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Abstract. We consider the question of the adequacy of symbolic models versus
computational models for the verification of security protocols. We neither try to
include properties in the symbolic model that reflect the properties of the com-
putational primitives nor add computational requirementsthat enforce the sound-
ness of the symbolic model. We propose in this paper a different approach: ev-
erything is possible in the symbolic model, unless it contradicts a computational
assumption. In this way, we obtain unconditional soundnessalmost by construc-
tion. And we do not need to assume the absence of dynamic corruption or the
absence of key-cycles, which are examples of hypotheses that are always used in
related works. We set the basic framework, for arbitrary cryptographic primitives
and arbitrary protocols, however for trace security properties only.

The main points of this work have been published in the proceedings of POST’12
[8]. This paper largely agrees with that publication, but inSection 2.6 we present an im-
proved computational semantics. This improvement allows us to state our main theorem
for any first order formula, while in the POST publication, the possible formulas were
somewhat restricted. Moreover, we introduced here Section4, which explains the con-
nection between our results and an earlier result of Fittingabout embedding first-order
logic into S4.

1 Introduction

The automatic analysis of security protocols has been quitesuccessful since 1990, yield-
ing several tools [11, 18, 25]. However, when the outcome of one of these provers is “the
protocol is secure”, it must be understood as “secure in our model”. Nothing guaran-
tees that the necessary abstractions are relevant to actualimplementations. For instance,
consider the Needham-Schroder-Lowe protocol [22]. It has been proved secure by all
the above-mentioned provers. However, there are several attacks, for instance when the
encryption scheme does not guarantee the ciphertext integrity [28] or when the pairing
is associative [23] or when some random number could be confused with some pairings
[9].

For this reason, it is important to investigate what exactlythe assumptions are, on
the cryptographic primitives’ implementations, that guarantee the faithfulness of the
abstraction. (It is calledsoundnessin the literature).
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There are a lot of works providing some soundness results, typically the works
initiated by Backes et al [5, 3, 6] and Abadi et al [1, 16, 14]. They essentially prove that
a given symbolic model is fully abstract with respect to a computational one, assuming
some properties of the security primitives. This guarantees that the security proofs that
have been completed in the abstract model are also valid in a computational model.

However, these works require a very large set of assumptions, that are not always
emphasized. For instance in [7] the complete list of assumptions for public-keys is
listed; it is a long list of strong hypotheses, that are not fullfilled by most actual pro-
tocols. [14] make even less realistic assumptions, in orderto get a stronger soundness
result (which includes more security properties). All these results typically assume that
no key cycles can ever be created, that bitstrings can be parsed in deterministic poly-
nomial time into terms, that there is no dynamic corruption,that keys are certified, etc.
These assumptions, as well as reasons why they are not realistic enough is discussed in
[15]. Furthermore, each primitive requires a new soundnessproof and each combination
of primitives also requires a new soundness proof, unless much stronger properties are
assumed [13]. Currently, it seems more realistic to use CRYPTOVERIF [12], complet-
ing the proofs directly in the computational model, than using a soundness result [2].
Is it really impossible to avoid manipulating computation times, probabilities, bitstring
lengths... ?

In this paper, we advocate a new way of performing proofs in a symbolic, abstract,
model, while keeping strong, computational guarantees establishing a general sound-
ness result, but without establishing many specific soundness results for specific prop-
erties of primitives. Such properties can later be proven and added.

The idea is to design a symbolic setting, in which any adversarial action is possi-
ble, unless it contradicts some axiom expressing a propertythat must be satisfied under
standard computational assumptions. In other words, computational properties, such as
IND-CCA, can be (symbolically) axiomatized and added to thesystem in order to limit
the possible adversarial moves. We do not require the axiomatization to be complete.
The idea is to only list properties that we know for certain about the implementation,
and allow any symbolic move consistent with those properties. In this way, either we
find an attack, in which case there is at least one possible setof primitives satisfying the
assumed properties and for which the security goal is violated, or the axioms were suffi-
cient to ensure the security of the protocol, in which case any implementation fulfilling
these axioms will ensure the security.

This approach has several advantages:

1. Though the proofs are performed in a symbolic setting, they are computationally
valid.

2. Thanks to our result (Theorem 2), adding a new cryptographic primitive only re-
quires to design an axiomatization of this primitive and prove it sound due to the
cryptographic assumptions: the additional soundness proof is short and modular; it
focuses on designated properties instead of considering whole execution models.

3. We may be able prove the security of protocols with weaker assumptions on the
primitives. For instance, if we prove the security using only axioms that are sound
for IND-CPA encryption, then IND-CPA will be a sufficient hypothesis for security.
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4. In each security proof, all assumptions are clearly and formally stated as axioms.
5. In case an attack is found, it may be sufficient to add an axiom (expressing stronger

hypotheses on the computational implementation of the primtives) ruling out the
attack, then try proving again.

6. We may consider any cryptographic primitive, including XOR for instance (for
which there are strong limitations of the computational soundness approach [4,
27]). Dynamic corruption, key cycles, etc. are not a priori discarded.

Related works.The most closely related works are probably those that consider a proof
system that is sound w.r.t. the computational semantics, such as [17, 9]. Though these
works are related, as far as the computational semantics of the logic is concerned, the
overal strategy is completely different. We do not try to design a proof system working
directly in the computational model: we only use first-orderlogic and standard inference
rules in the symbolic model. Our approach is more inspired bycircumscription [21],
however circumscribing what isnotpossible. In other words, we do not design inference
rules, we modify the transition system instead. This is similar in spirit to [26], in which
any property of the hash function, that is not explicitly forbidden by some axiom, is
considered as valid.

Contents of the paper.In this paper, we only state the framework of the method, prove
a general soundness theorem in the case of trace properties,and prove soundness of an
example axiom expressing secrecy of an IND-CCA encryption.

More precisely, protocols are identified to a formal transition system in the same
spirit as CoSP [7]: we do not commit to a very particular way ofspecifying such a tran-
sition system. The possible transitions are, roughly, defined by a formula, that guards
the transition by constraining the input message, a state move and a message that is sent
out when the guard is satisfied. Such transitions can be interpreted in different models:
symbolic models, in which the messages are terms and the guards are interpreted in
a Herbrand model, or computational models, in which messages are bitstrings. In the
symbolic models, we constrain the input messages to bededuciblefrom the previous
outputs and the public information. Such a deducibility condition is formalised using a
deducibility predicate, whose interpretation is not fixed.This is a main difference with
classical protocol verification: the attacker capabilities are not fixed, but rather they
parametrize the model. Actually, we consider any attacker capability, that does not con-
tradict the (computationally sound) axioms. On the computational side, the attacker is
any probabilistic polynomial time Turing machine: the deduction capabilities are given
by any such machine. These models are explained in the sections 2.2, 2.3, 2.5.

Next, we need to speficy the axioms and the (trace) security properties. We con-
sider any first-order formula, that is built on the predicatesymbols, that are used in the
guards, as well as the deducibility predicate symbol. We need such general formulas,
since we need to constrain the symbolic models of the deducibility relations, i.e., the
symbolic attacker capabilities, according to the computational assumptions on the prim-
itives. Typically, we may consider an axiom of the form: “if aplaintext can be deduced
(resp. computed) from a ciphertext and a set of messagesφ, then the decryption key has
been sent out or else the plaintext can be deduced (resp. computed) fromφ”, that reflects
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some property of the encryption scheme. The meanings of these axioms/security prop-
erties become clear when we define a computational interpretation of such formulas,
which we provide in the section 2.6.

The Section 3 is devoted to the main result, which states a general trace-mapping
soundness property: independently of the primitives and their specific characteristics, if
there is a computational attack, then there is a symbolic attack. Once more, the symbolic
attacker has any capability, that is consistent with the axioms. So, this result, though
subtle and not at all trivial to prove, is not surprising. Thewhole system was actually
carefully designed with this aim in mind.

We also show in the Section 5 some axiom examples, that are proven sound under
some standard cryptographic properties. We do not aim however at covering a large set
of axioms. Further axioms will be added to a library each timethey are required for the
proof of a case study.

This paper aims at opening a new research direction: it seemsvery appealing and
promising. We need however to investigate several case studies. As a “proof of con-
cept”, we have designed a complete set of axioms (included inthe Appendix) and
proved the NSL protocol in our framework (available from thefirst-author’s web page
or upon request). This sufficient set of axioms shows also that some hypotheses of ear-
lier works are not necessary (at least for weak secrecy and authentication).

2 Symbolic and Computational models

2.1 Terms and frames

Terms are built out of a set of function symbolsF that contains an unbounded set of
namesN and an unbounded set of handlesH. Let X be an unbounded set of vari-
ables. Names and handles are zero arity function symbols. Wewill use names to denote
items honestly generated by agents, while handles will denote inputs of the adversary.
A ground term is a term without variables.Framesare sequences of terms together with
name binders: a frameφ can be written(νn).p1 7→ t1, . . . , pn 7→ tn wherep1, . . . pn
are place holders that do not occur int1, . . . , tn andn is a sequence of names.fn(φ),
thefree namesof φ are names occurring in someti and not inn. Thevariablesof φ are
the variables oft1, . . . , tn.

Example 1.We typically use a randomized public-key encryption symbol: {m}reKQ

is intended to represent the encryption of the plaintextm with the public-key of the
principalQ, with a random seedr. More generally, we consider the example when
there is a set of constructorsFc = {{ } , 〈 , 〉, e , d ,K }, and a set of destructors
Fd = {dec( , ), π1 ( ) , π2 ( )}, andF = Fc ∪ Fd ∪N ∪H.

2.2 Formulas

Let P be a set of predicate symbols over tems.P is assumed to contain the equality
= (which is interpreted as a congruence), used ast1 = t2, and a predicate⊢, which
takes as arguments ann-tuple of terms on its left and a term on its right (and which is
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intended to model the computation capabilities), that is, written ast1, ..., tn ⊢ t. (More
precisely, it is an infinite sequence of predicates, with argumentsn+ 1.)

We are not interested in any specific symbolic interpretation of these predicate sym-
bols. We wish to consideranypossible symbolic interpretation, that satisfies some re-
quirements; the aim is to allow anything that is not forbidden by explicit assumptions.

Example 2.∀x, ∀y.({x}seKQ
= {y}s

′

eKQ
→ x = y) is such a formula, the validity of

which follows from the uniqueness of decryption.

Let M denote then any first-order structure that interprets the function and predicate
symbols of the logic. We only assume that= is interpreted inM as the equality in the
underlying domainDM. The relation inM (that is, a relation for elements inDM),
interpreting the deducibility predicate⊢ is denoted as⊢M.

Given an assigmentσ of elements inDM to the free variables of termt, we write
[[t]]σM for the interpretation oft in M ([[ ]]σM is the unique extension ofσ into a homo-
morphism ofF -algebras).

For any first order structureM over the functionsF and predicatesP , given a
first order formulaθ and an assignmentσ of elements in the domain ofM to the free
variables ofθ, the satisfaction relationM, σ |= θ is defined as usual in first-order logic.

Example 3.Consider the public-key encryption setting of example 1. Wemay use
unary predicate symbols to restrict sets of data. Assume forinstance thatW is sup-
posed to represent the set of agent names, andM is supposed to represent well formed
terms (that are equal to a term built with symbols inFc).

W (π1(dec(h, db))) ∧M(π2(dec(h, db)))

is a formula, that expresses that the handleh can be decrypted and projected into two
components, one of which is an agent name.

2.3 Protocols

We do not stick to any particular syntax for the definition of protocols. We only assume
that it defines a transition system as follows.Q is a set ofcontrol states, together with a
finite set of free variables.

Definition 1. A protocolis a recursive (actually PTIME) set of tuples

(q(n), q′(n · n′), 〈x1, . . . , xk〉 , x, ψ, s)

whereq, q′ ∈ Q, x1, . . . , xk, x are variablesn, n′ are finite sequences of names,ψ is a
first order formula over the set of predicate symbolsP and function symbolsF and the
namesn ∪ n′, whose free variables are in{x1, . . . , xn, x} ands is a term whose free
variables are in{x1, . . . , xn, x}.

For example,ψ can be a formula such asdec(x, k) = n, that checks that the current
input is a ciphertext whose plaintext is a previously generated noncen: ψ guards the
transition.s is the output message, when the transition succeeds. The intended meaning
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of these rules is that a transition from the sateq to the stateq′ is possible, given the
previous inputsx1, . . . , xn and the new inputx, if the formulaψ is satisfied. In such a
case, the namesn′ are generated and the messages is sent.

Such a formalism is quite general; we only assume here (for simplicity) a single,
public, communication channel. Typically, appliedπ-calculus processes can be trans-
lated into such transition rules, that are similar to the CoSP framework of [7].

Example 4.Consider a single session of the NSL protocol. The states consist of pairs of
the local states of each of the processes for A and B. Instead of listing the transitions as
tuples, we writeψ : q(n)

s
−→ q′(n) and they are diplayed in the figure 1. In this version

of the protocol, the responder is willing to communicate with anybody, hence only
checksW (π1(dec(y, dKB))); the intended meaning ofW is a set of agent names. If

⊤ : qA0 (n, r, r′′)
{〈A,n〉}reKB
−−−−−−−−→ qA1 (n, r, r′′)

π1(dec(x, dKA)) = B

∧ π1(π2(dec(x, dKA))) = n

}

: qA1 (n, r, r′′)
{π2(π2(dec(x,dKA)))}r

′′

eKB
−−−−−−−−−−−−−−−−−→ qA2 (n, r, r′′)

W (π1(dec(y, dKB)))
∧M(π2(dec(y, dKB)))

}

: qB0 (n′, r′)
{〈B,〈π2(dec(y,dKB)),n′〉〉}r

′

eKπ1(dec(y,dKB ))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qB1 (n′, r′)

dec(z, dKB)) = n′ : qB1 (n′, r′) −→ qB2 (n′, r′)

Fig. 1. The 3 transitions of 1 session of NSL

we wish to describe an unbounded number of sessions, we need to record in the control
state the states of every (opened)A-session and (opened)B-session. This yields an
infinite, yet recursive, set of transition rules.

Definition 2. A symbolic stateof the network consists of:

– a control stateq ∈ Q together with a sequence of names (that have been generated
so far)n1, . . . , nk

– a sequence constants calledhandlesh1, . . . , hn (recording the attacker’s inputs)
– a ground frameφ (the agents outputs)
– a set of formulasΘ (the conditions that have to be satisfied in order to reach the

state).

A symbolic transition sequenceof a protocolΠ is a sequence

(q0(n0), ∅, φ0, ∅) → . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm, Θm)

if, for everym− 1 ≥ i ≥ 0, there is a transition rule

(qi(αi), qi+1(αi+1), 〈x1, . . . , xi〉 , x, ψ, s)
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such thatn = αi+1 \αi, φi+1 = (νn).(φi ·p 7→ sρiσi+1), ni+1 = ni⊎n,Θi+1 = Θi∪
{φi ⊢ hi+1, ψρiσi+1} whereσi = {x1 7→ h1, . . . , xi 7→ hi} andρi is a renaming of
the sequenceαi into the sequenceni. We assume a renaming that ensures the freshness
of the namesn: n ∩ ni = ∅.

Definition 3. Given an interpretationM, a transition sequence ofΠ

(q0(n0), ∅, φ0, ∅) → . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm, Θm)

is valid w.r.t.M if, for everym− 1 ≥ i ≥ 0,

M |= Θi+1

Example 5.We show the beginning of a possible branch in the symbolic execution of
NSL.

(q0, ∅, φ0, ∅) (q1, H1, φ1, Θ1) (q2, H2, φ2, Θ2) (q3, H3, φ3, Θ3) (q4, H4, φ4, Θ4)
• • • • •✲ ✲ ✲ ✲

Wheren = n, r, r′′, n′, r′, q0 = (qA0 , q
B
0 )(n), andq1 = (qA1 , q

B
0 )(n), q2 = (qA1 , q

B
1 )(n),

andq3 = (qA2 , q
B
1 )(n) andq4 = (qA2 , q

B
2 )(n). In other words, we interleave the actions

of A andB, as in an expected execution and assume that the two processes were first
activated (if not, we could introduce two transitions activating the processes).

– φ0 = νKAKBAB(p0 7→ (A,B, eKA, eKB)),
Θ0 = ∅

– H1 = 〈h1〉,
φ1 extendsφ0 with p1 7→ {〈A, n〉}reKB

,
Θ1 = {φ0 ⊢ h1}

– H2 = 〈h1, h2〉,
φ2 extendsφ1 with p2 7→ {〈B, 〈π2 (dec(h2, dKB)) , n

′〉〉}r
′

eK
π1(dec(h2,dKB ))

,

Θ2 = Θ1 ∪ {φ1 ⊢ h2,M(π2 (dec(h2, dKB))),W (π1 (dec(h2, dKB)))}
– H3 = 〈h1, h2, h3〉,
φ3 extendsφ2 with p3 7→ {π2 (π2 (dec(h3, dKA)))}r

′′

eKB
,

Θ3 = Θ2 ∪ {φ2 ⊢ h3, π1 (π2 (dec(h3, dKA))) = n, π1 (dec(h3, dKA)) = B},
– H4 = 〈h1, h2, h3, h4〉, φ4 = φ3,
Θ4 = Θ3 ∪ {φ3 ⊢ h4, dec(h4, dKB)) = n′},

LetM be a model in whichπ1 (dec(h2, dKB)) = A and

h2 =M {〈A, n〉}reKB
, h3 =M {〈B, 〈n, n′〉〉}r

′

eKA
, h4 =M {n′}r

′′

eKB
,

and⊢M is simply the classical Dolev-Yao deduction relation. Thenthe execution se-
quence is valid w.r.t.M, and this corresponds to the correct execution of the NSL
protocol betweenA andB.

There are however other models in which this transition sequence is valid. For in-
stance letM′ be such thath2 =M′ n andφ1 ⊢M′ n andn =M′ {〈A, n〉}reKB

, (and
h3, h4 as above). We get again a valid transition sequence w.r.t.M′. Though, in what
follows, we will discard such sequences, thanks to some axioms.
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Example 6.Consider again the transitions of the example 5. Now consider a modelM
in which n0, {B, n, n′}reKA

⊢M {B, n0, n
′}reKA

for an honestly generated noncen0

that can be chosen by the attacker: the transition sequence of the previous example is
also valid w.r.t. this model. This will yield an attack, using a malleability property of the
encryption scheme, as in [28]. Discarding such attacks requires some properties of the
encryption scheme (for instance IND-CCA). It can be ruled out by a non-malleability
axiom like the one appearing in the Appendix.

From these examples, we see that unexpected attacks can be found when some assump-
tion is not explicitly stated as an axiom to limit adversarial capabilities.

2.4 Axioms and security properties

For simplicity, we only consider reachability security properties. The extension to any
trace property should not be very difficult: it suffices to record some values along the
trace. Security properties (and, later, axioms) are first-order formulas that may contain
state-dependent predicates and/or predicates that get fixed interpretation. As in the pre-
vious sections,M is an arbitrary first-order structure andσ is an assignment of the free
variables to elements ofDM.

First, we add atomic formulaŝφ, s1, . . . , sn ⊢ t, whereφ̂ is just part of the syntax of
this predicate (not an input of the predicate), which aims atranging over frames (when
interpretating the predicate) and is evaluated in every state. Fort1, ..., tm closed terms,
M, σ, 〈t1, . . . , tm〉 , n |= φ̂, s1, . . . , sn ⊢ t iff M, σ |= s1, . . . , sn, t1, . . . , tm ⊢ t

In addition, we consider the following atomic formulas, whose evaluation only de-
pends on the state, independently of the first-order structureM.

– RandGen(s) (s is a ground term) expresses thats has been randomly generated:
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= RandGen(s) iff s ∈ {n1, . . . , nk}

– t ⊑ φ̂ (t is a ground term) expresses thatt is a subterm of the messages sent so far:
M, σ, 〈t1, . . . , tm〉 , n |= t ⊑ φ̂ iff t is a subterm of someti.

– We also may use the derived predicate (as an abbreviation):

fresh(x, φ̂) = RandGen(x) ∧ x 6⊑ φ̂

⊑ andRandGen() are interpreted predicatessince their interpretation does not de-
pend onM. Bound variables that appear within an interpreted predicate are called
constrained variables. As in other works on constrained logics (see for instance [20]),
such variables are used to schematize several first-order formulas and are replaced with
ground terms built onF . Therefore, the interpretation of axioms and security properties
that may involve interpreted predicates, is modified, only in case of a quantification on
a constrained variablex, in which casex is replaced by any (or some, for existential
quantification) ground term:

If x is a constrained variable (that is,θ has an interpreted predicate andx appears in
it), then,

M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= ∀x.θ
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iff, for every ground termt,

M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= θ{x 7→ t}

We have a similar definition for existential quantificationsof such variables. All other
cases follow the classical definition of the first-order satisfaction relation.3 This yields
a satisfaction relationM, σ, 〈t1, . . . , tm〉 , n |= θ, and thus ofM, σ, φ, n |= θ with φ
having the terms〈t1, . . . , tm〉. Whenθ has no free variable, we may omitσ. Similarly,
if θ does not contain atomic formulas that depend onφ (resp.n), we may omit these
components: we get back to the satisfaction relation of section 2.2.

We define now the satisfaction relation in a state:

M, (q, 〈h1, . . . , hm〉 , n, φm, Θ) |= θ iff M, φm, n |= θ.

Definition 4. A symbolic interpretation and a protocolsatisfy the security propertyθ,
written as

M, Π |= θ,

if for any sequence of transitions that is executable inM and that yields the state
(qm, 〈h1, . . . , hm〉 , nm, φm, Θm),

M, (qm, 〈h1, . . . , hm〉 , nm, φm, Θm) |= θ.

Example 7.Concerning security properties, consider the NSL protocol. We may state
the confidentiality ofn:

¬φ̂ ⊢ n

Consider now an authenticity property. We modify slightly the states of the transition
system, including a commitment on the nonce on which the parties are supposed to
agree. We letci be a special function symbol, that takes as argumentsA,B, n1, n2: who
commits, for who and the corresponding nonces.ci(A,B, n1, π2(π2(dec(x, dKB))))
is sent at the end by the initiator. For the responder, there is a similar commitment:
at the end of the protocol,B emitscr(π1(dec(x, dKB)), B, π2(dec(y, dKB), n2)). We
state as axioms thatci, cr cannot help the attacker and cannot be forged. For instance:
∀x, y, z, w.φ̂, ci(x, y, z, w) 6⊢ z, w and∀x, y, z, w.φ̂ ⊢ ci(x, y, z, w) → ci(x, y, z, w) ⊑

φ̂. The agreement property (onn) may then be stated (for instance) as:

∀x, y, z, w.cr(x, y, z, w)) ⊑ φ̂ → ∃x
′
z
′
w

′(ci(x
′
, y, z

′
, w

′) ⊑ φ̂ ∧ x = x
′
∧ z = z

′
∧w = w

′)

That is:x’s view of z,w is the same asy’s view of z, w.

With such a definition, for any security property and any protocol there will (almost)
always be an interpretation for which the property is violated. Hence we restrict the
class of symbolic interpretations, ruling out the interpretation whose all computational

3 It would in fact be possible to avoid the notion of constrained variables if we definedDM to
be a freeF-algebra, and= a congruence relation on it (as opposed to the equality ofDM), and
later parts of the paper could be adjusted accordingly. However, since constrained variables are
more convenient for automatic verification, the authors decided to present the theory utilizing
them.
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counterparts would violate some security assumption on theprimitives. More precisely,
we consider a set ofaxiomsA, which is a set of first-order formulas in the same for-
mat as the security properties. We restrict our attention tosymbolic interpretations that
satisfyA.

Example 8. – For instance we could include inA a formula

fresh(k, φ̂) → ¬(φ̂ ⊢ k)

that states that an attacker cannot guess (except with negligible probability) a ran-
domly generated name. Adding such an axiom inA rules out symbolic interpreta-
tions in which this deduction is possible.

– If the computational implementation is such (e.g. they are tagged), we may include,

∀x, y, z, A, r.〈x, y〉 6= {z}rKA

stating that pairs and ciphertexts cannot be confused.

We will see more examples in Section 5.
We may assume w.l.o.g that the axioms and security properties are just (universally

quantified) clauses.

2.5 Computational interpretation

The computational interpretations are just a special case of interpretation of our formu-
las, when they do not depend on the state of the transition system. We define them again
here, since we wish to introduce some additional notions. Also, the computational exe-
cutions of the protocols rely on a concrete adversary, givenby a Turing machine, while
in general, the interpretation of functions and predicatesneed not to be computable.

We consider a familly computational algebras, parametrized by a security parameter
η, in which each function symbol is interpreted as a polynomially computable function
on bitstrings (that may return an error message). Given thena sampleτ of names (for
every namen, its interpretation is a bitstringτ(n)), every ground termt is interpreted
as a bitstring[[t]]τ in such a way that[[ ]]τ is a homomorphism ofF -algebras. More
generally, ifσ is an assignment of the variables oft to bitstrings[[t]]στ is the (unique)
extension ofτ (on names) andσ (on variables) as a homomorphism ofF -algebras.

Similarly, all predicate symbols are interpreted as polynomially computable func-
tions on bitstrings. The equality predicate is interpretedas a strict equality on bitsrings:
τ |=c t1 = t2 if [[t1]]τ is not an error,[[t2]]τ is not an error and[[t1]]τ = [[t2]]τ .

This interpretation is extended to arbitrary closed formulas whose atomic formulas
do not depend on the state. This yields the satisfaction relation τ |=c θ. We will define
later the computational interpretation of arbitrary formulas in a given state.

We now define computational executions.

Definition 5. Given a set of transition rules, acomputational stateconsists of

– A symbolic states (that is itself a tupleq(n, h, φ,Θ))
– a sequence of bitstrings〈b1, . . . , bm〉 (the attacker’s outputs)
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– A sequence〈b′1, . . . , b
′
n〉 of bitstrings (the agents outputs)

– The configurationγ of the attacker.

Definition 6. Given a PPT interactive Turing machineM and a sampleτ , a sequence
of transitions

(s0, ∅, b
′

0
, γ0) → . . .→ (sm, 〈b1, . . . , bm〉 , 〈b′1, . . . , b

′
m〉 , γm)

is (computationally) valid w.r.t.M andτ if

– s0 → · · · → sm is a transition sequence of the protocol
– for everyi = 0, ...m − 1, si = (qi(ni), hi, φi, Θi), φi+1 = (νn).φi · ui, [[ui]]τ =
b′i+1

– for everyi = 0, ...,m− 1, there is a configurationγ′i of the machineM such that
γi ⊢∗

M γ′i ⊢
∗
M γi+1 andγ′i is in a sending state, the sending tape containingbi+1,

γi+1 is in a receiving state, the receiving tape containingb′i+1

– for everyi = 0, ...,m− 1, τ, {x1 7→ b1, . . . , x 7→ bi+1} |=c Θi+1.

Intuitively, b′0 is the attacker’s initial knowledge and we simply replaced symbolic de-
ductions/symbolic models of the section 2.3 with computations/computational models.

2.6 Computational validity of security properties and axioms

We already considered the computational satisfaction of formulas, except for formulas
that depend on the states. Given a PT Turing machineA, we define then

A, τ |=c t1, . . . , tn ⊢ t iff A([[t1]]τ , . . . , [[tn]]τ ) = [[t]]τ

The difficulty now is that we do not want to defineA, τ |=c φ̂ ⊢ t1 → φ̂ ⊢ t2 as
A, τ |= φ̂ ⊢ t2 or A, τ 6|= φ̂ ⊢ t1. In order to understand this, consider for instance the
formula

θ : ∀t,K,R(φ̂, {t}
R
eK ⊢ t→ {t}ReK ⊑ φ̂ ∨ dK ⊑ φ̂ ∨ φ̂ ⊢ t)

We want (intuitively) IND-CCA encryption schemes to satisfy this formula. However,
consider an instance of this axiom in whichφ̂ is the pairφ = νn1n2.〈n1, n2〉, andt is
n1. Now, letA be a machine which, on input[[〈n1, n2〉]]τ , [[{n1}reK ]]τ returnsn1 and, on
input [[〈n1, n2〉]]τ only, returns[[n2]]τ . For everyτ ,A, τ 6|=c θ. Hence, whatever security
is provided by the encryption scheme, there is an attack on the property.

This paradox comes from the deterministic interpretation of the deducibility rela-
tion: while, symbolically, it is a relation, it must be a function in the computational
setting since we cannot consider non-deterministic machines. The intended interpreta-
tion therefore involves several machines: roughly, for anymachine that can compute
[[t]]τ from [[φ]]τ , [[{t}reK ]]τ , either there is a machine that can compute[[t]]τ from [[φ]]τ or
else the actual frame contains eitherdK or {t}reK . These two machines need of course
to be independent ofτ . This is the definition that we formalize now for arbitrary security
properties.
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LetM be an interactive PPT Turing machine with a special challenge control state
qc. We may regard this machine as an attacker, who moves to the stateqc when (s)he
thinks that (s)he is ready to break the security property.

In what follows,S is any (polynomial time) non-negligible set of interpretations of
names, andS⊤ is the set of all name interpretations.M, Π |=c θ iff M, Π, S⊤ |=c θ
andΠ |=c θ if M, Π |=c θ for everyM with qc.

We introduce machines that compute witnesses for the unconstrainted quantified
variables.

–
– M, Π, S |=c ∃x.θ iff for any S′ ⊆ S non-negligible, there is aS′′ ⊆ S non-

negligible and a PT machineAx such thatM, Π, S′′,Ax |=c θ
– M, Π, S,Ax1 , . . . ,Axn

|=c ∀x.θ iff for any probabilistic polynomial time ma-
chineAx, M, Π, S,Ax1 , . . . ,Axn

,Ax |=c θ

If x is a constrained variable, the interpretation of∀x.θ is analogous to the symbolic
case:M, Π, S,Ax1 , . . . ,Axn

|=c ∀x.θ if and only if for every ground termt, the
satisfactionM, Π, S,Ax1 , . . . ,Axn

|=c θ{x 7→ t} holds (and similarly for existential
quantification). Ifσ is a sequence of machines, one for each free variablex of θ,

– M, Π, S, σ |=c θ1 ∧ θ2 iff M, Π, S, σ |=c θ1 andM, Π, S, σ |=c θ2.
–
– M, Π, S, σ |=c θ1 ∨ θ2 iff for any S′ ⊆ S non-negligible, there is aS′′ ⊆ S

non-negligible such that eitherM, Π, S′′, σ |=c θ1 orM, Π, S′′, σ |=c θ2.
– M, Π, S, σ |=c θ1 → θ2 iff for any S′ ⊆ S non-negligible,M, Π, S′, σ |=c θ1

impliesM, Π, S′, σ |=c θ2
– M, Π, S, σ |=c ¬θ iff for any S′, if M, Π, S′, σ |=c θ, thenS ∩ S′ is negligible
– in the case of an atomic formulaP (t1, . . . , tn) whereP /∈ {⊢, ⊑, RandGen()},
M, Π, S, σ |=c P (t1, . . . , tn) if there is an overwhelming subsetS′ of S such that
the following holds. For anyτ ∈ S′, consider the unique valid computation (if there
is one) ofΠ with respect toM, τ that yields a configuration ofM, which is in the
control stateqc with a bitstringb on the output tape. Letq(n) be the control state
reached at this point andc be the restriction ofτ to n. Let bx = Ax(b, c) for every
Ax ∈ σ, andα be the sequence of assignmentsx 7→ bx. Then([[t1]]ατ , . . . , [[tn]]

α
τ ) ∈

[[P ]].
– For the deducibility predicate,M, Π, S, σ |=c φ̂, t1, . . . , tn ⊢ t if for all non-

negligibleS′ ⊆ S, there is a non-negligibleS′′ ⊆ S′ such that there is a PT
Turing machineAD such that, for allτ ∈ S′′, the unique valid computation (if
there is one) ofΠ with respect toM, τ that yields a configuration ofM, which
is in the control stateqc with a bitstringb on the output tape, an actual frameφm
and such that, lettingbx = Ax(b, c) wherec = τ(n) for the namesn in the cur-
rent state, for everyAx ∈ σ, andα be the sequence of assignmentsx 7→ bx,
AD([[φm]]τ , [[t1]]

α
τ , . . . , [[tn]]

α
τ , b) = [[t]]ατ .

– M, Π, S, σ |=c t1, . . . , tn ⊢ t is defined exactly as above, however removingφ.
– If P is an interpreted predicate,M, Π, S, σ |= P (t1, . . . , tn) iff there is an over-

whelming subsetS′ ⊆ S such that, for anyτ ∈ S′, the unique valid computation
of Π with respect toM, τ that yields a computational state(q(n, h, φ,Θ), b, b′, γ)
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in the control stateqc such thatP (t1, . . . , tn) is true inq(n, h, φ,Θ). (Remember
that the evaluation of such predicates do not depend on the model).

M, Π |=nnp θ (read “M, Π satisfiesθ with non negligible probability”) if there is a
non-negligible setS and a PPT machineA such thatA(n1, . . . , nk, b1, . . . , bk) returns
1 iff there is aτ ∈ S such that, for alli, τ(ni) = bi andM, Π, S |=c θ.

Lemma 1. If M, Π, S, σ |=c θ andS′ ⊆ S, then we also haveM, Π, S′, σ |=c θ

Proof. We proceed by induction onθ. SinceM, Π are fixed, we sometimes omit these
components.

– If θ is a atomic formulaP (t1, . . . , tn) andP /∈ {⊢, fresh(),⊑}, then, by def-
inition, there is an overwhelming subsetS1 ⊆ S such that, for anyτ ∈ S1,
([[t1]]

α
τ , . . . , [[tn]]

α
τ ) ∈ [[P ]]. If S′ ⊆ S, we chooseS′

1 = S′ ∩ S1. It is an over-
whelming subset ofS′ and, for anyτ ∈ S′

1, ([[t1]]ατ , . . . , [[tn]]
α
τ ) ∈ [[P ]].

– If θ is a formulaφ̂, t1, . . . , tn ⊢ t, then for any non negligibleS1 ⊆ S, there is
a non-negligibleS2 ⊆ S1 and there is a machineA, such that, for anyτ ∈ S2,
A([[φ]]τ , [[t1]]

α
τ , . . . , [[tn]]

α
τ ) = [[t]]ατ . If S′ ⊆ S is non negligible, then any non-

negligibleS′
1 ⊆ S′ is also a non-negligibleS′

1 ⊆ S, hence the result.
– Other atomic formulas with= and⊑ are rather trivial.
– If θ = ¬θ1, M, Π, S, σ |=c θ iff for any S1 ⊆ S such thatM, Π, S1, σ |=c θ1,
S1 ∩ S is negligible. In that case, for anyS′ ⊆ S, S′ ∩ S1 is also negligible, hence
the result (we do not use here the induction hypothesis).

–
– Let nowθ = θ1 ∨ θ2, S, σ |=c θ1 ∨ θ2 andS′ ⊆ S. Take anyS′′ ⊆ S′. Clearly,
S′′ ⊆ S, so byS, σ |=c θ1 ∨ θ2 there is a subsetS′′′ ⊆ S′′ such thatS′′′, σ |=c θ1
or S′′′, σ |=c θ2. That exactly meansS′, σ |=c θ1 ∨ θ2.

– If θ = θ1∧ θ2, we simply use the induction hypothesis forθ1 andθ2, with the same
S′ ⊆ S.

– If θ = θ1 → θ2, thenM, Π, S, σ |=c θ means exactly that for everyS1 ⊆ S,
if M, Π, S1, σ |=c θ1 thenM, Π, S1, σ |=c θ2. Clearly, the same will be true if
S1 ⊆ S′ ⊆ S. HenceM, Π, S′, σ |=c θ also holds.

–
– Forθ = ∃x.θ1, the proof is analogous to∨ and→.
– Forθ = ∀x.θ1, the proof uses the induction hypothesis that the statementis true for
θ. Since for allx, θ is satisfied on all subsets,∀xθ is also satisfied.

Lemma 2. With the above definitions,M, Π, S, σ |=c θ if and only if for allS′ ⊆ S
non-negligible, there is aS′′ ⊆ S non-negligible such thatM, Π, S′′, σ |=c θ

Proof. The only if part is clear from the previous lemma that satisfaction carries over
to subsets. The if proof again goes by induction.

– Suppose for allS′ ⊆ S non-negligible, there is aS′′ ⊆ S′ non-negligible such
thatM, Π, S′′, σ |=c ¬θ. That means, for allS′ ⊆ S, M, Π, S′, σ 6|=c θ, because,
by Lemma 1,M, Π, S′, σ |=c θ would imply M, Π, S′′, σ |=c θ. So, we have
M, Π, S, σ |=c ¬θ by the definition of the satisfaction of negation.
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– Suppose for allS′ ⊆ S non-negligible, there is aS′′ ⊆ S′ non-negligible such that
M, Π, S′′, σ |=c θ1 ∨ θ2. Then, by the definition of satisfaction ofθ1 ∨ θ2, there
is a subsetS′′′ ⊆ S′′ such that eitherM, Π, S′′′, σ |=c θ1 or M, Π, S′′′, σ |=c

θ2. Hence eachS′ has such a subset, which exactly means by our definition that
M, Π, S, σ |=c θ1 ∨ θ2.

– Suppose for allS′ ⊆ S non-negligible, there is aS′′ ⊆ S′ non-negligible such that
M, Π, S′′, σ |=c θ1 ∧ θ2. Then, by the definition of satisfaction ofθ1 ∧ θ2, both
M, Π, S′′, σ |=c θ1 andM, Π, S′′, σ |=c θ2. So, using our induction assumption,
we get thatM, Π, S, σ |=c θ1 andM, Π, S, σ |=c θ2, which exactly means that
M, Π, S, σ |=c θ1 ∧ θ2.

– Now suppose for allS′ ⊆ S non-negligible, there is aS′′ ⊆ S′ non-negligible such
thatM, Π, S′′, σ |=c θ1 → θ2. Take an arbitraryS1, and supposeM, Π, S1, σ |=c

θ1. We have to show thatM, Π, S1, σ |=c θ2. So for anyS′ ⊆ S1 non-negligible,
there is aS′′ ⊆ S′ non-negligible such thatM, Π, S′′, σ |=c θ1 → θ2. By the
definition of the satisfaction of entailment, this latter meansM, Π, S′′, σ |=c θ2,
because we hadM, Π, S1, σ |=c θ1 and satisfaction is preserved under taking
subsets. So we have that for anyS′ ⊆ S1 non-negligible, there is aS′′ ⊆ S′

non-negligible such thatM, Π, S′′, σ |=c θ2. By the induction hypothesis onθ2,
M, Π, S1, σ |=c θ2.

– The case of∀xθ is easy, because the statement holds for allθ, it also holds for∀xθ.
– Suppose for allS′ ⊆ S non-negligible, there is aS′′ ⊆ S′ non-negligible such that
M, Π, S′′, σ |=c ∃xθ. Take an arbitraryS1 ⊆ S. We have to show that there is a
S2 ⊆ S1 and there is anAx such thatM, Π, S2, σ,Ax |=c θ. We know that there
is aS′′ ⊆ S1 with M, Π, S′′, σ |=c ∃xθ. That implies by the semantics of∃xθ
that there is aS2 ⊆ S′′ and there is anAx such thatM, Π, S2, σ,Ax |=c θ. Since
S2 ⊆ S′′ ⊆ S1, this completes the proof.

Corollary 1. M, Π, S, σ |=c θ if and only if for allS′ ⊆ S, M, Π, S′, σ |=c θ holds.
M, Π, S, σ 6|=c θ if and only if there is aS′ ⊆ S such thatM, Π, S, σ |=c ¬θ.

Lemma 3. The De-Morgan identities hold for conjunction and disjunction as well as
for exist and forall. Moreover,¬¬θ is satisfied iffθ is satisfied,¬θ ∧ θ is satisfied only
on negligible sets,¬θ∨θ is valid,θ1 → θ2 is satisfied iff¬θ1∨θ2 is satisfied. Moreover,
the distributivity rules also hold:θ∧(θ1∨θ2) is satisfied iff(θ∧θ1)∨(θ∧θ2) is satisfied
andθ ∨ (θ1 ∧ θ2) is satisfied iff(θ ∨ θ1) ∧ (θ ∨ θ2) is satisfied.

Proof. The proof is based on Lemma 2. The following points are sufficient to prove.

– M, Π, S, σ |=c ¬¬θ holds by the semantics of negation iff for allS′ ⊆ S, we have
M, Π, S′, σ 6|=c ¬θ. That again by the semantics of negation is equivalent with
saying that iff for allS′ ⊆ S there is aS′′ ⊆ S′ such thatM, Π, S′′, σ |=c θ. That
in turn is equivalent withM, Π, S, σ |=c θ by Lemma 2.

– It is clear thatM, Π, S, σ |=c ¬θ ∧ θ never holds, becauseM, Π, S, σ |=c ¬θ1
impliesM, Π, S, σ 6|=c θ, a contradiction. We only allowed contradictions on neg-
ligible sets.

– M, Π, S, σ |=c ¬(θ1∧θ2) holds iff for allS′ ⊆ S, we haveM, Π, S′, σ 6|=c θ1∧θ2,
which means that for allS′ ⊆ S, eitherM, Π, S′, σ 6|=c θ1 orM, Π, S′, σ 6|=c θ2.
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By Lemma 2, this is equivalent with that for allS′ ⊆ S, there is aS′′ ⊆ S′

such that either for allS′′′ ⊆ S′′, M, Π, S′′′, σ 6|=c θ1, or for all S′′′ ⊆ S′′,
M, Π, S′′′, σ 6|=c θ2. This means exactly that for allS′ ⊆ S, there is aS′′ ⊆ S′

such that eitherM, Π, S′′, σ |=c ¬θ1, orM, Π, S′′, σ |=c ¬θ2, which is the same
asM, Π, S, σ |=c ¬θ1 ∨ ¬θ2.

– For the equivalence ofθ1 → θ2 and¬θ1 ∨ θ2 we do the two directions separately.
• Let nowM, Π, S, σ |=c θ1 → θ2 hold. This implies that for allS′ ⊆ S, if
M, Π, S′, σ |=c θ1 holds, thenM, Π, S′, σ |=c θ2 also holds. That is, ei-
therM, Π, S′, σ 6|=c θ1, or M, Π, S′, σ |=c θ2. By Lemma 2, it follows that
for all S′ ⊆ S, either there is aS′′ ⊆ S′ with M, Π, S′′, σ |=c ¬θ1, or
M, Π, S′, σ |=c θ2. This latter condition is equivalent with saying that for all
S′′ ⊆ S′, M, Π, S′′, σ |=c θ2, which clearly implies that there is aS′′ ⊆ S′

with M, Π, S′′, σ |=c θ2. Putting these together, we have that for allS′ ⊆ S,
there is aS′′ ⊆ S′ with eitherM, Π, S′′, σ |=c ¬θ1 orM, Π, S′′, σ |=c θ2

• In the other direction, supposeM, Π, S, σ |=c ¬θ1 ∨ θ2 holds. To show that
M, Π, S, σ |=c θ1 → θ2 also holds, take an arbitraryS′ ⊆ S, and suppose
M, Π, S′, σ |=c θ1. Now take an arbitraryS′′ ⊆ S′. By Lemma 2, for all
S′′′ ⊆ S′′, M, Π, S′′′, σ |=c θ1. But,M, Π, S, σ |=c ¬θ1 ∨ θ2 implies, that
there is aS′′′ ⊆ S′′ such that eitherM, Π, S′′′, σ |=c ¬θ1 orM, Π, S′′′, σ |=c

¬θ2. So, by the foregoing, the latter must be the case. Since we showed that
there is such aS′′′ for anyS′′, we have by Lemma 2 thatM, Π, S′, σ |=c ¬θ2.

– SupposeM, Π, S, σ |=c ¬∀xθ, which is equivalent with saying that for allS′ ⊆ S,
M, Π, S′, σ 6|=c ∀xθ, which in turn is equivalent with saying that for allS′ ⊆ S,
there is anAx such thatM, Π, S′, σ,Ax 6|=c θ. This, by Lemma 2 is equivalent
with that for allS′ ⊆ S, there is anAx and anS′′ such thatM, Π, S′′, σ,Ax |=c

¬θ. This is by the definition of the semantics of the existentialquantification, equiv-
alent withM, Π, S, σ |=c ∃x¬θ.

– For the equivalence ofM, Π, S, σ |=c θ∧ (θ1 ∨ θ2) andM, Π, S, σ |=c (θ∧ θ1)∨
(θ ∧ θ2) we again do the two directions separately.
• M, Π, S, σ |=c θ∧(θ1∨θ2) implies thatM, Π, S, σ |=c θ andM, Π, S, σ |=c

θ1 ∨ θ2 hold, which in turn means by the semantics of the disjunctionthat
M, Π, S, σ |=c θ and for everyS′ ⊆ S, there is aS′′ ⊆ S′ such that ei-
therM, Π, S′′, σ |=c θ1 or M, Π, S′′, σ |=c θ2. By Corollary 1, we have that
M, Π, S′′, σ |=c θ, so we have that eitherM, Π, S′′, σ |=c θ andM, Π, S′′, σ |=c

θ1, orM, Π, S′′, σ |=c θ andM, Π, S′′, σ |=c θ2, which in turn is equivalent
with M, Π, S, σ |=c (θ ∧ θ1) ∨ (θ ∧ θ2).

• For the other direction, assume now thatM, Π, S, σ |=c (θ ∧ θ1) ∨ (θ ∧
θ2). This means that for everyS′ ⊆ S there is aS′′ ⊆ S′ such that ei-
ther M, Π, S′′, σ |=c θ and M, Π, S′′, σ |=c θ1, or M, Π, S′′, σ |=c θ
andM, Π, S′′, σ |=c θ2. SinceM, Π, S′′, σ |=c θ holds in both cases, this,
on one hand implies that for everyS′ ⊆ S there is aS′′ ⊆ S′ such that
M, Π, S′′, σ |=c θ, which by Lemma 2 means thatM, Π, S, σ |=c θ. On the
other hand, we also have that for everyS′ ⊆ S there is aS′′ ⊆ S′ such that
eitherM, Π, S′′, σ |=c θ1, orM, Π, S′′, σ |=c θ2, implyingM, Π, S′′, σ |=c

θ1 ∨ θ2. Hence, we arrive atM, Π, S, σ |=c θ ∧ (θ1 ∨ θ2).
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– Finally, for the equivalence ofM, Π, S, σ |=c θ ∨ (θ1 ∧ θ2) andM, Π, S, σ |=c

(θ ∨ θ1) ∧ (θ ∨ θ2) we again do the two directions separately.
• If M, Π, S, σ |=c θ ∨ (θ1 ∧ θ2) holds, then for everyS′ ⊆ S, there is a
S′′ ⊆ S′ such that eitherM, Π, S′′, σ |=c θ or M, Π, S′′, σ |=c θ1 ∧ θ2. But
this is equivalent with saying that for everyS′ ⊆ S, there is aS′′ ⊆ S′ such
that eitherM, Π, S′′, σ |=c θ, orM, Π, S′′, σ |=c θ1 andM, Π, S′′, σ |=c θ2.
That in turn is equivalent with that for everyS′ ⊆ S, there is aS′′ ⊆ S′

such that both eitherM, Π, S′′, σ |=c θ or M, Π, S′′, σ |=c θ1, and either
M, Π, S′′, σ |=c θ or M, Π, S′′, σ |=c θ2. This implies that on one hand
for everyS′ ⊆ S, there is aS′′ ⊆ S′ such that eitherM, Π, S′′, σ |=c θ
or M, Π, S′′, σ |=c θ1, and, on the other hand, for everyS′ ⊆ S, there is a
S′′ ⊆ S′ such that eitherM, Π, S′′, σ |=c θ or M, Π, S′′, σ |=c θ2. This is
equivalent withM, Π, S, σ |=c (θ ∨ θ1) ∧ (θ ∨ θ2).

• For the other direction, suppose now that we haveM, Π, S, σ |=c (θ∨θ1)∧(θ∨
θ2), which is equivalent with that on one hand for everyS′ ⊆ S, there is aS′′ ⊆
S′ such that eitherM, Π, S′′, σ |=c θ orM, Π, S′′, σ |=c θ1, and, on the other
hand, for everyS′ ⊆ S, there is aS′′ ⊆ S′ such that eitherM, Π, S′′, σ |=c θ
or M, Π, S′′, σ |=c θ2. Fix an arbitraryS′ ⊆ S. By the foregoing, there is
a S′′′ ⊆ S′ such that eitherM, Π, S′′′, σ |=c θ or M, Π, S′′′, σ |=c θ1. If
M, Π, S′′′, σ |=c θ, then setS′′ = S′. If M, Π, S′′′, σ 6|=c θ, then we have
M, Π, S′′′, σ |=c θ1, and by the foregoing, there is aS′′ ⊆ S′′′ such that
M, Π, S′′, σ |=c θ2. For Lemma 1,M, Π, S′′, σ |=c θ1, soM, Π, S′′, σ |=c

θ1∧θ2. Hence, in either case, we have anS′′ ⊆ S′ such thatM, Π, S′′, σ 6|=c θ
orM, Π, S′′, σ |=c θ1∧θ2. Then, by the semantics of the disjunction, we have
M, Π, S, σ |=c θ ∨ (θ1 ∧ θ2).

3 Computational soundness

Definition 7 (Almost Covering Family of Decreasing Chains ofPolynomial-Time
Non-Negligible Sets of Coins).For a set of coinsS, we say that a familyC of chains
of the formS1 ⊇ S2 ⊇ ..., each non-negligible, PT computable subsets ofS, almost
coversS, if for anyS′ ⊆ S, for all i, there is a{Sj}∞j=1 ∈ C such that the intersection
of Si andS′ is non-negligible.

Let C1 andC
2 be two such decreasing families, taking all elements{S1

i }
∞
i=1 ∈ C

1

and all elements{S2
i }

∞
i=1 ∈ C

2, the set of non-negligible decreasing chains of the
form {S1

i ∩ S2
i }

∞
i=1 is also an almost covering family. It is indeed decreasing, because

S1
i ∩ S2

i ⊆ S1
i ⊆ S1

i−1 andS1
i ∩ S2

i ⊆ S2
i ⊆ S2

i−1, soS1
i ∩ S2

i ⊆ S1
i ⊆ S1

i−1 ∩ S
2
i−1.

Computability is preserved by intersection. For the almostcovering property, consider
any non-negligible subsetS′ ⊆ S. SinceC1 is almost covering, for alli there is an
{S1

j }
∞
j=1 ∈ C

1 such thatS′ ∩ S1
i is non-negligible. Then, sinceC2 is almost covering,

there is an{S2
j }

∞
j=1 ∈ C

2 such thatS′ ∩ S1
i ∩ S2

i is non-negligible.

Definition 8 (Conjunction of Almost Covering Family of Chains).We call the family
of chainsC created from two families of chainsC1 andC2 via intersections in the above
manner, the conjunction ofC1 andC2.
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Definition 9 (Subchain).For two decreasing chains of PT computable, non-negligible
sets of coins,S1 ⊇ S2 ⊇ ..., andS′

1 ⊇ S′
2 ⊇ ..., we say that{Si}∞i=1 is a subchain of

{S′
i}

∞
i=1 if for all i, S′

i ⊇ Si.

Theorem 1. LetΠ be a protocol,s1 → . . . → sm be a symbolic transition sequence
ofΠ andM be a probabilistic polynomial time interactive Turing machine. If there is a
non-negligible set of coinsS such that, for anyτ ∈ S, there is a sequence of transitions
(s0, b0, b

′

0
, γ0) → · · · → (sm, bm, b

′

m
, γm) that is computationally valid w.r.t.M, τ

andγm is in the challenge stateqc, then for any formulaθ, M, Π, S |=c θ implies there
is a symbolic modelS such thats0 → · · · → sm is a valid symbolic execution w.r.t.S
andS |= θ.

Proof. We assume in this proof that there are only two predicate symbols: = and⊢.
The extension to other predicate symbols is straightforward.

For any termt with free variablesx1, . . . , xn and machinesAx1 , ...,Axn
, and any

sampleτ ∈ S, let [[t]]τ,σ be the computational interpetation oft, in which each vari-
ablexi is interepreted according toσ(τ)(xi) = Axi

(bτ , τ(n)) if bτ is the bitstring
on the output tape ofγm, andn is the set of names in the statesm, for the execution
corresponding toτ .

Given a decreasing chain of non-negligible sets of coinsS ⊇ S1 ⊇ S2 ⊇ ..., we
define a first-order structureMS1⊇S2⊇... as follows. The domain ofMS1⊇S2⊇... is the
set of terms built on the function symbols, the names and the additional constantsA
for any PT machineA. The interpretation of the predicate symbols is given, for any
assignmentσ of the variablesx1, . . . , xn to machinesAx1 , . . . ,Axn

by:

– MS1⊇S2⊇..., σ |= t = u iff there is ani such that∀τ ∈ Si, [[t]]τ,σ(τ) = [[u]]τ,σ(τ)
– MS1⊇S2⊇..., σ |= t1, ..., tn ⊢ t iff there is a PT algorithmA, ani such that∀τ ∈ Si,
A([[t1]]τ,σ(τ), ..., [[tn]]τ,σ(τ)) = [[t]]τ,σ(τ).

Let
MS = MS⊇S⊇...

Remark 1.Notice, that the definition is such that forS1 ⊇ S2 ⊇ ... andS′
1 ⊇ S′

2 ⊇ ...,
if for somem ∈ N, S′

i = Si for all i > m, thenMS1⊇S2⊇..., σ |= θ if and only if
MS′

1⊇S′

2⊇..., σ |= θ. This is rather trivially true forθ atomic formula, and hence true
for any formula.

Let θ be a formula with free variablesx1, . . . , xn such that only atomic formulas
are negated. We prove, by induction onθ that, if on a non-negligible set of coinsS,
M, Π, S, σ |=c θ, then there is an almost covering family of chainsC such that for any
decreasing chain of non-negligible subsetsS ⊇ S1 ⊇ S2 ⊇ .... that is a subchain of
some chain inC, there is a decreasing chain of non-negligible subsetsS′

1 ⊇ S′
2 ⊇ ....

such thatS′
i ⊆ Si for all i = 1, 2, ..., and for any decreasing chain of non-negligible

subsetsS′′
1 ⊇ S′′

2 ⊇ .... with S′′
i ⊆ S′

i for all i = 1, 2, ..., MS′′

1 ⊇S′′

2 ⊇...., σ |= θ.

– Supposeθ ≡ t = u. We know from Lemma 1 thatM, Π, S, σ |=c θ implies
M, Π, S′, σ |=c θ for any subsetS′ ⊆ S. Hence, given any decreasing chain of
non-negligible subsetsS ⊇ S1 ⊇ S2 ⊇ ...., it suffices to chooseS′

i = Si for every
i , andC can be defined to have a single element,{S}∞i=1.
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– If θ ≡ t 6= u andS ⊇ S1 ⊇ S2 ⊇ .... is any decreasing sequence of non-negligible
sets, letS′

i = Si for every i , and letC have a single element,{S}∞i=1. For any
decreasing sequence of non-negligible setsS′′

i ⊆ S′
i, for all i, sinceS′′

i , σ |=c t 6= u
by lemma 1,{τ ∈ S′′

i : [[t]]τ,σ = [[u]]τ,σ is negligible. Hence there is at least one
τ ∈ S′′

i such that[[t]]τ,σ 6= [[u]]τ,σ. HenceMS′′

1 ⊇S′′

2 ⊇...., σ 6|= t = u.
– For θ ≡ t1, ..., tn ⊢ t, again given any decreasing chain of non-negligible subsets
S ⊇ S1 ⊇ S2 ⊇ ...., it suffices to chooseS′

i = Si , andC can be defined to have a
single element,{S}∞i=1.

– If θ ≡ φ̂, u1, . . . , uk ⊢ t, we may replacêφwith the frameφm of the symbolic state
sm (this is because for anyτ ∈ S, we reach the same symbolic statesm), hence we
are back to the previous case.

– If θ ≡ t1, ..., tn 6⊢ t, given any decreasing chain of non-negligible subsetsS ⊇
S1 ⊇ S2 ⊇ ...., it suffices to chooseS′

i = Si , andC to have a single element,
{S}∞i=1, asM, Π, S′, σ |=c t1, ..., tn ⊢ t is not true on any non-negligibleS′.

– If θ ≡ φ̂, t1, . . . , tn 6⊢ t, as before, we may replacêφ with the frame insm and we
are back to the previous case.

–
– If θ ≡ θ1 ∨ θ2, then consider the family of setsS that consists of all setsS′′ ⊆ S

such that eitherS′′, σ |=c θ1, orS′′, σ |=c θ2. Note, thatS, σ |=c θ1 ∨ θ2 means by
definition that anyS′ has a subset inS. We defineC the following way. For aS′′ in
S, since eitherθ1 or θ2 is satisfied on it, the induction hypothesis gives a family of
chainsCS′′

that almost coversS′′. TakeC =
⋃

S′′∈S
C
S′′

. The family we receive
this way is almost coveringS, because taking any non-negligible, PT computable
setS′ ⊆ S, there is anS′′ ∈ S with S′′ ⊆ S′ non-negligible, and the chains of
C
S′′

all run inS′′, and hence inS′, so their intersections withS′ are non-negligible.
Take now any decreasing chain of non-negligible subsetsS ⊇ S1 ⊇ S2 ⊇ .... that
is a subchain of some chain inC. By construction, there is anS′′ such that{Si}∞i=1

is a subchain of some chain inCS′′

. ButCS′′

was given by the induction hypothesis
for the satisfaction of eitherθ1 or θ2 on S′′. Suppose the first,θ1. Then again by
the induction hypothesis forθ1, there is a chainS ⊇ S′ ⊇ S′

1 ⊇ S′
2 ⊇ ... such

thatS′
i ⊆ Si and for any non-negligible decreasing chainS′′

1 ⊇ S′′
2 ⊇ ... with

S′′
i ⊆ S′

i, MS′′

1 ⊇S′′

2 ⊇..., σ |= θ1. ThenMS′′

1 ⊇S′′

2 ⊇..., σ |= θ. That is, there is a
chainS ⊇ S′ ⊇ S′

1 ⊇ S′
2 ⊇ ... such thatS′

i ⊆ Si and for any non-negligible
decreasing chainS′′

1 ⊇ S′′
2 ⊇ ... with S′′

i ⊆ S′
i, MS′′

1 ⊇S′′

2 ⊇..., σ |= θ. The same
procedure holds when onS2, θ2 is satisfied.

– If θ ≡ θ1 ∧ θ2, by definition,S, σ |=c θ1 andS, σ |=c θ2. Denoting byC1 and
C
2 the almost covering families given by the induction hypothesis for θ1 andθ2

respectively, takeC to be the conjunction of them. This is also an almost covering
family as we discussed earlier. Given any decreasing chain of non-negligible sub-
setsS ⊇ S1 ⊇ S2 ⊇ .... that is a subchain of some chain inC, it is also a subchain
of some chain inC1 because all chains inC are subchains of chains inC1 by con-
struction. By the induction hypothesis forθ1, there is a chainS ⊇ S′

11 ⊇ S′
12 ⊇ ...

with S′
1i ⊆ Si, such that, for any non-negligible decreasing chainS′′

1 ⊇ S′′
2 ⊇ ...

with S′′
i ⊆ S′

1i for all i, MS′′

1 ⊇S′′

2 ⊇..., σ |= θ1. By induction hypothesis forθ2,
since{S′

1i}
∞
i=1 is a subchain of a chain inC2, there is a chainS ⊇ S′

21 ⊇ S′
22 ⊇ ...

with S′
2i ⊆ S′

1i such that, for any non-negligible decreasing chainS′′
1 ⊇ S′′

2 ⊇ ...
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with S′′
i ⊆ S′

2i for all i, MS′′

1 ⊇S′′

2 ⊇..., σ |= θ2. SinceS′
2i ⊆ S′

1i, by the choice of
S′
1i, we also have that for any non-negligible decreasing chainS′′

1 ⊇ S′′
2 ⊇ ... with

S′′
i ⊆ S′

2i for all i,MS′′

1 ⊇S′′

2 ⊇..., σ |= θ1. Hence, for any non-negligible decreasing
chainS′′

1 ⊇ S′′
2 ⊇ ... with S′′

i ⊆ S′
2i for all i, MS′′

1 ⊇S′′

2 ⊇..., σ |= θ1 ∧ θ2. Thus,
takingS′

i = S′
2i works.

–
– If θ ≡ ∃x.θ1, then consider the family of setsS that consists of all setsS′′ ⊆ S

such that there is anAx, with S′′,Ax1 , ...,Axk
,Ax |=c θ. SinceS, σ |=c ∃xθ1,

by definition of the semantics, anyS′ has a subset inS. We defineC the following
way. For anS′′ in S, sinceθ1 is satisfied on it by someAx, the induction hypothesis
gives an almost covering familyCS′′

. TakeC =
⋃

S′′∈S
C
S′′

. The family we receive
this way is an almost covering family, for the same reason as in theθ1 ∨ θ2 case
before. Take now any decreasing chain of non-negligible subsetsS ⊇ S1 ⊇ S2 ⊇
.... that is a subchain of some chain inC. By construction, there is anS′′ such that
{Si}∞i=1 is a subchain of some chain inCS′′

. But CS′′

was given by the induction
hypothesis for the satisfaction ofθ1 onS′′. Then again by the induction hypothesis
for θ1, there is a chainS ⊇ S′ ⊇ S′

1 ⊇ S′
2 ⊇ ... such thatS′

i ⊆ Si and for any non-
negligible decreasing chainS′′

1 ⊇ S′′
2 ⊇ ... with S′′

i ⊆ S′
i, MS′′

1 ⊇S′′

2 ⊇..., σ, x 7→
Ax |= θ1. But then this impliesMS′′

1 ⊇S′′

2 ⊇..., σ |= ∃x.θ1. So the sameS′
1 ⊇ S′

2 ⊇
... works.

– If θ ≡ ∀xθ1, then for allAx, S,Ax1 , ...,Axk
Ax |=c θ1. Enumerate all possible

algorithms forAx: A1, A2,... First consider that forA1, S,Ax1 , ...,Axk
A1 |=c θ1

holds. By induction hypothesis, there is an almost coveringfamily of chainsC1

such that for allS ⊇ S1 ⊇ S2 ⊇ ... that is a subchain of some chain inC1, there
is a chainS′

11 ⊇ S′
12 ⊇ S′

13 ⊇ ... with S′
1i ⊆ Si, such that, for any non-negligible

S′′
1 ⊇ S′′

2 ⊇ ..., if S′′
i ⊆ S′

1i for all i, thenMS′′

1 ⊇S′′

2 ⊇..., σ, x 7→ A1 |= θ1. Take
nowA2. ThenS,Ax1 , ...,Axk

A2 |=c θ1 holds. By the induction hypothesis, there
is an almost covering family of chainsC2 with the usual properties. And so on,
for all Aj , we haveCj . We constructC the following way. We take all decreasing
chains of the form

S1
1 ⊇ S1

2 ∩ S2
2 ⊇ S1

3 ∩ S2
3 ∩ S3

3 ⊇ ... ⊇
i
⋂

j=1

Sj
i ⊇ ...

where for eachj, {Sj
i }

∞
i=1 ∈ C

j . That is,

C :=







x
∣

∣

∣
x = {

i
⋂

j=1

Sj
i }

∞
i=1, {S

j
i }

∞
i=1 ∈ C

j







Let’s now fix S1 ⊇ S2 ⊇ ... such that it is a subchain of a chain inC. Buy con-
struction, it is also a subchain of a chain inC1. Let {

⋂i

j=1 S
j
i }

∞
i=1 denote that

chain. By the induction hypothesis forθ1, sinceS,Ax1 , ...,Axk
A1 |=c θ1, there is

a chainS′
11 ⊇ S′

12 ⊇ S′
13 ⊇ ... with S′

1i ⊆ Si, such that, for any non-negligible
S′′
1 ⊇ S′′

2 ⊇ ..., if S′′
i ⊆ S′

1i for all i, thenMS′′

1 ⊇S′′

2 ⊇..., σ, x 7→ A1 |= θ1. Note
now that the chainS′

11 ∩ S
2
1 ⊇ S′

12 ⊇ S′
13 ⊇ ... is in C

2. Here,S′
11 ∩ S

2
1 ⊇ S′

12
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follows from thatS2
2 ⊇ S2 ⊇ S′

12 by the choice ofS2. By the induction hy-
pothesis, sinceS,Ax1 , ...,Axk

A2 |=c θ1, there is a chainS′
21 ⊇ S′

22 ⊇ ... with
S′
21 ⊆ S′

11 ∩ S
2
1 and S′

2i ⊆ S′
1i for i > 1, such that, for any non-negligible chain

S′′
1 ⊇ S′′

2 ⊇ ... such thatS′′
i ⊆ S′

2i for all i, MS′′

1 ⊇S′′

2 ⊇..., σ, x 7→ A2 |= θ1. But,
because of Remark 1, it is also true that for the chainS′

11 ⊇ S′
22 ⊇ S′

23 ⊇ ..., for
any non-negligibleS′′

1 ⊇ S′′
2 ⊇ ..., with S′′

1 ⊆ S′
11, andS′′

i ⊆ S′
2i for i = 2, 3...,

MS′′

1 ⊇S′′

2 ⊇..., σ, x 7→ A2 |= θ1, as it does not matter what the first set is. Further-
more, sinceS′

2i ⊆ S′
1i holds, we also haveMS′′

1 ⊇S′′

2 ⊇..., σ, x 7→ A1 |= θ1. Contin-
uing in this manner, we get a chainS′

11 ⊇ S′
22 ⊇ S′

33 ⊇ .... Then, take any chain
S′′
1 ⊇ S′′

2 ⊇ ..., with S′′
i ⊆ S′

ii. Clearly, because of the construction,S′′
i ⊆ S′

1i

also holds (asS′
ii ⊆ S′

1i). Hence we haveMS′′

1 ⊇S′′

2 ⊇..., σ, x 7→ A1 |= θ1. Further,
sinceS′′

i ⊆ S′
2i for i = 2, 3..., andS′′

1 ⊆ S′
11, we also haveMS′′

1 ⊇S′′

2 ⊇..., σ, x 7→
A2 |= θ1. And so on, we have for allj, MS′′

1 ⊇S′′

2 ⊇..., σ, x 7→ Aj |= θ1. Now, if
v is any term in the domain of our models,MS′′

1 ⊇S′′

2 ⊇..., σ, x 7→ v |= θ1. Indeed,
let v′ be the termv, in which anyAi occurring inv is replaced with a variablexi
andσ′ bexi 7→ Ai. The algorithm, that computes, for everyτ ∈ S, [[v′]]τ,σ′ can
be constructed from theAi and is PT. Hence there is an indexn such that, for any
τ ∈ S, An outputs[[v′]]τ,σ′ . Therefore, we also haveMS′′

1 ⊇S′′

2 ⊇..., σ |= ∀xθ1, and
that is what we wanted to prove.✷

The above result can be applied to a formulaθ that is the conjunction of

– the intermediate conditions (that are part of the symbolic states)Θ
– finitely many computationally valid axiomsA
– a formula that expresses the existence of an attack.NotSec

Then it can be read as follows: if there is a computational attack, corresponding to a
symbolic traces1 → · · · → sm, then this symbolic trace is valid in a model, which is
also a model ofA andNotSec.

Consider then a symbolic procedure, that discards only symbolic states, in which
Θ ∧ A is inconsistent. Then the symbolic procedure will not miss any attack. More
precisely, we get:

Theorem 2. For a bounded number of sessions, if there is a computationalattack, there
is also a symbolic attack.

In other words, if the protocol is symbolically secure, thenit is also computationally
secure.

It might be true for an undbounded number of sessions as well,but we need the
boundedness assumption if we wish to derive the theorem fromthe theorem 1: The
trick is, that in the bounded case, if there is a computational attack, there is also a com-
putational attack corresponding to a fixed sequence of symbolic states. This is simply
because the bounded number of sessions ensures that there are only finitely many possi-
ble sequences, and if there is a computational attack, that is, the property expressing the
attack is satisfied on some non-negligible set, then it must be satisfied non-negligibly
on one of the possible sequences.
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4 The S4 Connection

Soon after we have completed the proofs of our Lemmas and the main Theorem, we
realized that it is possible to give a purely logical presentation of our definitions and
propositions. Observe first that if we think of non-negligible sets as possible worlds,
and the subset relation as accessibility, then our computational semantics resembles to
Kripke semantics of modal logic. For any first-order formulaθ, consider the transfor-
mationθ → θ∗, whereθ∗ is a formula of S4, and is defined recursively as follows:

– For any atomic formulaθ, let θ∗ ≡ ✷✸θ.
– (¬θ)∗ ≡ ✷¬θ∗

– (θ1 → θ2)
∗ ≡ ✷(θ∗1 → θ∗2)

– (θ1 ∧ θ2)∗ ≡ (θ∗1 ∧ θ
∗
2)

– (θ1 ∨ θ2)∗ ≡ ✷✸(θ∗1 ∨ θ
∗
2)

– (∀xθ)∗ ≡ ∀xθ∗

– (∃xθ)∗ ≡ ✷✸∃xθ∗

With these definitions, considering only S4 with the Barcan formula (∀x✷θ → ✷∀xθ),
Lemma 1 shows that for anyθ, θ∗ → ✷θ∗. Lemma 2 shows thatθ∗ ↔ ✷✸θ∗. Lemma
3 shows that our definitions are consistent with tautologies. Finally, once the proof
of Theorem 1 is reduced to a purely logical one, the meaning ofit becomes that any
formulaθ is derivable in first-order logic if and only ifθ∗ is derivable in S4 with the
Barcan formula. Indeed, after some search of logic literature, we found a publication of
Fitting [19] with exactly this result, using forcing techniques introduced by Cohen. If
we don’t want to use the Barcan formula, then the above is still all true, but(∀xθ)∗ has
to be defined as✷✸∀xθ∗.

5 Examples of axioms

5.1 Examples of axioms that are computationally valid

– Increasing capabilities:̂φ ⊢ y → φ̂, x ⊢ y

– Function of derivable items:̂φ ⊢ t1 ∧ φ̂ ⊢ t2 ∧ ... ∧ φ̂ ⊢ tn → φ̂ ⊢ f(t1, t2, ..., tn)

– Self derivability:φ̂, t ⊢ t

The validity of these axioms is straightforward. We also include the following:

No telepathy:fresh(x, φ̂) → φ̂ 6⊢ x

whose computational soundness follows from the polynomialbound on the machines
that interpret the deducibility relation on the one hand andthe exponential number of
interpretations of any names, on the other hand.
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5.2 Secrecy Axiom

The intuitive meaning of the following axiom is that the adversary cannot derive the
plaintext of a freshly generated encryption, unless its decryption key has been sent out,
or the plaintext could be derived earlier.

Proposition 1. If the encryption scheme is IND-CCA2, then the following axiom

θ = ∀tKR

(

RandGen(K) ∧ fresh(R, φ̂) ∧ φ̂, {t}ReK ⊢ t −→ dK ⊑ φ̂ ∨ φ̂ ⊢ t
)

is computationally valid.

Proof. Suppose that it is not computationally valid. That is, thereis a computational
structure(M, Π, S), with M, Π, S 6|= θ. There are PPT machinesA = (At,AK ,AR)

such thatM, Π, S,A 6|= fresh(R, φ̂) ∧ φ̂, {t}ReK ⊢ t −→ dK ⊑ φ̂ ∨ φ̂ ⊢ t.
Therefore, there is aS1 ⊆ S non-negligible such thatM, Π, S1,A |= fresh(R, φ̂) ∧

φ̂, {t}ReK ⊢ t andM, Π, S1,A 6|= dK ⊑ φ̂ ∨ φ̂ ⊢ t. We claim that the second implies
that there is a non-negligible subsetS2 of S1 such thatM, Π, S2,A |= ¬(dK ⊑ φ̂)

andM, Π, S2,A 6|= φ̂ ⊢ t. To see this, consider the following:

– TakeS2 = S1\{τ | the computation ofA on τ yields a stateq such thatq |= dK ⊑

φ̂}. Clearly,M, Π, S2,A |= ¬(dK ⊑ φ̂), andM, Π, S1 \ S2,A |= dK ⊑ φ̂

– SinceM, Π, S1 \ S2,A |= dK ⊑ φ̂, we haveM, Π, S2,A 6|= φ̂ ⊢ t, because
otherwise we would haveM, Π, S1,A |= dK ⊑ φ̂ ∨ φ̂ ⊢ t contradicting
M, Π, S1,A 6|= dK ⊑ φ̂ ∨ φ̂ ⊢ t.

SinceM, Π, S2,A 6|= φ̂ ⊢ t, by the definition of the computational semantics of the
derivability predicate, there is a subsetS4 of S2 such that on all subsets ofS4, there
is no PT algorithm that computes the interpretation oft from the computational frame.
Then it is straightforward to check thatM, Π, S4,A |= ¬(φ̂ ⊢ t):

– Suppose it is not true, that is,M, Π, S4,A 6|= ¬(φ̂ ⊢ t).
– Then there is anS5 ⊆ S4 such thatM, Π, S4,A |= φ̂ ⊢ t.
– That implies thatS5 has a subset on which there is an algorithm that computes the

interpretationt from the computational frame, a contradiction.

SinceS4 ⊆ S2, we also have thatM, Π, S4,A |= ¬(dK ⊑ φ̂), and sinceS4 ⊆ S1,
we also haveM, Π, S4,A |= fresh(R, φ̂) ∧ φ̂, {t}ReK ⊢ t. That is,M, Π, S4,A |=

φ̂, {t}ReK ⊢ t andM, Π, S4,A |= fresh(R, φ̂) andM, Π, S4,A |= ¬(dK ⊑ φ̂) and
M, Π, S4,A |= ¬(φ̂ ⊢ t). We have to create an adversaryACCA2 that wins the CCA2
game. Letx = {t}ReK .

SinceM, Π, S4,A |= φ̂, {t}ReK ⊢ t holds, there is anS5 ⊆ S4 and an algo-
rithm C that computes the interpretation oft from the interpretation of̂φ and{t}ReK
on S5. Clearly,M, Π, S5,A |= fresh(R, φ̂) andM, Π, S5,A |= ¬(dK ⊑ φ̂) and
M, Π, S5,A |= ¬(φ̂ ⊢ t). It may be the case that theS5 we have chosen depends
on evaluations ofτ that are determined afterM reaches the challenge stateqc. How-
ever, clearly, if we include all possible future evaluations, the set that we receive this
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way, S′ will still be such that there is an algorithmC that computes the interpreta-
tion of t from the frame at the challenge stateqc and{t}ReK on S′. Moreover, it is
easy to see thatM, Π, S′,A |= fresh(R, φ̂) andM, Π, S′,A |= ¬(dK ⊑ φ̂) and
M, Π, S′,A |= ¬(φ̂ ⊢ t) because these are properties that depend only on conditions
in the challenge stated, and not later ones.

SinceM, Π, S′,A |= dK 6⊑ φ̂, the decryption key has never been sent.
We show that we can construct an algorithmACCA2 that breaks CCA2 security.
LetAΠ mean the protocol adversary.

– ACCA2 generates computational keys thatAΠ uses, except for the one correspond-
ing toK.

– The encryption oracle generates a random bitb.
– The encryption oracle generates a computational key and publishes its public part.
ACCA2 encrypts with this key for encryptions withK, except fort.

– ACCA2 simulates both the agents andAΠ : It computes all messages that the agents
output according to their algorithm, and computes all messages thatAΠ outputs
according to its algorithm. This way it builds upφ and the bit strings corresponding
to them as well as the equations.

– Whenever a decryption withdK has to be computed, there are two possibilities:
• If the ciphertext was created byACCA2 using the encryption algorithm, then it

knows the plaintext, so it can use it without decryption.
• If the ciphertext was created in some other way, the decryption oracle is used.

This can be freely done untilx occurs.
– WhenA reaches the challenge stateqc, usingAt, ACCA2 computes the bit string

for t, and submits it to the encryption oracle as well as a random bit string that has
the same length as the plaintext.

– According to our definition of satisfaction the computationby C is based on the
frame at the challenge state. We hadM, Π, S′,A |= fresh(R, φ̂), which means
thatR is independent of the items inφ. Further, since we included all future ran-
dom choices inS′, R is also independent ofS′. Hence having it encrypted by the
encryption oracle will not lose any information as long as the oracle encrypts the
correct bit.

– The encryption oracle encrypts the interpretation oft if b = 0, and encrypts the
random bit string ifb = 1. It gives the resultc back toACCA2.

– RunC on the bit stringc returned by the oracle and on the bit strings ofφn.
– If

• ACCA2 receives the value fort back usingc and if the execution is inS′, then
ACCA2 returnsbACCA2 = 0.

• OtherwiseACCA2 throws a fair coin and storesbACCA2 = 0 or bACCA2 = 1
with probability1/2.

– We haveProb{bACCA2 = b | S′ ∧ b = 0} (the conditional probability ofbACCA2 =
b givenS′ andb = 0) is negligibly different from1 because in this case the oracle
encrypts the correct string, andC’s computations are employed on the correct bit
string, and so it gives the interpretation oft. Note, we also use here thatS′ and the
interpretation ofR do not correlate.
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– On the other hand, observe thatProb{bACCA2 = b | S′ ∧ b = 1} − 1/2 is neg-
ligible. The reason is that whenb = 1, the encryption oracle computes something
that has nothing to do with the protocol andt. So the probability of computingt
with or without the encryption in this case, is the same. But,remember, we had that
M, Π, S′,A |= φ̂ 6⊢ t. This means thatt cannot be computed without the encryp-
tion anywhere and therefore the adversary’s computation onthe fake encryption
cannot give good result by more than negligible probability. So the adversary will
end up throwing a coin in this case.

– Putting the previous two points together, we haveProb{bACCA2 = b | S′} − 1
2

is non-negligible. Then, since outsideS′, ACCA2 thows a coin,Prob{bACCA2 =
b} − 1

2 is non-negligible, which means CCA2 security is broken.✷

6 Conclusions

We have shown a technique to define symbolic adversaries thatare at least as strong as
computational adversaries. The basic idea is that, insteadof listing all manipulations the
symbolic adversary is allowed to do, we allow the symbolic adversary to do anything
unless it contradicts some axioms, which are derived from the limitations of the com-
putational adversary. In a rather involved theorem, we showed that at least when only
bounded number of protocol sessions are allowed, to any computational attack there is
a corresponding symbolic attack. Further, we have shown a few axioms that arise from
the limitations of computational adversaries, and which are to limit the symbolic adver-
sary. Besides some rather trivially valid axioms, we showedthe validity of a ”secrecy
axiom”, that relies on IND-CCA2 security.

From our method, we can derive a verification procedure, simulating the (symbolic)
protocol rules, and checking at each computation step the consistency of the formulas
expressing that transitions are enabled, together with theaxioms and the negation of
the security properties. In order to automate this process we mainly need a (hopefully
efficient) procedure checking the consistency of such a set of constrained formulas.
This is future work. We are however optimistic, because the examples of axioms that
we considered yield a saturated set of constrained formulas(as defined in [24]). On
the other hand, as shown in [10], the consistency of ground clauses, together with a
saturated set of clauses, can be performed in polynomial time.

We carried out a proof of a two sessions NSL, showing what are the minimal as-
sumptions that guarantee its correctness, but we need to design an automated tool, in
order to carry out further experiments. Also extensions of the results to indistinguisha-
bility properties could be investigated.
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A Axioms for the Needham-Schroeder-Lowe protocol

In our NSL proof, we assumed thatA executes initiator sessions only, andB executes
responder sessions only. We further assumed that they don’tinitiate sessions with them-
selves. We also assumed that all agents other thanA andB are corrupted, so their keys
are available to the adversary. Clearly, if we prove security in this case, it also holds
with other honest agents. We used the convention〈x, y, z〉 ≡ 〈x, 〈y, z〉〉. We showed
that in a symbolic execution, violating the secrecy of noncesN1 andN2, as well as
violating the agreement and authentication properties areinconsistent with our axioms.

Computationally Sound Axioms Used

– x = x, and the substitutability (congruence) property of equal terms holds for=, ⊢
predicates.

– Self derivability:φ̂,x, x ⊢ x
– Increasing capabilities:̂φ,x ⊢ y −→ φ̂,x, x ⊢ y
– Commutativity: Ifx′ is a permutation ofx, thenφ̂,x ⊢ y −→ φ̂,x′ ⊢ y
– Transitivity of derivability:φ̂,x ⊢ y ∧ φ̂,x,y ⊢ z −→ φ̂,x ⊢ z

– Functions are derivable:̂φ,x ⊢ f(x)

– No telepathy:fresh(x; φ̂) −→ φ̂ 6⊢ x
– Fresh items are independent:

fresh(x; φ̂,x) ∧ RandGen(N) ∧ x 4 φ̂ ∧ φ̂,x, x ⊢ N −→ φ̂,x ⊢ N ∨ x = N

– Special to IND-CCA encryption:
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• Secrecy:

RandGen(K) ∧ eK ⊑ φ̂ ∧ fresh(R; φ̂,x, x) ∧ x 4 φ̂ ∧ x 4 φ̂

∧ φ̂,x, {x}ReK ⊢ x

−→ dK ⊑ φ̂,x, x ∨ φ̂,x ⊢ x

• Non-malleability (assuming there is only one kind of encryption and pairing):

RandGen(N) ∧ RandGen(K) ∧ eK ⊑ φ̂ ∧ N ⊑ φ̂ ∧ x 4 φ̂

∧ φ̂,x ⊢ y ∧ φ̂,x, dec(y, dK) ⊢ N ∧ ∀xR(y = {x}ReK → {x}ReK 6⊑ φ̂)

−→ dK ⊑ φ̂,x ∨ φ̂,x ⊢ N

Here, new constraints are

– t ⊑ φ̂, s1, ..., sn, wheres1, ..., sn andt are closed terms:
M, σ, 〈t1, . . . , tm〉 , n |= t ⊑ φ̂, s1, ..., sn if t is a subterm of someti or somesi

– t 4 φ̂, wheret is closed:
M, σ, 〈t1, . . . , tm〉 , n |= t 4 φ̂ if for every handleh of t, φ̂ ⊢ h.

– And
fresh(x; φ̂,x) = RandGen(x) ∧ x 6⊑ φ̂,x

Further Needed Axiom (The implementation needs to satisfy this too)
For this protocol, we need an additional axiom, namely that for an honestly generated
nonceN ,

¬W (π2 (N)).

That is, the second projection of a nonce can never be a name (by overwhelming prob-
ability on a non-negligible set).
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