
Security Analysis of J-PAKE

Mohsen Toorani

Department of Informatics, University of Bergen

P.O.Box 7803, N-5020 Bergen, Norway

mohsen.toorani@ii.uib.no

Abstract

J-PAKE is a balanced Password-Authenticated Key Exchange (PAKE) protocol, proposed

in 2008 and presented again in 2010 and 2011. One of its distinguishing features is that it

does not require Public Key Infrastructure (PKI). Instead, it deploys Zero-Knowledge (ZK)

techniques through Schnorr’s signature and requires many computations and random number

generations. J-PAKE has been submitted as a candidate for the IEEE P1363.2 standard for

password-based public key cryptography, included in OpenSSL and OpenSSH, and used in

the Mozilla Firefox’s Sync mechanism. In this paper, we show that the J-PAKE protocol

is vulnerable to a password compromise impersonation attack, and has other shortcomings

with respect to the replay and Unknown Key-Share (UKS) attacks.

1 Introduction

Password-Authenticated Key Exchange (PAKE) protocols enable entities to authenticate each

other and share a strong cryptographic key based on a pre-shared human memorable password.

Although it seemed incredible to construct a strong cryptographic session key from a low-entropy

password, Bellowin and Meritt [1] were the first researchers that demonstrated the PAKE

problem is solvable. They introduced the first PAKE protocol, called EKE, in 1992. Their

protocol was shown to have some weaknesses [2–5]. Since the introduction of EKE, many PAKE

protocols have been proposed. Some of them were proved to have security problems. With

introduction of new technologies and fast improvements in computational capabilities of entities,

including honest users and attackers, new notions of security should be defined and new protocols

are required for different paradigms. Computational and communication efficiency are also two

factors that are considered in designing new protocols.

Password-Authentication Key Exchange by Juggling (J-PAKE) is a PAKE protocol that was

initially proposed in [6] and presented again in [7,8]. Since 2008, it has been available on the

website of the IEEE P1363.2 project for standard specifications of password-based public-key

cryptography [9] but as J-PAKE’s designers argue [10], no attack has been reported yet. The

J-PAKE protocol has also been included in OpenSSL and OpenSSH, but a problem was reported

1

on its implementations [11]. J-PAKE has also been used for the Sync mechanism in Mozilla

Firefox 4 (beta 8 and later) [10]. J-PAKE’s designers argue that it is a balanced (opposed to an

augmented) PAKE protocol [6–8,10]. Balanced PAKE protocols allow parties to use the same

password, and are supposed to be vulnerable to the server compromise. In augmented PAKE

protocols that are more customized for the client-server case, however, an attacker must perform

a successful brute-force attack in order to masquerade as the client using stolen server data.

The J-PAKE is balanced and its designers justified its vulnerability to the server compromise

by challenging the necessity of augmented PAKE protocols as they argue [6–8]: (1) No of

the previously proposed augmented PAKE protocols is really resilient to offline attacks when

the server is compromised and the password file on the server is stolen. (2) Even balanced

PAKE protocols will be modified to avoid storing passwords in clear on servers when they are

implemented so they do not store plain passwords on servers.

This kind of argument is disputable as: (1) Even if some augmented PAKE protocols are

vulnerable to an offline dictionary attack after the server compromise, it usually requires a

separate offline dictionary attack for each entry or user. Then, it would require a lot of time to

extract passwords of all users, and users may be notified of the server compromise during this

process and change their passwords. The situation is different for balanced protocols where all

passwords are supposed to be compromised immediately by the server compromise. (2) The

second reasoning is obviously against what we expect from a protocol to express all stages

clearly and consider the effect of any manipulation on the security and computational costs.

All the security considerations should be considered in protocol design and protocols should be

implemented without any modification as it can cause security problems and make the protocol

vulnerable to attacks. Explicitly, Martini [11] showed how improper implementation of J-PAKE

in OpenSSL and OpenSSH makes it vulnerable to attacks while those attacks are not applicable

to the J-PAKE protocol in theory.

Resistance to offline and online dictionary attacks, forward secrecy, and known session key

security are four security requirements that are mentioned in [6–8] as the security requirements

of a PAKE protocol and it is claimed that J-PAKE provides all of them. In this paper, it is

shown that the J-PAKE protocol is vulnerable to a password compromise impersonation attack,

and has some other shortcomings regarding replay and UKS attacks. Actually, the security

requirements of PAKE protocols are not confined to the four aforementioned properties. There

are other security attributes that are desired or required for a PAKE protocol that are briefly

described in Section 2. Section 3 briefly reviews the J-PAKE protocol, and Section 4 explains its

security vulnerabilities. Finally, Section 5 concludes the paper.

2

2 Security Requirements

There are some security attributes that PAKE protocols should possess [12–14]. J-PAKE’s

designers argue that it is a balanced PAKE protocol and does not have any resilience to the server

compromise. J-PAKE does not use certified public keys so it should not provide some security

attributes such as resilience to Key Compromise Impersonation (KCI) attack, etc. Instead, it

should provide the following security attributes:

• Resilience to offline dictionary attack: A PAKE protocol should not reveal any

information that can be used as a verifier for an offline dictionary attack. In an offline

dictionary attack, the adversary eavesdrops communication between two honest entities and

uses a dictionary of most probable passwords to obtain the password using the eavesdropped

information. He applies each password from the dictionary to the obtained verifier until

he obtains the correct password that satisfies the verifier. Resilience to offline dictionary

attack is a major security attribute for PAKE protocols.

• Resilience to online dictionary attack: In an online dictionary attack, the adversary

uses a dictionary of passwords but checks the validity of his guess through online transactions

with the target. Unlike an offline dictionary attack that is a passive attack, an online

dictionary attack is an active attack. For preventing this attack, servers usually lock the

account of the corresponding user after several number of unsuccessful trials. However,

there is a more complicated kind of this attack that is called an undetectable online

dictionary attack in which the adversary runs the protocol in order to obtain information

and uses it for doing an offline dictionary attack. As checking passwords are accomplished

offline, the server will not detect any attack. Resilience to (undetectable) online dictionary

attack is also a major security attribute for PAKE protocols.

• Known-key security: Known-key security preserves the security of session keys after

disclosure of a session key. Disclosure of a session key should not jeopardize the security of

other session keys.

• Forward secrecy: Forward secrecy preserves the security of session keys after disclosure

of the password. A PAKE protocol is forward secure if previous session keys remain secure

even after disclosure of the password.

• No key control: All the intended participants should be involved in calculation of the

session key. No entity should be able to enforce the session key to fall into a pre-determined

interval.

• Resilience to Unknown Key-Share (UKS) attack: Any PAKE protocol should be

resilient to the UKS attack. That is, entity A should not be coerced into sharing a session

3

key with B without A’s knowledge so that A believes the key is shared with E and B
correctly believes the key is shared with A.

• Resilience to Denning-Sacco attack: It prevents an adversary to recover or guess the

password upon disclosure of a session key.

• Resilience to replay attack: In the replay attack, an attacker that eavesdropped

messages from previous runs of the protocol, replays them to impersonate an entity or

gain another benefit.

• Resilience to password compromise impersonation attack: When the password of

entity A is disclosed, adversary E that has A’s password can impersonate A but it should

not enable E to impersonate another honest entity and share a session key with A. It is

an important attribute for PAKE protocols and they should be resilient to a password

compromise impersonation attack.

• Resilience to ephemeral key compromise impersonation attack: PAKE protocols

deploy some random numbers as ephemeral keys. Disclosure of an ephemeral key of any

entity A should not enable an adversary to share a session key with A by impersonating

another entity.

• Mutual Authentication: The protocol should provide mutual authentication so that

all the participants authenticate each other. Mutual authentication can thwart the man-

in-the-middle attack.

• Resilience to malicious server attack: The malicious server attack has been considered

in some papers [15–18], and resilience to this attack has been mentioned as a security

requirement of password-based protocols that thwart the phishing attacks. However, it is

not a strict security requirement, and it is disputable. In a malicious server attack, an

adversary runs on a malicious server and tempts people to register with that server. As

people usually use the same password for login into different servers, the malicious server

may be able to use this password to impersonate the user and login into other honest

servers.

3 Review of the J-PAKE protocol

Figure 1 depicts the top-level description of the J-PAKE protocol as presented in [6–8]. J-PAKE

requires four passes of communication between two communicating entities, Alice and Bob, but

the protocol can be completed in two rounds. In the rest of this paper, Alice, Bob and the

adversary will be denoted by A, B, and E , respectively.

4

Alice Bob

x1 ∈R [0, q − 1] x3 ∈R [0, q − 1]

x2 ∈R [1, q − 1] x4 ∈R [1, q − 1]

X1 = gx1 X3 = gx3

X2 = gx2 X4 = gx4

Knowledge proofs for x1&x2 Knowledge proofs for x3&x4
X1,X2, Proofs for x1&x2

−−−−−−−−−−−−−−−−−−−−−→
X3,X4, Proofs for x3&x4

←−−−−−−−−−−−−−−−−−−−−−
Verify proofs for x3&x4 Verify proofs for x1&x2

Verify if X4 6= 1 Verify if X2 6= 1

X5 = (X1X3X4)
x2·s X6 = (X1X2X3)

x4·s

Knowledge proofs for x2 · s Knowledge proofs for x4 · s
X5, Proofs for x2 · s

−−−−−−−−−−−−−−−−−−−−−→
X6, Proofs for x4 · s

←−−−−−−−−−−−−−−−−−−−−−
Verify proofs for x4 · s Verify proofs for x2 · s

K = (X6
X4

x2·s)x2 = g(x1+x3)·x2·x4·s K = (X5
X2

x4·s)x4 = g(x1+x3)·x2·x4·s

k = H(K) k = H(K)

Figure 1: Top-level description of the J-PAKE protocol

5

Let G denotes a subgroup of Z∗p of prime order q where p is prime and q is big enough for

intractability of the Decisional Diffie-Hellman problem (DDH). Let g be a generator in G, and

both A and B agree on (G, g). They also have a shared non-empty password s 6= 0 that its value

falls within [1, q − 1]. As indicated in [8], s may also be a hash of the shared password together

with some salt. Steps for top-level description of the J-PAKE protocol can be followed as:

1. A selects two random numbers x1 and x2 so that x1 ∈R [0, q − 1] and x2 ∈R [1, q − 1]. She

computes X1 = gx1 and X2 = gx2 and generates zero-knowledge proofs for x1 and x2. A
sends X1, X2, and knowledge proofs for x1 and x2 to B.

2. B selects two random numbers x3 and x4 so that x3 ∈R [0, q − 1] and x4 ∈R [1, q − 1]. He

computes X3 = gx3 and X4 = gx4 and generates zero-knowledge proofs for x3 and x4. B
sends X3, X4, and knowledge proofs for x3 and x4 to A.

3. A verifies the received knowledge proofs for x3 and x4. As x4 should not be zero, A
verifies if X4 6= 1. If the verifications are confirmed, she computes X5 = (X1X3X4)

x2·s and

zero-knowledge proofs for x2 · s, and sends them to B. Otherwise, A halts the protocols

run.

4. B verifies the received knowledge proofs for x1 and x2. As x2 should not be zero, B
verifies if X2 6= 1. If the verifications are confirmed, he computes X6 = (X1X2X3)

x4·s and

zero-knowledge proofs for x4 · s, and sends them to A. Otherwise, B halts the protocols

run.

5. A verifies the received knowledge proofs for x4 · s. If it is verified, she computes K =

(X6
X4

x2·s)x2 and generates the session key k as k = H(K) in which H is a hash function.

Otherwise, A halts the protocols run.

6. B verifies the received knowledge proofs for x4·s. If it is verified, he computes K = (X5
X2

x4·s)x4

and generates the session key k as k = H(K). Otherwise, B halts the protocols run.

By completion of successful verifications, A and B authenticate each other and obtain the

same session key k. The correctness can be simply verified as K = (X6
X4

x2·s)x2 = (X5
X2

x4·s)x4 =

g(x1+x3)·x2·x4·s. As the session key is computed as k = H(K), and both A and B obtain the

same value for K, they obtain the same session key. Steps (1), (3), and (5) are independent of

steps (2), (4), and (6), respectively. Then, they can be done simultaneously at both sides and

the protocol can be completed in two rounds.

The top-level description of the J-PAKE protocol, depicted in Figure 1 [6–8], is misleading and

ambiguous. It includes fundamental blocks for Zero-Knowledge Proofs (ZKP) and verifications

without further details. However, J-PAKE’s specifications [6–8] suggest using Schnorr’s signature

[19] for ZKP and take care of it in comparing the computational costs, etc. However, they do not

6

provide a clear description of the protocol, and descriptions are ambiguous. Then, we provide a

complete description of the J-PAKE protocol in Figure 2 in which ZKPs are substituted with

Schnorr’s signature.

The Schnorr’s signature scheme is provably secure in the random oracle model, which requires

a secure hash function H. To prove the knowledge of x1, that is the exponent in X1 = gx1 , A
sends {IDA, V1 = gv1 , r1 = v1−x1h1} to B in which IDA is the unique identifier of A, v1 ∈R Zq,

and h1 = H(g, V1, X1, IDA). Including IDA in the calculation of h1 is to prevent other entities

from replaying A’s signature back to A. For verifying knowledge proofs for x1, B verifies that

X1 lies in the prime-order subgroup G, and that V1 = gv1 equals gr1(X1)
h1 . Description of other

knowledge proofs and verifications is the same. The complete scheme is shown in Figure 2.

4 Security Problems of J-PAKE

In [6–8], J-PAKE is claimed to be resilient to online and offline dictionary attacks. However,

there are no strict proofs of security, only heuristic ones. In [10], it is mentioned that no attack

has been reported yet on the J-PAKE protocol. In this section, it is shown that J-PAKE lacks

some of the security attributes explained in Section 2.

4.1 Vulnerability to a Password Compromise Impersonation attack

PAKE protocols should be resilient to the password compromise impersonation attack. That

is, even with compromise of A’s low-entropy password s, E should not be able to impersonate

B and share a session key with A. J-PAKE does not provide this important attribute and is

vulnerable to this attack. E can have control on the communication link of A. Here is the attack

scenario:

- A or E start the protocol. A selects x1 and x2. A computes {X1, X2, ZKP for x1&x2},
and sends them to E . E selects x3 and x4. E computes {X3, X4, ZKP for x3&x4}, and

sends them to A.

- A verifies proofs for x3 and x4, and checks if X4 6= 1. A computes {X5 and ZKP for x2 · s},
and sends them to E . E computes {X6 and ZKP for x4 · s}, and sends them to A. As E is

supposed to know s, he can generate ZKP for x4 · s.

- A verifies proofs for x4 · s. The authentication will be successful, and A computes K and

k. E just computes K and k as he does not need to authenticate A. E could successfully

impersonate B and share a session key with A.

This is a password compromise impersonation attack on the J-PAKE protocol.

7

Alice Bob

x1 ∈R [0, q − 1] x3 ∈R [0, q − 1]

x2 ∈R [1, q − 1] x4 ∈R [1, q − 1]

v1 ∈R [0, q − 1] v3 ∈R [0, q − 1]

v2 ∈R [0, q − 1] v4 ∈R [0, q − 1]

X1 = gx1 X3 = gx3

X2 = gx2 X4 = gx4

V1 = gv1 V3 = gv3

V2 = gv2 V4 = gv4

h1 = H(g, V1, X1, IDA) h3 = H(g, V3, X3, IDB)

h2 = H(g, V2, X2, IDA) h4 = H(g, V4, X4, IDB)

r1 = v1 − x1h1 r3 = v3 − x3h3

r2 = v2 − x2h2 r4 = v4 − x4h4
IDA,X1,X2,V1,V2,r1,r2
−−−−−−−−−−−−−−→
IDB ,X3,X4,V3,V4,r3,r4
←−−−−−−−−−−−−−−

Verify if X3, X4 ∈ G Verify if X1, X2 ∈ G

Verify if X4 6= 1 Verify if X2 6= 1

h3 = H(g, V3, X3, IDB) h1 = H(g, V1, X1, IDA)

h4 = H(g, V4, X4, IDB) h2 = H(g, V2, X2, IDA)

Verify if gr3(X3)
h3

?
= V3 Verify if gr1(X1)

h1
?
= V1

Verify if gr4(X4)
h4

?
= V4 Verify if gr2(X2)

h2
?
= V2

ga = X1X3X4 gb = X1X2X3

X5 = ga
x2·s X6 = gb

x4·s

v5 ∈R [0, q − 1] v6 ∈R [0, q − 1]

V5 = ga
v5 V6 = gb

v6

h5 = H(ga, V5, X5, IDA) h6 = H(gb, V6, X6, IDB)

r5 = v5 − sx2h5 r6 = v6 − sx4h6
IDA,X5,V5,r5
−−−−−−−−−→
IDB ,X6,V6,r6
←−−−−−−−−−

Verify if X6 ∈ G Verify if X5 ∈ G

h6 = H(gb, V6, X6, IDB) h5 = H(ga, V5, X5, IDA)

Verify if gb
r6(X6)

h6
?
= V6 Verify if ga

r5(X5)
h5

?
= V5

K = (X6
X4

x2·s)x2 K = (X5
X2

x4·s)x4

k = H(K) k = H(K)

Figure 2: Detailed description of the J-PAKE protocol after substituting ZKP with Schnorr’s

signature as proposed in [6–8]

8

4.2 Vulnerability to a replay attack

J-PAKE has two features that can be used for a replay attack: (1) J-PAKE has four passes that

can be concluded in two rounds. This means that two messages transmitted between A and B
are completely independent of each other. (2) Messages exchanged between A and B can be

divided into two distinct parts, one part for authentication and one part for the key exchange.

Authentication credentials are independent of key exchange parts.

These features can be misused through a replay attack. This means that the adversary E
can successfully thwart all the authentications by replaying previous messages, eavesdropped

from previous runs of the protocol between A and B. E can impersonate A or B by replaying

all the previous messages sent by A or B, respectively. As the key confirmation is not included

in J-PAKE’s specifications and it is left optional, the authentication will be successful at the

other party. The other party will then authenticate E as A or B, respectively. Of course, the

adversary cannot compute the session key but all the authentications will be successful. There

may be some scenarios that this attack would be useful (e.g. a naive applicant may suppose

that the J-PAKE is a strong protocol and use it just for the authentication and ignore the key

generation part) but it exhibits some weaknesses in the J-PAKE protocol. Assuming that E
impersonates A, steps for this attack can be followed as:

1. E sends the eavesdropped message {IDA, X
′
1, X

′
2, V

′
1 , V

′
2 , r
′
1, r
′
2} from a previous run of the

protocol to B.

2. B selects random numbers {x3, x4, v3, v4}, and computes {X3, X4, V3, V4, h3, h4, r3, r4}. B
sends {IDB, X3, X4, V3, V4, r3, r4} to E .

3. E sends the eavesdropped message {IDA, X
′
5, V

′
5 , r
′
5} from a previous run of the protocol

to B.

4. B verifies that X ′1, X
′
2 ∈ G, and X ′2 6= 1. B computes h′1 and h′2, and verifies that

gr
′
1(X ′1)

h′1 = V ′1 and gr
′
2(X ′2)

h′2 = V ′2 . As the replayed messages are eavesdropped from a

successful run of the protocol, both verifications will be successful. B generates random

number v6, computes {X6 = (X ′1X
′
2X3)

x4·s, V6, h6, r6}, and sends {IDB, X6, V6, r6} to E .

B also verifies that X ′5 ∈ G and computes h′5. B verifies that ga
r′5(X ′5)

h′5 = V 6′5. As the

replayed message is eavesdropped from a successful run of protocol, the equation will be

satisfied. B believes that E is A. B computes K = (
X′5

X′2
x4·s)x4 , and generates the session

key as k = H(K).

5. E does not have s and x′2 so E cannot compute the session key but could successfully

impersonate A.

Similar steps can be written for the case when E impersonates B.

9

4.3 Further Defects

1. The session key derivation function of the J-PAKE protocol does not include identifiers of

A and B. The session key is simply calculated as k = H(K) in which K = g(x1+x3)·x2·x4·s.

Then, there is not any binding between the session key and identifiers of participants.

This can be used for an Unknown Key-Share (UKS) attack if there is not any binding

between identifiers and authentication credentials in the J-PAKE protocol. The top-level

description of the J-PAKE protocol presented in Figure 1 is potentially susceptible to

the UKS attack as there is no specific binding between identifiers of participants and

the authentication credentials and the session key derivation function. Fortunately, in

our detailed description of the J-PAKE that is shown in Figure 2, identifiers of A and

B are involved in computations of {h1, h2, h5} and {h3, h4, h6}, respectively. Then, it is

not vulnerable to the UKS attack. However, if one wants to use another ZKP instead of

Schnorr’s signature, without specific modifications for binding ZKP with identifiers of A
and B as described in Figure 2, it may make the protocol vulnerable to the UKS attack.

A simple solution that can guarantee invulnerability of the J-PAKE protocol to the UKS

attack is to modify the session key derivation function as k = H(K, IDA, IDB).

2. As J-PAKE’s designers explicitly argue [8], J-PAKE is a balanced protocol. It is then

vulnerable to the server compromise and Stolen-verifier attacks.

3. The J-PAKE protocol is also vulnerable to the malicious server attack. However, as

invulnerability to this attack is not a strict security requirement of PAKE protocols and it

is usually considered as a security requirement for anti-phishing PAKE protocols, we do

not consider it in details.

4. The J-PAKE protocol requires many computations which includes 28 exponentiations

and 10 random number generations. The first round of the J-PAKE does not use any

pre-shared secret, e.g. password, so anyone can successfully complete the first round.

The second round also includes some weaknesses that makes the protocol vulnerable to

different attacks described in this section. Although J-PAKE is not based on certified

public keys and PKI, it is not secure and efficient enough to be considered as an alternative

for PKI-based protocols.

5. It is better to exclude zero from the allowed values for random numbers

{x1, x3, v1, v2, v3, v4, v5, v6}. Specifically, for x1 = x3 = 0, we have K = 1.

5 Conclusion

The security of the J-PAKE protocol [6–8] as a balanced PAKE protocol was analyzed in this

paper. Although J-PAKE’s designers argue that it is secure, it was shown that it has some

10

security weaknesses that expose it to some attacks. It includes its vulnerability to Password

Compromise Impersonation and replay attacks. It was also claimed for computational efficiency

of the J-PAKE when it was partially compared with SPEKE and EKE protocols, but J-PAKE

involves many random number generations and mathematical manipulations that render it an

inefficient protocol, especially for resource-constrained environments.

References

[1] S. Bellovin and M. Merritt, “Encrypted Key Exchange: Password-based Protocols Secure

Against Dictionary Attacks,” in Proceedings of the 1992 IEEE Symposium on Security and

Privacy, pp. 72–84, 1992.

[2] D. Jablon, “Strong Password-only Authenticated Key Exchange,” ACM SIGCOMM Com-

puter Communication Review, vol. 26, no. 5, pp. 5–26, 1996.

[3] B. Jaspan, “Dual-workfactor Encrypted Key Exchange: Efficiently Preventing Password

Chaining and Dictionary Attacks,” in Proceedings of the 6th Annual USENIX Security

Conference, pp. 43–50, 1996.

[4] S. Patel, “Number theoretic attacks on secure password schemes,” in Proceedings of the

1997 IEEE Symposium on Security and Privacy, pp. 236–247, May 1997.

[5] P. MacKenzie, “The PAK suite: Protocols for Password-Authenticated Key Exchange.”

IEEE P1363.2, 2002.

[6] F. Hao and P. Ryan, “Password Authenticated Key Exchange by Juggling,” 16th Workshop

on Security Protocols, 2008.

[7] F. Hao and P. Ryan, “Password Authenticated Key Exchange by Juggling,” in Proceedings

of the 16th Workshop on Security Protocols, LNCS 6615, pp. 159–171, Springer, 2011.

[8] F. Hao and P. Ryan, “J-PAKE: Authenticated Key Exchange without PKI,” Transactions

on Computational Science XI, pp. 192–206, 2010.

[9] IEEE P1363.2. http://grouper.ieee.org/groups/1363/passwdPK/submissions.html.

[10] F. Hao and P. Ryan, “How To Sync with Alice,” in Proceedings of the 19th Security Protocols

Workshop (SPW), (Cambridge, UK), 2011.

[11] S. Martini, “Session Key Retrieval in J-PAKE Implementations of OpenSSL and OpenSSH.”

http://seb.dbzteam.org/crypto/jpake-session-key-retrieval.pdf, 2010.

11

http://grouper.ieee.org/groups/1363/passwdPK/submissions.html
http://seb.dbzteam.org/crypto/jpake-session-key-retrieval.pdf

[12] J. Yang and T. Cao, “Provably Secure Three-party Password Authenticated Key Exchange

Protocol in the Standard Model,” Journal of Systems and Software, vol. 85, no. 2, pp. 340–

350, 2012.

[13] H. Yeh and H. Sun, “Password Authenticated Key Exchange Protocols among diverse

network domains,” Computers and Electrical Engineering, vol. 31, no. 3, pp. 175–189, 2005.

[14] P. Nose, “Security Weaknesses of Authenticated Key Agreement Protocols,” Information

Processing Letters, vol. 111, no. 14, pp. 687–696, 2011.

[15] S. Sood, A. Sarje, and K. Singh, “A secure dynamic identity based authentication protocol

for multi-server architecture,” Journal of Network and Computer Applications, vol. 34, no. 2,

pp. 609–618, 2011.

[16] M. Gouda, A. Liu, L. Leung, and M. Alam, “SPP: An anti-phishing single password

protocol,” Computer Networks, vol. 51, no. 13, pp. 3715–3726, 2007.

[17] J. Byun, D. Lee, and J. Lim, “EC2C-PAKA: An efficient client-to-client password-

authenticated key agreement,” Information Sciences, vol. 177, no. 19, pp. 3995–4013,

2007.

[18] D. Wong, “Security analysis of two anonymous authentication protocols for distributed

wireless networks,” in Third IEEE International Conference on Pervasive Computing and

Communications (PerCom’05) Workshops, pp. 284–288, IEEE, 2005.

[19] C. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptology, vol. 4,

no. 3, pp. 161–174, 1991.

12

	Introduction
	Security Requirements
	Review of the J-PAKE protocol
	Security Problems of J-PAKE
	Vulnerability to a Password Compromise Impersonation attack
	Vulnerability to a replay attack
	Further Defects

	Conclusion

