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Abstract. In order for a mix-net to be usable in practice (e.g. in elec-
tronic voting), efficient verification is a must. Despite many advances in
the last decade, zero-knowledge proofs remain too computationally in-
tense. Two alternative proof approaches have been suggested: optimistic
mix-net verification and randomized partial checking. Puiggaĺı et al. pro-
posed a verification method combining these two approaches. This paper
investigates their mix-net and proposes a verification method which of-
fers both improved efficiency and more privacy.

1 Introduction

In order to offer publicly verifiable vote counting in eVoting the encrypted votes
have to be counted in public without revealing any information about the vote
decision of the several voters. One approach is to use the homomorphic property
of the underlying cryptosystem to tally the votes in encrypted form and decrypt
the election results afterwards. So far this approach is rarely used in praxis
because the voting systems are mostly to complex regarding dimension and legal
regulation. Another approach is to decrypt and count the vote. In order to ensure
secrecy of the votes first the link between voters and their vote has to be broken.
In this context mix-nets are widely-used to make encrypted votes anonymous.

When Chaum introduced mix-nets [7], the focus was predominantly on anony-
mous communication. As such, correctness of the process needed to be proven
only to the sender (achieved by signature). Later mix-nets improved upon this
by providing universal verifiability. Some approaches assume that a part of the
senders are honest (e.g. [10, 24]) other use zero-knowledge proofs of correctness,
such as cut-and-choose proofs (e.g. [25, 22, 2]). Various efforts were made to im-
prove the efficiency of generating a proof. This led to proofs based on pairwise
permutation showing that an output is a re-encryption of one of two inputs (e.g.
Millimix [18], MIP-2 [3, 1]), proofs using a matrix representation of the permu-
tation (such as [14, 13, 17, 28, 27]), and proofs using the invariance of polynomials
under permutation of of the roots (e.g. [21, 20, 16]).

For some applications, such as voting, efficiency is a prime concern. In many
voting schemes, mix-nets are often used to ensure anonymity. However, to be
usable in practice, a mix-net should be able to mix all votes and prove correctness
within a few hours after the polling stations closed.
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Two types of “proofs” of correctness emerged, which offer hight efficiency:
Optimistic Mixing (e.g. [6, 15]) and Randomized Partial Checking [19]. The
main idea behind Optimistic Mixing is to use batch verification: by proving that
the product of the input elements is equal to the product of the output elements.
This requires only a handful of efficiently computed multiplications, but does not
detect all forms of cheating (intuitively, since 1 · 1 = 1

2 · 2). The core concept
of Randomized Partial Checking is to have every mix operate twice in a row,
and then, for every item, reveal either the first or the second mixing. This only
requires to reveal one random variable per mixed element, but each mix has a
50% chance per input element to cheat undetected.

In effect, both approaches trade off privacy for efficiency: there is a small
possibility of the “proof” being correct while the mix cheated. Note that this
possibility can be reduced by tweaking parameters – which carries a small in-
crease in computational cost. This concept of trading off privacy for efficiency
is interesting and deserves further exploration. Note that each approach has its
own peculiar trade off between efficiency and privacy. This naturally leads to the
question whether the two methods cannot be combined to increase privacy while
remaining efficient. Puiggaĺı et al. [4] propose a mix-net consisting of precisely
such a blend of these two approaches.

Contribution. The contribution of this paper is twofold. Firstly, this paper inves-
tigates the scheme by Puiggaĺı et al. and identifies several areas for improvement
(including a privacy weakness). These improvements result in a scheme which is
more efficient, more secure, and more precisely detailed. Secondly, we provide a
mathematical analysis of correctness, privacy and efficiency of the new scheme,
and compare these properties to properties of other mix-nets that offer a trade
off between privacy and efficiency.

Structure of the paper. The rest of this paper is structured as follows: we first
discuss some ElGamal mix-nets (Section 2) and related work (Section 3). As
this work extends the contributions of Puiggaĺı et al, their research is discussed
in more detail (Sections 4). Possible improvements to the verification process
are discussed in Section 5, all of which are implemented by the new verification
process detailed in Section 6. Correctness, privacy, and efficiency of the newly
proposed verification process are determined in Section 7 and compared to other
mix-nets that trade off privacy for efficiency in Section 8. This is followed by
conclusions and future work in Section 9.

2 Re-encryption mix-nets with exponential elGamal

In this section we briefly describe the underlying cryptographic system (elGamal)
and the mixing processes in the context of an electronic voting scheme. For
legibility we explain the approach in this paper under the use of exponential
elGamal. It should be noted that Pallier [23] with a the threshold version like
explained in [9] and a zero knowledge proof like proposed in [5]can be used as
well.
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We assume that votes are encrypted using exponential elGamal and stored
on a Web Bulletin Board(BB) where some connection between each encrypted
vote and the corresponding voter exist. ElGamal is a randomized public key en-
cryption scheme with homomorphic properties introduced in [12]. Consider two
large primes p and q, where q divides (p−1), Zq is a q-order subgroup of Z∗p and
g is a generator of Gq. The secret key x ∈ Zq is generated and the corresponding
public key is (g, y) with y = gx. A plain text s (or here a vote) is encrypted in the
following way: Ency(s, r1) = (gr1 , gsyr1) = (α, β) with random value r1 ∈R Zq.

Obviously, the encrypted votes cannot just be decrypted because this would
violate the secrecy of the voter. One possibility to avoid this is to first anonymize
the encrypted votes using a re-encryption mix-net. The output of this mix-
net is a set of anonymized re-encrypted votes that can then be decrypted and
counted. The re-encryption mix-net with i mixes works as follows: The first mix
loads all encrypted votes (while removing any possible link to the voter - like
signatures) published on the BB as input. Every input ciphertext is re-encrypted
by exponentiating (α, β) with a generated random value r2 ∈R Zq: ReEncy =
((α, β), r2) = (αgr2 , βyr2) = (gr1gr2 , gsyr1yr2) = (gr1+r2 , gsyr1+r2) = (α′, β′).
Afterwards, the re-encrypted ciphertexts are shuffled with a random permutation
π and the resulting output ciphertexts are published on the BB. Afterwards, the
second mix loads the output ciphertexts from the first one published on the BB
and re-encrypts and shuffles them, as well. This process is repeated until the last
one publishes its output ciphertexts on the BB. These are the ciphertexts which
are decrypted and counted. Privacy is ensured if at least one mix is honest and
keeps the permutation secret. In order to also ensure that mixes cannot cheat by
replacing encrypted votes with new ones, verifiability needs to be implemented,
ideally without decreasing the level of privacy.

3 Related Work

3.1 Randomized Partial Checking

A mix-net can be verified by Randomized Partial Checking (RPC, introduced
by [19]). Using this method each mix in the network perform two consecutive
shuffles. During the verification, for each element in the intermediate set (the
output of the first mix ), a coin is flipped to choose whether to reveal either its
origin or its destination. For an ElGamal re-encryption mix-net this can be done
by publishing the randomness used. Since for the mixes the randomness is avail-
able already, constructing this proof can be done in constant time. Verification
of the proof in this case requires the verifier to perform a re-encryption for every
element. The coinflips must occur after mixing to prevent that the mix knows
in advance which links will be revealed and modify elements accordingly. Using
RPC every mix has a 50% chance per element of doing and undetected fraud
and correspondingly a 2−n chance of changing n items.
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3.2 Optimistic Mixing

The optimistic mixing (OM) proposed in [15] by Golle et al. is the first ap-
proach which uses an ”optimistic” or ”fast-track” approach for mix-nets. The
input of the mix-net is a double encrypted vote and a hash value over the
single encrypted vote: (Encpk(α, r1), Encpk(β, r2), Encpk(h(α, β), r3)), with ran-
dom numbers r1, r2, r3 and hash value h {0, 1}∗ → Zq. To verify that all mixes
of the mix-net generated their output properly, they are asked to prove that
the product of the plaintexts of their input ciphertexts equals the product of
the plaintexts of their output ciphertexts, meaning

∏n
i=1 αi =

∏n
i=1 α

′
i and∏n

i=1 βi =
∏n
i=1 β

′
i and

∏n
i=1 hi(α, β) =

∏n
i=1 h

′
i(α
′, β).

The hash value is used to prevent that pairs of ciphertexts are modified in a way
which remains the overall product of the plaintexts unchanged. Further the dou-
ble encryption allows ”back-up” mixing, meaning that if cheating is detected the
outer-layer encryption can be revealed and the resulting inner-layer ciphertexts
can be input of a slower and more fine-grained mixing like e.g. the one proposed
by Groth [16].

The proposed optimistic mixing approach by Boneh et al.(PoS),[6]) is slightly
faster than the approach proposed by Golle et al., because no cryptographic
checksum and no double encryption is used. A drawback of this approach is
that the verification only guarantees almost entirely correct mixing. Boneh et
al. recommend the use of a slower verification protocol in parallel to guarantee
correctness. For the verification process, a security parameter γ ≤ 5 is defined
which declares the number of blocks to be checked. A higher value for γ results in
a stronger guarantee of correct mixing but also offers less privacy. Every block Si
should have a size of around n

2 for a total number of n ciphertexts and is created
in a way that every index 1 ≤ k ≤ n is included in Si independently at random
with probability 1

2 . For this a hash function and a non-malleable commitment
[11], made by all mixes in advance, is used to decide whether a specific input
ciphertext ck is part of a subset Si. For every block the mix is asked to prove,
by using the Chaum-Pedersen protocol [8], that the product of the plaintexts
for this subset of input ciphertexts equals to the product of the plaintexts of the
corresponding subset of output ciphertexts.

4 Mix-net Verification by Puiggaĺı et al.

In [4], Puiggaĺı et al. propose an approach to verify a re-encryption mix-net
(which uses elGamal as underlaying cryptosystem) which combines the idea of
optimistic mixing 3.2 and RPC 3.1. It is executed after the last mix has published
its output on the Bulletin Board.

This approach encompasses the following steps:

1. An independent verifier provides a random permutation (the challenge).
2. All input votes of the first mix are permuted accordingly to the challenge.
3. The list of input votes (of the first mix ) is divided into l = i

√
n equally-

sized blocks, where i is the number of mixes and n the number of input
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ciphertexts (i.e., votes). Since l is well defined, this can be executed by either
the independent verifier, the BB, or the mix.

4. For every input block, the first mix identifies the corresponding output block.
Moreover, for every block, the mix publishes the product of the ciphertexts
in that block and the Chaum-Pedersen protocol [8] or Schorr’s signature
scheme [26] can be used to show that the ciphertext product of the input
block is equal to that of the corresponding output block.

5. The verifier checks the proofs of the first mix.
6. This process continues for each mix, where the assignment of mixes to blocks

depends on the previous mix ’s assignment – thus ensuring an equal distri-
bution of input ciphertexts over all blocks.

Regarding privacy, Puiggaĺı et al. state that every output block of the last mix
is composed of at least one ciphertext of every input block of the first mix.
Regarding correctness, the authors determine that the probability of detecting
two modified votes is p = 1− l−1

n−1 for block size l and a total number of ciphertexts
n. This relies on th fact that a manipulation will remain undetected if a malicious
mix changes two votes without changing the product of the two (1 · 1 = 1

2 · 2),
and these two votes are assigned to the same block.

5 Discussion

The general idea of Puiggaĺı et al. is rather interesting and promising. However,
there are some pitfalls of this approach which are discussed in this section.
Corresponding improvements are mentioned in this section while the details are
provided in Section 6.

Drawbacks and corresponding improvements. In [4], the estimated cost of per-
formance for every mix is (besides the re-encryption) 2b for generating the proof
and 4b for verification, where b is the number of used blocks. A more efficient
zero knowledge proof is the one proposed by Jakobsson and Juels in [18]. With
this improvement, the proof generation and verification needs just half the time
compared to the proposal in [4].

During the mixing process every mix of the mix-net re-encrypts and shuffles
the input ciphertexts. The origin idea of Puiggaĺı et al. was to proceed the
encrypted votes by one mix after the other. It is possible to speed up this process
by parallelizing in the following way: the set of input ciphertexts is separated
into i subsets (while i is the number of mixes). Then all mixes get one of the
subset to start with and afterwards forward it to the next one (while the next
one is different for all of them). This improvement increases the efficiency by
factor i4.

The optimal privacy as it is called in [4] is only ensured if all mixes are honest.
However, this is not the idea of a mix-net where privacy should be ensured if

4 This improvement was implemented for the Norwegian Internet voting trials.
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one single mix is honest. Therefore, we propose to build single mixes similar to
RPC where each mix shuffles twice.

The approach by Puiggaĺı et al. assumes that the total number of ciphertexts
can be grouped in equally sized blocks with block size l = i

√
n, for i mixes and

a n votes. However, in general there will be a remainder when calculating the
root of the number of cast votes. In our approach, we address this remainder as
well5.

In [4], the correctness depends on the assumption that the verifier and the
first mix do not maliciously collaborate. Therefore, it is essential for the correct-
ness that the challenge is really random and generated after the mixing process.
The situation can either be improved by a proper random number generator or
several independent verifiers.

More grounded. [4] gives a formula for calculating the probability of detecting
two modified votes in one block. But there is neither a derivation nor a proof
for that formula. Furthermore, the paper gives a formula for calculating the
minimal block size as a function of the number of used mixes. However it is not
explained how the ciphertexts should be distributed on the blocks nor proven why
the calculated size ensures privacy. We will give an algorithm for our improved
version, determine formulas for correctness, privacy and efficiency, and also prove
them.

6 Verification Using Integrity Proofs of Random Blocks

In this section we describe a detailed verification process, based on the proposal
of Puiggaĺı et al., which includes all improvements proposed in Section 5. We
introduce some notation and the overall mixing process first. Next, we describe
verification of proper re-encryption and shuffling for each mix. To this end, we
first describe which steps have to be done before the verification starts (the setup
phase), and then explain how each mix’s ciphertexts are grouped. Finally the
verification of every mix is described, first describing verification of the first re-
encryption and shuffling step, and then verification of the second re-encryption
and shuffling step.

Notation. Consider we have n ciphertexts posted on the BB and a mix-net
consisting of i mixes. We use the following notation: the set of input ciphertexts
of mix j is Cj , the set of output ciphertexts after the first re-encryption/shuffling
step is C ′j , and the set of ciphertexts after the second re-encryption/shuffling

step is C ′′j . During verification, Cj will be divided into l blocks aj1, a
j
2, · · · a

j
l .

The corresponding output blocks (containing the same plaintexts) in C ′j are

a′j1 , a
′j
2 , · · · a

′j
l , the input blocks for the second verification step are bj1, b

j
2, · · · b

j
l ,

and the corresponding output blocks in C ′′j are b′j1 , b
′j
2 , · · · b

′j
l .

5 As [4] is intended for use in the Norwegian Internet election, its implementation
must also address this case.
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Fig. 1. Verification of one mix for 5 ciphertexts, 2 blocks

Mixing. For i mixes the set of input ciphertexts is divided into i subsets. To
ensure the privacy of the ciphertexts, even though they are grouped, the subsets
should be selected for example by district or municipality. In doing so it is
prevented to divide the input ciphertexts into blocks but using the fragmentation
given by the election. The jth subset becomes the input of the jth mix, which
re-encrypts and shuffles the ciphertexts two times and publishes intermediate
result C ′j and final result C ′′j on the BB. After mix j − 1 publishes its results,
this becomes the input of mix j and the final result of the last mix i becomes
the input of mix one. This is repeated until every subset has been mixed by all
i mixes.

Verification setup. The verification parameters are set as follows: the number
of blocks m is determined by m = b

√
nc; the size l of blocks is calculated by

l = b
√
ne); there are r = n − m · l blocks with l+1 elements, and m-r blocks

with l elements. Verification begins by generating a random permutation. For
security reasons, this permutation should not be under full control of one party,
and only be determined after the mixing process has finished. One possible ap-
proach is that all mixes and the verifier contribute a random permutation which
are concatenated by the verifier at random. Another, probably more practical
approach, is to generate the random permutation along with the audience of
the verification process. After the random permutation has been generated, the
input ciphertexts of the mix-net on the BB are permuted. This is done to ensure
that the block generation for the first mix is not predictable.

Block fragmentation. In the next step, the input ciphertexts processed by the
mix are grouped into m blocks. For the first mix, the first l+1 ciphertexts are
assigned to the first block, the second l+1 ciphertexts to the second block,
etc., until r blocks are filled. The remaining m-r blocks are similarly filled with
l consecutive ciphertexts (instead of l+1 ). For all other mixes j, the input
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blocks are determined by the output blocks of the previous mix j-1, meaning
aj1 = b′j−11 , aj2 = b′j−12 , . . .. After the input ciphertexts are grouped, the verifier

asks the mix j to show the correspondence between output blocks a′j1 , a
′j
2 , · · · a

′j
l ,

in C ′j and input blocks aj1, a
j
2, · · · a

j
l in Cj . In the next step, the verifier distributes

the ciphertexts of all output blocks a′j1 , a
′j
2 , · · · a

′j
l over input blocks bj1, b

j
2, · · · b

j
l in

such a way that all ciphertexts which were in the same input block are now part
of different blocks to preserve privacy. The first r input blocks contain l+1 ci-
phertexts, one ciphertext of every block and one additional ciphertext of block r
(input block one contains two votes of output block one, input block two contains
two votes of output block two, . . . ). All other m-r blocks contain l ciphertexts,
one of each block. Next, the verifier asks mix j to show the correspondence be-
tween output blocks b′j1 , b

′j
2 , · · · b

′j
l in C ′′j , and input blocks bj1, b

j
2, · · · b

j
l in C ′j . This

whole process is done sequentially to raise the efficiency. First the ciphertexts of
mix one are grouped. As soon as the corresponding output blocks are known,
the input blocks of mix two are grouped and so forth.

Mix verification. In the verification step, mix j proves correctness of the re-
encryption of every block s during the first and second iteration of re-encryption/shuffling
by using the plaintext equivalence proof proposed in [18]. As a result, any ob-
server including the verifier can verify the correct re-encryption of the blocks
and correspondingly verify whether the sum of the plaintexts remains unchanged
(Figure 1).

7 Analysis

In this section we analyse our approach described in Section 6 regarding correct-
ness, privacy, and efficiency while providing the definitions in the corresponding
subsections.

7.1 Correctness

In this section we analyse the correctness of our approach by calculating the
probability that ciphertexts which have been modified by a mix are grouped in
the same block and therefore are undetected during the verification process. We
first explain how ciphertexts may be altered without affecting the product of the
ciphertexts. Next, we provide a formula to determine the probability of having k
modified ciphertexts in one block during the verification process. This formula
holds for our approach and the one proposed by Puiggaĺı et al.

If a mix wants to modify ciphertexts without being detected it needs to
modify at least two ciphertexts. One is for example an additional vote for a
candidate and the second one is adapted to remain the product of the plaintexts
unchanged. This modification is not detected if the two adapted ciphertext are
in the same block during the verification process6.

6 Such an attack is detected during counting if votes have no linear dependency. In
this case, the decrypted vote makes no sense. However, it is not possible to determine
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A mix receives n different ciphertexts encrypted with exponential elGamal.
To add a vote for candidate c the mix first encrypts a vote for candidate c and
add the ciphertext to the set of output ciphertexts. Following it multiplies two
random ciphertexts a and b to reduce the number of overall ciphertexts. The
new value is re-encrypted and add to the set of output ciphertexts. The overall
product stays unchanged if all ciphertexts are assigned to the same block.

Theorem 1. Consider we have n ciphertexts, a block size of l, in total m blocks
with m · l+ r = n, r blocks with l+1 elements, and (m-r) blocks with l elements.
The number of possible fragmentation is:

( n
l+1)(

n−(l+1)
l+1 )...(n−(r−1)(l+1)

l+1 )
r! · (n−r(l+1)

l )(n−r(l+1)−l
l )...(l

l)
(m−r)! .

Proof. There are
(
n
l+1

)
ways of choosing l+1 ciphertexts (disregarding order) for

the first block out of n ciphertexts. After the first block was chosen there are
(n-(l+1)) ciphertexts left which have to be spread over (m-1) blocks. The same
is done for all blocks with l elements. Finally the total among of fragmentation
is divided by the number of block-permutations r! (and correspondingly (m-r)! )
because the order of the blocks is unregarded.

Theorem 2. Consider we have n ciphertexts, r blocks with a blocksize of l+1,
m-r blocks with a blocksize of l, and k modified ciphertexts.

1. If k > l + 1 the probability of having k particular ciphertexts in one block is
zero.

2. If k = l+1 the probability of having k particular ciphertexts in one block with
l+1 elements is r

( n
l+1)

.

3. If k = l the probability of having k particular ciphertexts in one block with l
elements is m−r

(n
l)

.

4. if k ≤ l the probability of having k particular ciphertexts in one block is(
n−k
l+1−k

)
· r

( n
l+1)

for blocks with l+1 elements and
(
n−k
l−k
)
· m−r

(n
l)

for blocks with

l elements.
5. The average probability of having k modified elements in one block is(

n−k
l+1−k

)
· r2

m( n
l+1)

+
(
n−k
l−k
)
· (m−r)

2

m(n
l)

.

Proof. The probabilities can be calculated in the following way

1. Not all modified ciphertexts can be in one block if the number k of modified
ciphertexts is larger than the blocksize l and l+1.

2. Consider all k modified ciphertexts are in one block with l+1 elements.
There are n-(l+1) ciphertexts left which have to be segmented in (m-1)

which mix tried to manipulate the result. In the case that valid votes are linearly
dependent (e.g. by encrypting the position of the chosen candidate in the candidate
list) this modification cannot be detected either by decrypting and checking the
format nor by the verifier of the mix-net.
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several blocks:
(n−(l+1)

l+1 )...(n−(r−1)(l+1)
l+1 )

(r−1)! · (n−r(l+1)
l )(n−r(l+1)−l

l )...(l
l)

(m−r)! . Dividing by

the total among of possible segmentation the resulting probability is r

( n
l+1)

.

3. The probability for blocks with l elements can be shown in the same way as
for blocks with l+1 elements.

4. Consider k = l. A block with l elements, containing the k ciphertexts can
be generated in m−r

(n
l)

ways and a blocks with l+1 elements in r

( n
l+1)

ways.

In addition to the number calculated for blocks with l+1 elements, there
are several possibilities of generating the block containing the modified ci-
phertexts because the remaining (l+1-k) blockelements can be chosen from
the remaining (n-k) ciphertexts in

(
n−k
l+1−k

)
different ways. This leads to a

probability of
(
n−k
l+1−k

)
· r

( n
l+1)

. The probability for blocks with l elements and

k < l can be shown in the same way.
5. The probability that k ciphertexts are in one block with l+1 elements dur-

ing the verification is r
m ·
(
n−k
l+1−k

)
· r

( n
l+1)

and in one block with l elements is

m−r
m ·

(
n−k
l−k
)
· m−r

(n
l)

. This results in an overall probability of
(
n−k
l+1−k

)
· r2

m( n
l+1)

+(
n−k
l−k
)
· (m−r)

2

m(n
l)

that modified k ciphertexts are in the same block during the

verification and remains undetected.

In our approach the values for m and l are fix and can be calculated by
m = b

√
nc and l = b

√
ne). As a result the correctness is independent of the

number of mixes i. In contrast the values for the approach proposed by Puiggaĺı
et al. depends on the number of mixes and can be calculated by l = i

√
n and

m = n
l .

7.2 Privacy

In this section we analyse the privacy of our approach. First, we explain how pri-
vacy could be violated or decreased during the verification process. Afterwards,
we analyse our approach under the assumption that just one mix is honest.

The whole verification process, inclusive the block fragmentation of the ci-
phertexts, is public and published on the BB. Consider we have just one mix,
group the input of the mix in two blocks, and ask the mix to show the corre-
sponding two blocks of the output ciphertexts than after the decryption we can
see which block contained which cast vote. Correspondingly, if we know that the
vote by Alice was contained in block one and the encrypted ciphertexts of block
one do not include a vote for Bob, than we know that Alice did not cast a vote
for Bob.

While this problem exists with the proposal in [4], we show that this infor-
mation is not leaked in our approach. For the following theorem we assume that
no additional information which increases the probability of linking the output
cipher to a given input cipher (for example no ballot papers with different or
slightly different candidate lists are used).
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Theorem 3. For a block size l =
√
n and a total number n of ciphertexts, the

probability that a certain input ciphertext of the mix-net corresponds to a certain
output ciphertext of the mix-net varies up to 1

(l+1)2 .

Proof. Consider the block size l is the root of the total number n of ciphertexts
and we want to trace a certain input ciphertext which is after the first verification
step of mix one in block a1j = a′1j . During the second verification step of mix

one the ciphertexts of this block are equally distributed. All input blocks b1

contain one vote of all output blocks a′1. Therefore, also the probability of one
block b1j = b′1j to contain a certain input ciphertext is equally distributed and
correspondingly the probability for all output ciphertexts of this mix is equal.

If the block size l is not a root of the total number of ciphertexts n then some
blocks contain one ciphertext more than the others. As a result some blocks b1

of the second verification step contain l ciphertexts and some blocks l+1 cipher-
texts where two ciphertexts come from the same block a′1, generated during the
first verification step of one mix. Consider we want to trace a certain input ci-
phertext of the mix which goes during the first verification step to a block with
l+1 elements a1j = a′1j . Note, we do not consider the case that a ciphertext is
traced which was part of a block with l elements because these items are equally
distributed as shown before. All output ciphertexts of block a′1j have a probabil-

ity of 1
l+1 of being this particular input ciphertext. After the second verification

step of one mix, one of the blocks with l+1 elements b1j′ = b′1j′ contains two

ciphertexts of this block a′1j , all other blocks just one. The output ciphertexts

of a block with l elements have a probability of 1
l+1 ·

1
l = 1

(l+1)l . The output

ciphertexts of a block with l+1 elements, which contains just one ciphertext of
the block a′1j , have a probability of 1

l+1 ·
1
l+1 = 1

(l+1)2 . Finally the output ci-

phertexts of the one block b1j′ with l+1 elements, which contains two ciphertexts

of the specific block a′1j , have a probability of 2
l+1 ·

1
l+1 = 2

(l+1)2 . Because of
2

(l+1)2 >
1

(l+1)l >
1

(l+1)2 , the probability varies up to 1
(l+1)2 .

During the verification of mix i we have one block with l+1 elements aik
containing two ciphertexts of block b′i−1j′′ , generated during the verification of

mix i-1. The output ciphertexts of block a′ik have the highest probability to be
the traced ciphertext, in fact 1

(l+1)i higher than for all other ciphertexts. During

the second verification step the ciphertexts are equally distributed while one
block bik′ receives two ciphertexts of block a′ik . The probability of all output

ciphertexts of this block bi
′

k′ will be about 1
(l+1)i ·

1
(l+1) = 1

(l+1)i+1 higher than

for all other output ciphertexts of mix i. This shows that the difference in the
probability is reduced if the number of honest mixes increases and the maximum
that can be achieved for one mix is 1

(l+1)2 .

Further note that the difference between the probabilities decreases with the
number of honest mixes.

The fact that the whole set of ciphertexts is divided into subsets, to enable
a parallel processing of the mixes during the mixing process, does not affect the
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privacy. This holds because we assume that the set of ciphertexts contained in
different subsets are from different districts or municipalities and differ anyway
in their parties, candidate lists, or number of votes.

7.3 Efficiency

In this section the efficiency of our approach is determined. Note, we only con-
sider the number of needed exponentiations because performing any other arith-
metic operation requires less computational effort. The total number of needed
exponentiations is determined by three components: the mixing phase, proof gen-
eration by the mix-net and verification by the verifier. We compute the compu-
tational costs only for one mix. It should be noted that due to the parallelization,
all steps can be executed in parallel.

The computational cost for one mix during the mixing depends on the num-
ber of ciphertexts n. Two exponentiations are needed to re-encrypt one cipher-
text (α, β) and correspondingly 4n for all n ciphertexts for both steps. The
computational cost to verify the plaintext equivalence depends on the number
of blocks. For n ciphertexts m = b

√
nc blocks are used. During proof generation

the mix needs one exponentiation per block to calculate the witness. From this
follows that for m blocks 2m exponentiations are needed (m for each mixing
step). Afterwards the verifier needs two exponentiations per block to check the
integrity, what gives a total of 4m exponentiations to verify all blocks in both
verification steps.

8 Comparison

In this section we compare our approach with all so far known verification pro-
cesses which on one hand ensure correctness with just a hight probability but
on the other hand have less computational costs. Therefore we are looking at
the approach of Puiggaĺı et al.[4](Section 4), RPC [19] (Section 3.1) and PoS
(Section 3.2).

8.1 Correctness

The correctness is measured by the probability of modifying ciphertexts by a mix
without detection. The probability of every mix to change k ciphertexts when
RPC is used is 1

2k
[19]. The probability of doing an undetected modification is

about ( 5
8 )γ [6] (for γ ≤ 5) and therefore at minimum ( 5

8 )5 if the mix-net is verified
by PoS. The approach by Puiggaĺı et al. can just be used if the ciphertexts can be
distributed equally. In this case the probability of having k modified ciphertexts
in the same block is the same than for our verification process. The comparison
shows that the approach by Puiggaĺı et al. and our improved version has the
lowest probability of doing an undetected modification of ciphertexts.
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8.2 Privacy

The privacy is determined by the size of the subset of output ciphertexts a
certain input ciphertext is hidden in. We consider the case that only one mix-net
is honest and keeps the input-output ciphertext relation secret. After using RPC
for verification all ciphertext of one mix are divided into two blocks. One which
includes the ciphertexts with a revealed relation between the input ciphertexts
of the mix and the media result and one with a revealed associations between
the media result and the output ciphertexts of the mix. Therefore it is possible
to say which ciphertext is contained in which block what results in a subset of n2
output ciphertexts where a certain input ciphertext is hidden in. Using PoS the
ciphertexts are grouped in up to 5 random blocks and the paper proves that the
average size of the intersections in this case is n

25 . Therefore after the verification
of one mix it can be specified in which n

10 ciphertexts a specific input ciphertext
is contained. The approach proposed by Puiggaĺı et al. reduce the blocksize
dependent on the number of used mixes. For i mixes a blocksize of i

√
n is used

and following a certain input ciphertext is hidden among i
√
n ciphertexts. The

comparison shows that our approach has the highest privacy.

8.3 Efficiency

Efficiency is compared by the number of used exponentiations. For re-encryption
our approach, like RPC, needs twice as many exponentiation per mix as the
approach by Puiggaĺı et al. and PoS, as re-encryption and shuffling are performed
twice. But the impact of this is reduced as the mixes all process a subset of
ciphertexts in parallel.

During the verification of RPC two times the association between n
2 cipher-

texts is shown. This can be done by revealing the random value and be verified
by recalculating the re-encryption. Therefore two times n

2 exponentiations for α
and two times n

2 for β are needed. In total the computational costs per mix are
2 · 2 · n2 = 2n exponentiations. The number of exponentiations during the PoS
verification is 2γ(2i − 1)[6] per mix for a total number of i mixes and depends
on the security parameter γ (for γ ≤ 5). Therefore the maximum number of ex-
ponentiations per mix is 10(2i−1) which is achieved if γ = 5. In the verification
process by Puiggaĺı et al. a zero knowledge proof is used to show the correctness
of every block. In [4] they estimate a total number of 6 n

i
√
n

exponentiations done

by the mix-net and the verifier . We see in Figure 2 that only PoS is faster than
our approach (CoRB) because the number of exponentiations does not depend
on the number of input ciphertexts of the mix-net.

9 Conclusion and Future Work

We discussed the mix-net verification scheme by Puiggaĺı et al., a mix of Ran-
domized Partial Checking (RPC) and Optimistic Mixing (OM). We highlighted
several possibilities to improve efficiency, identified a privacy risk in case just
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Fig. 2. Comparison of efficiency for one mix

one mix-net is honest (keeping the re-encryption and shuffling secret), and noted
several unclarities concerning verification block size and allocation of elements
to verification blocks. We proposed an improved verification scheme, based on
randomized partial checking of blocks, to address these issues. We provided a
detailed analysis of the effectiveness (in terms of privacy, efficiency and correct-
ness) of our scheme and compared this with other schemes that enable a trade
off between privacy, correctness and efficiency. We showed that the privacy and
correctness of our scheme improve upon that offered by RPC and OM, as well
as other approaches that offer a trade off between efficiency, privacy and cor-
rectness. In addition, our scheme is less computationally expensive than RPC.
Specifically, our scheme provides a high probability of correctness for all elements
for low computational cost. This contrasts starkly with RPC, which validates
some elements at an elevated computational cost. Moreover, our scheme breaks
the link between input and output. Finally, the probability that a specific input
element ends up in a specific output block is almost equal for all output blocks.

There are several directions in which this work can be extended further. In
this paper we did not address malicious inputs. These could occur e.g. in the
case of a coerced voter. Finally, we’re interested in applying this verification
approach to improve the efficiency of an actual mix-net, such as Verificatum7.
We also plan to discuss which probabilities satisfy legal requirements with legal
scientists.
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