of
IC and D is a decryption oracle. If A2 could pose the corresponding output value to T O, D, or E, he
would obtain the value from A1. However, A2 cannot find the output value which are defined in the
first stage, because cβ does not leak any information of (m0, m1), and outputs of ROT , E, and D are
uniformly random. Therefore, T O and IC also give no advantage to the adversary.

Result for Point (1). In Section 4, we show that Sponge @r VO and chopMD @r VO. Since a
stateless simulator can realize extractable and unchangeable situations by using a VO, we can prove
1 In the first stage, an adversary A1 outputs two messages (m0, m1) and a random value r such that the jointed values

mi||r have sufficient min-entropy. In the second stage, an adversary A2 receives the challenge cipher text cβ = E(mβ ; r)
from the game where β is a random value of a single bit, and outputs a bit b, where E is an encryption function. The
adversary wins if b = β. Note that the length |r| of a random value is 0 when considering DPKE schemes.
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them. Similarly, we can obtain the same results for the prefix-free MD construction [13], the EMD
construction [4], and the MDP construction [17]. As an example, in Appendix E, we prove that PFMD @r

VO.

Result for Point (2). In Section 5, we show that EwH, REwH1 and IDREwH1 are CDA secure in the
VO model.

For PKE schemes, we show that a scheme is CDA secure in the VO model if the scheme satisfies the
IND-SIM security. RSS [23] showed that EwH and REwH1 are IND-SIM secure if an underlying PKE
scheme is CPA secure in the RO model. Thus, we obtain CDA secure PKE in the VO model from any
CPA secure PKE in the RO model by combining them.

For IBE schemes, we propose a generic construction of IBE, IDREwH1, which is an ID-based version
of the REwH1 PKE scheme. IDREwH1 contains an ID-CPA secure IBE scheme as a building block. We
show that IDREwH1 is ID-CDA secure in the VO model if an underlying IBE scheme is ID-CPA secure
in the RO model. As far as we know, IDREwH1 is the first explicit formulation and construction for
deterministic IBE and hedged IBE.

Related Works. There are two independent works regarding the RSS results [23]. However, these
papers don’t include results to salvage indifferentiable hash constructions such as Sponge and ChopMD
in the CDA games.

Luykx et al. showed that there are no meaningful hash constructions which are reset indifferentiable
from ROs [18]. This does not salvage indifferentiable hash constructions. Since the reset indifferentiability
from a RO cannot salvage meaningful hash constructions, it is plausible to consider a WRO to salvage
them.

Demay et al. introduced an extended framework of the indifferentiability [14]. This framework re-
stricts the size of simulator’s memory. This covers multi-stage games where for each stage, the size of
a value sent from the adversary to the next stage adversary is over those of simulator’s memory. They
clarified the size of simulator’s memory to ensure the restricted indifferentiability from a RO. The size of
simulator’s memory must not be 0, while in the CDA game, the first stage adversary sends no value to
the second stage adversary. Therefore, their result does not salvage indifferentiable hash constructions
in the CDA game.

2 Preliminaries

Notation. For two values x, y, x||y is the concatenated value of x and y. For some value y, x ← y means

assigning y to x. When X is a non-empty finite set, we write x
$←− X to mean that a value is sampled

uniformly at random from X and assign to x. ⊕ is bitwise exclusive or. |x| is the bit length of x. For
sets A and C, C

∪←− A means assign A ∪ C to C. For l × r-bit value M , div(r,M) divides M into r-bit
values (M1, . . . ,Ml) and outputs them where M1|| · · · ||Ml = M . For a b-bit value x, x[i, j] is the value
from (left) i-th bit to (left) j-th bit where 1 ≤ i ≤ j ≤ b. For example, let x = 01101001, x[3, 5] = 101.
For a Boolean function F , we denote by “∃1M s.t. F (M) is true” “there exists just a value M such that
F (M) is true”. Vectors are written in boldface, e.g., x. If x is a vector then |x| denotes its length and
x[i] denotes its i-th component for 1 ≤ i ≤ |x|. bitj(x) is the left j-th bit of x[1]|| . . . ||x[|x|].

Throughout this paper, we assume that any algorithm and game is implicitly given a security
parameter as input if we do not explicitly state.

Functionalities. This papers treat functionalities. A functionality provides two interfaces. These in-
terfaces are referred to as private and public. A private interface is accessed by honest parties such
as a cryptosystem. A public interface is accessed by adversaries. In this paper, the private interface of
a functionality F is denoted by F.priv and the public interface is denoted by F.pub. Functionalities
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treated in this paper are ideal primitives I and hash functions HU using an ideal primitive U . Ideal
primitives I discussed in this paper are an arbitrary input length random oracle (simply denoted by
RO) and a weakened RO (WRO) defined in the next section. Hash functions discussed in this paper
are the fixed output length Sponge hash function (FOLSpongeHF) [5], and the chop Merkle-Damg̊ard
hash function (ChopMDHF) [13]. The underlying ideal primitives U are a random permutation (RP)
when H is the FOLSpongeHF, and a fixed input length RO (FILRO) when H is the ChopMDHF.

Since a RO offers a single interface, this paper does not distinguish the public interface and the private
interface. On the other hand, we distinguish the interfaces of a WRO defined in the next section and
the interfaces of hash functions. The interfaces of a hash function HU using an ideal primitive U are
defined as HU .priv = HU and HU .pub = U .

Games. A game G consists of a single main procedure. A game can make use of a functionality F , a
cryptographic scheme C and a number of adversarial procedures A1, . . . ,Am together referred to as the
adversary. We denote this game by GA1,...,Am

C,F . C has access to F.priv. A1, . . . ,Am have accesses to F.pub

and C. Running a game GA1,...,Am

C,F means executing the sequence of statements of the game’s procedure
and the output of G is true or false.

This paper divides games into single-stage games and multi-stage games. In single-stage games, a
single adversary is appeared or the size of a value sent from every adversary to the next-stage adversary
is not restricted. Examples of single-stage games are the collision security game and the IND-CCA
game. On the other hand, in multi-stage games, multi-adversaries are appeared and the size of a value
sent from some-stage adversary to the next-stage adversary is restricted. An example of multi-state
games is the Chosen Distribution Attack (CDA) security game [1, 2]. The CDA security game is the
two-stage game, where the first-stage adversary sends no value to the second-stage adversary. Please
see the explicit formula of the CDA security game in Section 5.

Indifferentiability Frameworks [19, 23]. The indifferentiability framework ensures reducibility from
one system to another system in single-stage security games. Let F1 and F2 are two functionalities. The
indifferentiable advantage of F1 from F2 is defined as follows [19].

Advindiff,F2

F1,S (A) = |Pr[AF1.priv,F1.pub ⇒ 1] − Pr[AF2.priv,SF2.pub ⇒ 1]|.

SF2.pub is a simulator which has access to F2.pub. S’s task is to simulate F1.pub such that S is con-
sistent with F2.priv as (F1.priv, F1.pub). A is a distinguisher which has accesses to two interfaces of
F1, or F2.priv and S. In the F1 case, the distinguisher is denoted by AF1.priv,F1.pub. In the F2 case,
the distinguisher is denoted by AF2.priv,SF2.pub

. “AO1,O2 ⇒ 1” is that the distinguisher A, which has
accesses to two interfaces O1,O2, outputs a bit 1. We say F1 is indifferentiable from F2 if there exists a
simulator such that for any distinguisher A the advantage is negligible in the security parameter. If F1

is indifferentiable from F2, then for any cryptosystem C, C(F1) is at least as secure as C(F2) when the
security game is a single-stage security game.

Reset indifferentiability [23] is the stronger security notion than indifferentiability. In this case, a
distinguisher A can reinitialize internal values of a simulator to the initial values. When a simula-
tor is stateless, one can omit such a reset capacity. Therefore, the reset indifferentiable advantage is
bounded by the indifferentiable advantage where a simulator is stateless. This fact is also referred by
Demay et al. [14]. We call the stateless indifferentiability “SL-indifferentiability”. A functionality F1

is SL-indifferentiable from a functionality F2 if there exists a stateless simulator S such that for any
distinguisher A the SL-indifferentiable advantage is negligible in the security parameter. We denote by
Advsl-indiff,F2

F1,S (A) the SL-indifferentiable advantage of F1 from F2. Hereafter, we call the F1 world “Real
World” where A interacts with (F1.priv, F1.pub), and the F2 world “Ideal World” where A interacts with
(F2.priv, SF2.pub). We call the oracle F1.priv/F2.priv “Left Oracle” (denoted L) and the oracle F1.pub/S
“Right Oracle” (denoted R). Thus A interacts with (L,R). We call a query to L a “left query” (or L
query). Similarly we call a query to R a “right query” (or R query).

6



Algorithm SpongeP (M)

1 M ′ ← padS(M);
2 (M1, . . . , Mi) ← div(n, M ′);
3 s = IV ;
4 for i = 1, . . . , i do
5 s = P (s ⊕ (Mi||0c));
6 return s[1, n];

Fig. 1. Sponge

chopMDh(M)

1 M ′ ← padc(M);
2 (M1, . . . , Mi) ← div(d, M ′);
3 x ← IV ;
4 for j = 1, . . . , i do x ← h(x||Mj);
5 return x[s + 1, s + n];

Fig. 2. Chop Merkle-Damg̊ard

The reset indifferentiability framework ensures that if F1 is SL-indifferentiable from F2, then for
any cryptosystem C(·) and any game, the cryptosystem C(F1) is at least as secure as the cryptosystem
C(F2). More precisely, the reset indifferentiability framework ensures the following theorem [23].

Theorem 1 ([23]). Let G be any security game. Let F1 and F2 be functionalities. Let A1, . . . ,Am be
adversary and let S be a stateless simulator. Then there exist an adversary B1, . . . ,Bm and distinguisher
A such that

Pr[GA1,...,Am

C,F1
⇒ true] ≤ Pr[GB1,...,Bm

C,F2
⇒ true] + Advsl-indiff,F2

F1,S (A).

Moreover, tBi ≤ tAi + qAitS , qBi ≤ qAiqS , tA ≤ m + tG +
∑m

i=1 qG,itAi , qA ≤ qG,0 +
∑m

i=1 qG,itAi where
tA, tB, tA are the maximum running times of A,B, A; qA, qB are the maximum number of queries made
by A and B in a single execution; and qG,0, qG,1 are the maximum number of queries made by G to the
private interface and to the adversary.

Definitions of Hash Functions. We give the description of the FOLSponge construction [5]. Let P
be a permutation of d bits. The FOLSongeHF SpongeP : {0, 1}∗ → {0, 1}n is defined in Fig. 1 such
that n < d.2 Let c = d − n. padS : {0, 1}∗ → ({0, 1}n)∗ is an injective padding function such that the
last n-bit value is not 0. IV is a constant value of d bits. IV1 = IV [1, n] and IV2 = IV [n + 1, d]. For
example, padS(M) = M ||1||0i where i is a smallest value such that |M ||1||0i| is a multiple of n.

We give the description of the ChopMD construction [13]. Let h be a compression function which
maps a value of d + n + s bits to a value of n + s bits. The ChopMDHF chopMDh : {0, 1}∗ → {0, 1}n

is defined in Fig. 2. padc : {0, 1}∗ → ({0, 1}d)∗ is an injective padding function such that its inverse is
efficiently computable. IV is a constant value of n + s bits.

3 Versatile Oracle

In this section, we define a new WRO, called Versatile Oracle (VO) such that indifferentiable hash
functions such as the ChopMDHF and the FOLSpongeHF can be used as VOs and the CDA security
of schemes, which are CDA secure in the RO model, is ensured in the VO model. We use the reset
indifferentiability framework to ensure that a hash function can be used as a VO. In Section 4, we prove
that the ChopMDHF and the FOLSpongeHF are SL-indifferentiable from VOs. In Section 5, we prove
that the several schemes are CDA secure in the VO model. Consequently, Theorem 1 ensures the CDA
security of these schemes for each of the ChopMDHF and the FOLSpongeHF.

We define VO as (ROn, T ROw,RO∗
v, ICa,b). The interfaces are defined by VO.priv = ROn and

VO.pub = (ROn,RO∗
v, T ROw, ICa,b). ROn and RO∗

v are arbitrary input length ROs, where the output
lengths are n bit and v bit, respectively. ICa,b = (E,D) is an ideal cipher where the key length is
a bit and the block length is b bit. E : {0, 1}a × {0, 1}b → {0, 1}b is an encryption oracle and D :
{0, 1}a×{0, 1}b → {0, 1}b is a decryption oracle. T ROw = (ROT

w, T O) is a Traceable RO (TRO) which
2 Note that if the output length (denoted l) is smaller than n, the output length is achieved by returning s[1, l].
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was proposed by Naito et al. [21]. ROT
w is an arbitrary input length RO where the output length is w

bit. T O is a trace oracle where for query T O(z) such that |z| = w, it returns M if ∃1M such that a
query ROT

w(M) was already made, and it returns ⊥ otherwise. Note that the parameters (n, w, v, a, b)
are defined in each hash function. Note that ROn offers the both public and private interfaces, while
RO∗

v,ROT
w offer only public interfaces. In Appendix B, we give the method of implementing a VO.

SL-Indifferentiability from VO. Let HU be a target hash function and U is the underlying ideal
primitive. Then the advantage of the SL-indifferentiability from a VO is defined as follows.

Advsl-indiff,VO
HU ,S

(A) = |Pr[AHU ,U ⇒ 1] − Pr[AROn,SVO.pub ⇒ 1]|

where S is a stateless simulator.

The VO Model. From the definition of the reset indifferentiability (See Section 2), in the VO model,
an distinguisher has access to the public interface VO.pub = (ROn, T ROw,RO∗

v, ICa,b). Cryptosystems
have access to the private interface VO.priv = ROn.

4 VO Hash Functions

In this section, we show that the ChopMDHF and the FOLSpongeHF are SL-indifferentiable from
VOs. To prove the SL-indifferentiable security, we must construct a stateless simulator S which is
consistent with ROn as in the real world. In order to construct such simulator S, S must achieve
two situations which are extractable and unchangeable situations. The extractable situation is that S
extracts a message from a query to ensure the consistency with ROn. The unchangeable situation is
that for a repeated query to S, S always returns the same value. In the following, we demonstrate that
S which achieves these situations can be constructed.

4.1 SL-Indifferentiability for ChopMD

In the case of the ChopMDHF, we define the parameter of VO as w = s and v = d + n + s. Note that
ICa,b is not used. Therefore, VO = (ROn,RO∗

d+n+s, T ROs).

Theorem 2. There exists a stateless simulator S such that for any distinguisher A,

Advsl-indiff,VO
chopMDh,S

(A) ≤ qR(qR − 1) + 2σ(σ + 1)
2s

where A can make queries to left oracle L = chopMDh/ROn and right oracle R = h/S at most qL, qR

times, respectively, and l is a maximum number of blocks of a query to L. σ = lqL + qR. S makes at
most 3qR queries and runs in time O(qR). ¨
To simplify the explanation, we omit the padding function padc. In this case, we must construct a state-
less simulator S which achieves unchangeable and extractable situations. The unchangeable situation
can be achieved by using RO∗

d+n+s. The extractable situation can be achieved by using T ROs. We give
an example for the extractable situation. For a query S(IV ||m1), S chooses the response y1 = y1,1||y1,2

as y1,1 = ROT
s (m1) and y1,2 = ROn(m1) and returns y1, where |x| = n + s and |m| = d. For a query

S(y1||m2), S extracts m1 by the query T O(y1,1), chooses the response y2 as y2,1 = ROT
s (m1||m2) and

y2,2 = ROn(m1||m2), and returns y2. In this case, chopMDS(m1||m2) = ROn(m1||m2). This case is a
two message block case, while we can ensure the consistency for other message block cases. Therefore,
for the ChopMDHF, we can construct a stateless simulator which achieves the unchangeable and ex-
tractable situations, and we can prove that the ChopMDHF is SL-indifferentiable from a VO. The proof
for the ChopMDHF is given in Appendix C.
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4.2 SL-Indifferentiability for FOLSponge

We define the parameter of VO as w = c and b = d. We don’t care the key length a, since ICa,b can be
regarded as permutation P by fixing a key k∗. We denote E(k∗, ·) by P(·) and D(k∗, ·) by P−1(·). Thus,
P is a random permutation P of d bits and P−1 is its inverse oracle. Note that in this proof, RO∗

v are
not used. Thus, in this case, VO.priv = ROn and VO.pub = (ROn, T ROc,P,P−1).

Theorem 3. There exists a stateless simulator S = (SF , SI) such that for any distinguisher A,

Advsl-indiff,VO
SpongeP ,S

(A) ≤ 2σ(σ + 1) + q(q − 1)
2c

+
σ(σ − 1) + q(q − 1)

2d+1

where A can make at most qL, qF and qI queries to left L = SpongeP /ROn and right oracles RF =
P/SF , RI = P−1/SI . l is a maximum number of blocks of a query to L. σ = lqL+qF +qI and q = qF +qI .
S makes at most 3q queries and runs in time O(q). ¨

Similar to the ChopMDHF case, for the FOLSpongeHF, we can construct a stateless simulator S which
achieves the unchangeable and extractable situations. The unchangeable situation can be achieved by
using (P,P−1). The extractable situation can be achieved by using T ROc. S can extract a message
from T O when the right c-bit values of responses of queries to SF are defined by ROT

c . Namely, SF

uses a message, which will be extracted, as an input of ROT
c . The proof for the FOLSpongeHF is given

in Appendix D.

5 Multi-Stage Security in the VO Model

In this section, we show cryptosystems satisfying multi-stage security in the VO model. Specifically,
we show that for any PKE scheme, the non-adaptive CDA security [2] in the VO model is obtained
by assuming an weak property, IND-SIM security in the RO model. Also, we show that a generic
construction of IBE scheme which satisfies the non-adaptive ID-based CDA (ID-CDA) security in the
VO model. The previous work [23] showed the non-adaptive CDA security for PKE schemes based
on the same assumption (IND-SIM) only with the specific NMAC hash function. That work does not
mention about CDA secure IBE. Our work focuses on how we obtain CDA secure PKE schemes and
ID-CDA secure IBE schemes with large class of hash functions. For PKE, we show that if a PKE scheme
is IND-SIM secure in the RO model, then it is CDA secure in the VO model. It was shown that EwH [1]
and REwH1 [2] satisfy IND-SIM security [23]; thus, any CPA secure PKE scheme can be converted into
IND-SIM secure scheme. For IBE, we show a generic construction of IBE, called IDREwH1 which is an
analogy of REwH1, and is ID-CDA secure in the VO model if underlying IBE scheme is ID-CPA secure
in the RO model. Therefore, any CPA secure PKE and ID-CPA secure IBE in the RO model can be
generically converted into CDA secure PKE and ID-CDA secure IBE in the VO model.

5.1 CDA Secure PKE in the VO Model

Public Key Encryption (PKE). A public key encryption scheme AE = (Gen, Enc, Dec) consists of
three algorithms. Key generation algorithm Gen outputs public key pk and secret key sk. Encryption
algorithm Enc takes public key pk, plaintext m, and randomness r, and outputs ciphertext c. Decryption
algorithm Dec takes secret key sk and ciphertext c, and outputs plaintext m or distinguished symbol ⊥.
For vectors m, r with |m| = |r| = l which is the size of vectors, we denote by Enc(pk,m; r) the vector
(Enc(pk,m[1]; r[1]), . . . , Enc(pk,m[l]; r[l])). We say that AE is deterministic if Enc is deterministic.

CDA Security. We explain the CDA security (we quote the explanation of the CDA security in [23]).
Fig. 3 illustrates the non-adaptive CDA game for a PKE scheme AE using a functionality F . This notion
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CDAA1,A2
AE,F

β
$←− {0, 1}

(pk, sk)
$←− Gen

(m0,m1, r) ← AF.pub
1

c ← EncF.priv(pk,mβ ; r)

β′ ← AF.pub
2 (pk, c)

return (β = β′)

IND-SIMB
AE,S,F

β
$←− {0, 1}

(pk, sk)
$←− Gen

β′ ← BRoS,F.pub(pk)
return (β = β′)

RoS(m, r)

If β = 1 then return EncF.priv(pk, m; r)
Otherwise return SF.priv(pk, |m|)

Fig. 3. CDA game and IND-SIM game

captures the security of a PKE scheme when randomness r used in encryption may not be a string of
uniform bits. For the remainder of this section, fix a randomness length ρ ≥ 0 and a plaintext length
ω > 0. An (µ, ν)-mmr-source M is a randomized algorithm that outputs a triple of vector (m0,m1, r)
such that |m0| = |m1| = |r| = ν, all components of m0 and m1 are bit strings of length ω, all components
of r are bit strings of length ρ, and (mβ [i], r[i]) 6= (mβ [j], r[j]) for all 1 ≤ i < j ≤ ν and all β ∈ {0, 1}.
Moreover, the source has min-entropy µ, meaning Pr[(mβ[i], r[i]) = (m′, r′)|(m0,m1, r) ← M] ≤ 2−µ

for all β ∈ {0, 1}, all 1 ≤ i ≤ ν, and all (m′, r′). A CDA adversary A1,A2 is a pair of procedures, the
first of which is a (µ, ν)-mmr-source. The CDA advantage for a CDA adversary A1,A2 against scheme
AE using a functionality F is defined by

Advcda
AE,F (A1,A2) = 2 · Pr[CDAA1,A2

AE,F ⇒ true] − 1.

As noted in [2], in the RO model, mmr-sources have access to the RO. In this setting, the min-entropy
requirement is independent of the coins used by the RO, meaning the bound must hold for any fixed
choice of function as the RO. If this condition is removed, one can easily break the CDA security for any
cryptosystem using the indifferentiable hash function. That is, A1 and A2 can easily share the messages
(m1,m2, r).

IND-SIM Security. The IND-SIM security is a special notion for PKE schemes. It captures that
an adversary cannot distinguish outputs from the encryption algorithm and from a simulator S even
if the adversary can choose plaintext and randomness. Fig. 3 shows the IND-SIM game. We define the
IND-SIM advantage of an adversary B by

Advind-sim
AE,S,F (B) = 2 · Pr[IND-SIMB

AE,F ⇒ true] − 1.

As noted in [23], in the standard model this security goal is not achievable because AE uses no random-
ness beyond that input. In the RO model, we will use it when the adversary does not make any RO
queries. A variety of PKE schemes is shown to satisfy IND-SIM security in the RO model.

CDA Security in the VO Model. The following theorem shows that for any PKE scheme the non-
adaptive CDA security in the VO model is obtained from IND-SIM security in the RO model.

Theorem 4. Let AE be a PKE scheme. Let (A1,A2) be a CDA adversary in the VO model making
at most qRO, qRO∗ , qROT , qT O, qE , qD queries to ROn,RO∗

v, T ROw = (ROT
w, T O), ICa,b = (E,D). For

any simulator S there exists an IND-SIM adversary B such that

Advcda
AE,VO(A1,A2) ≤ Advind-sim

AE,S,ROn
(B) + qRO · maxpkAE +

qRO + 4q2
RO∗ + 4q2

ROT

2µ

+max

{
4q2

T O
2µ

,
4q2

T O
2w

}
+ max

{
4q2

E + 4q2
D

2µ
,
4q2

E + 4q2
D

2b

}
.
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B makes no RO queries, makes ν RoS-queries, and runs in time that of (A1,A2) plus O(qRO + qRO∗ +
qROT + qT O + qE + qD). maxpkAE is the maximum public key collision probability defined as maxpkAE =

max
γ∈{0,1}∗

Pr[pk = γ : (pk, sk) $←− Gen]. ¨

The proof outline is as follows: First, we start with game G0 which is exactly the same game as the
CDA game in the VO model. Secondly, we transform G0 to game G1 so that ROn returns a random
value for a message posed by Enc. In game G1, outputs of ROn does not contain any information
about computations to generate the challenge ciphertext. Thirdly, we transform G1 to game G2 so that
ciphertext c is generated from a simulator S in the IND-SIM game. In game G2, ciphertext c does not
contain any information about outputs of A1. Thus, A1 cannot hand over any information to A2 with
c. Finally, we transform G2 to game G3 so that the table of inputs and outputs of each oracle in VO
(except ROn) for A1 is independent of the table for A2 according to the output of A1. In game G3,
queries to oracles for A2 does not contain any information about the output of A1, and A1 cannot hand
over any information to A2 with VO. Thus, the advantage of A2 in G3 is nothing.

The proof of Theorem 4 is shown in Appendix F.

5.2 ID-CDA Secure IBE in the VO Model

ID-based Encryption (IBE). An ID-based encryption scheme IBE = (IBE.Setup, IBE.Gen, IBE.Enc,
IBE.Dec) consists of four algorithms. Setup algorithm IBE.Setup outputs public parameter params and
master secret key msk. Key generation algorithm IBE.Gen takes public parameter params, master se-
crete key msk and ID id, and outputs secret key sk for id. Encryption algorithm IBE.Enc takes public
parameter params, ID id, plaintext m, and randomness r, and outputs ciphertext c. Decryption algo-
rithm IBE.Dec takes public parameter params, secret key sk, and ciphertext c, and outputs plaintext
m or distinguished symbol ⊥. For vectors m, r with |m| = |r| = l which is the size of vectors, we de-
note by IBE.Enc(params, id,m; r) the vector (IBE.Enc(params, id,m[1]; r[1]), . . . , IBE.Enc(params, id,
m[l]; r[l])). We say that IBE is deterministic if IBE.Enc is deterministic.

ID-based CPA and CDA Security. We define the ID-CPA and the (non-adaptive) ID-CDA security.
The ID-CPA security is a standard one [8–10] except that an adversary can pose multiple challenge
plaintext pairs. It is known that the CPA game with multiple challenge is polynomial-time reducible to
the game with single challenge. Let CH be the challenger of the ID-CPA game. The ID-CDA security
is based on the CDA security. Fig. 4 illustrates the ID-CPA game and the non-adaptive ID-CDA game
in the CPA case for IBE using a functionality F . As the CDA security, the ID-CDA adversary A1

is a (µ, ν)-mmr-source. (1) The advantage for an ID-CPA adversary B against scheme IBE using a
functionality F and (2) the advantage for an ID-CDA adversary (A1,A2) against scheme IBE using a
functionality F are defined by

(1) Advid-cpa
IBE,F (B) = 2 · Pr[ID-CPAB

IBE ,F ⇒ true] − 1.

(2) Advid-cda
IBE,F (A1,A2) = 2 · Pr[ID-CDAA1,A2

IBE,F ⇒ true] − 1.

Hedged ID-based Encryption IDREwH1. We show an example of ID-CDA secure hedged IBE,
IDREwH1. The proposed scheme is a simple extension of REwH1 [2].

Let IBEr = (IBE.Setupr, IBE.Genr, IBE.Encr, IBE.Decr) be an IBE scheme with plaintext length λ
and randomness length ρ. ROn has range size ρ = n bits. IDREwH1 = (IBE.Setupr, IBE.Genr, IBE.Enc,
IBE.Decr) uses same algorithms as IBEr except IBE.Enc which is defined as

IBE.EncROn(params, id,m; r) = IBE.Encr(params, id,m;ROn(params, id,m, r)).
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ID-CPAB
IBE,F

β
$←− {0, 1}

If selective-ID setting

id∗ ← BF.pub

(params, msk)
$←− IBE.Setup

If selective-ID setting

(m0,m1) ← BF.pub,IBE.Gen(·)(params)
If full-ID setting

(m0,m1, id
∗) ← BF.pub,IBE.Gen(·)(params)

r
$←− ({0, 1}ρ)l

c ← IBE.EncF.priv(params, id∗,mβ ; r)

β′ ← BF.pub,IBE.Gen(·)(c)
return (β = β′)

ID-CDAA1,A2
IBE,F

β
$←− {0, 1}

If selective-ID setting

id∗ ← AF.pub
1

(params, msk)
$←− IBE.Setup

If selective-ID setting

(m0,m1, r) ← AF.pub,IBE.Gen(·)
1

If full-ID setting

(m0,m1, id
∗, r) ← AF.pub,IBE.Gen(·)

1

c ← IBE.EncF.priv(params, id∗,mβ ; r)

β′ ← AF.pub,IBE.Gen(·)
2 (params, id∗, c)

return (β = β′)

Fig. 4. ID-CPA and ID-CDA game

If |ρ| = 0, we can obtain an ID-based version of a deterministic encryption scheme, Encrypt-with-
Hash. Our theorems about IDREwH1 also work for deterministic encryption.

ID-CDA Security in the VO Model. We prove the ID-CDA security of IDREwH1; that is, we show
that IDREwH1 is selective (resp. full) ID-CDA secure in the VO model if IBEr is selective (resp. full)
ID-CPA secure in the RO model.

Theorem 5. Let IBEr be an IBE scheme. Let (A1,A2) be a selective (resp. full) CDA adversary for
IDREwH1 in the VO model, which makes at most qRO, qRO∗ , qROT , qT O, qE , qD queries to ROn,RO∗

v,
T ROw = (ROT

w, T O), ICa,b = (E,D). Then, there exists a selective (resp. full) CPA adversary C for
IBEr such that

Advid-cda
IDREwH1,VO(A1,A2) ≤ 2Advid-cpa

IBEr,RO(C) + qRO · maxparamsIBEr
+

qRO + 4q2
RO∗ + 4q2

ROT

2µ

+max

{
4q2

T O
2µ

,
4q2

T O
2w

}
+ max

{
4q2

E + 4q2
D

2µ
,
4q2

E + 4q2
D

2b

}
.

C runs in time that of (A1,A2) plus O(qRO + qRO∗ + qROT + qT O + qE + qD). maxparamsIBEr
is the

maximum public-parameter collision probability defined as maxparamsIBEr
= max

γ∈{0,1}∗
Pr[params = γ :

(params,msk) $←− IBE.Setup]. ¨

The proof outline is as follows: First, we start with game G0 which is exactly the same game as the
ID-CDA game in the VO model. Secondly, we transform G0 to game G1 so that challenge ciphertext c
is generated from fresh randomness instead of the output of ROn. Thirdly, we transform G1 to game
G2 so that challenge ciphertext c is generated from all zero messages instead of given messages from A1.
In game G2, ciphertext c does not contain any information about outputs of A1. Finally, we transform
G2 to game G3 so that the table of inputs and outputs of each oracle in VO (except ROn) for A1 is
independent of the table for A2 according to the output of A1. In game G3, queries to oracles for A2

does not contain any information about the output of A1, and A1 cannot hand over any information to
A2 with VO. Thus, the advantage of A2 in G3 is nothing.

The proof of Theorem 5 is shown in Appendix H.
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A Graph Representations for FOLSponge and Merkle-Damg̊ard

Sponge Graph. The proof of the indifferentiability from a RO of the SpongeHF is in the random
permutation model [5], where P is a random permutation and P−1 be an inverse oracle. The proof of
the SL-indifferentiability of the SpongeHF is thus in the random permutation model. In the real world,
the left oracle L = SpongeP , and the right oracles (RF , RI) = (P, P−1) (F means “forward” and I
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Fig. 5. Figure of Sponge Fig. 6. Figure of Merkle-Damg̊ard

ROn(M)

1 if F[M ] =⊥, F[M ]
$←− {0, 1}n;

2 return F[M ];

RO∗
v(M)

1 If F∗[M ] =⊥, F∗[M ]
$←− {0, 1}v;

2 return F∗[M ];

ROT
w(M)

1 if FT [M ] =⊥ then FT [M ]
$←− {0, 1}w;

2 return FT [M ];

T O(y)

1 if ∃1M s.t. FT [M ] = y then return M ;
3 return ⊥;

E(k, x)

1 if E[k, x] =⊥, y
$←− {0, 1}b\T+[k];

2 Update(k, x, y);
3 return E[k, x];

D(y)

1 if D[k, y] =⊥, x
$←− {0, 1}b\T−[k];

2 Update(k, x, y);
3 return D[k, y];

Fig. 7. Versatile Oracle VO

means “inverse”). In the ideal world, (L,RF , RI) = (RO, SF , SI) where SF is a simulator for P and SI

is a simulator for P−1.
We define a graph GS , which is initialized with the single node IV . Edges and nodes in this graph

are defined by right query-responses which follow the Sponge structure. The nodes are chaining values
and the edges are message blocks. For example, if (X1, Y1), (X2, Y2) are query-responses of RF or RI

such that X1[n + 1, d] = IV2 and Y1[n + 1, d] = X2[n + 1, d] then IV, Y1, Y2 are the nodes of GS and
M1,M2 are the edges where M1 = IV1 ⊕ X1[1, n] and M2 = Y1[1, n] ⊕ X2[1, n]. We denote the path

by IV
M1−−→ Y1

M2−−→ Y2 or IV
M1||M2−−−−−→ Y2 (Fig. 5 may help to understand the graph). We call a path

following the Sponge structure “Sponge path”.

Merkle-Damg̊ard Graph. In the proofs of the indifferentiability from ROs of the ChopMDHF and
the PFMD hash function (PFMDHF) [11–13], the compression function h is a RO. The proofs of the SL-
indifferentiability of the ChopMDHF and the FPMDHF are thus in the RO model. So in the real world,
the left oracle L = chopMDh/PFMDh, and the right oracle R = h. In the ideal world, (L,R) = (RO, S)
where S is a simulator for h.

We define a graph GMD, which is initialized with a single node IV . Edges and nodes in this graph
are defined by right query-responses which follow the MD structure. The nodes are chaining values
and the edges are message blocks. For example, if (IV,m1, y1), (y1,m2, y2) are query-responses of R,
IV, y1, y2 are the nodes of G amd m1,m2 are the edges. We denote the MD path by IV

m1−−→ y1
m2−−→ y2

or IV
m1||m2−−−−→ y2 (Fig. 6 may help to understand the path).

This graph is used in the proofs of the ChopMDHF (Theorem 2) and the PFMDHF (Theorem 6).
For a MD path IV

M∗
−−→ y, if ∃M s.t. pfpad(M) = M∗, then we call the MD path “PFMD path”.

B Implementation of VO

In this Appendix, we give an implementation method of VO = (ROn,RO∗
v, T ROw, ICa,b). VO can be

implemented as Fig. 7.
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S(x||m) where x = x1||x2 (|x1| = s, |x2| = n) and |m| = d

1 M ← T O(x1);
2 if x = IV then
3 z ← ROn(m);
4 w ← ROT

s (m);
5 else if M 6=⊥ then
6 z ← ROn(M ||m);
7 w ← ROT

s (M ||m);
8 else w||z ← RO∗

n+s(x||m);
9 return w||z;

Fig. 8. Simulator S

ROn is shown in Fig. 7 (Left) where the input length is arbitrary and the output length is n bits.
F is a (initially everywhere ⊥) table.

RO∗
v is shown in Fig. 7 (Left) where the input length is arbitrary and the output length is v bits,

and F∗ is a (initially everywhere ⊥) table. Note that v is defined in each hash function.
T ROw is shown in Fig. 7 (Center) which consists of a RO ROT

w and a Trace Oracle T O. The input
length of ROT

w is arbitrary. The output length of ROT
w and the input length of T O are w bits, and FT

is a (initially everywhere ⊥) table. Note that w is defined in each hash function.
ICa,b can be implemented as Fig. 7 (Right) which consists of an encryption oracle E and a decryption

oracle D where the first input of E is the key of a bits and the second input is the plain text of b bits,
and the first input of D is the key of a bits and the second input is the cipher text of b bits. E and
D are (initially everywhere ⊥) tables where for the query E(k, x) (resp. D(k, y)) the output is recored
in E[k, x] (resp. D[k, y]). T+[k] and T−[k] are (initially empty) tables which store all values of E[k, ·]
and D[k, ·], respectively. Update(k, x, y) is the procedure wherein the tables E, D, T+[k] and T−[k] are
updated, E[k, x] ← y, D[k, y] ← x, T+[k] ∪←− {y} and T−[k] ∪←− {x}. Note that the a, b, are defined in
each hash function.

C Proof of Theorem 2

In this proof, we use the MD graph described in Appendix A. And we use the implementation method
defined in Appendix B of a VO.

Simulator S. We define a stateless simulator S in Fig. 8. In this proof, the padding function padc is
removed. Thus the left queries are in ({0, 1}d)∗. Note that the ChopMDHF with the padding function
is the special case of one without the padding function. Thus the security of the ChopMDHF without
the padding function ensures the security of one with the padding function. S’s task is to simulate
the compression function h such that ROn and S are consistent, that is, for any MD path IV

M−→ z,
z[s + 1, n + s] = ROn(M). The simulator S defined in Fig. 8 is consistent with ROn. We give an
example that S is consistent with ROn. For ordered queries S(IV ||M1), S(w1||z1||M2) where w1||z1 =
S(IV ||M1), w2||z2 = S(w1||z1||M2), the structure of S ensures that w1 = ROT

s (M1) (due to the step
4), and w2 = ROT

s (M1||M2) (due to the step 7). Thus, the path (M1||M2||w2) is recorded in the table
FT where FT [M1||M2] = w2. Then, for query S(w2||z2||M3), the response w3||z3 is defined such that
z3 = ROn(M1||M2||M3) (due to the step 6). Notice that M1||M2 can be obtained by the queries T O(w2)

(due to the step 1). So in this case S is consistent with ROn, that is, the path IV
M1||M2||M3−−−−−−−→ w3||z3

is such that z3 = ROn(M1||M2||M3). Though this case is a three message block case, S ensures the
consistency for other message block cases.
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Detail. To evaluate the SL-indifferentiable advantage, we consider five games. In each game, distin-
guisher A has oracle access to left oracle L and right oracle R.

– Game 1 is the ideal world, that is, (L,R) = (ROn, S).
– Game 2 is (L,R) = (ROn, S1), where S1 keeps all query-response pairs. For a query S1(x||m), if

there is (x||m, y) in the query-response history, then S1 returns y, otherwise, S1 returns S(x||m).
– Game 3 is (L,R) = (L1, S1), where on a query L1(M) L1 first makes queries to S1 which correspond

with chopMDS1(M) and returns the output of ROn(M).
– Game 4 is (L,R) = (chopMDS1 , S1).
– Game 5 is the real world, that is, (L,R) = (chopMDh, h).

Let Gi be an event that A outputs 1 in Game i. We thus have that

Advsl-indiff,VO
chopMDh,S

(A) ≤
4∑

i=1

|Pr[Gi] − Pr[Gi+1]| ≤
qR(qR − 1) + 2σ(σ + 1)

2s
.

In the following, we justify the above bound by evaluating each difference.

Game 1 ⇒ Game 2. In Game 2, use of the query-response history ensures that for a repeated query
R(x||m) the same value is responded, while in Game 1 there is a case that for some repeated query
R(x||m) where y was responded, a different value y∗ (6= y) is responded due to the definition of T O.
The difference |Pr[G1] − Pr[G2]| is thus bounded by the probability that in Game 1 a different value
is responded. We call the event “Diff”. Procedures of S are controlled by T O (See the steps 2, 5, and
8). Therefore, if Diff occurs, some output of T O(x1) is changed. More precisely, if Diff occurs, the
following event occurs.

– For a repeated query T O(y) where w was responded before, a different value w∗ is responded. There
are two cases for (w,w∗).
• Diff1: w =⊥ and w∗ 6=⊥.
• Diff2: w 6=⊥ and w∗ =⊥.

We thus have that

|Pr[G1] − Pr[G2]| ≤ Pr[Diff1] + Pr[Diff2] ≤
qR(qR − 1)

2s
.

We justify the bound as follows.
Consider Diff1 which occurs when the following case occurs. When query T O(y) was made where

the response was w (=⊥), a query ROT
s (w∗) such that y = ROT

s (w∗) had not been made. When the
repeated query T O(y) is made where the response is w∗, the query ROT

s (w∗) such that y = ROT
s (w∗)

was already made. Therefore, first y is defined. Second, the output of ROT
s (w∗) is defined. Thus,

Pr[Diff1] is bounded by the probability that an output of ROT
s (w∗) (s-bit random value) hits a value

y. Since the numbers of queries to ROT
s and T O are at most qR times,

Pr[Diff1] ≤
qR∑
i=1

i − 1
2s

≤ qR(qR − 1)
2s+1

.

Consider Diff2. From the definition of T O, if Diff2 occurs, a collision for ROT
s occurs. We thus

have that

Pr[Diff2] ≤
qR∑
i=1

i − 1
2s

≤ qR(qR − 1)
2s+1

.
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Game 2 ⇒ Game 3. The difference between Game 2 and Game 3 is that for a left query L(M), in
Game 2 L does not make a right query, while in Game 3 L makes additional right queries corresponding
with chopMDS1(M). Note that A cannot find the additional right query-responses directly but can find
those by making the corresponding right queries. So we must show that the additional right query-
responses that A obtains don’t affect the A’s behavior. We show Lemma 1 where for any MD path
IV

M−→ z, z[s + 1, n + s] = ROn(M) unless Badj occurs. Let Ti be a list which records (xt[1, s], yt[1, s])
for t = 1, . . . , i − 1 where (xt||mt, yt) is a t-th R query-response (yt = S1(xt||mt)).

– Badj is that in Game j for some i-th query S1(xi||mi) the response yi is such that yi[1, s] collides
with some value in Ti ∪ {xi[1, s]} ∪ {IV [1, s]}.

Lemma 1 is also used in the evaluation between Game 3 and Game 4. Therefore, Lemma 1 ensures that
unless the bad event occurs, in both games, responses of right queries which are leafs of MD paths3

are defined by the same queries to ROT
s and ROn. Namely, in Game 3, unless the bad event occurs,

the responses of the additional right queries which A obtains are chosen from the same distribution as
in Game 2. Thus, the difference |Pr[G2] − Pr[G3]| is bounded by the probability of occurring the bad
event. Precisely,

|Pr[G2] − Pr[G3]| ≤|Pr[G2|Bad2]Pr[Bad2] + Pr[G2|¬Bad2]Pr[¬Bad2]
− (Pr[G3|Bad3]Pr[Bad3] + Pr[G3|¬Bad3]Pr[¬Bad3])|

≤|Pr[G2|¬Bad2](Pr[Bad3] − Pr[Bad2])
+ (Pr[G2|Bad2]Pr[Bad2] − Pr[G3|Bad3]Pr[Bad3])|

≤max{Pr[Bad2], Pr[Bad3]} ≤ σ(σ + 1)
2s

where Pr[G2|¬Bad2] = Pr[G3|¬Bad3] from Lemma 1. We justify the bound later.

Lemma 1. In Game j, unless Badj occurs, for any MD path IV
M−→ y y[s + 1, n + s] = ROn(M). ¨

Proof of Lemma 1. Assume that Badj does not occur. Let IV
M−→ y be any MD path. We show

that y[s + 1, n + s] = ROn(M). Let (x1||m1, y1), . . . , (xt||mt, yt) be query-response pairs of S1 which
correspond with the MD path where x1 = IV , xi = yi−1 (i = 2, . . . , t), yt = y, and M = m1|| . . . ||mt.

When t = 1, y[s + 1, n + s] = ROn(M) (see the steps 2-4).
We consider the case that t ≥ 2.
Since Badj does not occur, the case that for some i ∈ {1, . . . , t − 1}, (xi||mi, yi) is defined after

(xi+1||mi+1, yi+1) was defined does not occur. So (x1||m1, y1), . . . , (xt||mt, yt) are defined by this order.
Therefore, when the query S1(xt||mt) is made, the pair (m1|| . . . ||mj−1, yt−1) is already recorded in FT ,
that is, FT [m1|| . . . ||mt−1] = yt−1 = xt.

Since Badj does not occur, no collision for ROT
s occurs. Therefore, there is no value M∗ such that

M∗ 6= m1|| . . . ||mt−1 and FT [M∗] = xt.
Thus, for the query S(xt||mt), T O(xt) returns m1|| . . . ||mt−1 (the step 1) and then the response yt

is defined such that yt[s + 1, n + s] = ROn(M) (the step 6).
ut

Evaluations of Pr[Bad2], Pr[Bad3]. In Game 2 and Game 3 S1 is called at most qR and σ times,
respectively. The left s-bit values of all outputs of S1 are uniformly chosen at random from {0, 1}s. We

3 A leaf of the MD path IV
M−→ z is z.
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SF (X) where x = X[1, n], y = Y [n + 1, d]

1 M ← T O(y);
2 if y = IV2 then
3 z ← ROn(x ⊕ IV1); w ← ROT

c (x ⊕ IV1);
4 else if M 6=⊥ then
5 m ← x ⊕ROn(M);
6 z ← ROn(M ||m); w ← ROT

c (M ||m);
7 else z||w ← P(x||y);
8 return z||w;

SI(Y ) where z = Y [1, n], w = Y [n + 1, d]

1 M ← T O(w);
2 if M 6=⊥ and |M | = n then
3 x ← IV1 ⊕ M ; y ← IV2;
4 if M 6=⊥ and |M | > n then
5 let M = M∗||m (|m| = n);
6 x ← m ⊕ROn(M); y ← ROT

c (M∗);
7 else x||y ← P−1(z||w);
8 return x||y;

Fig. 9. Simulator SF (left) and SI (right)

thus have that

Pr[Bad2] ≤
qR∑
i=1

2(i − 1) + 2
2s

=
qR(qR + 1)

2s
,

Pr[Bad3] ≤
σ∑

i=1

2(i − 1) + 2
2s

=
σ(σ + 1)

2s
.

Game 3 ⇒ Game 4. The difference between Game 3 and Game 4 is the left oracle L where in Game
3 L(M) returns ROn(M), while in Game 4 L(M) returns chopMDS1(M). Thus, the difference does not
change behavior of A iff in Game 4 for any query L(M), L(M) returns ROn(M). From Lemma 1, for
any MD path IV

M−→ z, z[s + 1, s + n] = ROn(M) unless the bad event Bad4 occurs. Since S1 is called
at most σ times, we have that

|Pr[G3] − Pr[G4]| ≤ Pr[Bad4] ≤
σ(σ + 1)

2s
.

Game 4 ⇒ Game 5. Since outputs of S1 are uniformly chosen at random from {0, 1}n+s, the difference
of R does not affect the A’s behavior. We thus have that Pr[G4] = Pr[G5]. ut

D Proof of Theorem 3

In this proof, we use the Sponge graph described in Appendix A. And we use the implementation
method defined in Appendix B of a VO.

Simulator S. We define a stateless simulator S in Fig. 9. S’s task is to simulate (P, P−1) such that S

is consistent with ROn, that is, for any Sponge path IV
M−→ Y , Y [1, n] = ROn(M). In this proof, we

omit the padding function padS . Thus the left queries are in ({0, 1}n)∗. Note that the FOLSpongeHF
with the padding function is the special case of one without the padding function. Thus the security of
the FOLSpongeHF without the padding function ensures the security of one with the padding function.
SF and SI simulate P and P−1, respectively. The simulator in Fig. 9 is consistent with ROn. We
give an example that S is consistent with ROn. For ordered queries SF (x1||IV2), SF (x2||w1) where
z1||w1 = SF (x1||IV2), z2||w2 = SF (x2||w1), the structure of S ensures that w1 = ROT

c (M1) (the step
3 of SF ) and w2 = ROT

c (M1||M2) (the step 6 of SF ) where M1 = IV1 ⊕ x1 and M2 = z1 ⊕ x2. Then,
for a query SF (x3||w2), the response z3||w3 is defined such that z3 = ROn(M1||M2||M3) (the step 6 of
SF ) where M3 = z2 ⊕ x3. Notice that M1||M2 can be obtained by the queries T O(w2) (the step 1 of
SF ) and z2 can be obtained by the query ROn(M1||M2) (the step 5 of SF ). Though this case is three
message block case, S ensures cases for other message blocks.
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P1(X)

1 if ∃(j, X, Y ) ∈ Q then return Y ;

2 Y
$←− {0, 1}d; Q ∪←− (t, X, Y ); t ← t + 1;

3 return Y ;

P−1
1 (X)

1 if ∃(j, X, Y ) ∈ Q then return X;

2 X
$←− {0, 1}d; Q ∪←− (t, X, Y ); t ← t + 1;

3 return X;

Fig. 10. Q is a (initially empty) list and initially t = 1. In the step 1 of P1,P−1
1 , j is a maximum value.

Detail. The proof is given as follows. To evaluate the SL-indifferentiable advantage, we consider six
games. In each game, distinguisher A has oracle access to the left oracle L and the right oracles RF , RI .

– Game 1 is the ideal world, that is, (L,RF , RI) = (ROn, SF , SI).
– Game 2 is that a random permutation P and its inverse P−1 are changed into P1 and P−1

1 , respec-
tively. So the simulator has oracle access to (P1,P−1

1 ) instead of (P,P−1). (P1,P−1
1 ) are implemented

as in Figure. 10.
– Game 3 is (L,RF , RI) = (ROn, S1F , S1I), where S1 keeps all query-responses (X,Y ) where Y =

S1F (X) or X = S1I(Y ). For query S1F (X), if there is (X,Y ) in the query-response history, then
S1F returns Y , otherwise, S1F returns SF (X). For query S1I(Y ), if there is (X,Y ) in the query-
response history, then S1I returns X, otherwise, S1I returns SI(Y ).

– Game 4 is (L,RF , RI) = (L1, S1F , S1I), where on a query L1(M) L1 first makes S1F queries which
correspond with SpongeS1F (M) then returns ROn(M).

– Game 5 is (L,RF , RI) = (SpongeS1F , S1F , S1I).
– Game 6 is the real world, that is, (L,RF , RI) = (SpongeP , P, P−1).

Let Gi be an event that A outputs 1 in Game i. We thus have that

Advsl-indiff,VO
SpongeP ,S

(A) ≤
5∑

i=1

|Pr[Gi] − Pr[Gi+1]| ≤
2σ(σ + 1) + q(q − 1)

2c
+

σ(σ − 1) + q(q − 1)
2d+1

.

In the following, we justify the above bound by evaluating each difference.

Game 1 ⇒ Game 2. In Game 1, a random permutation P and its inverse P−1 are uses, while in
Game 2, P1 and P−1

1 are used where the outputs are uniformly chosen at random from {0, 1}d. Thus
|Pr[G1] − Pr[G2]| is bounded by the collision probability of (P1,P−1

1 ). Since P1 and P−1
1 are called at

most q times,

|Pr[G1] − Pr[G2]| ≤
q∑

i=1

i − 1
2d

=
q(q − 1)

2d+1
.

Game 2 ⇒ Game 3. In Game 3, use of the query-response history ensures that for any repeated query
RF (X) (resp. RI(Y )) the same value Y (resp. X) is responded, while in Game 2 there is a case due to
the definition of T O where for some repeated query RF (X) (or RI(Y )) where Y (or X) was responded,
a different value Y ∗ (or X∗) is responded. The difference |Pr[G2] − Pr[G3]| is thus bounded by the
probability that in Game 3 the different value is responded. We call the event “Diff”. Procedures of S
are controlled by T O (See the steps 2, 4, and 7 of SF and the steps 2, 4, and 7 of SI). Therefore, if Diff
occurs, some output of T O(y) is changed. More precisely, if Diff occurs, the following event occurs.

– For a repeated query T O(y) where w was responded before, a different value w∗ is responded. There
are two cases for (w,w∗).
• Diff1: w =⊥ and w∗ 6=⊥.
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• Diff2: w 6=⊥ and w∗ =⊥.

We thus have that

|Pr[G2] − Pr[G3]| ≤ Pr[Diff1] + Pr[Diff2] ≤
q(q − 1)

2c
.

We justify the bound as follows.
Consider Diff1. When a query T O(y) was made, the response was w =⊥ and a query ROT

c (w∗)
such that y = ROT

c (w∗) had not been made. And when the repeated query T O(y) is made, the response
is w∗ and the query ROT

c (w∗) such that y = ROT
c (w∗) was made. Thus Pr[Diff1] is bounded by the

probability that an output of ROT
c (w∗) (c-bit random value) hits a value y. Since the numbers of queries

to ROT
c and T O are at most q times,

Pr[Diff1] ≤
q∑

i=1

i − 1
2c

≤ q(q − 1)
2c+1

.

Consider Diff2. From the definition of T O, if Diff2 occurs, a collision of ROT
c occurs, We thus have

that

Pr[Diff2] ≤
q∑

i=1

i − 1
2c

≤ q(q − 1)
2c+1

.

Game 3 ⇒ Game 4. The difference between Game 3 and Game 4 is that in Game 3 L does not
make a right query, while in Game 4 L makes additional right queries corresponding with SpongeS1F .
Note that A cannot find the additional right query-responses directly but can find those by making the
corresponding right queries. So we must show that the additional right query-responses that A obtains
don’t affect the A’s behavior. We show Lemma 2 where for any Sponge path IV

M−→ z, z[1, n] = ROn(M)
unless Badj occurs. Let Ti be a table which stores all values Xt[n+1, d] and Yt[n+1, d] for t = 1, . . . , i−1
where (Xt, Yt) is a query-response pair defined by the t-th RF or RI query.

– Badj is that in Game j, for some i-th query SF (Xi) where Yi is the response, Yi[n + 1, d] collides
with some value in Ti ∪ {Xi[n + 1, d]} ∪ {IV2}, or
for some i-th query SI(Yi) where Xi is the response, Xi[n + 1, d] collides with some value in Ti ∪
{Yi[n + 1, d]} ∪ {IV2}.

Lemma 2 is also used in the evaluation between Game 4 and Game 5. Lemma 2 ensures that in Game
4, unless Badj occurs, responses which are leafs of Sponge paths4 are defined by the same queries to
ROT

c and ROn as in Game 3. Namely, unless the bad event occurs, the responses of the additional right
queries don’t affect the A’s view. Thus, the difference |Pr[G4] − Pr[G5]| is bounded by the probability
of occurring the bad event. We thus have that

|Pr[G3] − Pr[G4]| ≤max{Pr[Bad3], Pr[Bad4]} ≤ σ(σ + 1)
2c

where Pr[G3|¬Bad3] = Pr[G4|¬Bad4] from Lemma 2. We justify the bound later.

Lemma 2. In Game j, unless Badj occurs, for any Sponge path IV
M−→ z z[1, n] = ROn(M). ¨

4 The leaf of the Sponge path IV
M−→ Y is Y .
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Proof of Lemma 2. Assume that Badj does not occur. Let IV
M−→ z be any sponge path and

(X1, Y1), . . . , (Xt, Yt) be the corresponding pairs where X1[n + 1, d] = IV2, Xi[n + 1, d] = Yi−1[n + 1, d]
(i = 2, . . . , t), Yt[n + 1, d] = z, and M = M1|| . . . ||Mt where M1 = IV1 ⊕X1[1, n], · · · ,Mt = Yt−1[1, n]⊕
Xt[1, n]. We show that z[1, n] = ROn(M).

Consider the case that t = 1. Since Badj does not occur, no pair (X,Y ) which is defined by an RI

query (X = RI(Y )) connects IV . Thus any path IV
M−→ z such that |M | = n is defined by a RF query.

Therefore z[1, n] = ROn(M) due to the steps 2,3.
Consider the case that t ≥ 2.
Since Badj does not occur, no pair which is defined by a RI query is connected with another pair and

also no pair which is defined by a RF query is connected with another pair. Namely, (X1, Y1), . . . , (Xt, Yt)
are defined by RF queries and are defined by the ordered RF queries S1F (X1), . . . , S1F (Xt). Therefore,
the structure of SF ensures that when the query RF (Xt) is made, the pair (M1|| · · · ||Mt−1, Yt−1[n+1, d])
is stored in the table FT , that is, FT [M1|| · · · ||Mt−1] = Yt−1[n + 1, d].

Since no collision for ROT
c occurs, when for the query S1F (Xt) SF makes the query T O(Xt[n+1, d]),

M1|| · · · ||Mt−1 is returned from T O.
From above discussions, when the query S1F (Xt) is made, S1F returns the output of ROn(M) due

to the structure of SF . Thus Yt[1, n] = ROn(M).
ut

Evaluations of Pr[Bad3], Pr[Bad4]. Since in Game 3 and Game 4 the simulator is called at most q and
σ times, respectively, and for any query to S the right c-bit value of the response is chosen uniformly
at random from {0, 1}c,

Pr[Bad3] ≤
q∑

i=1

(2(i − 1) + 2)
2c

=
q(q + 1)

2c
, Pr[Bad4] ≤

σ∑
i=1

(2(i − 1) + 2)
2c

=
σ(σ + 1)

2c

Game 4 ⇒ Game 5. The difference between Game 4 and Game 5 is the left oracle L where in Game
4 L(M) returns ROn(M), while in Game 5 L(M) returns SpongeS1(M). Thus, the difference does not
change behavior of A iff in Game 5 for any query L(M), L(M) returns ROn(M). From Lemma 2, for
any Sponge path IV

M−→ z the relation z[1, n] = ROn(M) holds unless the bad event Bad5 occurs. In
Game 5 R is called at most σ times and for any query to S the response is chosen uniformly at random
from {0, 1}c. We have that

|Pr[G4] − Pr[G5]| ≤ Pr[Bad5] ≤
σ(σ + 1)

2c
.

Game 5 ⇒ Game 6. In Game 5, outputs of RF and RI are chosen uniformly at random from {0, 1}d,
while in Game 6, those are a random permutation and its inverse oracle. The difference is thus bounded
by the collision probability of RF and RI in Game 5. We thus have that

|Pr[G5] − Pr[G6]| ≤
σ∑

i=1

i − 1
2d

=
σ(σ − 1)

2d+1
.

ut

E SL-Indifferentiability for PFMD

The PFMD construction is shown in Fig. 11. Let h be a compression function which maps a value of
d + n bits to a value of n bits. pfpad : {0, 1}∗ → ({0, 1}d)∗ is an injective prefix-free padding function
such that for any different two values M,M ′ pfpad(M) is not a prefix of pfpad(M ′) and its inverse is
efficiently computable. IV is a constant value of n bits.
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PFMDh(M)

1 (M1, . . . , Mi) ← div(d, pfpad(M))
2 x ← IV ;
3 For j = 1, . . . , i, x ← h(x||Mj);
4 return x;

Fig. 11. Prefix-free Merkle-Damg̊ard

S(x||m)

1 M∗ ← T O(x);
2 if x = IV then
3 if ∃M s.t. pfpad(M) = m then y ← ROn(M);
4 else y ← ROT

n (m);
5 else if M∗ 6=⊥ then
6 if ∃M s.t. pfpad(M) = M∗||m then y ← ROn(M);
7 else y ← ROT

n (M∗||m);
8 else y ← RO∗

n(x||m);
9 return y;

Fig. 12. Simulator S

E.1 SL-Indifferentiability for PFMD

We define the parameter of VO as v = n and w = n. Note that in the SL-indifferentiable proof ideal
ciphers are not used. Thus in this case, VO.priv = ROn and VO.pub = (ROn,RO∗

n, T ROn).

Theorem 6. There exists a stateless simulator S such that for any distinguisher A, the following holds,

Advsl-indiff,VO
PFMDh,S

(A) ≤ 2σ(σ + 1) + qR(qR − 1)
2n

where A can make queries to left oracle L = PFMDh/ROn and right oracle R = h/S at most qL, qR

times, respectively, and l is a maximum number of blocks of a left query. σ = lqL + qR. S makes at most
2qR queries and runs in time O(qR). ¨

Remark 1. EMD [4] and MDP [17] are designed from the same design spirit as PFMD, which are
designed to resist the length extension attack. Thus, by the similar proof, one can prove that EMD and
MDP are SL-indifferentiable from VOs.

E.2 Proof

In this proof, we use the MD graph described in Appendix A. And we use the implementation method
defined in Appendix B of a VO.

Simulator S. We define a stateless simulator S in Fig. 12. S’s task is to simulate the compression
function h such that S is consistent with ROn, namely, any PFMD path IV

M∗
−−→ y is such that

y = ROn(M) where M∗ = pfpad(M). S defined in Fig. 12 is consistent with ROn. We give an example
that S is consistent with ROn. For ordered queries S(IV ||m1), S(y1||m2) where y1 = S(IV ||m1), y2 =
S(y1||m2), if there does not exists M such that pfpad(M) = m1||m2, then y1 and y2 are defined by the
responses of ROT

n (m1) (the step 4) and ROT
n (m1||m2) (the step 7), respectively. Then for the query

S(y2,m3), the response is defined by the output of ROn(M) (the step 6) if there exists M such that
pfpad(M) = m1||m2||m3. Notice that m1||m2 can be obtained by the query T O(y2) (the step 1). So the
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PFMD path IV
m1||m2||m3−−−−−−−→ y3 is such that y3 = ROn(M) where pfpad(M) = m1||m2||m3. So, in this

case, the simulator S succeeds in the simulation of h. Though this case is three message block case, S
ensures cases for other message blocks.

Detail. To evaluate the SL-indifferentiable advantage, we consider five games. In each game, distin-
guisher A has oracle access to left oracle L and right oracle R.

– Game 1 is the ideal world, that is, (L,R) = (ROn, S).
– Game 2 is (L,R) = (ROn, S1). S1 keeps all query-responses. For query S1(x,m), if there is a tuple

(x,m, y) in the query-response history, then S1 returns y, otherwise, S1 returns S(x,m).
– Game 3 is (L,R) = (L1, S1), where on query L1(M) L1 first makes queries to S1 which correspond

with PFMDS1(M) then returns ROn(M).
– Game 4 is (L,R) = (PFMDS1 , S1).
– Game 5 is the real world, that is, (L,R) = (PFMDh).

Let Gi be an event that A outputs 1 in Game i. We thus have that

Advsl-indiff,VO
PFMDh,S

(A) ≤
4∑

i=1

|Pr[Gi] − Pr[Gi+1]| ≤
2σ(σ + 1) + qR(qR − 1)

2n
.

In the following, we justify the above bound by evaluating each difference.

Game 1 ⇒ Game 2. In Game 2, use of the history ensures that for any repeated query R(x,m) the
same value y is responded, while in Game 1 there is a case that for some repeated query R(x,m) where
y was responded, different value y∗ (6= y) is responded due to the definition of T O. The difference
|Pr[G1]−Pr[G2]| is thus bounded by the probability that in Game 1 a different value is responded. We
call the event “Diff”. Procedures of S are controlled by T O (see the steps 2,5,8). Therefore, if Diff
occurs, some output of T O(y) is changed. More precisely, if Diff occurs, the following event occurs.

– For a repeated query T O(y) where w was responded, a different value w∗ is responded. There are
two cases for (w,w∗).
• Diff1: w =⊥ and w∗ 6=⊥.
• Diff2: w 6=⊥ and w∗ =⊥.

We thus have that

|Pr[G1] − Pr[G2]| ≤ Pr[Diff1] + Pr[Diff2] ≤
qR(qR − 1)

2n
.

We justify the bound as follows.
Consider Diff1. When a query T O(y) was made where the response was w (=⊥), a query ROT

n (w∗)
such that y = ROT

n (w∗) had not been made. And when the repeated query T O(y) is made where
the response is w∗, the query ROT

n (w∗) such that y = ROT
n (w∗) was already made. Thus Pr[Diff1] is

bounded by the probability that an output of ROT
n (w∗) (n-bit random value) hits a value y. Since the

numbers of queries to ROT
n and T O are at most qR times,

Pr[Diff1] ≤
qR∑
i=1

i − 1
2n

≤ qR(qR − 1)
2n+1

.

Consider Diff2. From the definition of T O, if Diff2 occurs, a collision of ROT
n occurs, We thus have

that

Pr[Diff2] ≤
qR∑
i=1

i − 1
2n

≤ qR(qR − 1)
2n+1

.

23



Game 2 ⇒ Game 3. The difference between Game 2 and Game 3 is that in Game 2 L does not
make a right query, while in Game 3 L makes additional right queries corresponding with PFMDS1(M).
Note that A cannot find the additional right query-responses directly but can find those by making
corresponding right queries. So we must show that the additional right query-responses that A obtains
don’t affect the A’s behavior. We show Lemma 3 where for any PFMD path IV

M∗
−−→ y where M∗ =

pfpad(M), y = ROn(M) unless Badj . Let Ti be a list which records (xt, yt) for t = 1, . . . , i − 1 where
(xt||mt, yt) is a t-th R query-response (yt = R(xt||mt)).

– Badj is that in Game j for some i-th query S1(xi||mi) the response yi collides with some value in
Ti ∪ {xi} ∪ {IV }.

This ensures that unless the bad event occurs, in both games responses which are leafs of MD paths5

are defined by the same query to ROT
n and ROn. Namely, in Game 3, unless the bad event occurs,

the responses of the additional right queries which A obtains are chosen from the same distribution as
in Game 2. Thus, the difference |Pr[G2] − Pr[G3]| is bounded by the probability of occurring the bad
event. We thus have that

|Pr[G2] − Pr[G3]| ≤ max{Pr[Bad2], Pr[Bad3]} ≤ σ(σ + 1)
2n

where Pr[G2|¬Bad2] = Pr[G3|¬Bad3] from Lemma 3. We justify the bound later.

Lemma 3. In Game j, unless Badj occurs, for any PFMD path IV
M∗
−−→ y y = ROn(M) where

M∗ = pfpad(M). ¨

Proof of Lemma 3. Assume that Badj does not occur. Let IV
M∗
−−→ y be any PFMD path. We show

that y = ROn(M) where M∗ = pfpad(M). Let (x1||m1, y1), . . . , (xt||mt, yt) be query-response pairs
of S which correspond with the PFMD path where x1 = IV , xi = yi−1 (i = 2, . . . , t), yj = y, and
M∗ = m1|| . . . ||mj .

When j = 1, y = ROn(M) (due to the step 1).
We consider the case that j ≥ 2.
Since Badj does not occur, no pair (xi||mi, yi) is defined after (xi+1||mi+1, yi+1) was defined. There-

fore, (x1||m1, y1), . . . , (xt||mt, yt) are defined by this order. The structure of S ensures that when a query
S1(xt||mt) is made, the pair (m1|| · · · ||mt − 1, yt−1) is already stored in FT , that is, FT [m1|| · · · ||mt−1] =
yt−1.

Since Badj does not occur, no collision for ROT
n occurs. Therefore, when a query T O(xt) is made

for the query S1(xt||mt), T O returns m1|| · · · ||mt−1.
From the above discussions, for the query S1(xt||mt), T O responses m1|| . . . ||mt−1 (the step 1) and

then the response yt is defined such that yi = ROn(M) (the step 3). ut

Evaluation of Pr[Bad2], Pr[Bad3]. Since in Game 2 and Game 3 S is called at most qR and σ times,
respectively, and for any query to S the response is chosen uniformly at random from {0, 1}n and is
independent from the table Ti due to the prefix-free padding,

Pr[Bad2] ≤
qR∑
i=1

2(i − 1) + 2
2n

=
qR(qR + 1)

2n
, Pr[Bad3] ≤

σ∑
i=1

2(i − 1) + 2)
2n

=
σ(σ + 1)

2n
.

Game 3 ⇒ Game 4. The difference between Game 3 and Game 4 is the left oracle L where in Game
5 A leaf of the MD path IV

M−→ z is z.
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3 L(M) returns ROn(M), while in Game 4 L(M) returns PFMDS1(M). Thus, the difference does not
change behavior of A iff in Game 4 for any query L(M), L(M) returns ROn(M). From Lemma 3, for
any PFMD path IV

M∗
−−→ z, z = ROn(M) unless the bad event Bad4, where M∗ = pfpad(M). Since in

Game 4 R is called at most σ times and for any query to S the response is chosen uniformly at random
from {0, 1}n, we thus have that

|Pr[G3] − Pr[G4]| ≤ Pr[Bad4] ≤
σ(σ + 1)

2n
.

Game 4 ⇒ Game 5. Since outputs of S are uniformly chosen at random from {0, 1}n, the difference
for R does not affect the A’s behavior. We thus have that Pr[G4] = Pr[G5].

ut

F Proof of Theorem 4

Proof. We denote Adv(A,Gi) by the advantage of the adversary A when participating in experiment
Gi. We start with game G0 which is exactly the same game as the CDA game in the VO model. It
means Adv(A,G0) = Advcda

AE,VO(A1,A2).

Game G1: ROn returns a random value if one of following events occur:

– Bad1 : A1 poses a message M to ROn where M is posed to ROn by Enc to generate the challenge
ciphertext.

– Bad2 : A2 poses a message M to ROn where M is posed to ROn by Enc to generate the challenge
ciphertext.

All other procedures are computed as the same way in G0.

Lemma 4. |Adv(A,G1) − Adv(A,G0)| ≤ qRO
2µ + qRO · maxpkAE .

Proof. The difference between G0 and G1 only occurs in Bad1 and Bad2. From Difference Lemma [24],
we have that |Adv(B,G1) − Adv(B,G0)| ≤ Pr[Bad1 ∨ Bad2] ≤ Pr[Bad1] + Pr[Bad2].

First, we estimate Pr[Bad1]. Since pk is not given for A1 and is included in each query to ROn

by Enc, the only way to pose (pk, ∗, ∗) to ROn is choosing pk randomly qRO times. We have that
Pr[Bad1] ≤ qRO · maxpkAE .

Next, we estimate Pr[Bad2]. Since ROn is a truly random function and r (which is used to generate
challenge ciphertext c) is included in each query to ROn by Enc, A2 cannot obtain more information
of r than min-entropy µ from challenge ciphertext even if A2 could obtain some information about
ROn(pk,mβ ; r) from c. Thus, the only way to pose (∗, ∗, r) to ROn is guessing r under min-entropy µ
qRO times. We have that Pr[Bad2] ≤ qRO

2µ . ut

Game G2: Ciphertext c ← EncROn(pk,mb; r) is replaced with outputs of a simulator SROn(pk, ω) in
the IND-SIM game. All other procedures are computed as the same way in G1.

Lemma 5. |Adv(A,G2) − Adv(A,G1)| ≤ Advind-sim
AE,S,ROn

(B).

Proof. We show that if |Adv(A,G2)−Adv(A,G1)| is non-negligible, for any simulator S we can construct
an adversary B breaking IND-SIM security of AE in the RO model. Fig. 13 shows game G2, the
construction of B, and the simulation SimB = (SimBROn ,SimBRO∗

v
, SimBROT

w
, SimBT O,SimBE , SimBD)
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Game G2

β
$←− {0, 1}

(pk, sk)
$←− Gen

(m0,m1, r) ← AROn,RO∗
v ,T ROw,ICa,b

1

c ← EncF.priv(pk,mβ ; r)
c′ ← SROn(pk, ω)

β′ ← AROn,RO∗
v,T ROw,ICa,b

2 (pk, c′)
return (β = β′)

BRoS(pk)

β
$←− {0, 1}

(m0,m1, r) ← ASimB
1

c ← RoS(mβ , r)

β′ ← ASimB
2 (pk, c)

If β = β′ then return 1
Otherwise return 0

SimBROn(M)

If F[M ] =⊥, F[M ]
$←− {0, 1}n

If F[M ] 6=⊥, and M is posed by Enc,

F[M ]
$←− {0, 1}n

return F[M ]

SimBRO∗
v
(M)

If F∗[M ] =⊥, F∗[M ]
$←− {0, 1}v

return F∗[M ];

SimBROT
w

(M)

If FT [M ] =⊥ then FT [M ]
$←− {0, 1}w

return FT [M ];

SimBT O(y)

If ∃1M s.t. FT [M ] = y then return M
Otherwise return ⊥

SimBE(k, x)

If E[k, x] =⊥,

y
$←− {0, 1}b\T+[k]

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return E[k, x]

SimBD(k, y)

If D[k, y] =⊥,

x
$←− {0, 1}b\T−[k];

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return D[k, y]

Fig. 13. game G2 and simulation SimB by adversary B

of VO by B respectively. Note that B makes no RO queries, and EncF.priv(pk,mβ ; r) is executed with
return value ignored. B simulates all queries to VO for A1 and A2 with simulation SimB. SimB is
identical with the definition of VO. Also, queries to ROn by Enc is contained both in G1 and G2. Thus,
A cannot distinguish game G1 and G2 from the simulation on the interface of VO. If β = 1 in IND-SIM
game, it is clear that all interfaces for A is exactly same as game G1. If β = 0 in IND-SIM game, it is
clear that all interfaces for A is exactly same as game G2.

Therefore, if |Adv(A,G2)−Adv(A,G1)| is non-negligible, B also breaks IND-SIM security of AE . ut

Game G3: When A2 poses a query related to (m0,m1, r) (which is the output of A1) to RO∗
v, T ROw =

(ROT
w, T O) or ICa,b = (E,D), then outputs are randomly chosen. That is, tables F∗, FT ,E and D are

not preserved for A1 and A2 according to (m0,m1, r). All other procedures are computed as the same
way in G2.

Lemma 6. |Adv(A,G3)−Adv(A,G2)| ≤
4q2

RO∗+4q2
ROT

2µ +max
{

4q2
T O
2µ ,

4q2
T O

2w

}
+max

{
4q2

E+4q2
D

2µ ,
4q2

E+4q2
D

2b

}
.

Proof. The difference between G2 and G3 only occurs when A1 and A2 poses a same query related to
(m0,m1, r) to RO∗

v, T ROw = (ROT
w, T O) or ICa,b = (E,D). We denote the event that a common query

related to (m0,m1, r) is posed to RO∗
v by A1 and A2 as BadRO∗ . Similarly, we define events BadROT ,

BadT O, BadE , and BadD. From Difference Lemma [24], we have that |Adv(B,G3) − Adv(B,G2)| ≤
Pr[BadRO∗ ∨BadROT ∨BadT O ∨BadE ∨BadD] ≤ Pr[BadRO∗ ] + Pr[BadROT ] + Pr[BadT O] + Pr[BadE ] +
Pr[BadD].

In game G2 and G3, ciphertext c does not give any information about (m0,m1, r) and queries to
VO by A1 to A2. On queries to ROn, interfaces of A2 in G2 and G3 are identical. Thus, the only way
to pose such a query is guessing under min-entropy µ, or the output length w of ROT and the output
length b of (E,D). According to the birthday paradox, for oracles RO∗ and ROT the probability of
collisions in guessing is at most (2qRO∗)2/2µ, and (2qROT )2/2µ, respectively. Also, for oracle T O the
probability of collision in guessing is at most (2qT O)2/2µ if µ < w, (2qT O)2/2w otherwise, and for
oracles E and D the probability of collisions in guessing is at most (2qE)2/2µ and (2qD)2/2µ if µ < b,
(2qE)2/2b and (2qD)2/2b otherwise. Therefore, |Adv(A,G3) − Adv(A,G2)| ≤ (4q2

RO∗ + 4q2
ROT )/2µ +

max
{
4q2

T O/2µ, 4q2
T O/2w

}
+ max

{
(4q2

E + 4q2
D)/2µ, (4q2

E + 4q2
D)/2b

}
.
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ut
We estimate Adv(A,G3). Ciphertext c does not give any information about (m0,m1, r). Also, out-

puts of VO is independent of (m0,m1, r) for A2. Thus, the only way to win in game G3 is randomly
guessing β. Therefore, Adv(A,G3) = 0.

To conclude, we have Advcda
AE,VO(A1,A2) ≤ Advind-sim

AE,S,ROn
(B) + qRO · maxpkAE + (qRO + 4q2

RO∗ +
4q2

ROT )/2µ + max
{
4q2

T O/2µ, 4q2
T O/2w

}
+ max

{
(4q2

E + 4q2
D)/2µ, (4q2

E + 4q2
D)/2b

}
.

ut

G ID-CPA Security of IDREwH1 in the VO Model

We can prove the ID-CPA security of IDREwH1; that is, we show that IDREwH1 is selective (resp. full)
ID-CPA secure in the VO model if IBEr is selective (resp. full) ID-CPA secure in the RO model,

Theorem 7. Let IBEr be an IBE scheme. Let B be a selective (resp. full) CPA adversary for IDREwH1
in the VO model, which makes at most qRO, qRO∗ , qROT , qT O, qE , qD queries to ROn,RO∗

v, T ROw =
(ROT

w, T O), ICa,b = (E,D). Then, there exists a selective (resp. full) CPA adversary C for IBEr such
that

Advid-cpa
IDREwH1,VO(B) ≤ Advid-cpa

IBEr,RO(C) +
qRO
2ρ

.

C runs in time that of B plus O(qRO + qRO∗ + qROT + qT O + qE + qD). ¨

The proof outline is as follows: First, we start with game G0 which is exactly the same game as
the ID-CPA game in the VO model. Next, we transform G0 to game G1 so that challenge ciphertext c
is generated from fresh randomness instead of the output of ROn. In game G1, c is generated by the
exactly same manner as the ID-CPA game for IBEr. Also, oracle queries to VO except ROn is perfectly
simulated because IBE.Enc algorithm never use RO∗

v,ROT
w, T O, E,D. Thus, B can be constructed with

C.

Proof. We denote Adv(B,Gi) by the advantage of adversary B when participating in experiment Gi.
We start with game G0 which is exactly the same game as the ID-CPA game in the VO model. It means
Adv(B,G0) = Advid-cpa

IDREwH1,VO(B).

Game G1: Challenge ciphertext c ← IBE.Encr(params, id∗,mβ ;RO(params, id∗,mβ ; r)) is replaced
with c ← IBE.Encr(params, id∗,mβ ; r′) for randomly chosen r′. All other procedures are computed as
the same way in G0.

Lemma 7. |Adv(B,G1) − Adv(B,G0)| ≤ qRO
2ρ .

Proof. The difference between G0 and G1 only occurs when adversary B poses (params, id∗,mβ, r) to
ROn where mβ ∈ mβ , r ∈ r, and r is the randomness vector used to generate challenge ciphertext c.
We denote this event as Bad. From Difference Lemma [24], we have that |Adv(B,G1) − Adv(B,G0)| ≤
Pr[Bad].

We estimate Pr[Bad]. Since ROn is a truly random function, B cannot know r (which is used to
generate challenge ciphertext c) from challenge ciphertext even if B could obtain some information about
ROn(params, id∗,mβ ; r) from c. Thus, the only way to pose (params, id∗,mβ , r) to ROn is choosing
r randomly qRO times. We have that Pr[Bad] ≤ qRO

2ρ . ut

We estimate Adv(B,G1). We assume that there exists B with Adv(B,G1). Then, we construct ad-
versary C against IBEr with the same advantage as Adv(B,G1). The simulation SimC by C is given in
Fig. 14.

27



SimCmain

If selective-ID setting
receive id∗ from B
send id∗ to CH

receive params from CH
send params to B
If selective-ID setting

(m0,m1) ← B
send (m0,m1) to CH

If full-ID setting
(m0,m1, id

∗) ← B
send (m0,m1, id

∗) to CH
receive c from CH
send c to B
receive β′ from B
return β′

SimCIBE.Gen(id)

send id to IBE.Gen oracle
receive skid from IBE.Gen oracle
return skid

SimCROn(M)

send M to RO
receive F[M ] from RO
return F[M ]

SimCRO∗
v
(M)

If F∗[M ] =⊥, F∗[M ]
$←− {0, 1}v

return F∗[M ];

SimCROT
w

(M)

If FT [M ] =⊥ then FT [M ]
$←− {0, 1}w

return FT [M ];

SimCT O(y)

If ∃1M s.t. FT [M ] = y then return M
Otherwise return ⊥

SimCE(k, x)

If E[k, x] =⊥,

y
$←− {0, 1}b\T+[k]

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return E[k, x]

SimCD(k, y)

If D[k, y] =⊥,

x
$←− {0, 1}b\T−[k];

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return D[k, y]

Fig. 14. Simulation SimC by adversary C

Since the generation of the challenge ciphertext is exactly same between G0 and the ID-CPA game
for IBEr, C just forwards the challenge ciphertext to B. The simulation of VO is perfect because the
challenger CH never uses all components of VO with the private channel. Therefore, Adv(B,G1) =
Advid-cpa

IBEr,RO(C).

To conclude, we have Advid-cpa
IDREwH1,VO(B) ≤ Advid-cpa

IBEr,RO(C) + qRO
2ρ . ut

H Proof of Theorem 5

Proof. We denote Adv(A,Gi) by the advantage of adversary (A1,A2) when participating in experiment
Gi. We start with game G0 which is exactly the same game as the ID-CDA game in the VO model. It
means Adv(A,G0) = Advid-cda

IDREwH1,VO(A1,A2).

Game G1: Challenge ciphertext c ← IBE.Encr(params, id∗,mβ ;ROn(params, id∗,mβ ; r)) is replaced
with c ← IBE.Encr(params, id∗,mβ ; r′) for randomly chosen r′. All other procedures are computed as
the same way in G0.

Lemma 8. |Adv(A,G1) − Adv(A,G0)| ≤ qRO
2µ + qRO · maxparamsIBEr

.

Proof. The difference between G0 and G1 only occurs in two cases: One is the case when adversary A1

(i.e., without knowledge of params) poses (params, id∗, mβ , r) to ROn where mβ ∈ mβ and r ∈ r. The
other is the case when adversary A2 (i.e., with knowledge of params) poses (params, id∗,mβ , r) to ROn

where mβ ∈ mβ and r ∈ r. We denote the former event as Bad1, and the other as Bad2. From Difference
Lemma [24], we have that |Adv(B,G1) − Adv(B,G0)| ≤ Pr[Bad1 ∨ Bad2] ≤ Pr[Bad1] + Pr[Bad2].

First, we estimate Pr[Bad1]. Since params is not given for A1, the only way to pose (params, id∗,mβ , r)
to ROn is choosing params randomly qRO times. We have that Pr[Bad1] ≤ qRO · maxparamsIBEr

.
Next, we estimate Pr[Bad2]. Since ROn is a truly random function, A2 cannot obtain more in-

formation of r (which is used to generate challenge ciphertext c) than min-entropy µ from challenge
ciphertext even if A2 could obtain some information about ROn(params, id∗,mβ ; r) from c. Thus, the
only way to pose (params, id∗,mβ , r) to ROn is guessing r under min-entropy µ qRO times. We have
that Pr[Bad2] ≤ qRO

2µ . ut

28



SimC′
main

β′′ $←− {0, 1}
If selective-ID setting

receive id∗ from A1

send id∗ to CH
receive params from CH
If selective-ID setting

(m0,m1, r) ← A1

send (m′′
β ,0) to CH

receive c from CH
If full-ID setting

(m0,m1, r, id
∗) ← A1

send (m′′
β ,0, id∗) to CH

receive c from CH
send (params, c, id∗) to A2

receive β′ from A2

return 0 if β′ = β′′ and 1 otherwise

SimC′
IBE.Gen(id)

send id to IBE.Gen oracle
receive skid from IBE.Gen oracle
return skid

SimC′
ROn

(M)

send M to RO
receive F[M ] from RO
return F[M ]

SimC′
RO∗

v
(M)

If F∗[M ] =⊥, F∗[M ]
$←− {0, 1}v

return F∗[M ];

SimC′
ROT

w
(M)

If FT [M ] =⊥ then FT [M ]
$←− {0, 1}w

return FT [M ];

SimC′
T O(y)

If ∃1M s.t. FT [M ] = y then return M
Otherwise return ⊥

SimC′
E(k, x)

If E[k, x] =⊥,

y
$←− {0, 1}b\T+[k]

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return E[k, x]

SimC′
D(k, y)

If D[k, y] =⊥,

x
$←− {0, 1}b\T−[k];

E[k, x] ← y, D[k, y] ← x,

T+[k]
∪←− {y}, T−[k]

∪←− {x}
return D[k, y]

Fig. 15. Simulation SimC′ by adversary C

Game G2: Challenge ciphertext c ← IBE.Encr(params, id∗,mβ ; r′) is replaced with c ← IBE.Encr(params,
id∗,0; r′) for randomly chosen r′ where 0 is a vector of l zero strings of length λ. All other procedures
are computed as the same way in G1.

Lemma 9. |Adv(A,G2) − Adv(A,G1)| ≤ 2Advid-cpa
IBEr,RO(C).

Proof. We show that if |Adv(A,G2) − Adv(A,G1)| is non-negligible, we can construct an adversary C
breaking ID-CPA security of IBEr in the RO model. Fig. 15 shows simulation SimC′ = (SimC′

main, SimC′
IBE.Gen, SimC′

RO,
SimC′

RO∗ , SimC′
ROT , SimC′

T O, SimC′
E , SimC′

D) by C respectively.
C simulates all queries to VO for A1 and A2 with simulation SimC′. SimC′ is identical with the

definition of VO. Thus, A cannot distinguish game G1 and G2 from the simulation on the interface of
VO. If β = 1 in ID-CPA game for IBEr, it is clear that all interfaces for A is exactly same as game G2.
If β = 0 in ID-CPA game for IBEr, it is clear that all interfaces for A is exactly same as game G1 if
β = β′′.

Therefore, if |Adv(A,G1)−Adv(A,G0)| is non-negligible, C also breaks ID-CPA security of IBEr if
β = β′′ (i.e., with probability 1/2). We have that |Adv(A,G2) − Adv(A,G1)| ≤ 2Advid-cpa

IBEr,RO(C). ut

Game G3: When A2 poses a query related to (m0,m1, r) (which is the output of A1) to RO∗
v, T ROw =

(ROT
w, T O) or ICa,b = (E,D), then outputs are randomly chosen. That is, tables F∗, FT ,E and D are

not preserved for A1 and A2 according to (m0,m1, r). All other procedures are computed as the same
way in G2.

Lemma 10. |Adv(A,G3)−Adv(A,G2)| ≤
4q2

RO∗+4q2
ROT

2µ +max
{

4q2
T O
2µ ,

4q2
T O

2w

}
+max

{
4q2

E+4q2
D

2µ ,
4q2

E+4q2
D

2b

}
.

Proof. The difference between G2 and G3 only occurs when A1 and A2 poses a same query related to
(m0,m1, r) to RO∗

v, T ROw = (ROT
w, T O) or ICa,b = (E,D). We denote the event that a common query

related to (m0,m1, r) is posed to RO∗
v by A1 and A2 as BadRO∗ . Similarly, we define events BadROT ,

BadT O, BadE , and BadD. From Difference Lemma [24], we have that |Adv(B,G3) − Adv(B,G2)| ≤
Pr[BadRO∗ ∨BadROT ∨BadT O ∨BadE ∨BadD] ≤ Pr[BadRO∗ ] + Pr[BadROT ] + Pr[BadT O] + Pr[BadE ] +
Pr[BadD].

In game G2 and G3, ciphertext c does not give any information about (m0,m1, r) and queries to
VO by A1 to A2. On queries to ROn, interfaces of A2 in G2 and G3 are identical. Thus, the only way
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to pose such a query is guessing under min-entropy µ, or the output length w of ROT and the output
length b of (E,D). According to the birthday paradox, for oracles RO∗ and ROT the probability of
collisions in guessing is at most (2qRO∗)2/2µ, and (2qROT )2/2µ, respectively. Also, for oracle T O the
probability of collision in guessing is at most (2qT O)2/2µ if µ < w, (2qT O)2/2w otherwise, and for
oracles E and D the probability of collisions in guessing is at most (2qE)2/2µ and (2qD)2/2µ if µ < b,
(2qE)2/2b and (2qD)2/2b otherwise. Therefore, |Adv(A,G3) − Adv(A,G2)| ≤ (4q2

RO∗ + 4q2
ROT )/2µ +

max
{
4q2

T O/2µ, 4q2
T O/2w

}
+ max

{
(4q2

E + 4q2
D)/2µ, (4q2

E + 4q2
D)/2b

}
.

ut
We estimate Adv(A,G3). Ciphertext c does not give any information about (m0,m1, r). Also, out-

puts of VO is independent of (m0,m1, r) for A2. Thus, the only way to win in game G3 is randomly
guessing β. Therefore, Adv(A,G3) = 0.

To conclude, we have Advid-cda
IDREwH1,VO(A1,A2) ≤ 2Advid-cpa

IBEr,RO(C) + qRO · maxparamsIBEr
+ (qRO +

4q2
RO∗ + 4q2

ROT )/2µ + max
{
4q2

T O/2µ, 4q2
T O/2w

}
+ max

{
(4q2

E + 4q2
D)/2µ, (4q2

E + 4q2
D)/2b

}
. ut
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