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Abstract

In the wiretap channel setting, one aims to get information-theoretic privacy of communicated data
based only on the assumption that the channel from sender to receiver is noisier than the one from
sender to adversary. The secrecy capacity is the optimal (highest possible) rate of a secure scheme,
and the existence of schemes achieving it has been shown. For thirty years the ultimate and unreached
goal has been to achieve this optimal rate with a scheme that is polynomial-time. (This means both
encryption and decryption are proven polynomial time algorithms.) This paper finally delivers such
a scheme. In fact it does more. Our scheme not only meets the classical notion of security from the
wiretap literature, called MIS-R (mutual information security for random messages) but achieves the
strictly stronger notion of semantic security, thus delivering more in terms of security without loss of
rate.
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1 Introduction

Introduced by Wyner, Csiszár and Körner in the late seventies [34, 11], the wiretap channel is a setting
where one aims to obtain information-theoretic security (privacy) of communicated data under the sole
assumption that the channel from sender to receiver is “noisier” than the channel from sender to adversary.
Researchers have shown that there is a maximum possible rate (ratio of message length to ciphertext
length) for a secure scheme, called the optimal rate, and they have shown, through the probabilistic
method, that there exist secure schemes with this rate. But these results are non-constructive. A
question of great interest in this area is whether there is an explicit, secure scheme that is polynomial-
time. (Meaning, there are polynomial-time algorithms for both encryption and decryption.) But this has
remained open for 30 years. In this paper we finally resolve this question by providing such a scheme.

However, we do even more. Our scheme achieves not only the classical notion of security from
the wiretap literature but the stronger notion of semantic (equivalently, distinguishing) security of [3].
Furthermore our scheme is simple, efficient and modular. Unlike schemes from the I&C approaches, it
makes only blackbox (meaning non-intrusive) use of error-correcting codes. Our scheme is obtained by
combining methods from cryptography and coding theory. Let us now look at all this in some more
detail.

The wiretap model. The setting is depicted in Figure 1. The sender applies to her message M a ran-
domized encryption function E : {0, 1}m → {0, 1}c to get what we call the sender-ciphertext X←$ E(M).1

This is transmitted to the receiver over the receiver channel ChR so that the latter gets a receiver cipher-
text Y←$ ChR(X) which it decrypts via algorithm D to recover the message. The adversary’s wiretap
is modeled as another channel ChA and it accordingly gets an adversary ciphertext Z←$ ChR(X) from
which it tries to glean whatever it can about the message.

A channel is a randomized function specified by a transition probability matrix W where W [x, y] is
the probability that input x results in output y. Here x, y are strings. Thus, for example, we regard
the Binary Symmetric Channel BSCp with crossover probability p ≤ 1/2 as taking a binary string x of
any length and returning the string y of the same length formed by flipping each bit of x independently
with probability p. For concreteness and simplicity of exposition we will often phrase discussions in the
setting where ChR,ChA are BSCs with crossover probabilities pR, pA ≤ 1/2 respectively, but our results
apply in much greater generality. In this case the assumption that ChA is “noisier” than ChR corresponds
to the assumption that pR < pA. This is the only assumption made: the adversary is computationally
unbounded, and the scheme is keyless, meaning sender and receiver are not assumed to a priori share any
information not known to the adversary.

Requirements. The two requirements are decryptability, also called decodability, and security. The first
asks that the scheme provide error-correction over the receiver channel, namely limm→∞ Pr[D(ChR(E(M)))
6= M] = 0. Security may be measured in various ways. A security metric xs associates to encryption
function E : {0, 1}m → {0, 1}c and adversary channel ChA a number Advxs(E ;ChA) that measures the
maximum “advantage” of an adversary in breaking the scheme under metric xs, and we say that E
provides XS-security relative to ChA if limk→∞Advxs(E ;ChA) = 0. The central metric of the wiretap
literature is mis-r (mutual-information security for random messages), defined via Advmis-r(E ;ChA) =
I(M;ChA(E(M))) where M is uniformly distributed over {0, 1}m and I is the mutual information. It was
introduced by [26, 27] and strengthens the original metric of [34]. The name is from [3].

Taking a cryptographic perspective, the latter point out that mis-r is weak because messages are
assumed to be random. They introduce a semantic security (ss) metric following [15] that, roughly,
asks that given the adversary ciphertext, the adversary cannot compute any function of the message with
probability better than she could have without the adversary ciphertext. They show that this is equivalent
to a strengthening of mis-r that they call mis security and also to a simpler and more convenient metric
called distinguishing security (ds), also adapted from [15], where the advantage is defined via

Advds(E ;ChA) = max
A,M0,M1

2Pr[A(M0,M1,ChA(E(Mb))) = b]− 1

1 The notation y←$ A(x) means that we run randomized function A on input x and denote the output by y.
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Figure 1: Wiretap channel model. See text for explanations.

where challenge bit b is uniformly distributed over {0, 1} and the maximum is over all m-bit messages
M0,M1 and all adversaries A. Since MIS, SS and DS are shown equivalent in [3] one can work with any
of them, and our choice is DS.

Practical interest in the wiretap setting is escalating [35, 4], and applications need DS-security rather
than MIS-R security. Thus DS-security is the most desirable target.

Previous work. In the Information and Coding (I&C) community, the wiretap setting has a literature
encompassing hundreds of papers. (See the survey [23] or the book [4].) The focus has been to show the
existence of MIS-R-secure schemes with optimal rate. (The schemes are not required to be explicit, let
alone polynomial time.) This optimal rate is called the secrecy capacity. In the case of BSCs, it equals
the difference (1− h2(pR)) − (1− h2(pA)) = h2(pA)− h2(pR) in capacities of the receiver and adversary
channels, where h2(p) = −p lg(p) − (1 − p) lg(1 − p) is the binary entropy. Non-constructive proofs of
the existence of MIS-R-secure schemes with this optimal rate were given in [34, 11, 5]. A lot of work has
followed aiming to establish similar results for other channels.

Mahdavifar and Vardy [24, 25] provide an explicit MIS-R-secure scheme with optimal rate, but they
give no proof that decoding is possible for their scheme, even in principle let alone in polynomial time.
The central open question in the wiretap channel community was whether there is a polynomial time
(this means both encryption and decryption are polynomial time) MIS-R secure scheme with optimal
rate.

DS-security has upped the ante. The first question here is to determine this optimal rate. Since
DS-security is stronger than MIS-R security, the optimal rate could in principle be smaller but (perhaps
surprisingly), for a broad class of channels, it isn’t. That is, the optimal rate is the same for DS and
MIS-R security for a broad class of channels including symmetric channels. This follows by applying
a result of [3], which shows that MIS-R implies MIS for certain types of schemes and channels, to the
scheme of [24, 25].

Polynomial-time DS-secure schemes were presented in [3] but their rate is not optimal. In summary,
the most desirable goal here is to not only solve the long-standing open question from the wiretap
community by giving a polynomial-time MIS-R-secure scheme with optimal rate but go further and give
a polynomial-time DS-secure scheme with optimal rate.

Our scheme. This paper resolves the above open problem, providing the first polynomial-time scheme
that achieves DS (and hence MIS-R) security with optimal rate, meaning rate equal to the secrecy
capacity.

The scheme of [24, 25] is based on polar codes [2]. Our approach is modular and is able to use any
ECC, so that we do not rely on the structure of specific ECCs.

One might hope to build a scheme for the case where the receiver channel is noiseless and then add
error-correction to meet the decoding condition with a noisy receiver channel. This does not work because
the error-correction helps the adversary by reducing the noise over the adversary channel. The need to
to couple security and decoding considerations in the design is one source of challenges.

Our scheme is based on three main ideas: the use of invertible extractors; analysis via smooth min-
entropy; and an adaption of the result of [3] saying that for certain types of schemes, DS-security on
random messages implies DS-security on all messages. Section 5 overviews the technical approach, de-
scribes the components and scheme in detail and proves DS security.

We are stating asymptotic results for simplicity. Our proof will show a quantitative bound on ad-
versary ds-advantage that decays exponentially with the security parameter. The scheme is also fairly
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simple and efficient. Finally the claims (proven DS-security and decoding with optimal rate) hold not
only for BSCs but for a wide range of receiver and adversary channels.

A concrete instantiation. As a consequence of our general paradigm, we prove, for example, that
the following simple scheme achieves secrecy capacity for the setting where ChR and ChA are BSC’s with
respective crossover probabilities pR < pA ≤ 1/2. Let E: {0, 1}k → {0, 1}n be an error-correcting code
which is efficiently decodable for the BSC with crossover probability pR, and such that k ≈ (1−h2(pR)) ·n
(such ECCs can be built e.g. from polar codes [2] or from concatenated codes [14]). Our encryption
function E takes as input an m-bit message M , where m = b · t, b ≈ (h2(pA) − h2(pR)) · n, and t is a
parameter of the scheme. It first chooses uniformly at random a k-bit string A 6= 0k as well as t (k−b)-bit
strings R[1], . . . , R[t]. It then splits M into t b-bit blocks M [1], . . . ,M [t], and outputs

E(M) = E(A) ‖ E(A⊙ (M [1] ‖ R[1])) ‖ · · · ‖ E(A⊙ (M [t] ‖ R[t])) ,

where ⊙ is multiplication of k-bit strings interpreted as elements of the extension field GF(2k).

Related work. Appendix A surveys related to wiretap security.

2 Preliminaries

Basic notation and definitions. If s is a binary string then s[i] denotes its i-th bit and |s| denotes
its length. If S is a set then |S| denotes its size. If x is a real number then |x| denotes its absolute value.
If s1, . . . , sl are strings then s1‖ · · · ‖sl denotes their concatenation. If s is a string and n a non-negative
integer then sn denotes the concatenation of n copies of s.

A probability distribution is a function P that associates to each x a probability P (x) ∈ [0, 1]. The
support supp(P ) is the set of all x such that P (x) > 0. All probability distributions in this paper are
discrete. Associate to random variable X and event E the probability distributions PX ,PX|E defined for
all x by PX(x) = Pr [X = x ] and PX|E(x) = Pr [ X = x | E ]. We denote by lg(·) the logarithm in base
two, and by ln(·) the natural logarithm. We adopt standard conventions such as 0 lg 0 = 0 lg∞ = 0 and
Pr[E1|E2] = 0 when Pr[E2] = 0. The function h: [0, 1]→ [0, 1] is defined by h(x) = −x lg x. The (Shan-
non) entropy of probability distribution P is defined by H(P ) =

∑

x h(P (x)) and the statistical difference
between probability distributions P,Q is defined by SD(P ;Q) = 0.5·∑x |P (x)−Q(x)|. If X,Y are random
variables the (Shannon) entropy is defined by H(X) = H(PX) =

∑

x h(PX(x)). The conditional entropy is
defined via H(X |Y = y) =

∑

x h(PX|Y=y(x)) and H(X |Y) =∑y PY(y) ·H(X |Y = y). The statistical or
variational distance between random variables X1,X2 is SD(X1;X2) = SD(PX1

;PX2
) = 0.5 ·∑x |Pr[X1 =

x] − Pr[X2 = x]|. The min-entropy of random variable X is H∞(X) = maxx Pr[X = x] and if Z is also a
random variable the conditional min-entropy is H∞(X|Z) =

∑

z Pr[Z = z]maxx Pr[X = x|Z = z].

Transforms, channels and algorithms. We say that T is a transform with domain D and range
R, written T : D → R, if T (x) is a random variable over R for every x ∈ D. Thus, T is fully specified by
a sequence P = {Px}x∈D of probability distributions over R, where Px(y) = Pr[T (x) = y] for all x ∈ D
and y ∈ R. We call P the distribution associated to T . This distribution can be specified by a |D| by
|R| transition probability matrix W defined by W [x, y] = Px(y). A (randomized) algorithm is also a
transform. Finally, an adversary too is a transform.

Channels. A channel is, again, just a transform. In more conventional communications terminology, a
channel Ch: D → R has input alphabet D and output alphabet R.

If B: D → Z is a channel and c ≥ 1 is an integer we define the channel Bc: {0, 1}c → Zc by Bc(X) =
B(X[1])‖ · · · ‖B(X[c]) for all X = X[1] . . . X[c] ∈ {0, 1}c. The applications of B are all independent,
meaning that if W is the transition probability matrix of B then the transition probability matrix Wc

of Bc is defined by W [X,Y ] = W [X[1], Y [1]] · . . . ·W [X[c], Y [c]] for all X = X[1] . . . X[c] ∈ {0, 1}c and
Y = Y [1] . . . Y [c] ∈ Zc. We say that a channel Ch is binary if it equals Bc for some channel B and some
c, in which case we refer to B as the base (binary) channel and Ch as the channel induced by B.

By BSCp: {0, 1} → {0, 1} we denote the binary symmetric channel with crossover probability p
(0 ≤ p ≤ 1/2). Its transition probability matrix W has W [x, y] = p if x 6= y and 1 − p otherwise for all
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x, y ∈ {0, 1}. The induced channel BSCc
p flips each input bit independently with probability p.

The receiver and adversary channels of the wiretap setting will have domain {0, 1}c, where c is the
length of the sender ciphertext, and range {0, 1}d, where the output length d may differ between the two
channels. Such channels may be binary, which is the most natural example, but our equivalences between
security notions hold for all channels, even ones that are not binary.

If Ch1: {0, 1}c1 → {0, 1}d1 and Ch2: {0, 1}c2 → {0, 1}d2 are channels then Ch1‖Ch2 denotes the
channel Ch: {0, 1}c1+c2 → {0, 1}d1+d2 defined by Ch(x1‖x2) = Ch1(x1)‖Ch2(x2) for all x1 ∈ {0, 1}c1 and
x2 ∈ {0, 1}c2 .

Finally, we say that a channel Ch: D → R with transition matrix W is symmetric if the there exists
a partition of the range as R = R1 ∪ · · · ∪ Rn such that for all i the sub-matrix W [·, Ri] induced by
the rows in Ri is strongly symmetric, i.e., all rows are permutations of each other, and all columns are
permutations of each other.

3 Encryption and Semantic Security

Our formalization of encryption functions and schemes, as well as their security, follows the approach
of [3]. We briefly review the main tools, and refer the reader to [3] for further details.

Encryption functions and schemes. An encryption function is a transform E : {0, 1}m → {0, 1}c
where m is the message length and c is the sender ciphertext length. The rate of E is Rate(E) = m/c.
If ChR: {0, 1}c → {0, 1}d is a receiver channel then a decryption function for E over ChR is a transform
D: {0, 1}d → {0, 1}m whose decryption error DE(E ;D;ChR) is defined as the maximum, over all M ∈
{0, 1}m, of Pr[D(ChR(E(M))) 6= M ].

An encryption scheme E = {Ek}k∈N is a family of encryption functions where Ek: {0, 1}m(k) →
{0, 1}c(k) for functions m, c: N → N called the message length and sender ciphertext lengths of the
scheme. Suppose ChR = {ChRk}k∈N is a family of receiver channels where ChRk: {0, 1}c(k) → {0, 1}d(k).
Then a decryption scheme for E over ChR is a family D = {Dk}k∈N where Dk: {0, 1}d(k) → {0, 1}m(k) is a
decryption function for Ek over ChRk. The decoding requirement, also called the decryption requirement,
is that limk→∞DE(Ek;Dk;ChRk) = 0. The rate of E is Rate(E) = limk→∞Rate(Ek).

We say that a family {Sk}k∈N (eg. an encryption or decryption scheme) is polynomial-time computable
if there is a polynomial time computable function which on input 1k (the unary representation of k) and
x returns Sk(x). Our constructs will provide polynomial-time computable encryption and decryption
schemes.

Semantic security. Let E : {0, 1}m → {0, 1}c be an encryption function and let ChA: {0, 1}c → {0, 1}d
be an adversary channel. Security depends only on these, not on the receiver channel. Following [3], in
this paper we will target semantic security (ss) and distinguishing security (ds). We refer the reader to [3]
for an in depth study of these notions, and their relation to entropy-based security metrics.

Concretely, the ss advantage is defined as

Advss(E ;ChA) = max
f,M

(

max
A

Pr[A(ChA(E(M))) = f(M)]−max
S

Pr[S(m) = f(M)]

)

, (1)

where f is a transform with domain {0, 1}m that represents partial information about the message.
Moreover, the distinguishing advantage is

Advds(E ;ChA) = max
A,M0,M1

2Pr[A(M0,M1,ChA(E(Mb))) = b]− 1 (2)

= max
M0,M1

SD(ChA(E(M0));ChA(E(M1))) , (3)

where Pr[A(M0,M1,ChA(E(Mb))) = b] is the probability that adversary A, given m-bit messages M0,M1

and an adversary ciphertext emanating from Mb, correctly identifies the random challenge bit b. We note
that this advantage is equal to the statistical distance between the random variables ChA(E(M0)) and
ChA(E(M1)).
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We say that the encryption scheme E = {Ek}k∈N is SS-secure relative to ChA = {ChAk}k∈N if
limk→∞Advss(Ek;ChAk) = 0. This does not mandate any particular rate at which the advantage should
vanish, but in our constructions this rate is exponentially vanishing with k. Similarly, the scheme is DS-
secure if limk→∞Advds(Ek;ChAk) = 0. The following theorem, proved in [3], establishes the equivalence
of SS- and DS-security.

Theorem 3.1 [DS ↔ SS] Let E : {0, 1}m → {0, 1}c be an encryption algorithm and ChA an adversary
channel. Then Advss(E ;ChA) ≤ Advds(E ;ChA) ≤ 2 ·Advss(E ;ChA).

4 Seeded Encryption

We introduce an extension of the standard wiretap setting where Alice, Bob, and Eve have access to a
common random string S, called the seed, chosen honestly and randomly. This setting is interesting in
its own right: One can think of the seed as being chosen once and for all when deploying an encryption
scheme. More importantly, however, seeded encryption can be seen as an intermediate step towards
building a regular (unseeded) encryption scheme, as we explain below.

Seeded encryption. A seeded encryption function is a transform SE : Sds×{0, 1}b → {0, 1}n that takes
a seed S ∈ Sds and message M ∈ {0, 1}b to return a sender ciphertext denoted SE(S,M) or SES(M), so
that each seed S defines an encryption function SES : {0, 1}b → {0, 1}n. Given a channel ChR : {0, 1}n →
{0, 1}ℓ, a seeded decryption function SD for SE over ChR is a a transform SD : Sds× {0, 1}ℓ → {0, 1}b.
The decryption error DE(SE ;SD;ChR) of SE , SD, and ChR is defined as

DE(SE ;SD;ChR) = E

[

max
M∈{0,1}b

Pr [SD(S,ChR(SE(S,M))) 6= M ]

]

,

where the expectation is taken over the random choice of S. A seeded encryption scheme is a family
SE = {SEk}k∈N. The rate Rate(SE) of a seeded encryption function SE is defined as b/c, meaning the
seed is ignored, and, accordingly, we let Rate(SE) = limk→∞Rate(SEk).
Distinguishing security for seeded encryption. We extend distinguishing security to the setting
of seeded encryption. It is defined via a game where the adversary is first given the seed S←$ Sds.
It then outputs two messages M0,M1, and is subsequently given the encryption ChA(SES(Mb)) for a
random bit b. Finally, it outputs a bit b′, and wins the game if b = b′. As the adversary can choose
the best pair of message M0,M1 for each choice of the seed, the optimal strategy guesses the bit b with
probability (1 +Advds(SES ;ChA))/2 conditioned on a particular choice of the seed S. Therefore, the
optimal adversary guesses b with probability

E

[

1 +Advds(SES ;ChA))
2

]

=
1

2
+

E
[
Advds(SES ;ChA)

]

2
,

where the expectations are over S drawn at random from Sds, and equality follows from linearity of
expectations. Consequently, we define the ds advantage as

Advds(SE ;ChA) = E
[

Advds(SES ;ChA)
]

.

Similarly, one can extend the definition of semantic security to the setting of seeded encryption.
Note that in the special case of one individual seed value, we obtain the special case of unseeded

encryption given above.

From seeded to unseeded encryption. We discuss how to generically transform any seeded encryp-
tion function into a conventional (seedless) encryption function. This transformation is rate preserving,
i.e., the rate of the resulting scheme is (asymptotically) the same as the one of the original seeded
encryption scheme.

The main idea behind our construction – which we call SR (for Seed Recycle) – is to encrypt multiple
message blocks using the underlying seeded encryption scheme with the same seed, and combine the
resulting encryptions in one single ciphertext. An error-corrected version of the seed is included the
ciphertext to ensure decryption. If sufficiently many encryptions are combined into one ciphertext, the
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Transform E(M): // M ∈ {0, 1}m
S←$ Sds

M [1], . . . ,M [t]
b←M

For i = 1 to t do

C[i]←$ SE(S,M [i])

Ret E(S) ‖C[1] ‖ · · · ‖C[t] .

Transform D(C0‖C1): // C0 ∈ {0, 1}ℓ0 , C1 ∈ {0, 1}tℓ1

C1[1], . . . , C1[t]
ℓ1← C1

S ← D(C0)

For i = 1 to t do

M [i]← SD(S,C[i])

Ret M [1] ‖ · · · ‖M [t] .

Figure 2: Encryption from a seeded encryption. Encryption function E = SR[SE ,E], and associated
decryption function D for the channel ChR = ChR0 ‖ChRt

1, where ChR0 : {0, 1}e → {0, 1}ℓ0 and ChR1 :

{0, 1}n → {0, 1}ℓ1 . By X[1], . . . ,X[c]
b← X we mean that bc-bit string X is split into b-bit blocks.

cost of including the seed is asymptotically vanishing, hence preserving the rate of the underlying seeded
encryption. Moreover, no privacy must be guaranteed for the seed, as it can be made public, provided
the underlying seeded encryption is DS-secure.

More concretely, let SE : Sds× {0, 1}b → {0, 1}n be a seeded encryption function and let E : Sds→
{0, 1}e be an efficiently computable injective function. For a parameter t ≥ 1, the encryption function
E = SRt[SE ,E] takes as input a message M ∈ {0, 1}m, where m = t · b, and splits it into t b-bit blocks
M [1], . . . ,M [t]. It selects a random seed S←$ Sds, and then encrypts the individual message blocks as
C[i] = SE(S,M [i]). The final (e + t · n)-bit ciphertext consists of the concatenation of C[0] = E(S) and
C[1], . . . , C[t]. The encryption function E is described in Figure 2 for completeness.

Decryption for SR. First, recall that a code is an injective function E : {0, 1}k → {0, 1}e for
k ≤ e. Given a channel ChR : {0, 1}e → {0, 1}ℓ, a decoder for E over ChR is a an algorithm D :
{0, 1}ℓ → {0, 1}k . As in the case of decryption, its decoding error is defined as DE(E;D;ChR) =
maxM∈{0,1}k Pr [D(ChR(E(M))) 6= M ].

We assume that E is used over a channel ChR = ChR0 ‖ChRt
1 which operates by independently

processing the first n ciphertext bits through a channel ChR0 : {0, 1}e → {0, 1}ℓ0 and each subsequent
n-bit block is sent (independently) through a channel ChR1 : {0, 1}n → {0, 1}ℓ1 . The goal of the function
E is to operate as a code ensuring recovery of the seed. Therefore, for any function D : {0, 1}ℓ0 → Sds,
and decryption function SD : Sds × {0, 1}ℓ1 → {0, 1}n for SE over ChR1, we specify the corresponding
decryption function D for E over ChR as in Figure 2. The following lemma summarizes the relation
between its decryption error and the ones of D and SE , and its proof follows by a simple union bound.

Lemma 4.1 [Correct decryption of SR] Let t ≥ 1, and let ChR = ChR0 ‖ChRt
1 be such that ChR0 :

{0, 1}e → {0, 1}ℓ0 and ChR1 : {0, 1}n → {0, 1}ℓ1 . Moreover, let SE : Sds × {0, 1}b → {0, 1}n, SD :
Sds × {0, 1}ℓ1 → {0, 1}b, E : Sds → {0, 1}e, and D : {0, 1}ℓ0 → Sds. Then, for E = SRt[SE ,E] and the
associated decryption function D as above using D,

DE(E ;D;ChR) ≤ DE(E;D;ChR0) + t ·DE(SE ;SD;ChR1) .

We note that Lemma 4.1 can be extended to the case where the channels ChR0, as well as the t
usage of ChR1, are not necessarily independent, provided they do behave individually as ChR0 and ChR1,
respectively.

Security of SR. We now turn to proving that DS security of E = SRt[SE ,E] can be reduced to
DS-security of SE , at the cost of only a factor t loss in the security reduction.

Lemma 4.2 [Security of SR] Let t ≥ 1, and let ChA = ChA0 ‖ChAt
1 be such that ChA0 : {0, 1}e →

{0, 1}ℓ′0 and ChA1 : {0, 1}n → {0, 1}ℓ′1 . Moreover, let SE : Sds × {0, 1}b → {0, 1}n, E : Sds → {0, 1}e,
and E = SRt[SE ,E]. Then,

Advds(E ;ChA0 ‖ChAt
1) ≤ t ·Advds(SE ;ChA1) .
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Transform Fi(X,S): // X ∈ {0, 1}ℓ′1 , S ∈ Sds

Z[0]←$ ChA0(E(S))

M i[1], . . . ,M i[t]
b←M i

Z[i]← X

For j = 1 to t, j 6= i, do

C[j]←$ SE(S,M i[j]); Z[j]←$ ChA1(C[j])

Ret Z[0] ‖Z[1] ‖ · · · ‖Z[t] .

Figure 3: Proof of Lemma 4.2. Description of the transform Fi.

Proof: The proof proceeds by a hybrid argument. To start with, let us fix two arbitrary m-bit messages
M0,M1. Recall that m = t · b. For all i ∈ [0 . . . t], let M i ∈ {0, 1}m be such that for all j ∈ [1 . . . t], the
j-th b-bit block M i[j] equals M1[j] if j ≤ i, and M0[j] otherwise. In particular, M0 = M0 and M t = M1.
We let Xi = ChA(E(M i)), and by the triangle inequality,

SD(ChA(E(M0));ChA(E(M1))) = SD(X0;Xt) ≤
t∑

i=1

SD(Xi−1;Xi) .

For convenience, let us introduce the shorthand Z(S,M) = ChA1(SE(S,M)). For all i ∈ [1 . . . t], we
introduce the transform Fi : {0, 1}ℓ

′
1 ×Sds→ {0, 1}ℓ′0+t·ℓ′1 described in Figure 3. Then, it is easy to verify

that the outputs of Fi(Z(S,M0[i]),S) and Fi(Z(S,M1[i]),S) are distributed as Xi−1 and Xi, respectively.
Hence:

SD(Xi−1;Xi) = SD(Fi(Z(S,M0[i]),S);Fi(Z(S,M1[i]),S))
≤ SD((Z(S,M0[i]),S); (Z(S,M1[i]),S))
≤ max

M ′
0,M

′
1∈{0,1}

b
SD((Z(S,M ′0),S); (Z(S,M

′
1),S))

= max
M ′

0,M
′
1∈{0,1}

b
ES←$ Sds

[
SD(Z(S,M ′0);Z(S,M

′
1))
]

≤ ES←$ Sds

[

max
M ′

0,M
′
1∈{0,1}

b
SD(Z(S,M ′0);Z(S,M

′
1))

]

= Advds(SE ;ChA1) ,

where the first inequality follows from the fact that SD(g(X); g(Y)) ≤ SD(X;Y) for all random variables
X,Y, and all functions g. The final bound follows by maximizing over all M0,M1 ∈ {0, 1}m.

An encryption scheme and its rate. In the asymptotic setting, we construct an encryption scheme
E = {Ek}k∈N using the SR construction as follows: We start from an arbitrary seeded encryption scheme
SE = {SEk}k∈N such that SEk : Sdsk × {0, 1}b(k) → {0, 1}n(k), as well as from family of injective
functions E = {Ek}k∈N with Ek : Sdsk → {0, 1}e(k). Also let t : N → N be a function such that
e(k) = o(n(k) · t(k)). Often, letting t(k) = O(log(n)) will be sufficient. Then, for all k ∈ N, the
encryption algorithm Ek : {0, 1}t(k)·b(k) → {0, 1}e(k)+t(k)·n(k) is defined as Ek = SRt[SEk,Ek].

We conclude by verifying that the rates of E and SE are indeed equal:

Rate(E) = lim
k→∞

t(k) · b(k)
e(k) + t(k) · n(k)

= lim
k→∞

b(k)

e(k)/t(k) + n(k)

= lim
k→∞

b(k)

n(k)
· lim
k→∞

1

1 + e(k)/(t(k) · n(k))
= Rate(SE) · 1

1 + lim
k→∞

e(k)/(t(k) · n(k))
︸ ︷︷ ︸

=0

= Rate(SE) .
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5 A DS-Secure Scheme Achieving Secrecy Capacity

In this section, we turn to our main technical result, a seeded encryption scheme achieving DS-security.
Its rate, for a large set of adversary channels, is optimal, meaning it equals the secrecy capacity. Using
the SR construction from the previous section, our scheme yields an unseeded encryption scheme with
optimal rate.

5.1 The ItE Construction

In the following, we present our generic construction of an encryption function, which we call ItE (Invert-
then-Encode). Before giving any details, however, let us start with the high-level idea underlying our
approach. For simplicity, let us focus on the case where ChR and ChA are BSC’s with respective crossover
probabilities pR < pA ≤ 1/2. Let us also assume the goal is the simpler one of Alice and Bob agreeing
on an n-bit key rather than transmitting a message. If we let the seed S ∈ Sds be the seed for an
extractor Ext: Sds × {0, 1}k → {0, 1}m and given an error-correcting code E: {0, 1}k → {0, 1}n for
reliable communication over BSCpR , a natural approach consists of Alice sending E(R), for a random
k-bit R, to Bob, via ChR, and both parties now derive the key as K = Ext(S,R).

Proving that this approach works requires estimating H∞(R|Z) = − lg(
∑

z maxr Pr [R = r, Z = z ]),
where Z = BSC

n
pA
(E(R)) is the information received by Eve. Yet, it is not hard to see that that the

most likely outcome, when Z = z, is that R equals the unique r such that E(r) = z, and that hence
H∞(R|Z) = n · lg (1/(1− pA)), which is smaller than h2(pA)− h2(pR), and which also upper bounds the
length of the derived key K. To overcome this, we will observe the following: We can think of BSCpA as
adding an n-bit vector E to its input E(R), where each bit E[i] of the noise vector takes value one with
probability pA. With overwhelming probability, E is (roughly) uniformly distributed on the set of n-bit
vectors with hamming weight (approximately) pA ·n and there are (approximately) 2n·h2(pA) such vectors.
Therefore, choosing the noise uniformly from such vectors does not change the experiment much, and
moreover, in this new experiment, one can show that roughly H∞(R|Z) ≥ k − n · (1 − h2(pA)). We will
make this precise for a general class of symmetric channels via the notion of smooth min-entropy [29].

While both Ext and E can be instantiated so that the secret-key rate satisfies |K|/n ≈ h2(pA)−h2(pR),
which is the secrecy capacity, recall that our goal is way more ambitious: Alice wants to send an arbitrary
message of her choice. The obvious way to do this is obtain a key K as above and then send K⊕M .
But this at least halves the rate, which becomes far from optimal. Our approach instead is to use an
extractor Ext that is invertible in the sense that given M and S, we can sample a random R such that
Ext(S,R) = M . We then encrypt a message M as E(R), where R is a random preimage of M under
Ext(S, ·). However, the above argument only yields, at best, security for a randomly chosen input. In
contrast, showing DS-security accounts to proving, for any two messages M0 and M1, that BSC

n
pA(E(R0))

and BSC
n
pA(E(R1)) are statistically close, where Ri is uniform such that Ext(S,Ri) = Mi. To make things

even worse, the messages M0 and M1 are allowed to depend on the seed. The main challenge is that such
proof appears to require detailed knowledge of the combinatorial structure of E and Ext. In particular,
we remark that it is not possible to provide a direct proof that the encryption of an arbitrary message is
uniformly distributed, even in the simpler case where the message is seed-independent. In fact, for most
codes, ciphertexts turn out not to be uniform at all.

Instead, we will take a completely different approach: We prove a general result, of independent
interest, which shows that any seeded encryption function with appropriate linearity properties is DS-
secure whenever it is secure for randomly chosen inputs. This result is surprising, as random-input
security does not, in general, imply chosen-input security. A careful choice of the extractor to satisfy
these requirements, combined with the above idea, will hence yield a scheme achieving DS-security.

(Invertible) Extractors. A function Ext: Sds×{0, 1}k → {0, 1}b is called a (h, α)-extractor (strong,
average case extractor in the terminology of [12]) if SD((Ext(S,X),Z,S); (U,Z,S)) ≤ α for all pairs of
(correlated) random variables (X,Z) over {0, 1}k × {0, 1}∗ with H∞(X|Z) ≥ h, where additionally S and
U are uniform on Sds and {0, 1}b, respectively. We will say that Ext is regular if for all S ∈ Sds, the
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Transform SE(S,M): // S ∈ Sds, M ∈ {0, 1}b
R←$ {0, 1}r
X ← Inv(S,R,M)

Ret E(X) .

Transform SD(S,C): // C ∈ {0, 1}ℓ
X ← D(C)

M ← Ext(S,X)

Ret M .

Figure 4: Seeded Encryption function SE = ItE[Inv,E] and associated decryption function SD.

function Ext(S, ·) is regular, meaning every point in the range has the same number of preimages.

Recall that a function H: Sds× {0, 1}k → {0, 1}b is two-universal if Pr[H(S,X) = H(S,X ′)] ≤ 2−m

for all distinct X,X ′ ∈ {0, 1}k when S←$ Sds. The following average-case version of the Leftover Hash
Lemma (LHL) of [16], due to [12], implies that a two-universal function is an essentially-optimal extractor:

Lemma 5.1 Let H: Sds×{0, 1}k → {0, 1}b be a two-universal function. Let S be uniform over Sds. Let
X,Z be random variables over {0, 1}k and {0, 1}∗ respectively, and let U be uniform on {0, 1}b, independent
of X, Z and S. Then,

SD((H(S,X),Z,S); (U,Z,S)) ≤ 1

2

√

2b−H∞(X|Z) .

Specifically, this says that H is a (h, α)-extractor with h = b− 2− 2 lgα.
Our approach will rely on extractors which can efficiently be inverted. We say that a function

Inv : Sds×{0, 1}r×{0, 1}b → {0, 1}k is an inverter for an extractor Ext : Sds×{0, 1}k → {0, 1}b if for all
S ∈ Sds and Y ∈ {0, 1}b, and for R uniform over {0, 1}k , the random variable Inv(S,R, Y ) is uniformly
distributed on {X ∈ {0, 1}k : Ext(S,X) = Y }, the set of preimages of Y under Ext(S, ·).

To make this concrete we give an example of an extractor with an efficiently computable inverter.
Recall that k-bit strings can be interpreted as elements of the finite field GF(2k), allowing us to define
a multiplication operator ⊙ on k-bit strings. Then, for Sds = {0, 1}k \ 0k, we consider the function
Ext : {0, 1}k × {0, 1}k → {0, 1}b which, on inputs S ∈ Sds and X ∈ {0, 1}k, outputs the first b bits of
X ⊙ S. It is easy to see that Ext is regular if 0k is removed from the set of seeds. In Appendix B we
prove the following using the LHL:

Lemma 5.2 For all α ∈ (0, 1] and all b ≤ k − 2 lg(1/α) − 2, the function Ext is a (b+ 2 lg(1/α) + 2, α)-
extractor.

An efficient inverter Inv : Sds × {0, 1}k−b × {0, 1}b → {0, 1}k is obtained by letting Inv(S,R,M) =
S−1⊙(M ‖R) where S−1 is the inverse of S with respect to multiplication in GF(2k). Invertible extractors
were used in [7] but their setting was much simpler than ours and they achieve only security for random
inputs.

Encryption. We now describe the seeded encryption function of ItE. In the following, let Ext :
Sds × {0, 1}k → {0, 1}b be a regular extractor with inverter Inv : Sds × {0, 1}r × {0, 1}b → {0, 1}k .
Also let E : {0, 1}k → {0, 1}n be a function with k ≤ n, later to be instantiated via an appropriate
error-correcting code. The encryption function SE = ItE[Inv,E] is described in Figure 4: It applies the
extractor inverter (with fresh randomness R) to the message M and the seed S to obtain an intermediate
value X = Inv(S,R,M), which is then encoded using E to obtain the ciphertext.

Decryption. Given a channel ChR : {0, 1}n → {0, 1}ℓ, the goal of the function E in SE above is to
operate as an error-correcting code ensuring decryptability of the generated ciphertexts. Therefore, for
any function D : {0, 1}ℓ → {0, 1}b, we can define the corresponding decryption function SD for SE over
ChR as in Figure 4. The following lemma summarizes the relation between its decryption error and the
one of D.

Lemma 5.3 [Correct decryption] Let ChR : {0, 1}n → {0, 1}ℓ be a channel, and let SE, SD, E, and
D be as above. Then, DE(SE ;SD;ChR) ≤ DE(E;D;ChR).
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Security. Below, we discuss the security of ItE. Our approach consists of two steps: We first introduce
a metric based on statistical distance capturing the random-message security of a seeded encryption
function, and prove random-message security of ItE. Subsequently, we prove a general result showing
that random-message security implies DS security in many scenarios, and apply it to ItE.

5.2 Random-Message Security of ItE

Random distinguishing-security. We now address the problem of proving security of ItE under
random messages. To this end, we introduce a new security metric rds based on the statistical distance.
Specifically, for a seeded encryption function SE : Sds×{0, 1}b → {0, 1}n and a channel ChA : {0, 1}n →
{0, 1}∗, we define the rds advantage as

Advrds(SE ;ChA) = E
[
SD((ChA(SE(S,U)),U); (ChA(SE(S,U′)),U))

]
,

where U and U′ are independent b-bit inputs, and the expectation is taken over the choice of the seed S.
Below, we will prove that, surprisingly, RDS-security is often sufficient in order to infer DS-security of a
seeded encryption function.

RDS-Security for ItE. We now want to prove an upper bound on rds advantage for SE = ItE[Inv,E],
where Inv is the inverter of a regular extractor Ext.

It is crucial to remark that the joint distribution of (X,U) is identical if we (i) sample a uniform
random b-bit message U, a random r-bit string R, and compute X ← Inv(S,R,U), or if instead (ii) we
pick X uniformly at random, and then compute U ← Ext(S,X). But then, intuitively, we expect that X,
when E(X) is sent through ChA, has sufficiently high min-entropy h in the eyes of the adversary, hence
implying that if Ext is an (h, α)-extractor,

Advrds(SE ;ChA) = E
[
SD((ChA(SE(S,U)),U); (ChA(SE(S,U′)),U))

]
≤ α ,

since for any two transforms T1, T2, SD((T1(S),S); (T2(S),S)) = E [SD(T1(S);T2(S))], where the expec-
tation is over the choice of S according to P S. In order to lower bound the entropy H∞(X|ChA(E(X)))
we will use the following observation: For a symmetric channel ChA, let H(ChA) = H(ChA(X)) for any
input X. (The entropy H(ChA(X)) is the same, regardless of the input, since the rows of the transition
probability matrix of ChA are all permutations of each other.) Then, we are going to prove that if we
use the channel n times, each time to transmit a bit, then we can always see ChA as adding some noise
whose distribution is statistically close to a noise distribution where all values are taken with probability
at most 2−nH(ChA). This is formalized via the notion of ǫ-smooth min-entropy [29] of a distribution P ,
defined as

Hǫ
∞(P ) = max

Q:SD(P ;Q)≤ǫ
H∞(Q) .

Analogously, we define Hǫ
∞(X) = Hǫ

∞(PX) for every random variable X with distribution PX. The
following lemma, first shown by Holenstein and Renner [18] in a more general setting, states that the
smooth min-entropy of multiple independent samples is, on average, nearly as large as the Shannon
entropy of an individual sample.

Lemma 5.4 [18] Let X1, . . . ,Xn be independent samples from a distribution P on a finite set X, and let
δ > 0. Then, Hǫ

∞(X1 . . .Xn) ≥ n ·H(P )− n · δ, where

ǫ = ǫ(δ, n, |X|) = 2
− nδ2

2 lg2(|X|+3) .

The RDS-security of SE is then summarized by the following lemma. Interestingly, the lemma does not
need any assumption on E, other than the fact that it is injective.

Lemma 5.5 [RDS-security of ItE] Let δ > 0 and OutA ⊆ {0, 1}∗. Also, let ChA : {0, 1} → OutA be
a symmetric channel and let SE = ItE[Inv,E], where Inv is the inverter of a regular (k−n ·(lg(|OutA|)−
H(ChA) + δ), α)-extractor, and E is injective. Then,

Advrds(SE ;ChAn) ≤ 2 · 2−
nδ2

2 lg2(|OutA|+3) + α .
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Process Π1:

M ←$ {0, 1}b;
S←$ Sds; R←$ {0, 1}r
X ← Inv(S,R,M);

C ← E(X)

Z←$ ChA
n(C)

Ret (Z,M,S).

Process Π2:

M ←$ {0, 1}b;
S←$ Sds; R←$ {0, 1}r
X ← Inv(S,R,M);

C ← E(X)

Y ←$ ChA
n(0n); Z ← πC(Y )

Ret (Z,M,S).

Process Π3:

S←$ Sds; X ←$ {0, 1}k
M ← Ext(S,X);

C ← E(X)

Y ←$ ChA
n(0n); Z ← πC(Y )

Ret (Z,M,S).

Process Π4:

S←$ Sds; X ←$ {0, 1}k
M ← Ext(S,X);

C ← E(X)

Y ←$ P ′; Z ← πC(Y )

Ret (Z,M,S).

Process Π5:

S←$ Sds; X←$ {0, 1}k
M ← Ext(S,X);

C ← E(X)

M ′←$ {0, 1}b
Y ←$ P ′; Z ← πC(Y )

Ret (Z,M,S).

Process Π6:

M ←$ {0, 1}b; M ′←$ {0, 1}b
S←$ Sds; R←$ {0, 1}r
X ← Inv(S,R,M ′);

C ← E(X)

Z←$ ChA
n(C)

Ret (Z,M ′, S).

Figure 5: Proof of Lemma 5.5. Pseudocode description of the sequence of processes Π1 to Π6.

Proof: Recall that for two independent and uniform b-bit strings U and U′,

Advrds(SE ;ChAn) = ES←$ Sds

[
SD((ChAn(SE(S,U)),U); (ChAn(SE(S,U′)),U))

]

= SD((ChAn(SE(S,U)),U,S); (ChAn(SE(S,U′)),U,S) ,
where S is chosen uniformly at random on Sds. The proof proceeds by giving a sequence of intermediate
random processes, described in pseudo-code in Figure 5, which will be used to transition from the random
variable (ChAn(SE(S,U)),U,S) to the random variable (ChAn(SE(S,U′)),U,S). For any two processes Πi

and Πj, we let SD(Πi; Πj) denote the statistical distance between their output distributions.

The first three processes Π1,Π2, and Π3 are described on top of Figure 5. Process Π1 samples a triple
(Z,M,S) according to the probability distribution of (ChAn(SE(S,U)),U,S). The second process Π2

modifies the way in which Z is sampled: As the channel ChA is symmetric, there must exist a permutation
π1 : OutA → OutA such that Pr [ChA(B) = πB(Y ) ] = Pr [ChA(0) = Y ], where π0 is the identity.
Consequently, for all X ∈ {0, 1}n, we define πX(Y ) = (πX[1](Y [1]), . . . , πX[n](Y [n])), and

Pr [ChAn(X) = πX(Y ) ] = Pr [ChAn(0n) = Y ]

for all Y ∈ OutAn. Accordingly, to implement the channel ChAn on input X in Π2, we first sample
Y ←$ ChA

n(0n), and then output Z = πX(Y ). For the third process Π3, assume that we invert the
role of X and M : that is, we first sample X uniformly at random in {0, 1}k, and then set M to equal
Ext(S,X). By the regularity of Ext, the output distributions of Π2 and Π3 are identical. Therefore,
SD(Π1,Π2) = SD(Π2,Π3) = SD(Π1,Π3) = 0.

In Process Π4, we want to simplify the probability distribution of ChAn(0n) by computing its smooth
min-entropy: Invoking Lemma 5.4 with ChA

n(0n) lets us conclude that (for δ as in the lemma statement)

Hǫ
∞(ChA

n(0n)) ≥ n · (H(ChA)− δ)

for ǫ = 2
− nδ2

2 lg2(|OutA|+3) . Recall that this means that there exists a probability distribution P ′ on OutAn

such that SD(PChA
n(0n);P

′) ≤ ǫ and H∞(P ′) ≥ n · (H(ChA)− δ), or, equivalently,

P ′(Y ) ≤ 2−n·(H(ChA)−δ) (4)

for all Y ∈ OutAn. Accordingly, we transition from Process Π3 to Process Π4 by sampling Y with
respect to the probability distribution P ′. Clearly, SD(Π3; Π4) ≤ SD(PChA

n(0n);P
′) ≤ ǫ.
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Let now X, Y, Z be random variables representing the respective choices of X,Y and Z in Π4. Then,

H∞(X|Z) = − lg

(
∑

Z∈OutAn

max
X∈{0,1}k

Pr [X = X ∧ Z = Z ]

)

= − lg

(
∑

Z∈OutAn

max
X∈{0,1}k

Pr [X = X ] · Pr [ Z = Z | X = X ]

)

= − lg

(
∑

Z∈OutAn

max
X∈{0,1}k

Pr [X = X ] · Pr
[

Y = π−1
E(X)(Z)

]
)

= − lg

(
∑

Z∈OutAn

2−k · max
X∈{0,1}k

P ′(π−1
E(T )(Z))

)

(4)

≥ − lg

(
∑

Z∈OutAn

2−k · 2−n(H(ChA)−δ)

)

= − lg
(

2lg(|OutA|) · 2−k · 2−n(H(ChA)−δ)
)

= k − n · (lg(|OutA|)−H(ChA) + δ) .

In Process Π5, instead of M , we then output an independent random value M ′. Using the fact that Ext
is a (k − n · (lg(|OutA|)−H(ChA) + δ), α)-extractor, we directly obtain SD(Π4; Π5) ≤ α. We conclude
by undoing the changes we had from Process Π1, coming back to the original choice of X, C, and Z,
while still outputting M ′ instead of M . It is easy to see that SD(Π5; Π6) ≤ ǫ.

The final bound in the lemma statement follows via the triangle inequality, by adding all distances
between consecutive processes.

5.3 DS-Security of ItE

As proven above, using invertible extractors with appropriate parameters is amenable to proving RDS-
security. However, proving DS-security seems to require a better grasp of the combinatorial structure of
Ext and Inv, as well as of the channel ChA. Interestingly, we now show that such requirement is quite
minimal as a corollary of a more general result relating RDS- and DS-security, which we now explain.

From RDS- to DS-security We first recall the following notions from [3], adapted to the more general
setting of seeded encryption: Think of a randomized seeded encryption function SE : Sds × {0, 1}b →
{0, 1}n as a deterministic map {0, 1}r × Sds× {0, 1}b → {0, 1}n, where the first argument takes the role
of the random coins. We call SE separable if

SE(R,S,M) = SE(R,S, 0b)⊕ SE(0r, S,M)

for all R ∈ {0, 1}r , S ∈ Sds, and M ∈ {0, 1}b. Also, SE is message linear if SE(0r, S, ·) : {0, 1}b → {0, 1}n
is linear for all S ∈ Sds.

We now state and prove the following lemma, which related RDS and DS security for seeded encryption
functions when transmitting each ciphertext bit over a symmetric channel.

Lemma 5.6 [RDS ⇒ DS] Let OutA ⊆ {0, 1}∗. For any symmetric channel ChA : {0, 1} → OutA, if
SE : Sds× {0, 1}b → {0, 1}n is separable and message linear, then

Advds(SE ;ChAn) ≤ 2 ·Advrds(SE ;ChAn) .

An analogous version of this lemma for the simpler case of mutual-information security and unseeded
encryption is given in [3]. Here, we extend their result to the setting of unseeded encryption and of
DS-security. The proof of Lemma 5.6 will make use of the following technical statement from [3].

Lemma 5.7 [3] Let SE : Sds × {0, 1}b → {0, 1}n be separable and message linear, let ChA : {0, 1} →
OutA be a symmetric channel, and, for all S ∈ Sds, let ChSE,S : {0, 1}b → OutAn be the channel which
on input M ∈ {0, 1}b outputs ChA(SE(S,M)). Then, ChSE,S is symmetric for all S ∈ Sds.
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The proof of Lemma 5.6 centrally relies on the following fact: It states that for a symmetric channel
Ch, the statistical distance between Ch(U) for a uniform random input U and Ch(M) is the same regardless
of the choice of the input M .

Lemma 5.8 Let Ch : {0, 1}b → Out be a symmetric channel. Let U be a uniformly distributed b-bit
string. Then, there exists ∆(Ch) such that ∆(Ch) = SD(Ch(U);Ch(M)) for all M ∈ {0, 1}b.

Proof: We partition the output set Out =
⋃r

i=1Outi so that the sub-matrices W [·,Outi] are strongly
symmetric. By the definition of statistical distance,

SD(Ch(U);Ch(M)) =
1

2

∑

Y ∈Out

|Pr [Ch(U) = Y ]− Pr [Ch(M) = Y ]|

=
1

2

r∑

i=1

∑

Y ∈Outi

|Pr [Ch(U) = Y ]− Pr [Ch(M) = Y ]| .

Fix some i ∈ [1 . . . r]. Then, for all Y, Y ′ ∈ Outi,

Pr [Ch(U) = Y ] =
1

2b

∑

M∈{0,1}b

W [M,Y ] =
1

2b

∑

M∈{0,1}b

W [M,Y ′] = Pr
[
Ch(U) = Y ′

]
,

using the fact that the columns W [·, Y ] and W [·, Y ′] are a permutation of each other.

Then, in particular, with pi = Pr [Ch(U) = Y ] for any Y ∈ Outi, we can rewrite the above as

SD(Ch(U);Ch(M)) =
1

2

r∑

i=1

∑

Y ∈Outi

|pi −W [M,Y ]| .

However, since the rows W [M,Outi] and W [M ′,Outi] are permutations of each other for any two mes-
sages M,M ′ ∈ {0, 1}b and for all i ∈ [1 . . . r], it follows that SD(Ch(U);Ch(M)) = SD(Ch(U);Ch(M ′)).

With both lemmas at hand, we can now turn to the proof of Lemma 5.6.

Proof of of Lemma 5.6: We first observe that with ChSE,S defined as in Lemma 5.7,

Advrds(SE ;ChAn) = ES←$ Sds

[
SD((ChAn(SE(S,U)),U); (ChAn(SE(S,U′)),U))

]

= ES←$ Sds




1

2m

∑

M∈{0,1}m

SD(ChSE,S(U
′);ChSE,S(M))





= ES←$ Sds [∆(ChSE,S)] ,

where the last equality follows from Lemma 5.8. On the other hand, by the triangle inequality,

Advds(SE ;ChAn) = ES←$ Sds

[

max
M0,M1∈{0,1}b

SD(ChAn(SE(S,M0));ChA
n(SE(S,M1)))

]

= ES←$ Sds

[

max
M0,M1∈{0,1}b

SD(ChSE,S(M0);ChSE,S(M1))

]

≤ ES←$ Sds

[

max
M0,M1∈{0,1}b

(SD(ChSE,S(M0);ChSE,S(U)) + SD(ChSE,S(U);ChSE,S(M1)))

]

= 2 ·ES←$ Sds [∆(ChSE,S)]

= 2 ·Advrds(SE ;ChAn) ,

which concludes the proof.

DS-Security of ItE. Coming back to the concrete case of ItE, we say that an extractor-inverter
Inv : Sds× {0, 1}r × {0, 1}b → {0, 1}k is output linear if Inv(S, 0r, ·) is linear for all S ∈ Sds. Moreover,
it is separable if

Inv(S,R, Y ) = Inv(S,R, 0b)⊕ Inv(S, 0r, Y ) (5)

for all S ∈ Sds, R ∈ {0, 1}r , and Y ∈ {0, 1}b. Note that the inverter for the above extractor based on
finite-field multiplication is easily seen to be output linear and separable, by the linearity of the map
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Y 7→ S−1 ⊙ X. Therefore, if we instantiate SE = ItE[Inv,E] so that Inv is both output linear and
separable, and we let the map E be linear, the encryption function SE is easily seen to be message linear
and separable. The following theorem now follows immediately by combining Lemma 5.6, and Lemma 5.5,
and concludes our security analysis of ItE.

Theorem 5.9 [DS-security of ItE] Let δ > 0 and OutA ⊆ {0, 1}∗. Also, let ChA : {0, 1} → OutA
be a symmetric channel, and assume that Inv is the output-linear and separable inverter of regular (k −
n · (lg(|OutA|)−H(ChA) + δ), α)-extractor, and that E : {0, 1}k → {0, 1}n is linear and injective. Then,
for SE = ItE[Inv,E],

Advds(SE ;ChAn) ≤ 2

(

2 · 2−
nδ2

2 lg2(|OutA|+3) + α

)

.

Below, we use this theorem to discuss how to instantiate Inv and E to achieve secrecy capacity.
Moreover, we also discuss extensions of this result to a wider set of channels.

5.4 Instantiating ItE

We now devise a seeded encryption scheme SE = {SEs}s∈N achieving secrecy capacity for the most
common case where each ciphertext bit is transmitted over the receiver channel BSCpR and the adversary
channel BSCpA , respectively, where 0 ≤ pR < pA ≤ 1

2 . Note that by the above, the secrecy capacity here
is h2(pA) − h2(pR).

2 Using the SR construction above, SE can be turned into an unseeded encryption
scheme E achieving secrecy capacity. In this case, the only known scheme [25] does not achieve security,
not even against random-message adversaries. (A scheme achieving security whenever pR = 0 was later
given in the full version of [25], but no scheme is known for the typical case where pR > 0.)

The scheme. First recall that the (Shannon) capacity of a channel Ch : {0, 1}l → {0, 1}∗ is

C(Ch) =
1

l
max
X

I(X;Ch(X)) .

For example, C(BSCp) = 1 − h2(p). We need the following result (cf. e.g. [14] for a proof), which
guarantees the existence of error-correcting codes achieving rate equal the capacity of a given channel.

Lemma 5.10 [14] For any constants l, d ≥ 1, and every channel Ch : {0, 1}l → {0, 1}d, there exists
a family E = {Es}s∈N of linear codes Es : {0, 1}k(s) → {0, 1}n(s) (where n(s) is a multiple of l), with
corresponding decoding algorithms Ds : {0, 1}∗ → {0, 1}k(s), such that (i) DE(Es;Ds;Ch

n(s)/l) = 2−Θ(k(s)),
(ii) lims→∞ k(s)/n(s) = C(Ch), and (iii) E and D are polynomial-time computable.

To obtain our scheme via the ItE construction, we start with a family of codes {Es}s∈N for BSCpR

guaranteed to exist by Lemma 5.10, where Es : {0, 1}k(s) → {0, 1}n(s) and lims→∞ k(s)/n(s) = 1−h2(pR),
or, equivalently, there exists ν such that ν(s) = o(1) and k(s) = (1 − h2(pR) − ν(s)) · n(s). Then, we

let δ(s) = (2 lg2(5))1/2 · n(s)−1/4 and α(s) = 2−n(s)
1/2

, and use the finite-field based extractor Exts :
{0, 1}k(s) × {0, 1}k(s) → {0, 1}b(s) (with the corresponding inverter Invs : {0, 1}k(s) × {0, 1}k(s)−b(s) ×
{0, 1}b(s) → {0, 1}k(s)), where

b(s) = k(s)− n(s) · (1− h2(pA) + δ(s)) + 2 lg(α)

= (h2(pA)− h2(pR)− ν(s)− δ(s)− 2 · n(s)−1/2) · n(s) .
We finally set SEs = ItE[Invs,Es]. With these parameters,

Advds(SEs;BSCn(s)
pA ) ≤ 6 · 2−

√
n(s)

DE(SEs;SDs;BSC
n(s)
pR

) ≤ 2−Θ(k(s))

by Theorem 5.9 and Lemma 5.3, respectively. The rate of SEs is

Rate(SEs) = h2(pA)− h2(pR)− ν(s)− δ(s)− 2
√

n(s)
,

2Recall that if ChA : {0, 1} → {0, 1}∗ and ChR : {0, 1} → {0, 1}∗ are symmetric channels, their secrecy capacity equals [22]
H(U|ChA(U))−H(U|ChR(U)), for a uniform bit U.
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which yields

Rate(SE) = lim
s→∞

Rate(SEs) = h2(pA)− h2(pR) .

If we now plug SE into the SR construction, using t(s) = lg(n(s)), the resulting encryption scheme is
exactly the one described in the introduction, where A = S−1.

Some remarks. We note that it is possible to instantiate the above scheme with error-correcting
codes which fall short of achieving the channel capacity, provided their rate is still larger than (roughly)
1 − h2(pA) (as otherwise b(s) would become 0). In fact, this is clearly a necessary condition: A code
with rate lower than 1−h2(pA) may allow error correction when using it over BSCpA , hence allowing the
adversary to reconstruct the message.

Moreover, we point out that the same analysis can be carried out for any pair of (single input-
bit) symmetric channels ChR and ChA, and the resulting rate is the secrecy capacity if the capacity of
ChA : {0, 1} → OutA is lg(|OutA|) −H(ChA); this is the case if and only if a uniform input to ChA

produces a uniform output. For other channels, our technique still yields good schemes which, however,
may fall short to achieve capacity.

5.5 Extensions

We remark that the above presentation is constrained to single input-bit base channels for simplicity only.
Our results can be extended to discrete memoryless channels with l-bit inputs for l > 1. For example,
Lemma 5.5 extends to arbitrary symmetric channels ChA : {0, 1}l → OutA, at the price of replacing n
by n/l in the security bound and in the extractor’s entropy requirement. In contrast, we do not know
whether Lemma 5.6 applies to arbitrary symmetric channels with l-bit inputs, but it does, for instance,
extend to any channel of the form ChA(X) = X ⊕ E, where E is an l-bit string sampled according to an
input-independent noise distribution, as discussed in [3].
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A Related Work

This section surveys existing constructions of encryption schemes in the literature. Recall that given
a pair of families of channels ChR = {ChRk}k∈N and ChA = {ChAk}k∈N (where ChAk and ChRk have
common domain for all k ∈ N), their weak secrecy capacity Cw is the supremum of the rates achievable
by pairs (E ,D) consisting of an encryption scheme E = {Ek}k∈N and a decryption scheme D = {Dk}k∈N
for E and ChR such that, first, the decoding requirement is satisfied, i.e.,

lim
k→∞

DE(Ek;Dk;ChRk) = 0 .

and moreover,

lim
k→∞

Advmis-r(Ek;ChAk)

k
= 0 , (6)

where Advmis−r(Ek;ChAk) measures MIS-R-security, as defined in [3]. We refer to the latter property
as weak security. Additionally, the strong secrecy capacity Cs ≤ Cw is obtained where we restrict the
supremum over those schemes achieving MIS-R security, i.e.,

lim
k→∞

Advmis-r(Ek;ChAk) = 0 , (7)

Wyner [34] provided a full characterization of Cw in the special case where ChAk is a degraded version of
ChRk, i.e., such that there exists a transform T with T ◦ChRk = ChAk, where the composition operator ◦
is the straightforward generalization of function composition to randomized transforms. Wyner’s result
was later generalized by Csiszár and Körner [10]. These results were inherently non-explicit: That is,
existence of secrecy-capacity achieving schemes is proven via the probabilistic method, and the resulting
scheme is neither explicitly given, nor it is guaranteed to be efficient. In fact, to date, only a handful of
efficient schemes are known. We briefly survey existing constructions.

Syndrome and coset coding. One particular approach, which dates back to Wyner’s original pa-
per [34], in the setting where ChR is noiseless is a technique known as syndrome coding: Given a message
M ∈ {0, 1}m and a matrix H ∈ {0, 1}m×k , Alice samples a random preimage R ∈ {0, 1}k such that
H ·R = M , and sends R to Bob. Wyner proved that there exists a good choice of the matrix H yielding
weak security. This analysis was further improved and extended to the case where ChR is noisy (and H
is applied to a codeword) by Cohen and Zémor [8, 9]. However, all of these schemes only achieve weak
security. It is fair to mention that from a construction standpoint, syndrome coding bears some similitude
with the extractor-inversion approach introduced Section 5 which we follow, specifically when the given
extractor is the two-universal function based on matrix-vector multiplication (which can be shown to be
efficiently invertible), even though this approach was not taken by these works, as they did not consider
seeded encryption as a goal. Moreover, we stress that no existing proof implies MIS-R-security of these
schemes, let alone DS-security.

An alternative way to look at syndrome coding is as a special instance of a more general approach:
One takes a (typically linear) code E : {0, 1}k → {0, 1}n which is good for the channel ChR, and then, for a
given message set {0, 1}m, partitions the code C = {E(x) : x ∈ {0, 1}k } in 2m sets as C = ⋃M∈{0,1}m CM .
Encryption of M proceeds by selecting a random element of CM . Usually, one lets C0m be a linear sub-
space of C, called the inner code (C is the outer code), and the sets CM are the cosets in C/C0m . Further
instantiations of this approach have been considered in [32, 30], but only explicit schemes for a noiseless
ChR and a binary erasure channel ChA have been obtained, and also only for MIS-R security.
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Polar codes. A novel approach has been recently proposed by Mahdavifar and Vardy [25] and by Hof
and Shamai [17] (similar ideas also appeared in [20, 1]). They show that polar codes [2] can be used to
directly build encryption schemes for the wiretap setting with binary-input symmetric channels. However,
these schemes only provide weak security. The full version [24] of [25] provides a variant of the scheme
achieving MIS-R-security, which can also be shown to achieve MIS-security (and hence DS-security) as an
application of the techniques from [3]; yet, the scheme is only a proof-of-concept, as it is in particular not
known how to decrypt its ciphertexts, not even inefficiently. Also note that only recently a first solution
to the question of efficiently generating polar codes has appeared [31], which remains an open research
direction, and hence relying on this specific code family may be somewhat problematic. Our solution, in
contrast, works for arbitrary codes.

Wiretap channel II.Ozarow andWyner [28] also considered an alternative to the above wiretap setting
(called the wiretap channel II) where ChR is noiseless, but at the same time, Eve can learn a fraction δ
of the bits sent over ChR, and does not learn anything about the remaining (1 − δ) fraction. Solutions
were presented relying on error-correcting codes [28, 33]. Also, the notable work of [7] noted the such
protocols with good parameters can be built from primitives such as deterministic randomness extractors
for symbol-fixing sources with efficient inversion [19], as well as from k-wise independent functions [21]
and related tools from exposure-resilient cryptography, such as all-or-nothing transforms [6, 13].

B Proof of Lemma 5.2

Proof: Note that Ext is two-universal, as for all distinct X,X ′ ∈ {0, 1}k ,

Pr
[
S←$ Sds : Ext(S,X) = Ext(S,X ′)

]

= Pr
[

S←$ Sds : ∃R ∈ {0, 1}k−m \ {0k−m} : S ⊙ (X ⊕X ′) = (0;R)
]

≤
∑

R∈{0,1}k−m\{0k−m}

Pr
[
S←$ Sds : S ⊙ (X ⊕X ′) = (0;R)

]
≤ 2k−m − 1

2k − 1
=

1

2m
,

since X ⊕ X ′ 6= 0k, and hence there exists at most one S ∈ {0, 1}k \ {0k} with S ⊙ (X ⊕X ′) = (0;R)
(and note that R 6= 0); we have additionally used that a−1

b−1 ≤ a
b for all a ≤ b. We finally apply the LHL

(Lemma 5.1) to conclude the proof.
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