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Abstract. We consider the question of the adequacy of symbolic modslsue
computational models for the verification of security poatis. We neither try to
include properties in the symbolic model that reflect thepprties of the com-
putational primitives nor add computational requiremeés enforce the sound-
ness of the symbolic model. We propose in this paper a diffeapproach: ev-
erything is possible in the symbolic model, unless it catitis a computational
assumption. In this way, we obtain unconditional soundaés®st by construc-
tion. And we do not need to assume the absence of dynamicptimmuor the
absence of key-cycles, which are examples of hypothesearialways used in
related works. We set the basic framework, for arbitrarptagraphic primitives
and arbitrary protocols, however for trace security progsonly.

The main points of this work have been published in the prdicggs of POST’'12
[8]. This paper largely agrees with that publication, busaction 2.6 we present an im-
proved computational semantics. This improvement alloswe $tate our main theorem
for any first order formula, while in the POST publicatiore ghossible formulas were
somewhat restricted. Moreover, we introduced here Sedtiavhich explains the con-
nection between our results and an earlier result of Fiingut embedding first-order
logic into S4.

1 Introduction

The automatic analysis of security protocols has been guieessful since 1990, yield-
ing several tools [11, 18, 25]. However, when the outcomenefaf these proversis “the
protocol is secure”, it must be understood as “secure in cadteti. Nothing guaran-
tees that the necessary abstractions are relevant to anflementations. For instance,
consider the Needham-Schroder-Lowe protocol [22]. It heenkproved secure by all
the above-mentioned provers. However, there are sevésakat for instance when the
encryption scheme does not guarantee the ciphertext ity ¢2@8] or when the pairing
is associative [23] or when some random number could be sedfwith some pairings
[9].

For this reason, it is important to investigate what exattty assumptions are, on
the cryptographic primitives’ implementations, that cargee the faithfulness of the
abstraction. (It is calledoundness the literature).



There are a lot of works providing some soundness resulpicaly the works
initiated by Backes et al [5, 3, 6] and Abadi et al [1, 16, 14}e¥ essentially prove that
a given symbolic model is fully abstract with respect to a pamational one, assuming
some properties of the security primitives. This guarantbat the security proofs that
have been completed in the abstract model are also validomg@gtational model.

However, these works require a very large set of assumptibasare not always
emphasized. For instance in [7] the complete list of assiomgtfor public-keys is
listed; it is a long list of strong hypotheses, that are ndififled by most actual pro-
tocols. [14] make even less realistic assumptions, in caget a stronger soundness
result (which includes more security properties). All taessults typically assume that
no key cycles can ever be created, that bitstrings can begardeterministic poly-
nomial time into terms, that there is no dynamic corrupttbat keys are certified, etc.
These assumptions, as well as reasons why they are noticeatisugh is discussed in
[15]. Furthermore, each primitive requires a new soundpessf and each combination
of primitives also requires a new soundness proof, unleshrationger properties are
assumed [13]. Currently, it seems more realistic to usgFF OV ERIF [12], complet-
ing the proofs directly in the computational model, thamgsk soundness result [2].
Is it really impossible to avoid manipulating computationés, probabilities, bitstring
lengths... ?

In this paper, we advocate a new way of performing proofs iynal®lic, abstract,
model, while keeping strong, computational guaranteexbéshing a general sound-
ness result, but without establishing many specific sousslresults for specific prop-
erties of primitives. Such properties can later be provehadded.

The idea is to design a symbolic setting, in which any adveisaction is possi-
ble, unless it contradicts some axiom expressing a propeatymust be satisfied under
standard computational assumptions. In other words, ctatipnal properties, such as
IND-CCA, can be (symbolically) axiomatized and added tosyxgtem in order to limit
the possible adversarial moves. We do not require the atipatian to be complete.
The idea is to only list properties that we know for certailatithe implementation,
and allow any symbolic move consistent with those propertie this way, either we
find an attack, in which case there is at least one possibt# peimitives satisfying the
assumed properties and for which the security goal is \@dlair the axioms were suffi-
cient to ensure the security of the protocol, in which cageimplementation fulfilling
these axioms will ensure the security.

This approach has several advantages:

1. Though the proofs are performed in a symbolic settingy Hre computationally
valid.

2. Thanks to our result (Theorem 2), adding a new cryptodcgmtimitive only re-
quires to design an axiomatization of this primitive andverd sound due to the
cryptographic assumptions: the additional soundnesd ebort and modular; it
focuses on designated properties instead of considerintevexecution models.

3. We may be able prove the security of protocols with weaksuptions on the
primitives. For instance, if we prove the security usingyatioms that are sound
for IND-CPA encryption, then IND-CPA will be a sufficient hgfhesis for security.



4. In each security proof, all assumptions are clearly anth&tly stated as axioms.

5. In case an attack is found, it may be sufficient to add amaxexpressing stronger
hypotheses on the computational implementation of the tjwés) ruling out the
attack, then try proving again.

6. We may consider any cryptographic primitive, includin@R for instance (for
which there are strong limitations of the computationalrginess approach [4,
27]). Dynamic corruption, key cycles, etc. are not a prigscdrded.

Related works.The most closely related works are probably those that densi proof
system that is sound w.r.t. the computational semantiac$) as [17, 9]. Though these
works are related, as far as the computational semanti¢sedbgic is concerned, the
overal strategy is completely different. We do not try toiges proof system working
directly in the computational model: we only use first-ordgiic and standard inference
rules in the symbolic model. Our approach is more inspiredibgumscription [21],
however circumscribing what ieot possible. In other words, we do not design inference
rules, we modify the transition system instead. This islgimin spirit to [26], in which
any property of the hash function, that is not explicitlydmden by some axiom, is
considered as valid.

Contents of the papein this paper, we only state the framework of the method, @rov
a general soundness theorem in the case of trace propartéeprove soundness of an
example axiom expressing secrecy of an IND-CCA encryption.

More precisely, protocols are identified to a formal transitsystem in the same
spirit as CoSP [7]: we do not commit to a very particular wagpécifying such a tran-
sition system. The possible transitions are, roughly, éefiny a formula, that guards
the transition by constraining the input message, a state@od a message that is sent
out when the guard is satisfied. Such transitions can bepirtead in different models:
symbolic models, in which the messages are terms and thelgasae interpreted in
a Herbrand model, or computational models, in which message bitstrings. In the
symbolic models, we constrain the input messages tddaiciblefrom the previous
outputs and the public information. Such a deducibilitydition is formalised using a
deducibility predicate, whose interpretation is not fix€dis is a main difference with
classical protocol verification: the attacker capabdgitere not fixed, but rather they
parametrize the model. Actually, we consider any attacipability, that does not con-
tradict the (computationally sound) axioms. On the comipartal side, the attacker is
any probabilistic polynomial time Turing machine: the deiilon capabilities are given
by any such machine. These models are explained in the se&ia, 2.3, 2.5.

Next, we need to speficy the axioms and the (trace) securitpguties. We con-
sider any first-order formula, that is built on the predicatmbols, that are used in the
guards, as well as the deducibility predicate symbol. Welrsereh general formulas,
since we need to constrain the symbolic models of the deiititelations, i.e., the
symbolic attacker capabilities, according to the comparatl assumptions on the prim-
itives. Typically, we may consider an axiom of the form: “ipkintext can be deduced
(resp. computed) from a ciphertext and a set of messagben the decryption key has
been sent out or else the plaintext can be deduced (resputed)from¢”, that reflects



some property of the encryption scheme. The meanings of gsdems/security prop-
erties become clear when we define a computational intepyetof such formulas,
which we provide in the section 2.6.

The Section 3 is devoted to the main result, which states argetrace-mapping
soundness property: independently of the primitives aait #pecific characteristics, if
there is a computational attack, then there is a symbobcktOnce more, the symbolic
attacker has any capability, that is consistent with themsi So, this result, though
subtle and not at all trivial to prove, is not surprising. Mieole system was actually
carefully designed with this aim in mind.

We also show in the Section 5 some axiom examples, that avempsound under
some standard cryptographic properties. We do not aim hemat\covering a large set
of axioms. Further axioms will be added to a library each tihey are required for the
proof of a case study.

This paper aims at opening a new research direction: it seenysappealing and
promising. We need however to investigate several caséestulls a “proof of con-
cept”, we have designed a complete set of axioms (includetienAppendix) and
proved the NSL protocol in our framework (available from fist-author’s web page
or upon request). This sufficient set of axioms shows alsosthrme hypotheses of ear-
lier works are not necessary (at least for weak secrecy athemtication).

2 Symbolic and Computational models

2.1 Terms and frames

Terms are built out of a set of function symbdfsthat contains an unbounded set of
namesN and an unbounded set of handids Let X be an unbounded set of vari-
ables. Names and handles are zero arity function symbolsviligse names to denote
items honestly generated by agents, while handles will @einputs of the adversary.
A ground term is a term without variabldsamesare sequences of terms together with
name binders: a framg can be written(vm).p1 — t1,...,pn — t, Wherepy,...p,
are place holders that do not occurtin. . ., ¢, andm is a sequence of namea(¢),
thefree name®f ¢ are names occurring in someand not ini. Thevariablesof ¢ are
the variables of, .. ., t,.

Example 1.We typically use a randomized public-key encryption syml{mh}gKQ

is intended to represent the encryption of the plaintextvith the public-key of the
principal @), with a random seed. More generally, we consider the example when
there is a set of constructos. = {{_}-,(.,-),e_,d_, K_}, and a set of destructors
Fa={ded_,_),m (-),m(-)},andF = F. U FqUN UH.

2.2 Formulas

Let P be a set of predicate symbols over terfisis assumed to contain the equality
= (which is interpreted as a congruence), used,as t,, and a predicate, which
takes as arguments antuple of terms on its left and a term on its right (and which is



intended to model the computation capabilities), that igten ast,, ..., ¢, - t. (More
precisely, it is an infinite sequence of predicates, withuargntsn + 1.)

We are not interested in any specific symbolic interpretedithese predicate sym-
bols. We wish to consideany possible symbolic interpretation, that satisfies some re-
quirements; the aim is to allow anything that is not forbiddg explicit assumptions.

Example 2.Vx,Vy.({:v}§KQ = {y}*%  — x = y)is such a formula, the validity of
which follows from the uniqueness 0? decryption.

Let M denote then any first-order structure that interprets thetfon and predicate
symbols of the logic. We only assume thais interpreted inM as the equality in the
underlying domainD ». The relation inM (that is, a relation for elements i \y),
interpreting the deducibility predicateis denoted as 1.

Given an assigmernt of elements inD 4 to the free variables of termy we write
[t]%4 for the interpretation of in M ([_]% is the unique extension of into a homo-
morphism ofF-algebras).

For any first order structurd1 over the functionsF and predicate®, given a
first order formula? and an assignment of elements in the domain o%¥1 to the free
variables o), the satisfaction relatioM, o |= 0 is defined as usual in first-order logic.

Example 3.Consider the public-key encryption setting of example 1. My use
unary predicate symbols to restrict sets of data. Assumén&tance thal? is sup-
posed to represent the set of agent namesdrisl supposed to represent well formed
terms (that are equal to a term built with symbolsAy).

W (1 (dedh, db))) A M (2 (dedh, db)))

is a formula, that expresses that the haridizan be decrypted and projected into two
components, one of which is an agent name.

2.3 Protocols

We do not stick to any particular syntax for the definition odfocols. We only assume
that it defines a transition system as follovisis a set ofcontrol statestogether with a
finite set of free variables.

Definition 1. A protocolis a recursive (actually PTIME) set of tuples

(Q(ﬁ)a q/(ﬁ ’ nl)v <‘T17 s 7x7€> Ty, S)

whereq, ¢’ € Q, x4, ...,z z are variablesn, n/ are finite sequences of namesis a
first order formula over the set of predicate symibBland function symbol& and the
namesi U n/, whose free variables are ifwy, ..., z,, 2z} ands is a term whose free
variables are in{z1, ..., z,,2}.

For exampley) can be a formula such @aedx, k) = n, that checks that the current
input is a ciphertext whose plaintext is a previously getegtaoncen: i) guards the
transition.s is the output message, when the transition succeeds. Téralied meaning



of these rules is that a transition from the sat® the state;’ is possible, given the
previous inputsey, . . ., 2, and the new input, if the formulay is satisfied. In such a
case, the names are generated and the messaggesent.

Such a formalism is quite general; we only assume here (foplgiity) a single,
public, communication channel. Typically, applieecalculus processes can be trans-
lated into such transition rules, that are similar to the E@@mework of [7].

Example 4.Consider a single session of the NSL protocol. The statesistaf pairs of
the local states of each of the processes for A and B. Instidatiiog the transitions as
tuples, we write) : ¢(7) > ¢/(m) and they are diplayed in the figure 1. In this version
of the protocol, the responder is willing to communicatehwdinybody, hence only
checkslV (w1 (dedy, dKg))); the intended meaning d¥ is a set of agent names. If

, {(Am) i
1 (dedz,dK4)) = B

PR {2 (ma (ded(, dK 4)) YT 5c
A (ma(deda, dKa))) =n [ BT

W (mi(dedy,dKg))) ‘ Bt o) {(B,<‘rr2(de((y,dKB)),n/W}zKﬂ_l(deqy)dKB)) B )
A M (2 (dedy, dK))) | ot s
deqz,dKgp)) =n': qlB(n'J') — qQB(n'7 r')

Fig. 1. The 3 transitions of 1 session of NSL

we wish to describe an unbounded number of sessions, we meecbird in the control
state the states of every (openetisession and (openedj-session. This yields an
infinite, yet recursive, set of transition rules.

Definition 2. A symbolic statef the network consists of:

— a control state; € @ together with a sequence of names (that have been generated
sofanny,...,ng

a sequence constants calledndlesh, . . ., h, (recording the attacker’s inputs)

— aground framep (the agents outputs)

a set of formula®® (the conditions that have to be satisfied in order to reach the
state).

A symbolic transition sequenoé a protocol/] is a sequence

(qo(n_o)a @7 ¢0’ @) . (Qm(m)7 <h1, ceey hm> 7¢m7 Qm)

if, for everym — 1 > ¢ > 0, there is a transition rule

(QZ(Q_l)a qi+1(m)7 <I17 s 7'ri> 7$71/)7 S)



such thatt = m\a_l, ¢i+1 = (Vﬁ)((bz ‘p = Spio'iJrl), Niy1 = N; YN, @iJrl =6,;U

{¢i b hiy1,¥pi0oir1} Whereo; = {x1 — hq,...,2; — h;} andp; is a renaming of

the sequenca; into the sequence;. We assume a renaming that ensures the freshness
of the namesi: m N 7; = 0.

Definition 3. Given an interpretation\, a transition sequence af

(QO(H_o), @7 (bOa @) — .. (qm(m% <hla R hm> 7¢m7 Qm)
is valid w.r.t. M if, for everym — 1 > i > 0,
M Ot

Example 5.We show the beginning of a possible branch in the symbolicui@n of
NSL.

(quwv(bOa@) (Q17H13¢1591) (q23H27¢27@2) (q37H3a¢3a@3) (Q43H4a¢47@4)

Whererr = n, 7,7, n',1", g0 = (45, 4 ) (@), andar = (¢, ¢¢’) (M), a2 = (4", a’) (M),
andgs = (¢!, ¢P)(m) andqy = (¢4, ¢¥) (7). In other words, we interleave the actions
of A andB, as in an expected execution and assume that the two precesse first
activated (if not, we could introduce two transitions aating the processes).

— ¢0 = Vi kpAB(Do — (A, B,eK4,eKpR)),

Oy =10

— Hy = (hy),
01 extendsﬁo with p1 = {<A,7’L>}£KB,
61 ={¢pot h1}

— Hy = (h1, ha),

¢ extendsp; with py — {(B, (m2 (dedhy, dKg)),n')) ggﬂ(dewww),

Oy = 01 U {¢1 F ho, M (73 (dedhy,dK))), W(m (deqhs, dKp)))}
— H3z = (hy, ha, hs), ,

¢3 eXtende)Q with p3 — {71'2 (71'2 (de((hg, dKA))) ZKB'

O3 =6, U {(bg F hz,m (7T2 (dEC(hg, dKA))) =n,m (dEC(hg, dKA)) = B},
— Hy = (h1,ha, h3, ha), ¢s = ¢3,

04 =065U {¢3 F hy, deqh4, dKB)) = TL/},

Let M be a model in whichr; (dedhs, dKg)) = A and

hy =p (A M) ik, hs =a (B (nn))}ike,s ha=aa {0}y,

andt 4 is simply the classical Dolev-Yao deduction relation. Tliea execution se-
guence is valid w.r.tM, and this corresponds to the correct execution of the NSL
protocol betweem! and B.

There are however other models in which this transition eage is valid. For in-
stance letM’ be such that, =, n and¢; Fae nandn = {(A, 1)}k, (and
hs, hy as above). We get again a valid transition sequence wi't. Though, in what
follows, we will discard such sequences, thanks to somenasio



Example 6.Consider again the transitions of the example 5. Now consigeodelM

in whichng, {B,n,n'}{x, Fam {B,no,n'}{ g, for an honestly generated noneg
that can be chosen by the attacker: the transition sequédribe previous example is
also valid w.r.t. this model. This will yield an attack, ugia malleability property of the
encryption scheme, as in [28]. Discarding such attacksiregjsome properties of the
encryption scheme (for instance IND-CCA). It can be ruletilmua non-malleability
axiom like the one appearing in the Appendix.

From these examples, we see that unexpected attacks camrfiefben some assump-
tion is not explicitly stated as an axiom to limit advershecapabilities.

2.4 Axioms and security properties

For simplicity, we only consider reachability security pesties. The extension to any
trace property should not be very difficult: it suffices toomtsome values along the
trace. Security properties (and, later, axioms) are firdeoformulas that may contain
state-dependent predicates and/or predicates that geiritezpretation. As in the pre-
vious sectionsM is an arbitrary first-order structure ands an assignment of the free
variables to elements db .

First, we add atomic formula{s 81,...,8, F 1, Whereg?) is just part of the syntax of
this predicate (not an input of the predicate), which aimsaging over frames (when
interpretating the predicate) and is evaluated in evetg skort, ..., t,, closed terms,
Mo (b, b)) = Gys1, .. sp bt ff Mo =81, Sty 8

In addition, we consider the following atomic formulas, vgkcevaluation only de-
pends on the state, independently of the first-order stregi.

— RandGen(s) (s is a ground term) expresses tkdias been randomly generated:
Mo, (t1,...,tm),(n1,...,n) = RandGen(s) iff se€ {ny,...,ng}

—tCé (t is a ground term) expresses thas a subterm of the messages sent so far:
Mo, (t1, ... tm) M=t C ¢ iff tisa subterm of some.

— We also may use the derived predicate (as an abbreviation):

fresh(z, ) = RandGen(z) Az Z ¢

C andRandGen() areinterpreted predicatesince their interpretation does not de-
pend onM. Bound variables that appear within an interpreted preeieae called
constrained variablesAs in other works on constrained logics (see for instan®@)[2
such variables are used to schematize several first-ordaufas and are replaced with
ground terms built otF. Therefore, the interpretation of axioms and security proes
that may involve interpreted predicates, is modified, onlgase of a quantification on
a constrained variable, in which caser is replaced by any (or some, for existential
quantification) ground term:

If z is a constrained variable (that &shas an interpreted predicate andppears in
it), then,

Mo, (t1,....tn),(n1,...,n,) E V.0



iff, for every ground ternt,
Mo, (t1,...,tn), (n1,...,nk) E 0{x — t}

We have a similar definition for existential quantificatiaissuch variables. All other
cases follow the classical definition of the first-ordersfattion relatior?. This yields
a satisfaction relatiotM, o, (t1,...,tn), 7 = 0, and thus ofM, o, ¢, = 0 with ¢
having the termsty, . .., t,,). Whend has no free variable, we may omit Similarly,
if 0 does not contain atomic formulas that dependpofnesp.n), we may omit these
components: we get back to the satisfaction relation of@eet 2.

We define now the satisfaction relation in a state:

M’(q7<h17"'7hm>7ﬁ7¢m79) ':0 Iﬁ M7¢m7ﬁ':9'

Definition 4. A symbolic interpretation and a protocsétisfy the security propert
written as
M ITE6,

if for any sequence of transitions that is executableMfhand that yields the state
(qm7 <h17 ey h’ﬂ’L> 7@7 ¢ma Qm)n

M? (qm7 <h’17 . 7h’m> 7m7 ¢’m7 9771) ': 9

Example 7.Concerning security properties, consider the NSL protdd@ may state
the confidentiality ofn: R

Consider now an authenticity property. We modify slighthe tstates of the transition
system, including a commitment on the nonce on which theigsadre supposed to
agree. We let; be a special function symbol, that takes as arguménis, n, ns: who
commits, for who and the corresponding nonegé&4, B, n, ma(ma(dedz, dKg))))

is sent at the end by the initiator. For the responder, thee similar commitment:
at the end of the protocoB emitsc, (m1 (deqz, dKg)), B, m(dedy, dKg), ns)). We
state as axioms that, ¢, cannot help the attacker and cannot be forged. For instance:
\V/I, Y, z, w'év C,L'(CC, Y, z, w) V Z,w andVI, Y, z, wé F Ci('rv Y, =, w) — C’L'(Ia Y, z, w) E
$. The agreement property (en) may then be stated (for instance) as:

Va,y, z,w.cr(z,y, 2, w)) C b — 3’2" w (ci(z )y, 2/, w") © dAz=a'Nz=7 Aw= w')
That is:x’s view of z, w is the same ag's view of z, w.

With such a definition, for any security property and any pcot there will (almost)
always be an interpretation for which the property is vietatHence we restrict the
class of symbolic interpretations, ruling out the intetptien whose all computational

% 1t would in fact be possible to avoid the notion of constraivariables if we defined r, to
be a freeF-algebra, and- a congruence relation on it (as opposed to the equalify of), and
later parts of the paper could be adjusted accordingly. Mewsince constrained variables are
more convenient for automatic verification, the authorsdistto present the theory utilizing
them.



counterparts would violate some security assumption optiingtives. More precisely,
we consider a set aixioms.A4, which is a set of first-order formulas in the same for-
mat as the security properties. We restrict our attenti@ytobolic interpretations that
satisfy A.

Example 8. — For instance we could include i# a formula
fresh(k, ) — —(¢ F k)

that states that an attacker cannot guess (except withgitdglprobability) a ran-
domly generated name. Adding such an axiomdinules out symbolic interpreta-
tions in which this deduction is possible.

— Ifthe computational implementation is such (e.g. they aggéed), we may include,

\V/I, Y, z, Aa T'<Ia y> 3& {Z}%A
stating that pairs and ciphertexts cannot be confused.

We will see more examples in Section 5.
We may assume w.l.0.g that the axioms and security progateejust (universally
quantified) clauses.

2.5 Computational interpretation

The computational interpretations are just a special ciisgaspretation of our formu-
las, when they do not depend on the state of the transitidarsy$Ve define them again
here, since we wish to introduce some additional notionso Ahe computational exe-
cutions of the protocols rely on a concrete adversary, giyea Turing machine, while
in general, the interpretation of functions and predicated not to be computable.

We consider a familly computational algebras, parametiigea security parameter
7, in which each function symbol is interpreted as a polyndisn@mputable function
on bitstrings (that may return an error message). Given éh&smpler of names (for
every name, its interpretation is a bitstring(n)), every ground term is interpreted
as a bitstringt]- in such a way thaf_], is a homomorphism ofF-algebras. More
generally, ifo is an assignment of the variablestoto bitstrings[¢]7 is the (unique)
extension ofr (on names) and (on variables) as a homomorphism®falgebras.

Similarly, all predicate symbols are interpreted as potyiadly computable func-
tions on bitstrings. The equality predicate is interpretea strict equality on bitsrings:
T =11 = t2 if [t1]- is not an error[tz], is not an error anlt; ] - = [t2] .

This interpretation is extended to arbitrary closed forasuhose atomic formulas
do not depend on the state. This yields the satisfactiotioala =° 6. We will define
later the computational interpretation of arbitrary fotemiin a given state.

We now define computational executions.

Definition 5. Given a set of transition rules, @mputational stateonsists of

— A symbolic state (that is itself a tupley(7, h, ¢, ©))
— asequence of bitstring#, . . ., b,,) (the attacker’s outputs)

10



— Asequencéb], ..., b)) of bitstrings (the agents outputs)
— The configurationy of the attacker.

Definition 6. Given a PPT interactive Turing machinel and a sample-, a sequence
of transitions

(801@71)/0170) — .. (Sm7<b17"'abm>a< iaab;n> a/}/m)
is (computationally) valid w.r.tM andr if

— o — -+ — Sy, IS @ transition sequence of the protocol

— for everyz' = O, .m-—1,s = (ql(n_l), hi, gf)i, @1), d)l'Jrl = (Vﬁ)¢z © Uj, [[Uz]]‘r =
Vi

- foJrreveryz‘ =0,...,m — 1, there is a configuration; of the machineM such that
vi Fyr Vi Fi i andsy] is in a sending state, the sending tape contairting,
vi+1 IS in a receiving state, the receiving tape containifg,

— for everyi =0,....m—1, 7, {.%'1 = by, — bi+1} ':C 9i+1-

Intuitively, b, is the attacker’s initial knowledge and we simply replacguisolic de-
ductions/symbolic models of the section 2.3 with compuotaicomputational models.

2.6 Computational validity of security properties and axians

We already considered the computational satisfaction mofhfites, except for formulas
that depend on the states. Given a PT Turing macHinse define then

AT Et, . ta bt i At [Ea]r) = [t -

The difficulty now is that we do not want to defing = ¢ ¢3 Fti — ¢+ tyas

A, 7= ¢ Ftyor A 7 £ ¢+ ty. In order to understand this, consider for instance the
formula

0: Vigxr(@d {}Ert—{t}E COVIKEPVoHt)

We want (intuitively) IND-CCA encryption schemes to satifffis formula. However,
consider an instance of this axiom in whiéhs the pairp = vnina.(ni,n2), andt is
n1. Now, let.A be a machine which, on inpfitni, n2)] -, [{n1}%x]- returnsny and, on
input[{n1, n2)]- only, returngn.] .. For everyr, A, 7 =° 6. Hence, whatever security
is provided by the encryption scheme, there is an attack@prbperty.

This paradox comes from the deterministic interpretatibthe deducibility rela-
tion: while, symbolically, it is a relation, it must be a fuion in the computational
setting since we cannot consider non-deterministic mashifhe intended interpreta-
tion therefore involves several machines: roughly, for argchine that can compute
[t]- from[¢]-, [{t}. ]+, either there is a machine that can comdte from [¢] - or
else the actual frame contains eitliéf or {¢}” .. These two machines need of course
to be independent af. This is the definition that we formalize now for arbitrargsaty
properties.
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Let M be an interactive PPT Turing machine with a special chadleramtrol state
q.- We may regard this machine as an attacker, who moves toatey;stwhen (s)he
thinks that (s)he is ready to break the security property.

In what follows, S is any (polynomial time) non-negligible set of interprétas of
names, and' is the set of all name interpretation$st, IT = 6 iff M, II, St E° 6
andIT |=° 0 if M, IT |=° 0 for every M with ¢..

We introduce machines that compute witnesses for the utreamed quantified
variables.

- M,II,S ¢ 3z.0 iff for any S’ C S non-negligible, there is &” C S non-
negligible and a PT maching, such thatM, IT, 5", A, E=° 6

- M, IS, A,y ..., Ae, E© V.0 iff for any probabilistic polynomial time ma-
chineAd,, M, II,S, A.,,..., As, , Az E€ O

If 2 is a constrained variable, the interpretatiorivaff is analogous to the symbolic
case:M, I1,S, Ay, ..., Ay, E° Va.6 if and only if for every ground ternt, the
satisfactionM, I1, S, A, , ..., A, E° 0{x — t} holds (and similarly for existential
guantification). Ifo is a sequence of machines, one for each free variabfe),

- M,H,S,O’ ':C 01 N 0Oy iff M,H,S,O’ ':C 01 andM,H,S,O' ':C 0.

- M,II,S, 0 =° 61 V 0, iff for any S’ C S non-negligible, there is & C S
non-negligible such that eithe¥t, I1, S”, o = 6, or M, I1, 5", o |=° 6s.

- M,II,S,0 =° 6, — 6 iff for any S’ C S non-negligible M, 11,5, 0 =° 6,
implies M, I, 5", 0 =° 05

- M,II, S, 0 ¢ =4 iffforany S’, if M,II,S’,0 =° 6, thenS N S” is negligible

— in the case of an atomic formul(¢4, . . ., t,) whereP ¢ {, C, RandGen()},
M,II, S, 0 E€ P(ty,...,t,) if there is an overwhelming subs§t of S such that
the following holds. For any € S’, consider the unique valid computation (if there
is one) of I with respect toM, 7 that yields a configuration o#, which is in the
control statey. with a bitstringb on the output tape. Let(z) be the control state
reached at this point andbe the restriction of to7. Letb, = A, (b, ¢) for every
A, € o, anda be the sequence of assignments: b,. Then([t1]2, ..., [t.]%) €
[P].

— For the deducibility predicateM, I1, S,c ¢ b,t1,...,t, b tif for all non-
negligible S’ C S, there is a non-negligiblé” C S’ such that there is a PT
Turing machinedp such that, for al- € S”, the unique valid computation (if
there is one) ofl/ with respect taM, 7 that yields a configuration aM, which
is in the control statg. with a bitstringb on the output tape, an actual framg
and such that, letting, = A, (b,¢) wherec = 7(n) for the names: in the cur-
rent state, for everyd, € o, anda be the sequence of assignments— b,,
'AD([[¢m]]Ta [[tl]]fry’ ) [[tn]]fryv b) = [[t]]ff.

- M,II,S, 0 =°t1,...,t, - tis defined exactly as above, however removing

— If P is an interpreted predicaté/, I1, S,o = P(t,...,t,) iff there is an over-
whelming subsef’ C S such that, for any € S’, the unique valid computation
of IT with respect toM, 7 that yields a computational statg7, h, ¢, ©), b, 0/, ~)
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in the control state,. such thatP(t,,...,t,) is true ing(m, h, ¢, ©). (Remember
that the evaluation of such predicates do not depend on tldelno

M, IT E""P 6 (read “M, IT satisfiesd with non negligible probability”) if there is a
non-negligible set and a PPT machind such thatd(nq, ..., ng, b1, ..., bx) returns
1iff there is ar € S such that, for ali, 7(n;) = b; and M, IT, S ¢ 6.

Lemmal. If M, II,S,0 =° 0 andS’ C S, then we also hava, I, 5", 0 ¢ 6

Proof. We proceed by induction o SinceM, IT are fixed, we sometimes omit these
components.

— If 6 is a atomic formulaP(t1,...,t,) and P ¢ {+, fresh(),C}, then, by def-
inition, there is an overwhelming subsét C S such that, for anyr € Sj,
([t .., [tn]e) € [P]. If S” € S, we chooseS] = S N S;. Itis an over-
whelming subset of’ and, for anyr € S1, ([t:1]2,. .., [t.]$) € [P].

— If 6 is a formulag, t1, . .. ,t, F t, then for any non negligiblé; C S, there is
a non-negligibleS; C S; and there is a machind, such that, for any- € S5,
A([ol-, [t1]2, .-, [ta]S) = [¢]2. If S € S is non negligible, then any non-
negligibleS; C S’ is also a non-negligibl8; C S, hence the result.

— Other atomic formulas with= andC are rather trivial.

—If0 = -0, M,II,S,c E=° 0 iff forany S; C S such thatM, I, Sy, 0 E°© 64,
S1 N Sis negligible. In that case, forary C S, S’ NS, is also negligible, hence
the result (we do not use here the induction hypothesis).

— Letnowd = 6, V6, S,0 =° 61 V 63 andS’ C S. Take anyS” C S’. Clearly,
S C S,s0byS, o E° 6, V0, there is a subset”” C S” such thatS”’, o =° 6,
or S o ¢ 6. That exactly meanS’, o =° 60; V 65.

— If 6 = 0, N\ 5, we simply use the induction hypothesis fgrandd,, with the same
S CS.

—1f 0 =6, — 05, then M, II, S, 0 ¢ 6 means exactly that for every; C S,
if M, II,51,0 E=° 60, thenM, I1,S1,0 =° 05. Clearly, the same will be true if
S; € 8" C S.HenceM, II, 5, o =° 6 also holds.

— Forf = Jz.6,, the proof is analogous te and—.

— Foré = Vz.0,, the proof uses the induction hypothesis that the stateismémnie for
6. Since for allz, 6 is satisfied on all subsetgz6 is also satisfied.

Lemma 2. With the above definitionsyt, I7, S, o =° 0 if and only if for all. S” C S
non-negligible, there is &” C S non-negligible such that, I1, 5", o = 6

Proof. The only if part is clear from the previous lemma that satiSfe carries over
to subsets. The if proof again goes by induction.

— Suppose for alls’ C S non-negligible, there is &’ C S’ non-negligible such
that M, I1, S”, o = —6. That means, for alt” C S, M, I1, S, o [£© 0, because,
by Lemma 1M, II,5" o E° 6 would imply M, I1,S”, o =° 0. So, we have
M, II, S, o =° —0 by the definition of the satisfaction of negation.
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— Suppose for alb” C S non-negligible, there is 8 C S’ non-negligible such that
M, I, S" 0 =° 61 V 02. Then, by the definition of satisfaction 6f v 65, there
is a subsets”” C S” such that eithepM, 17, 5", o ¢ 6, or M, I1, 5" o =°
05. Hence eaclt’ has such a subset, which exactly means by our definition that
MIILS, o ):c 01V 0s.

— Suppose for als” C S non-negligible, there is &” C S’ non-negligible such that
M I, S" 0 =° 61 A 2. Then, by the definition of satisfaction 6f A 6,, both
M, I, 5" 0 € 6, and M, I, 5", o |=° 65. So, using our induction assumption,
we get thatM, I1, S, o =° 0, and M, I1, S, =° 62, which exactly means that
MUILS, o ):c 01 A 0Os.

— Now suppose for alb” C S non-negligible, there is & C S’ non-negligible such
that M, I1, S”, o =°¢ 6, — 6,. Take an arbitranf;, and supposéA, I1, Sy, 0 =°¢
61. We have to show that, I1, Sq, 0 |=° 62. So for anyS” C S; non-negligible,
there is aS” C S’ non-negligible such thaM, I7, 5", o =° 8, — 6,. By the
definition of the satisfaction of entailment, this latterane M, IT, 5", 0 ¢ 6,
because we had, IT, 51,0 ¢ 6, and satisfaction is preserved under taking
subsets. So we have that for afy C S; non-negligible, there is & C S’
non-negligible such thaMm, I7, S”, o ¢ 6. By the induction hypothesis ofy,
M, H, Sl, g ':C 92.

— The case of/z0 is easy, because the statement holds faf,atlalso holds foiva6.

— Suppose for als” C S non-negligible, there is &” C S’ non-negligible such that
M, II, 5", 0 |=¢ Jx. Take an arbitrarys; € S. We have to show that there is a
Sy C S and there is amd,, such thatM, I1, Ss, 0, A, ¢ 6. We know that there
isas” C Sy with M, II,S” o ¢ J26. That implies by the semantics af:0
that there is &> C S” and there is atd, such thatM, IT, S5, 0, A, =° 6. Since
S, C S” C S;, this completes the proof.

Corollary 1. M, I1,S,0 ¢ 6 ifand only if for all.S” C S, M, 11,5, o |=° 0 holds.
M, I, S, o =€ 6 if and only if there is &’ C S such thatM, IT, S, o =° —6.

Lemma 3. The De-Morgan identities hold for conjunction and disjuontas well as
for exist and forall. Moreover-—6 is satisfied ifff is satisfied;~0 A 6 is satisfied only
on negligible setsy0V 6 is valid,0; — 05 is satisfied iff-0, Vv 05 is satisfied. Moreover,
the distributivity rules also holdi A (6; Vv 65) is satisfied iff 0 A0, ) v (0 \62) is satisfied
ande Vv (01 A 63) is satisfied iff@ v 01) A (6 V 02) is satisfied.

Proof. The proof is based on Lemma 2. The following points are sefficio prove.

- M, II, S,o ¢ ——0 holds by the semantics of negation iff for &l C .S, we have
M, II,S' o £ —6. That again by the semantics of negation is equivalent with
saying that iff for allS” C S there is aS” C S’ such thatM, IT, 5", o =¢ . That
in turn is equivalent with\, I7, S, o =¢ 6§ by Lemma 2.

— ltis clear thatM, I, S, 0 ¢ —0 A 6 never holds, becaus#t, IT, S, o ¢ -6,
implies M, I1, S, o ¢ 6, a contradiction. We only allowed contradictions on neg-
ligible sets.

- M, II, S, 0 E° —(0:N\02) holdsiff forall S” C S, we haveM, I1, 5", o ¢ 61 N\0s,
which means that for al$” C S, eitherM, I, 5", o [£© 01 or M, I, S, o F£€ 5.
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By Lemma 2, this is equivalent with that for a’ C S, there is as” C 5’
such that either for als”” C S”, M, II,S" o [£¢ 64, or for all " C S”,
M, IS o F£° 6,. This means exactly that for afi’ C S, there is aS” C S’
such that eitheM, IT, 5", o =°¢ =6y, or M, I1, 5", o |=° =05, which is the same
asM,II, S, o ):c =01 V —bs.

— For the equivalence d@f, — 6, and—60; Vv 6> we do the two directions separately.

e Let now M, I1,S,0 ¢ 61 — 6, hold. This implies that for als” C S, if
M, II,S" 0 =° 6, holds, thenM, I1,S’,0c =° 605 also holds. That is, ei-
ther M, 11,5, 0 [£¢ 01, or M, 11,5, 0 =¢ 05. By Lemma 2, it follows that
for all S C S, either there is &” C S’ with M, I1,5",0 ¢ —6;, or
M, I, S, 0 =° 05. This latter condition is equivalent with saying that folr al
S C S, M, I S", o =° 62, which clearly implies that there is &’ C S’
with M, IT, 5", o |=° 6. Putting these together, we have that for&lIC S,
there is a5 C S’ with eitherM, I, 5" 0 =°¢ =0, or M, I1, 5", 0 |=° 05

¢ In the other direction, suppos®, I1, S, = =6, V 65 holds. To show that
M I, S0 E° 6, — 6 also holds, take an arbitray C S, and suppose
M, I, S, 0 ¢ 6;. Now take an arbitrarys” C S’. By Lemma 2, for all
S C 8" M IS o ¢ 6. But, M, II, S, 0 =° =6, V 02 implies, that
thereis a5’ C S” such that eitheM, IT, 5", o =°¢ =0, or M, I1, 5", o =°
—65. So, by the foregoing, the latter must be the case. Since awezhthat
there is such & for any.S”, we have by Lemma 2 that1, I7, 5", o =° —0s.

— SupposeM, I1, S, o ¢ —Vx6, which is equivalent with saying that for &l C S,
M, I, S o £© Va0, which in turn is equivalent with saying that for &l C S,
there is anA, such thatM, I, 5", o, A, ~¢ 0. This, by Lemma 2 is equivalent
with that for all. 5’ C S, there is and,. and anS” such thatM, I1, 5", o, A, E=°
—=f. This is by the definition of the semantics of the existemfiantification, equiv-
alent with M, I1, S, o =°¢ Jz—6.

— For the equivalence oM, I1, S, o = O A (01 V 02) and M, II, S, 0 = (O N 61) V
(60 A 62) we again do the two directions separately.

o M,II,S,0 =°OA(0;V6y)impliesthatM, I1, S, = 6 and M, I1, S, o |=°
0, Vv 02 hold, which in turn means by the semantics of the disjunctiaat
M, II, S, 0 ¢ 0 and for everyS’ C S, there is aS” C S’ such that ei-
ther M, I1, 5" o =° 6; or M, I1,5" o |=° 65. By Corollary 1, we have that
M, II, 8" o =° 0, sowe have that eithevt, IT, S”, o = 6 and M, 11, 5", 0 °©
01, 0r M, I1,5”,0 = 0 and M, I1,S”, o =° 05, which in turn is equivalent
with M, IT, S, 0 = (0 A 61) V (0 A 6s).

e For the other direction, assume now thet, I1,S,0 ¢ (0 A 61) vV (6 A
f2). This means that for every’ C S there is as” C S’ such that ei-
ther M, I1,5",0c ¢ § and M, II1,5",0c ¢ 601, or M, I1,5",0 ¢ 0
and M, I1, 5" o ¢ 6,. SinceM, I1,5”, 0 ¢ 6 holds in both cases, this,
on one hand implies that for evely C S there is aS” C S’ such that
M, II, 58" o E° 6, which by Lemma 2 means that(, I1, S, o ¢ 6. On the
other hand, we also have that for evedy C S there is aS” C S’ such that
eitherM, I1, 5" o =€ 01, or M, I, 5" 0 =° Oy, implying M, I1, 5", o ¢
01 V 05. Hence, we arrive a1, I1, S, 0 = 0 A (01 V 02).
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— Finally, for the equivalence oM, I1, S, 0 ¢ 6 V (61 A 02) and M, 11, S, 0 €
(0 Vv 0,) A (0V 02) we again do the two directions separately.

o If M, II,S,0 ¢ 0V (61 A 02) holds, then for everys’ C S, there is a
S C S such that eitheM, IT, 5”0 ¢ 6 or M, I, 5", 0 = 61 A 0. But
this is equivalent with saying that for eveff C S, there is aS”” C S’ such
that eithertM, I1, 5", 0 =° 0, or M, I1, 5" o E° 6, and M, 11, S, 0 |=° 05.
That in turn is equivalent with that for evely C S, there is aS” C S’
such that both eitheM, I1, 5", 0 ¢ 0 or M, II,S" 0 ¢ 6,1, and either
M S" o E¢ 0 or M, I1,S",0 ¢ 6. This implies that on one hand
for every S’ C S, there is aS” C S’ such that eitheiM, IT, 5", 0 E° 0
or M,I1,S5",0 =° 6, and, on the other hand, for evefy C S, there is a
S C S’ such that eithetM, IT, 5", 0 =° 6 or M, I, 5", 0 =° 6,. This is
equivalent withM, IT, S, 0 =° (0 V 01) A (0 V 02).

e Forthe other direction, suppose now that we h&tell, S, o =° (0VO1)A(OV
62), which is equivalent with that on one hand for ev8fyC S, thereis a” C
S’ such that eitheM, IT, 5" o ¢ 0 or M, I1, 5", o =° 61, and, on the other
hand, for everys’ C S, there is a5”" C S’ such that eitheM, IT, 5", 0 ¢ 0
or M,II,S" o ¢ 0,. Fix an arbitraryS” C S. By the foregoing, there is
as"” C S’ such that eithesM, IT, 5" o =° 6 or M, I1, 5" 0 ¢ 6;. If
M IS o ¢ 6, then setS” = S’ If M, I1,5",0 £ 6, then we have
M, I, 8", 0 E° 0, and by the foregoing, there is®’ C S such that
M, IT,S" 0 € 05 For Lemma 1M, I1,5" 0 =€ 61, sOM,II,S" o €
61 Ab,. Hence, in either case, we have®#hC S’ such thatM, IT, S, o £€ 6
or M, I1,S5", 0 |=° 6, Ab. Then, by the semantics of the disjunction, we have
ML S o ':c A (91 /\92).

3 Computational soundness

Definition 7 (Almost Covering Family of Decreasing Chains ofPolynomial-Time
Non-Negligible Sets of Coins)For a set of coinsS, we say that a familg of chains
of the formS; O Sy D ..., each non-negligible, PT computable subset$ ohlmost
coverss, if forany S” C S, for all 4, there is a{.S;}32, € € such that the intersection
of S; and S’ is non-negligible.

Let ¢! and ¢? be two such decreasing families, taking all elemelfi$} >, € ¢!
and all element{S?}>°, € €2, the set of non-negligible decreasing chains of the
form {S}! N S2}2°, is also an almost covering family. It is indeed decreasiegabise
SINS?C S} C S andS!NS?CS?C 8Py, 808 NS?CSHC S, NS,
Computability is preserved by intersection. For the alnoostering property, consider
any non-negligible subset’ C S. Since¢! is almost covering, for all there is an
{S} j21 € ¢! such thatS’ N S} is non-negligible. Then, sinc&” is almost covering,
there is an{S7}52, € €2 such thats” N S} N S7 is non-negligible.

Definition 8 (Conjunction of Almost Covering Family of Chains).We call the family
of chainse created from two families of chair®s and¢? via intersections in the above
manner, the conjunction af' and 2.
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Definition 9 (Subchain).For two decreasing chains of PT computable, non-negligible
sets of coinsS; O S2 D ..., andS] O S D ..., we say that.S;}2, is a subchain of
{S;}e2, ifforall i, S] D S;.

Theorem 1. Let IT be a protocols; — ... — s, be a symbolic transition sequence
of IT and M be a probabilistic polynomial time interactive Turing mauoh If there is a
non-negligible set of coinS such that, for any € S, there is a sequence of transitions
(50,bo,bg,70) = -+ = (8m,bm, b, ,vm) that is computationally valid w.r.tM, 7
and~,, is in the challenge statg., then for any formuld&, M, I, S =° 6 implies there
is a symbolic mode$ such thatsg — --- — s,, is a valid symbolic execution w.r&.
andS E 6.

Proof. We assume in this proof that there are only two predicate s{snk- andt-.
The extension to other predicate symbols is straightfadwar

For any term¢ with free variablese, . . ., z,, and machinesl,, , .., A,,, and any
sampler € S, let [t]., be the computational interpetation ©fin which each vari-
ablez; is interepreted according @(7)(z;) = Ay, (b-,7(n)) if b, is the bitstring
on the output tape of,,, andn is the set of names in the statg, for the execution
corresponding ta.

Given a decreasing chain of non-negligible sets of céins S; D S, D ..., we
define a first-order structur®t s, 5s,>... as follows. The domain aM g, 5s,5... is the
set of terms built on the function symbols, the names and didétianal constantsA
for any PT machined. The interpretation of the predicate symbols is given, foy a
assignmen# of the variables:, . . ., z, to machinesd,.,, ..., A, by:

- Ms,5s,0...,0 = t = uiff there is ani such that'r € S;, [t]; »(r) = [u]-0¢r)
- Mg,58,0...,0 Et1, ..., t, F tiffthereis a PT algorithrod, ani such that/'r € S;,

'A([[tlﬂ'r,o('r)v e [[tn]]'r,o('r)) = [[t]]T-,U(T)-

Let
Mg =Mgoso..

Remark 1.Notice, that the definition is such that {6 2 S, 2 ...andS] 2 S5, D ...,

if for somem € N, S/ = S; forall i > m, thenMg,5s,>..,0 = 6 if and only if
Msgios,o.,0 = 0. This is rather trivially true fof atomic formula, and hence true
for any formula.

Let # be a formula with free variables, ..., x, such that only atomic formulas
are negated. We prove, by induction érhat, if on a non-negligible set of coirts,
M, II, S, 0 |=° 0, then there is an almost covering family of chaghsuch that for any
decreasing chain of non-negligible subsgt® S; O S, O .... thatis a subchain of
some chain irg, there is a decreasing chain of non-negligible subSgts S, O ...
such thatS, C S, for all i = 1,2,..., and for any decreasing chain of non-negligible
subsetsSy’ O Sy O ....with S} C Siforalli =1,2,..., Msyosyo..,0 = 0.

— Suppose = t = u. We know from Lemma 1 that1, IT, S,c E° 6 implies
M, II,S" o =° 6 for any subsetS” C S. Hence, given any decreasing chain of
non-negligible subsets O S; © S, D ..., it suffices to chooss, = S; for every
i, and¢ can be defined to have a single elemégist} 2 ;.
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—Ifo=t#wvwandS D S, 2.5, D ....is any decreasing sequence of non-negligible
sets, letS, = 5; for everyi , and let€ have a single elemen{,S}5°,. For any
decreasing sequence of non-negligible $gts” S/, for all 7, sinceS!, o =t # u
by lemma 1{r € S/ : [t];- = [u]+ is negligible. Hence there is at least one
7 € S} such thaft], , # [u]- . HenceMgyosy5. 0t = u.

— Forf = t4,...,t, F t, again given any decreasing chain of non-negligible ssbset
S 25128, D ..., itsuffices to chooss! = S; , and€ can be defined to have a
single element{S}2°,.

—1f0=¢,uy,...,ust t, we may replace with the framep,, of the symbolic state
sm (this is because for any € .S, we reach the same symbolic statg), hence we
are back to the previous case.

—-If 0 = t4,....t, t/ t, given any decreasing chain of non-negligible subsets

S1 2 Sy D ..., it suffices to choosé! = S; , and¢ to have a single element,
{S}2,,asM,II, 5,0 =° ty, ..., t, - tis not true on any non-negligible .
—If0=¢,t4,...,t, t/t, as before, we may replagewith the frame ins,,, and we

are back to the previous case.

— If 6 = 6, V 5, then consider the family of se® that consists of all set8” C S
such that eithe6”, o =° 01, or S”, o |=° 6,. Note, thatS, o =° 0, v 62 means by
definition that any5” has a subset i6. We definet the following way. For & in
&, since eithed; or 0, is satisfied on it, the induction hypothesis gives a family of
chains¢®” that almost covers”. Take€ = g, o €. The family we receive
this way is almost covering, because taking any non-negligible, PT computable
setS’ C S, there is anS” € & with S” C S’ non-negligible, and the chains of
¢5" allrunin $”, and hence i5’, so their intersections with’ are non-negligible.
Take now any decreasing chain of non-negligible subSetsS; © S; O ... that
is a subchain of some chain By construction, there is a$t’ such that.S; }°,
is a subchain of some chain@t” . But¢S” was given by the induction hypothesis
for the satisfaction of eithet; or 6, on.S”. Suppose the first);. Then again by
the induction hypothesis fdt, there is a chairt © S’ O S7 O 54 O ... such
that S; C S; and for any non-negligible decreasing ch&ifi O 57 D ... with
S C S, Mgiosys.,0 F 01 ThenMgiosyo. 0 | 6. That s, there is a
chainS 2 S5 2 5] O S, D ... such thatS] C S; and for any non-negligible
decreasing chaiy 2 Sy O ... with S} C S}, Msi5sy5.,0 = 6. The same
procedure holds when o$, 05 is satisfied.

— If & = 6; A 6, by definition,S, o |=¢ 6; andS, o =¢ 6. Denoting by¢! and
¢2 the almost covering families given by the induction hypsthdor 6; and
respectively, tak& to be the conjunction of them. This is also an almost covering
family as we discussed earlier. Given any decreasing cHaiorm-negligible sub-
setsS O S; O S, D ... thatis a subchain of some chaindnit is also a subchain
of some chain ir¢! because all chains i@ are subchains of chains &' by con-
struction. By the induction hypothesis féy, there is a chaiy 2 S, 2 57, 2 ...
with S7, C S;, such that, for any non-negligible decreasing chgfn> S5 O ...
with S/ C Sj, for all 4, Msgiosyo...0 = 6;. By induction hypothesis fof-,
since{S},}5°, is a subchain of a chain i#?, there is a chail$ O S}, D S5, D ...
with S%, C S, such that, for any non-negligible decreasing chgfnD> SY D ...
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with 7" C S5, forall i, Msy>sy5.., 0 [ 62. SinceS;, C Sj,, by the choice of
S1;, we also have that for any non-negligible decreasing cHdi S5 O ... with

S} C Sy, foralli, Msiosy5..., 0 = 01. Hence, for any non-negligible decreasing
chainsy 2 5% O ... with S C S}, for all 4, Msiosyo..,0 E 61 A 6. Thus,
takingS! = S5, works.

If & = 32.01, then consider the family of se& that consists of all set§” C S
such that there is adl,,, with S”, A, , ..., A, , Ax =€ 6. SinceS, o ¢ Ja0,
by definition of the semantics, ar$§f has a subset i&. We define the following
way. ForanS” in &, sincef; is satisfied on it by somd,,., the induction hypothesis
gives an almost covering famiI&S”. TakeC = Jg/cs ¢5" The family we receive
this way is an almost covering family, for the same reasomahke#, Vv 0, case
before. Take now any decreasing chain of non-negligiblsstg © S; O S, D
.... that is a subchain of some chaindnBy construction, there is a$f’ such that
{S;}22, is a subchain of some chain @'". But¢5” was given by the induction
hypothesis for the satisfaction 6f on S”. Then again by the induction hypothesis
for 61, thereisachaiiy © 5’ O S{ D S5 D ... such thatS! C S; and for any non-
negligible decreasing chaify’ O Sy O ... with S} C S}, Msiosy5. 0,2 =
A [ 0. But then this implies\ s 555, 0 |= 32.01. So the samé] O 55 O

... Works.

If & = Vaby, then forallA,, S, A,,, ..., A, Ax =°¢ 0;. Enumerate all possible
algorithms forA,: Aj;, As,... First consider that fad,, S, A, , ..., A, A1 E° 61
holds. By induction hypothesis, there is an almost covefamgjly of chainse!
such that for alls © S; 2 S, D ... that is a subchain of some chaindn, there
is achainSi, 2 57, 2 Si3 2 ... with S7, C S;, such that, for any non-negligible
Sy 28y O .., if S C S}, foralli, thenMgio5y5. 0,0 — A; [= 0h. Take
nowA,. ThenS, A,,, ..., A;, A2 E° 6; holds. By the induction hypothesis, there
is an almost covering family of chain&’ with the usual properties. And so on,
for all A;, we haved’. We construct the following way. We take all decreasing
chains of the form

S} 2 S5Nn8 2 S5nsinsy o .2 (S 2
j=1
where for eacly, {S7}>°, € ¢J. Thatis,

Q::{x‘xZ{th =1 {Sg}filecj}
j=1

Let's now fix S; © S, O ... such that it is a subchain of a chaindn Buy con-
struction, it is also a subchain of a chaindd. Let {(;_, S/}, denote that
chain. By the induction hypothesis fér, sinceS, A,,, ..., A, A1 =° 61, there is
achainS{; O Si, 2 Si;3 2 ... with S}, C S;, such that, for any non-negligible
Sy 28y 2 .., if S C 8y, foralld, thenMgi55y5. 0,2 — Ai = 61. Note
now that the chairb], N S7 D S}, 2 Si; 2 ...isin €2 Here,S;; N S% D S},
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follows from thatS3 O S, O S}, by the choice ofS;. By the induction hy-
pothesis, since&, A, ..., A;, A2 =° 61, there is a chairb}; O S), O ... with
St € S;;nSfand Sy, C S}, fori > 1, such that, for any non-negligible chain
87 2 8y O ...such thatS]" C Sy, forall i, Msy5sy5., 0,2 — As = 61. But,
because of Remark 1, it is also true that for the ctin> S5, 2 S5, 2 ..., for
any non-negligiblesy O S5 O ..., with S¥ C Si;, andS} C S), fori = 2,3...,
Msyosyo., 0, = Az |= b1, as it does not matter what the first set is. Further-
more, sincesy; C 57, holds, we also havé1 s, 5sy5. ., 0,2 — Ap = 61. Contin-
uing in this manner, we get a chaif§, 2> S5, D S%; DO .... Then, take any chain
Sy 2 SY D .., with S/ C S/. Clearly, because of the constructidgs}, C 51,
also holds (as;, C S1,). Hence we haveM s 5syo. 0,2 = Ay E 6:. Further,
sinceS;’ C Sy, fori = 2,3..., andSy C 57, we also haveM sy osy>. 0,2 =
Az = 01. And so on, we have for all, Mgi5gy5. 0,7 — A; = 01. Now, if

v is any term in the domain of our model§{ s, >sy>. ., 0,2 = v E 6. Indeed,
let v" be the termv, in which any.4; occurring inv is replaced with a variable;
ando’ bex; — A;. The algorithm, that computes, for everye S, [v'], can
be constructed from thd; and is PT. Hence there is an indexsuch that, for any
7 € S, A, outputs[v'] - ... Therefore, we also hawl s >5syo..., 0 = Vb, and
that is what we wanted to prove.

The above result can be applied to a formuthat is the conjunction of

— the intermediate conditions (that are part of the symbddites)©
— finitely many computationally valid axiom4
— aformulathat expresses the existence of an attdoiSec

Then it can be read as follows: if there is a computationalcittcorresponding to a
symbolic traces; — - -+ — s,,, then this symbolic trace is valid in a model, which is
also a model ofA andNotSec.

Consider then a symbolic procedure, that discards only sjimbtates, in which
© A A is inconsistent. Then the symbolic procedure will not migg attack. More
precisely, we get:

Theorem 2. For a bounded number of sessions, if there is a computatitedk, there
is also a symbolic attack.

In other words, if the protocol is symbolically secure, theis also computationally
secure.

It might be true for an undbounded number of sessions as lugllywe need the
boundedness assumption if we wish to derive the theorem fhentheorem 1: The
trick is, that in the bounded case, if there is a computatiattack, there is also a com-
putational attack corresponding to a fixed sequence of siionstates. This is simply
because the bounded number of sessions ensures that therdydiinitely many possi-
ble sequences, and if there is a computational attack ghida property expressing the
attack is satisfied on some non-negligible set, then it mestdtisfied non-negligibly
on one of the possible sequences.
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4 The S4 Connection

Soon after we have completed the proofs of our Lemmas and #ie Tineorem, we
realized that it is possible to give a purely logical preagoh of our definitions and
propositions. Observe first that if we think of non-negligisets as possible worlds,
and the subset relation as accessibility, then our compuotdtsemantics resembles to
Kripke semantics of modal logic. For any first-order forméJaonsider the transfor-
mationd — 6*, wheref* is a formula of S4, and is defined recursively as follows:

— For any atomic formuld, let9* = 00,
- (—‘9)* = O-*

91 — 92)* = \:‘(91‘ — 9;)

01 N 92)* = (9? A\ 9;)

01V 02)* = 0005 V 035)

Vxf)* = 0OVzo*

— (Fz6)* = 0OT20*

- (
= (
= (
- (

With these definitions, Lemma 1 shows that for ahy* — 060*. Lemma 2 shows
thatg* «+» OCH*. Lemma 3 shows that our definitions are consistent with tagtes.
More precisely, in our case, the domain for variahlees not depend on the possible
worlds, that is,S. In this case, the previous lemmas also show thavx0* <+ Vz6*.
Finally, once the proof of Theorem 1 is reduced to a purelyclalgone, the meaning
of it becomes that any formul@is derivable in first-order logic if and only #* is
derivable in S4. Indeed, after some search of logic liteeatwe found a publication of
Fitting [19] with exactly this result, using forcing teclopies introduced by Cohen.

5 Examples of axioms

5.1 Examples of axioms that are computationally valid

— Increasing capabilitiess - y — ¢,z -y A A
— Function of derivable itemsi -1 A g Fta Ao At — o f(t1,ta, ... tn)
— Self derivability:¢p,t - ¢

The validity of these axioms is straightforward. We alsdude the following:
No telepathyfresh(z, ¢) — ¢ i «

whose computational soundness follows from the polynotmaind on the machines
that interpret the deducibility relation on the one hand tnredexponential number of
interpretations of any names, on the other hand.

5.2 Secrecy Axiom

The intuitive meaning of the following axiom is that the acsary cannot derive the
plaintext of a freshly generated encryption, unless itsyj#on key has been sent out,
or the plaintext could be derived earlier.
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Proposition 1. If the encryption scheme is IND-CCAZ2, then the followingaxi
0 =Vikr (RandGen(K) Afresh(R, @) A ¢, {t}Fe bt — dK T oV o - t)

is computationally valid.

Proof. Suppose that it is not computationally valid. That is, thisra computational
structure( M, I1, S), with M, I1, S |~ 0. There are PPT machines= (A;, Ak, AR)
such thatM, I, S, A [~ fresh(R,¢) A ¢, {t}E. Ft — dK C ¢ V ¢ F t.
Therefore, there is & C S non-negligible such that1, I1, 51, A = fresh(R, é) A
o, {t}E +tandM, 1,51, Al dK C é V ¢+ t. We claim that the second implies
that there is a non-negligible subs®t of S; such that\, I7, S5, A = —(dK C é)
andM, I1, So, A |~ (5 F t. To see this, consider the following:

— TakeS; = S;\{r | the computation ofd on yields a statg such thay = dK C
¢}. Clearly, M, IT, Sz, A |= =(dK T ¢),andM, 11,5\ Sz, A= dK T ¢

— SinceM, 1,5, \ Sa, A = dK T ¢, we haveM, II, Sy, A [~ ¢ F t, because
otherwise we would havét, 17, S, A = dK C ¢ VvV ¢ F t contradicting

ML S, AEdAK T ¢ vV ¢Ft

Since M, II, S5, A £ ¢3 F t, by the definition of the computational semantics of the
derivability predicate, there is a subsgt of S; such that on all subsets 6f;, there

is no PT algorithm that computes the interpretation fsbm the computational frame.
Then it is straightforward to check thatl, IT, Sy, A |= —(¢ F t):

— Suppose itis not true, that i, 17, Sy, A [~ —(¢ F t).

— Thenthere is ai$s C S, such thatM, IT, Sy, A = ¢ + t.

— That implies thatS; has a subset on which there is an algorithm that computes the
interpretatiort from the computational frame, a contradiction.

SinceS; C So, we also have thatit, IT, 54, A = —(dK C é), and sinceS; C S,
we also haveM, IT, S;, A = fresh(R, ¢) A ¢, {t}E,  t. Thatis, M, II, S;, A =
¢, {t}E. F tand M, IT,S,, A = fresh(R, ¢) and M, IT, 54, A = —~(dK T ¢) and
M ISy, A E ﬁ(é F¢). We have to create an adversaty.ca» that wins the CCA2
game. Letr = {t} 5.

Since M, 1,54, A | b, {t}%. F t holds, there is art; C S4 and an algo-
rithm C that computes the interpretation ©from the interpretation of and {t} 1%,
on Ss. Clearly, M, II, S5, A = fresh(R, ) and M, II, S5, A = —(dK C ¢) and
M, IT,85, A = =(¢ F t). It may be the case that th& we have chosen depends
on evaluations of that are determined afte¥! reaches the challenge state How-
ever, clearly, if we include all possible future evaluatipthe set that we receive this
way, S’ will still be such that there is an algorithth that computes the interpreta-
tion of ¢ from the frame at the challenge stateand {t}%. on S’. Moreover, it is
easy to see that, I1, S', A = fresh(R,¢) and M, I1, 5", A = ~(dK T ¢) and
M IS A = ﬁ(gi? F t) because these are properties that depend only on conditions
in the challenge stated, and not later ones.
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SinceM, II,S" A E dK ¢, the decryption key has never been sent.
We show that we can construct an algorithitaca» that breaks CCA2 security.
Let.4;; mean the protocol adversary.

— Accaz generates computational keys tht uses, except for the one correspond-
ingto K.

— The encryption oracle generates a randond.bit

— The encryption oracle generates a computational key anlispab its public part.
Accaz encrypts with this key for encryptions withi, except fort.

— Accaz Simulates both the agents adg;: It computes all messages that the agents
output according to their algorithm, and computes all mgssahatA; outputs
according to its algorithm. This way it builds dpand the bit strings corresponding
to them as well as the equations.

— Whenever a decryption witthK” has to be computed, there are two possibilities:

o If the ciphertext was created bdcca2 using the encryption algorithm, then it
knows the plaintext, so it can use it without decryption.

o If the ciphertext was created in some other way, the deayracle is used.
This can be freely done until occurs.

— When A reaches the challenge state using.A;, Accaz computes the bit string
for t, and submits it to the encryption oracle as well as a randdstiimg that has
the same length as the plaintext.

— According to our definition of satisfaction the computatlonC is based on the
frame at the challenge state. We had, 17, 5", A = fresh(R, é), which means
that R is independent of the items i Further, since we included all future ran-
dom choices in5’, R is also independent &f’. Hence having it encrypted by the
encryption oracle will not lose any information as long as dnacle encrypts the
correct bit.

— The encryption oracle encrypts the interpretatiort dfb = 0, and encrypts the
random bit string i = 1. It gives the result back toAccaz-

— RunC on the bit string: returned by the oracle and on the bit stringggaf

— If

e Accao receives the value farback using: and if the execution is it$’, then
Accaz returnsb 4., = 0.

e OtherwiseAcca2 throws a fair coin and storésa ., = 00rbagc., = 1
with probability1/2.

— We haveProb{b ..., =b| S’ A b =0} (the conditional probability 06 4., =
b givenS’ andb = 0) is negligibly different froml because in this case the oracle
encrypts the correct string, ards computations are employed on the correct bit
string, and so it gives the interpretationiofNote, we also use here thétand the
interpretation ofR do not correlate.

— On the other hand, observe tHaob{b4.,,, = 0| S" A b =1} —1/2is neg-
ligible. The reason is that whén= 1, the encryption oracle computes something
that has nothing to do with the protocol andSo the probability of computing
with or without the encryption in this case, is the same. Barjember, we had that
M, II,S', A |= ¢ I/ t. This means that cannot be computed without the encryp-
tion anywhere and therefore the adversary’s computatiotherfake encryption
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cannot give good result by more than negligible probabifity the adversary will
end up throwing a coin in this case.

— Putting the previous two points together, we h&reb{b..., = b | S’} — 3
is non-negligible. Then, since outsid®, Acca2 thows a coinProb{ba.c., =
b} — % is non-negligible, which means CCA2 security is broken.

6 Conclusions

We have shown a technique to define symbolic adversarieartbait least as strong as
computational adversaries. The basic idea is that, instHaling all manipulations the
symbolic adversary is allowed to do, we allow the symboligaadary to do anything
unless it contradicts some axioms, which are derived fragrlithitations of the com-
putational adversary. In a rather involved theorem, we glibtliat at least when only
bounded number of protocol sessions are allowed, to any atatipnal attack there is
a corresponding symbolic attack. Further, we have showwakéoms that arise from
the limitations of computational adversaries, and whi@htadimit the symbolic adver-
sary. Besides some rather trivially valid axioms, we shotiredvalidity of a "secrecy
axiom”, that relies on IND-CCA2 security.

From our method, we can derive a verification procedure, Isitimg the (symbolic)
protocol rules, and checking at each computation step thsistency of the formulas
expressing that transitions are enabled, together witlaximms and the negation of
the security properties. In order to automate this processainly need a (hopefully
efficient) procedure checking the consistency of such a sebmstrained formulas.
This is future work. We are however optimistic, because tteargles of axioms that
we considered yield a saturated set of constrained forn{aslefined in [24]). On
the other hand, as shown in [10], the consistency of grouadsels, together with a
saturated set of clauses, can be performed in polynomiel tim

We carried out a proof of a two sessions NSL, showing whatlaartinimal as-
sumptions that guarantee its correctness, but we need ignd®s automated tool, in
order to carry out further experiments. Also extension$efresults to indistinguisha-
bility properties could be investigated.
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A Axioms for the Needham-Schroeder-Lowe protocol

In our NSL proof, we assumed thadtexecutes initiator sessions only, aRdexecutes
responder sessions only. We further assumed that theyiddidte sessions with them-
selves. We also assumed that all agents other thand B are corrupted, so their keys
are available to the adversary. Clearly, if we prove segumitthis case, it also holds
with other honest agents. We used the conventiow, z) = (z, (y, z)). We showed
that in a symbolic execution, violating the secrecy of nande and N, as well as
violating the agreement and authentication propertiegamnsistent with our axioms.

Computationally Sound Axioms Used

— 2 = x, and the substitutability (congruence) property of eqgeraht holds for, -
predicates. A

— Self derivability:p, z, = - = R

— Increasing capabilitiesh, c -y — ¢,z x by

— Commutativity: If’ is a permutation o, theng, z -y — ¢,z' -y

— Transitivity of derivabilitAy:é, Yy AN gz, yFz — o,xtz

— Functions are derivable;, « - f(x)

— No telepathyfresh(z; ¢) — ¢t/ @

— Fresh items are independent:

fresh(ac;é,m)/\RandGen(N)/\:v#qAS/\qAS,:mx}—N — px- NVae=N

— Special to IND-CCA encryption:
e Secrecy:

RandGen(K) A eK C ¢ A fresh(R;p, @, 2) A < Az <o
A Q/A)vxv{'r}gl( Fx
— dKC ¢,z V p,xtx
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e Non-malleability (assuming there is only one kind of enctiyp and pairing):

RandGen(N) A RandGen(K) A eKC o ANC o A x <o
No,xby A ¢z, dedy,dK) - N A VaR(y = {2} — {2} € §)
— dKE(ﬁ,:c \Y (ﬁ,mFN

Here, new constraints are

—tC ¢?, 81, ..., Sn, Wheresq, ..., s,, andt are closed terms:
Mo, {t1,...,.tm),RELC b, 51, ..., sn if t is @ subterm of somg or somes;
— t < ¢, wheret is closed:
M, o, (t1, ... tm), 7 =t < ¢ if for every handleh of t, ¢ I h.
- And
fresh(z; 6, ) = RandGen(z) Az Z ¢,

Further Needed Axiom (The implementation needs to satisfyttis too)
For this protocol, we need an additional axiom, namely tbath honestly generated

nonceN,
W (mz (N)).

That is, the second projection of a nonce can never be a nanoy€owhelming prob-
ability on a non-negligible set).
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