
Fault Analysis of the KATAN Family of Block Ciphers

Shekh Faisal Abdul-Latip1,2, Mohammad Reza Reyhanitabar1, Willy Susilo1, and Jennifer Seberry1

1 Center for Computer and Information Security Research,
School of Computer Science and Software Engineering,

University of Wollongong, Australia
{sfal620, rezar, wsusilo, jennie}@uow.edu.au

2 Information Security and Digital Forensics Lab (INSFORLAB),
Faculty of Information and Communication Technology,

Universiti Teknikal Malaysia Melaka, Malaysia
shekhfaisal@utem.edu.my

Abstract. In this paper, we investigate security of the KATAN family of block ciphers against differential
fault attacks. KATAN consists of three variants with 32, 48 and 64-bit block sizes, called KATAN32, KATAN48
and KATAN64, respectively. All three variants have the same key length of 80 bits. We assume a single-bit
fault injection model where the adversary is supposed to be able to corrupt a single random bit of the internal
state of the cipher and this fault induction process can be repeated (by resetting the cipher); i.e., the faults
are transient rather than permanent. First, we show how to identify the exact position of faulty bits within the
internal state by precomputing difference characteristics for each bit position at a given round and comparing
these characteristics with ciphertext differences (XOR of faulty and non-faulty ciphertexts) during the online
phase of the attack. Then, we determine suitable rounds for effective fault inductions by analyzing distributions
of low-degree (mainly, linear and quadratic) polynomial equations obtainable using the cube and extended
cube attack techniques. The complexity of our attack on KATAN32 is 259 computations and about 115 fault
injections. For KATAN48 and KATAN64, the attack requires 255 computations (for both variants), while the
required number of fault injections is 211 and 278, respectively.

Key words: Block ciphers, cube attack, differential fault analysis, KATAN

1 Introduction

Fault analysis as a type of side channel attack (or implementation attack) was originally introduced by
Boneh et al. [6] by an attack against implementations of public key algorithms. The method was then
adapted and extended by Biham and Shamir [5] to differential fault analysis, making it applicable to
implementations of symmetric key algorithms as well [9, 10]. Several models for fault attacks have been
introduced in the literature, among which we adopt a popular model, called transient single-bit fault
model, as used for example in [10, 9]. In this model it is assumed that adversary can induce one bit of
error into the internal state of a cipher during its execution (e.g. using a laser beam) without damaging
the bit position permanently; that is, the cipher can be reset to resume its normal (unfaulty) operation
and this fault induction can be repeated as many times as required. For some interesting practical settings
for carrying out these attacks we refer to [14].

In this paper we present fault attacks on the KATAN family of block ciphers [7]. KATAN consists
of three variants with 32, 48 and 64-bit block sizes, named KATAN32, KATAN48 and KATAN64, re-
spectively. All three variants have the same key length of 80 bits. KATAN aims at meeting the needs of
an extremely resource-limited environment such as RFID tags. Assuming the transient single-bit fault
attack model, we present a differential fault attack empowered by the algebraic techniques of the cube
attack [8] and its extended variants [1].

The cube attack, put forth by Dinur and Shamir at EUROCRYPT 2009 [8], is a generic type of
algebraic attack that may be applied against any cryptosytem, provided that the attacker has access to

2 Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar, Willy Susilo, and Jennifer Seberry

a bit of information that can be represented by a low-degree multivariate polynomial over GF(2) of the
secret and public variables of the target cryptosytem. Dinur and Shamir in [8] compared the cube attack
to some of the previously known similar techniques [13, 15]. Recently, Abdul-Latip et al. [1] showed an
extended variant of the cube attack to extract low-degree (mainly quadratic) sparse system of equations
in addition to the linear equations obtainable from the original cube attack. We use these techniques
together with fault analysis to build a hybrid attack against KATAN.

First, we show how to apply the cube and extended cube methods to extract a system of low-degree
polynomial multivariate equations in the key and plaintext variables, using differences between faulty
and non-faulty ciphertext bits in a chosen plaintext attack scenario. Next, we show how to determine
the faulty bit positions within the internal state using bit strings called difference characteristics, and
how to construct such a difference characteristic for a particular faulty bit of a certain round. Using
the cube method, we also determine the most effective rounds in which faults should be induced for
all three variants of KATAN. Our fault attack on KATAN32 requires 259 computations and turns out
to need about 28 times more (off-line) operations compared with the previous side channel attack by
Bard et al. [2] which requires 251 computations; nevertheless, our attack model (namely, assuming that
an adversary can induce a fault at a random bit position in the internal state and then observes the
associated ciphertext) is essentially different from (and arguably sounds more practical than) the attack
model used by Bard et al. [2]. Bard et al. [2] assume that adversary can obtain (read) the exact (“error
free”) value of a bit in the internal state, and as they stated in [2], “such data is supposed to have been
independently captured by some side channels for instance, power or timing analysis or electromagnetic
emanations”(but we note that none of these side channel methods provides error free measurements in
practice). Note that the side channel attack model of [2] is not a fault attack. Furthermore, our attack
is directly adapted to the cases of KATAN48 and KATAN64 (both requiring 255 computations) and, so
far, is the only attack against the latter variants of KATAN in the side channel attack model.

2 A Brief Description of KATAN

KATAN is a family of block ciphers [7] consisting of three variants, namely: KATAN32, KATAN48 and
KATAN64. Each variant accepts an 80-bit secret key and performs 254 rounds to produce a ciphertext. All
variants also share the same key schedule as well as the same nonlinear functions. KATAN ciphers aim at
constrained environments such as hardware implementations with limited resources (power consumption,
clock frequency and gate counts). KATAN32 with block size of 32 bits is the lightest variant in the family.
A 32-bit plaintext block is loaded into two registers L1 and L2, respectively, of length 13 and 19 bits. The
bits are indexed in the right-to-left order, from 0 to 12 for L1 (i.e. L1 = (L1[12], · · · , L1[0])) and from 0
to 18 for L2 (i.e. L2 = (L2[18], · · ·L2[0])). The least significant bit (LSB) of the plaintext block is loaded
to bit 0 of register L2 followed by the other bits until the 18-th bit, and then remaining bits are loaded
into register L1 until the most significant bit (MSB) of the plaintext is loaded into bit 12 of register L1.
One round of KATAN32 consists of shifting the register L1 and L2 one bit to the left, and computing two
new bit values using nonlinear functions fa and fb, respectively. These new bits are then loaded into the
LSB bits of registers L2 and L1, respectively. The nonlinear functions fa and fb are defined as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka (1)
fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb (2)

where IR specifies an irregular update rule (i.e. L1[x5] is used only when IR = 1), and ka and kb are two
subkey bits. We refer to [7] for the details on the irregular update rules (IRs) for each round.

Fault Analysis of the KATAN Family of Block Ciphers 3

ka

kb

IR

L1

L2

Fig. 1. The Outline of the KATAN Family of Block Ciphers

The key schedule for all variants of KATAN expands an 80-bit secret key K to 508 subkey bits using
the following linear mapping

ki =
{

Ki, for 0 ≤ i ≤ 79, (3)
ki−80 + ki−61 + ki−50 + ki−13, otherwise (3′)

Given the precomputed subkey values, the values of ka and kb for a particular round t are defined as
k2t and k2t+1, respectively. Thus the subkey for round t is defined as ka||kb = k2t||k2t+1. The selection
for tap positions, xis (1 ≤ i ≤ 5) and yjs (1 ≤ j ≤ 6), and the length of registers L1 and L2 are defined
independently for each variant as shown in Table 1. Besides the tap positions and the length of the

Table 1. Parameters for the KATAN Family of Block Ciphers

Cipher |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

registers, the difference between all the three variants is the number of times the nonlinear functions fa

and fb are applied in each round using the same subkey. One round of KATAN48 is shifting the registers
L1 and L2 two bits to the left (i.e. requires two clock cycles). In each shift within the same round, the
function fa and fb are applied using the same subkey ka||kb. Hence, full round of KATAN48 requires 508
clock cycles (i.e. 254 rounds × 2 clocks per round) to produce the ciphertext.

In contrast, one round of KATAN64 requires the registers L1 and L2 to be shifted three bits to the
left (i.e. requires three clock cycles). Similarly, in each shift within the same round, the function fa and fb

are applied using the same subkey ka||kb. As a result, the full round KATAN64 requires 762 clock cycles
to produce the ciphertext. Fig. 1 shows the generic structure of the KATAN family of block ciphers.

The initial state of KATAN-v (for v=32, 48, 64) is denoted by IS = (sv−1, · · · , s1, s0) = L1||L2 for
the associated L1 and L2 registers.

4 Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar, Willy Susilo, and Jennifer Seberry

3 An Overview of the Cube and Extended Cube Attacks

The main idea underlying the cube attack [8] is that the multivariate “master” polynomial p(v1, · · · , vm,
k1, · · · , kn), representing an output bit of a cryptosystem over GF(2) of secret variables ki (key bits)
and public variables vi (i.e. plaintext or initial values), may induce algebraic equations of low degrees, in
particular linear equations. The cube attack provides a method to derive such lower degree (especially
linear) equations, given the master polynomial only as a black-box which can be evaluated on the secret
and public variables.

Let’s ignore the distinction between the secret and public variables’ notations and denote all of them
by xi, · · · , x`, where ` = m + n. Let I ⊆ {1, ..., `} be a subset of the variable indexes, and tI denote a
monomial term containing multiplication of all the xis with i ∈ I. By factoring the master polynomial p
by the monomial tI , we have:

p(x1, · · · , x`) = tI · pS(I) + q(x1, · · · , x`) (4)

where pS(I), which is called the superpoly of tI in p, does not have any common variable with tI , and each
monomial term tJ in the residue polynomial q misses at least one variable from tI . A term tI is called a
“maxterm” if its superpoly in p is linear polynomial which is not a constant, i.e. deg(pS(I)) = 1.

The main observation of the cube attack is that, the summation of p over tI , i.e. by assigning all
the possible combinations of 0/1 values to the xis with i ∈ I and fixing the value of all the remaining
xis with i /∈ I, the resultant polynomial equals pS(I) (mod 2). Given access to a cryptographic function
with public and secret variables, this observation enables an adversary to recover the value of the secret
variables (kis) in two steps, namely the preprocessing and online phases.

During the preprocessing phase, the adversary first finds sufficiently many maxterms, i.e. tIs, such
that each tI consists of a subset of public variables v1, · · · , vm. To find the maxterms, the adversary
performs a probabilistic linearity test (such as the BLR test of [4]) on pS(I) over the secret variables
ki ∈ {k1, · · · , kn} while the value of the public variables not in tI are fixed (to 0 or 1) (cf. [8] for more
details).

Then the next step is to derive linearly independent equations in the secret variables kis from pS(I)

that are closely related to the master polynomial p, such that, solving them enables the adversary to
determine the values of the secret variables. Once sufficiently many linearly independent equations in the
secret variables are found, the preprocessing phase is completed. In the online phase, the adversary’s aim is
to find the value of the right-hand side of each linear equation by summing the black box polynomial p over
the same set of maxterms tIs which are obtained during the preprocessing phase. Now, the adversary can
easily solve the resultant system of the linear equations, e.g. by using the Gaussian elimination method,
to determine the values of the secret (key) variables.

A generalized variant of the cube attack, called extended cube, has been shown in [1] for extracting
“low-degree nonlinear” equations efficiently. It revises the notion of tweakable polynomials from the
original cube attack as

p(x1, ..., x`) = tI ·XK · pS(I∪K) + q(x1, ..., x`) (5)

where tI is a subterm of size s over xis with i ∈ I; XK is a subterm of size r over xis with i ∈ K, and
pS(I∪K) is the superpoly of tI ·XK in p. Note that since both subterms tI and XK are factored out from
p, the superpoly pS(I∪K) does not contain any common variable with tI and XK , and each term tJ in the
residue polynomial q misses at least one variable from tI · XK . Now using the main observation of the
cube attack, the summation of p over ‘tI ·XK ’, by assigning all the possible combinations of 0/1 values
to the xis with i ∈ I ∪ K and fixing the value of all the remaining xis with i /∈ I ∪ K, the resultant
polynomial equals to pS(I∪K) (mod 2).

The only difference between the original cube attack and the extended cube attack is in the pre-
processing phase; the online phase for both of the methods are the same. During the preprocessing phase

Fault Analysis of the KATAN Family of Block Ciphers 5

of the extended cube attack, the adversary finds many monomials tIs, such that each tI consists of a
subset of public variables v1, · · · , vm, and the corresponding superpoly pS(I) is a polynomial of degree D.
To find those tIs, the adversary performs the generalized version of the BLR test as proposed by Dinur
and Shamir in [8] on pS(I) over the secret variables k1, · · · , kn.

To derive efficiently a nonlinear equation pS(I) of degree D over secret variables kis, the adversary
should identify the subset S ⊆ {1, · · · , n} that consists of the secret variable indexes within pS(I), in
which each ki with i ∈ S is either a term or a subterm of pS(I). To do this, the subterm XK (cf. equation
(5)) is assigned with each secret variable ki ∈ {k1, · · · , kn} one at a time while the subterm tI is fixed to
the monomial in which its superpoly pS(I) is of degree D, and all public variables vis with i /∈ I are fixed
to 0 or 1. For each assignment of XK , the adversary chooses κ sets of vector x ∈ {0, 1}n−1 representing
samples of n− 1 secret variables kis with i /∈ K independently and uniformly at random, and verify that
XK (or similarly the secret variable ki that is assigned to XK) exists as a variable in the superpoly pS(I)

if pS(I∪K) = 1 for at least an instance vector x.
Having the set of secret variables kis with i ∈ S of the nonlinear superpoly pS(I) of degree D enables

the adversary to derive the nonlinear equation over the secret variables by finding all terms of degrees
0, 1, · · · , D within the superpoly equation. Suppose N = |S| is the number of secret variables kis with
i ∈ S of the superpoly pS(I) of degree D. To derive pS(I), firstly the adversary assigns the subterm XK

one at a time with a monomial indexed by a subset K ∈ T where T is a set of cube indexes of monomials
constructed from all combinations of kis from degree 1 until degree D with i ∈ S. In each assignment,
all vi, ki /∈ tI · XK are set to zero. Then to verify the existence of the monomial XK ∈ T as a term in
pS(I), the adversary sums p over the monomial tI ·XK . If the result is equal to 1, then with probability
1, XK is a term in the superpoly pS(I). Finally, the existence of a constant term (i.e. a term of degree
0) in the superpoly pS(I) is also determined by setting all public variables, vis, for i /∈ I and all secret
variables k1, · · · , kn to zero, and sum the polynomial p over tI . Similarly, if the result is equal to 1, then
with probability 1, a constant term exists within the superpoly pS(I).

4 Fault Analysis of KATAN

We simulate a fault attack assuming that the adversary can cause one transient single-bit error at a
time in the internal state during the encryption/decryption process. It is assumed that the adversary
can choose the target round(s) in which faults should be induced, for example, based on the side channel
information inferred from power consumption traces and/or the clocking sequence (e.g., this can be done
by triggering a laser beam with the target number of clocks of the cryptographic module). However, it
is assumed that adversary cannot influence the exact position of the faulty bit within the internal state;
he can only induce the fault randomly with the hope that it will hit the target bit positions by chance.

Using this fault model, our aim is to recover the 80-bit secret key used in KATAN. Firstly, we demon-
strate a method to determine the position of the faulty bit within the internal state using difference
characteristics. Secondly, we show how to recover a low-degree system of multivariate polynomial equa-
tions which are obtainable within certain rounds of the enciphering process using the difference between
faulty and non-faulty ciphertexts. More precisely, we only concentrate on extracting linear and quadratic
equations from the internal state and subkey bits that are easily solvable. Having a sufficient number
of independent equations that are solvable, we exploit the key schedule algorithm to recover the 80-bit
secret key. Finally, we identify the faulty rounds of the enciphering process that should be considered in
order to efficiently implement a successful fault attack on KATAN.

Our attack on the KATAN ciphers exploits the observation that after recovering n neighboring “subkey
bits”, we can recover the 80-bit “secret key” with time complexity of 280−n computations. This is because
the 80-bit secret key is directly loaded into an 80-bit LFSR (the key register) and the subkey bits for
round t > 79 are computed using a linear update function and shift operations (cf. Equation 3 and

6 Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar, Willy Susilo, and Jennifer Seberry

Equation 3′). Therefore, at any round t > 79, if we can recover the value of some of the LFSR bits (or
similarly the value of the subkey bits), we can guess the remaining 80 − n values of the LFSR internal
state bits and iteratively clock the LFSR backward until round t = 0 to recover the secret key. Suppose
the highest and the lowest index values of the subkey bits to be recovered are H and L respectively.
Hence, our aim is to recover the subkey bits such that H−L ≤ 79, as all subkey bits between these index
range will be the content of the 80-bit LFSR at a particular round t (Section 4.1 provides more details).

Besides the key schedule algorithm, the issue also lies with the low degree boolean functions of the
update functions as shown in Equation 1 and Equation 2. Having low degree update functions (such as
quadratic ones as in KATAN) will cause a slow increase in the degree of the polynomials describing the
cipher during the enciphering and deciphering processes. This enables the adversary to exploit low degree
polynomial equations from many rounds of the cipher through (for example) side-channel attacks.

4.1 Extracting Low Degree Polynomial Equations

The main idea behind algebraic attacks is to recover the secret key of a cipher by solving a system of
multivariate polynomial equations (over the plaintext and secret key variables) that describe the cipher.
Since the system of equations representing a cipher is usually of very high degree, directly solving such
equations, in general, to recover the secret key, is a well-known hard problem. A well-known method
to try to solve such a system is linearization, i.e. replacing a high degree monomial or equation with a
new variable. In our work we take a similar approach in which, to induce faults in a targeted round on
KATAN, we redefine each bit of registers L1 and L2 as a new variable instead of defining each one of
them as a boolean function over the plaintext and secret key variables. Similarly, for the key schedule
algorithm, we also redefine each subkey bit that is generated by the key register update function as a new
variable instead of considering each one of them as a boolean function over the 80 secret key variables.
Consequently, the subkey bits are indexed from 0 to 507. Thus, the system of equations arising from the
faulty and non-faulty ciphertext differential is in the linearized parameters.

Although the linearization method is used, considering fault induction at an early round of the enci-
phering process will cause the polynomials representing the ciphertext bits in the linearized parameters
to become too complex to be analyzed explicitly. Hence, to avoid dealing with such a complex problem,
we only represent them as black-box polynomials and extract them using the recently proposed cube
[8] and extended cube methods [1]. This removes the need to know the explicit (enormous) symbolic
representations of the related polynomials. Application of these cube based methods in our fault attack
is inspired by the observation that computing ciphertext differentials (obtained by XORing non-faulty
and faulty ciphertexts) in the single-bit fault model is similar to summing over the black-box master
polynomial over cubes of size 1.

From the cube and extended cube methods, we found that the subkey variables only begin to appear
in quadratic polynomial equations. We utilize both linear and quadratic equations to recover n subkey
bits which enable us to recover the secret key by guessing the remaining 80 − n bits of the key register
and clocking backward until round t = 0, where the secret key can be found.

4.2 Fault Position Determination

Since faults are randomly introduced into the internal state of registers L1 and L2 after a certain “known”
number of rounds, say t, identifying the exact faulty bit position is necessary to ensure the success of
the attack. To find this exact position, we construct a difference characteristic for each internal state bit
generalizing the idea of [10] to locate the faulty bit position in the internal state of the Trivium stream
cipher. A difference characteristic corresponding to any bit position of the internal state is a string
obtained by XORing the non-faulty ciphertext and the faulty ciphertext (resulting from fault induction

Fault Analysis of the KATAN Family of Block Ciphers 7

at the bit position). We use right-to-left ordering of bit numbers, denoting index 0 of the difference
characteristic bit as the LSB of the characteristic and the highest index as the MSB. Values ‘0’ and ‘1’
represent difference values 0 and 1 respectively for the corresponding characteristic bits with probability
1, while the ‘-’ sign represents unknown values (i.e. can be either ‘0’ or ‘1’). The difference characteristic
for each faulty bit position of a certain round can be represented by a lookup table. For lack of space, we
have only shown one example table representing the difference characteristic for the case of KATAN32,
for an internal state bit sj+t (after t=231 rounds for an unknown position 0 ≤ j ≤ 31) in Table 6 in
Appendix.

Given a faulty ciphertext resulting from a random fault induction into an “unknown” internal state
bit sj+t after t-th round, to determine the position j, first we compute the ciphertext differential, ∆c,
by XORing (summing modulo 2) the non-faulty ciphertext c with the faulty ciphertext c′ such that
∆cj = cj ⊕ c′j , for 0 ≤ j < |L1|+ |L2|. Then, guided by the lookup table, we refer to positions with values
‘0’ and ‘1’ (and ignore those with a ‘-’ sign) within each characteristic and compare them with bits in the
same positions in ∆c. If all the corresponding bits in ∆c match the bits in the characteristic of the faulty
bit sj+t then we can ensure that a fault has been induced into the bit at position j. However, there might
be a case where there are no characteristics uniquely distinguishing two or more faulty bit positions. This
may occur as the result of inducing faults in the early rounds of the enciphering (or deciphering) process.
If there were only very few faulty bit positions sharing the same characteristic, we can just guess them in
order to find the correct one. Having too many faulty bit positions sharing the same characteristic will
cause extra overhead in the attack complexity. Thus, one should try to consider later rounds to avoid
such an overhead.

Constructing Difference Characteristics. To construct a differential characteristic, we study the
error propagation in the ciphertext bits due to one faulty bit at a certain position in the internal state.
Based on this we can determine which bits within the ciphertext are

– affected by the faulty bit with probability 1,
– not affected by the faulty bit with probability 1, or
– affected by the faulty bit with some probability less than 1.

The ciphertext bits that are certainly affected (affected with probability 1) will always give value ‘1’ in
the differential, while those that are certainly not affected will always be ‘0’ in the differential. However,
the bits that are affected with some non-zero probability less than 1 can hold either value ‘0’ or ‘1’ in the
differential (i.e. an unknown value) and are denoted by ‘-’ in the difference characteristic.

To know how a faulty bit after round t affects bits in the ciphertext, we consider each ciphertext bit
as a boolean function in the linearized variables after round t. Then we analyze how the faulty bit can
appear as a parameter in the boolean function. There are three ways that a faulty bit can appear as a
parameter within the polynomial describing the the boolean function, namely it either

– exists as a term but not as a subterm of some monomials in the polynomial (i.e. appears as a linear
variable),

– does not exist within the polynomial, or
– exists as a subterm of some monomials (and probably also as a term) within the polynomial.

To identify which of the above three cases occurs, we utilize the method used in the cube attack
as described in [8]. We select the faulty bit as the monomial, tI , and apply the linearity test on the
corresponding superpoly, pS(I), to determine whether the test will result constant 0, constant 1, linear or
higher degree superpoly. Constant 0 and constant 1 superpolys indicate values ‘0’ and ‘1’ in the difference
characteristic bits, respectively. However linear and higher degree superpolys indicate unknown values in
the characteristic bits, i.e. the ‘-’ sign.

8 Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar, Willy Susilo, and Jennifer Seberry

4.3 Finding Effective Rounds for Fault Induction

To recover most of the subkey bits, the rounds which contain a high number of quadratic equations
(resulting from non-faulty and faulty ciphertext differential) need to be determined as the subkey bits
only begin to appear within these equations. We analyze the distribution of the linear and quadratic
equations after each round, obtainable from non-faulty and faulty ciphertext differentials, by considering
every bit (one bit at a time) of the internal state (i.e. from register L1 and L2) being induced by a
fault value. We apply the cube and extended cube methods considering cubes of size 1 to simulate the
non-faulty and faulty ciphertext differentials due to one faulty bit for each of the internal state bits and
after each round. For each linear and quadratic equations found, we accumulate the total number of such
equations for each round. Fig. 2 shows the result of our analysis. In the figure, “Faulty Round” denotes

Fig. 2. Distribution of Linear and Quadratic Equations in KATAN

the number of rounds that the cipher has run before inducing a fault into the internal state. It is obvious
that the ranges of faulty rounds which can provide a high number of quadratic equations for all variants
of KATAN are about the same. We call such Faulty Round numbers effective rounds for a particular
variant. Thus, the fault attack on KATAN will be possible if faults are induced into the internal state
within these specific effective rounds.

Fault Analysis of the KATAN Family of Block Ciphers 9

4.4 Attack on KATAN32

The fault attack can be efficiently applied if the rounds that have high number of quadratic equations
(resulting from non-faulty and faulty ciphertext differentials) are considered. As for KATAN32, this refers
to the fault inductions after t = 237 rounds as shown in Fig. 2. Considering this faulty round, we provide
a sample set of linear and quadratic equations that can help in recovering the target subkey bits as shown
in Table 6 in Appendix.

In the table, L2 = (s18+t, · · · , s0+t) and L1 = (s31+t, · · · , s19+t). ∆cj denotes a ciphertext bit difference
where the difference is obtained by XORing the non-faulty ciphertext bit cj with the faulty ciphertext
bit c′j , i.e. ∆cj = cj ⊕ c′j , for 0 ≤ j ≤ 31. For subkey bits we use a slightly different notation to facilitate
our analysis, in which we denote the kis as subkey bits whose indexes range from 0 ≤ i ≤ 507 (in which
bits indexed 0 until 79 are from the original secret key bits). We do not consider each subkey bit indexed
i > 79 as a boolean function over the 80 secret key bits. Instead, to facilitate our analysis we only consider
each one of them as an independent new variable.

Considering fault induction after t = 237 rounds, 10 subkey bits can be found within the quadratic
equations, i.e. k474, . . . , k482 and k484 (cf. Table 6 for the polynomial equations and Table 9 for the
difference characteristics in Appendix). Recovering these subkey bits, requires solving the corresponding
quadratic equations in which some of the linear equations listed in the table should also be involved,
as they can provide the solution for the internal state bits of registers L1 and L2 within the quadratic
equations. For example, to find the solution for k474, we consider s1+t as the faulty bit after t = 237
rounds. Considering the difference between non-faulty and faulty ciphertext bit c24, i.e. ∆c24, the symbolic
representation of the differential is

s22+t + s26+t + s31+t + k474 + s24+ts27+t = ∆c24. (6)

The value of the right hand side (RHS) of this equation (either 0 or 1) can be determined by numerically
computing ∆c24, such that ∆c24 = c24⊕c′24. Then recovering k474, requires the bits s22+t, s26+t, s31+t, s24+t

and s27+t to be known. With the exception of bit s31+t, all these bits can be recovered directly by utilizing
the linear equations available within the faulty round. However, observation of Table 6 shows that no
solution can be found for s31+t which prevents us from finding the solution for k474. Applying the same
approach to recover k475, k476, k477, k478, k479, k480, k481, k482 and k484, we encounter the same problem, in
which we are unable to recover those subkey bits, except for subkey bit k484. This is because no solutions
can be found for s18+t, s30+t, s17+t, s29+t, s16+t, s28+t and s15+t to make the system of equations in the
subkey and internal state bits solvable. However, knowing k484 enables us to reduce the key space by 50
percent (more explanation about this in Section 4.7).

Next, we further reduce the complexity of our attack by recovering the unknown bits s31+t, s18+t,
s30+t, s17+t, s29+t, s16+t, s28+t and s15+t to find the solutions for the remaining 9 subkey bits. We exploit
the properties of registers L1 and L2 to recover those bits. It is obvious that all bits in L1 and L2 except
s0+t and s19+t, are updated each round only by a shift operation (i.e. bit indexed j is moved to bit indexed
j +1). Thus we can search for equivalent bits in any other rounds (i.e. other than t = 237) to recover the
unknown bits from the original faulty round. Now, we consider round t = 231 as another faulty round (cf.
Table 5 for the polynomial equations and Table 9 for the difference characteristics in Appendix). Since
t = 231 is 6 rounds earlier than t = 237, bit sj+t at faulty round t = 237 can be considered similarly
to bit sj−6+t at faulty round t = 231. This implies bits s31+t, s18+t, s30+t, s17+t, s29+t, s16+t, s28+t and
s15+t at round t = 237 are similar to bits s25+t, s12+t, s24+t, s11+t, s23+t, s10+t, s22+t and s9+t at round
t = 231 respectively being shifted 6 clocks towards the MSB. Hence, considering faulty round t = 231,
the bits s25+t, s12+t, s24+t, s11+t, s23+t, s10+t, s22+t and s9+t can be recovered directly which enables the
remaining 9 subkey bits at faulty round t = 237 to be recovered too.

Note that choosing the faulty round t = 231 enables another 10 subkey bits which do not exist
in faulty round t = 237 to be found, i.e. bits k462, . . . , k470 and bit k472. Again, we cannot recover all

10 Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar, Willy Susilo, and Jennifer Seberry

the 10 subkey bits directly as the internal state bits s26+t, s31+t, s27+t, s18+t, s30+t, s17+t, s29+t, s16+t,
s28+t and s15+t that can help in finding the solutions for the subkey bits are unknown. Thus we repeat
the process as described before to recover all the 10 subkey bits by further considering earlier rounds.
However considering another earlier round will result in having difficulty in determining the faulty bit
position within registers L1 and L2. This is because the difference characteristics that can uniquely define
the faulty bit position are reducing as we consider more earlier rounds. Consequently, there exist many
possible bit positions that have the same difference characteristic. Hence, to locate the exact faulty bit
position, guessing the bit positions among those with similar difference characteristic is required. However,
this will introduce an overhead in the attack, and hence we don’t consider recovering the 10 subkey bits
within this faulty round, t = 231 (i.e. bits k462, . . . , k470 and bit k472).

To avoid too much guessing, one should try inducing faults at round t > 237 as this can provide a
more defined difference characteristic. We consider faulty round t = 243 as our next target round (cf.
Table 7 for the polynomial equations in Appendix). Considering this round, we find another 10 new
subkey bits within the quadratic equations in which 2 of them can be directly recovered, i.e. k494 and
k496, while the other 8 subkey bits, i.e. k486, . . . , k493, cannot be recovered unless the internal state bits
s31+t, s18+t, s30+t, s17+t, s29+t, s16+t, s28+t and s15+t are known. However, these bits can be recovered by
referring directly to bits s25+t, s12+t, s24+t, s11+t, s23+t, s10+t, s22+t and s9+t respectively which can be
directly solved at faulty round t = 237. Thus, all the 10 subkey bits can also be recovered in this round.

Finally, we consider faulty round t = 249 as our last target round, as no other rounds can provide
subkey bits within the differential equations. In this final round, there is only one subkey bit which can
be obtained from the equations, i.e. k498. The equations are shown in Table 8 in Appendix. It is obvious
s31+t is unknown. However it can be recovered by referring to s25+t at t = 243.

4.5 Attack on KATAN48

Following the method used on KATAN32, we consider the KATAN48 block cipher as our next target.
Recall that the main differences between KATAN32 and KATAN48 are the block size, the tap positions
in the internal state L1 and L2, and the number of clocks for each round. For KATAN48 we have
L2 = (s28+t, · · · , s0+t) and L1 = (s47+t, · · · , s29+t). Since KATAN48 requires two clocks for each round, if
a certain internal state bit sj+t cannot be solved directly in certain faulty round t, then its solution may
be found by referring to bit sj−2n+t in an earlier faulty round t− n, for j − 2n ≥ 29 and 31 ≤ j ≤ 47, or
j − 2n ≥ 0 and 2 ≤ j ≤ 28.

Our attack on KATAN48 considers faulty rounds t = 234, 238, 242, 246, 250 as the target rounds.
Similarly to KATAN32, the selection of these rounds is based on the number of quadratic equations that
can be found within the effective rounds. Fig. 2 shows that the highest number of quadratic equations
for KATAN48 can be found at faulty rounds t = 237 and t = 238. Since the difference characteristics are
more clearly defined when we consider later rounds: thus we choose t = 238 rather than t = 237 as our
first target round.

Considering faulty round t = 238, we have been able to find 8 subkey bits within the quadratic
equations, i.e. k476, . . . , k483 (cf. Table 11 for the polynomial equations in Appendix). The same problem
as in KATAN32 occurs where some of the internal state bits cannot be solved directly from this round
which prevents the 8 subkey bits being solved. These bits are s22+t, s23+t, s25+t, s27+t, s45+t and s46+t.
Finding the solution for each of these bits requires us to consider 4 earlier rounds, i.e. faulty round
t = 234. At t = 234 (cf. Table 10 for the polynomial equations in Appendix), these bits are equal to bits
s14+t, s15+t, s17+t, s19+t, s37+t and s38+t respectively.

Note that, we don’t consider recovering the subkey bits at faulty round t = 234, to avoid the possibility
of needing to perform too much guessing for the exact faulty bit positions in the earlier faulty round
t = 230 (for recovering the unknown internal state bits) resulting from lack of clearly defined difference

Fault Analysis of the KATAN Family of Block Ciphers 11

characteristics. Hence, we consider faulty round t = 242 instead as our next target round. Considering
this faulty round gives us another 8 subkey bits within the quadratic equations, i.e. k484, . . . , k491 (cf.
Table 12 for the polynomial equations in Appendix). There are only 5 internal state bits which cannot
be solved when considering the system of equations within this faulty round. These are bits s22+t, s23+t,
s25+t, s27+t and s46+t. However, each of these bits holds the same value as bits s14+t, s15+t, s17+t, s19+t

and s38+t respectively at faulty round t = 238. Since the relevant bits can be solved, thus their values
obtained enables the 8 subkey bits to be solved.

Another 8 subkey bits can also be found within quadratic equations in faulty round t = 246, i.e.
k492, . . . , k499 (cf. Table 13 for the polynomial equations in Appendix). To recover the value of these
subkey bits requires 5 internal state bits, i.e. s22+t, s23+t, s25+t, s28+t and s47+t, to be solved by referring
to the equivalent bits at faulty round t = 242 which are s14+t, s15+t, s17+t, s19+t and s38+t respectively.
This in turn can help to provide the solution for the 8 subkey bits.

Finally we consider faulty round t = 250 as the last target round as no more later rounds can supply
subkey bits within quadratic equations. Considering this round, only one subkey bit can be found within
the quadratic equations, i.e. k500 (cf. Table 14 for the polynomial equations in Appendix). There is only
one internal state bit, i.e. bit s47+t, that is required to find the solution for the subkey bit which cannot
be solved directly in this round. However this bit is equal to bit s39+t in faulty round t = 246. Knowing
the value of this bit enables the subkey bit to be recovered successfully.

4.6 Attack on KATAN64

Now we consider a fault attack on the third variant of the KATAN block cipher, namely, KATAN64. In
KATAN64 we have L2 = (s38+t, · · · , s0+t) and L1 = (s63+t, · · · , s39+t). Since each round in KATAN64
requires 3 clocks, if certain internal state bits sj+t cannot be recovered at faulty round t, we can try to
recover their values from bit sj−3n+t of faulty round t−n, for j−3n ≥ 39 and 42 ≤ j ≤ 63, or j−3n ≥ 0
and 3 ≤ j ≤ 38.

As in the attack on the previous two variants, we concentrate on the round which can provide the
highest number of quadratic equations from the differential. According to Fig. 2, this refers to faulty
round t = 238. There are 8 subkey bits can be found within the quadratic equations at this round, i.e.
k476, . . . , k483 (cf. Table 16 for the polynomial equations in Appendix). However 7 internal state bits are
unknown to help recover those subkey bits, i.e. s61+t, s51+t, s60+t, s25+t, s38+t, s34+t and s24+t, but these
bits are equal to bits s55+t, s45+t, s54, s19+t, s42+t, s28+t and s18+t at faulty round t = 236 (cf. Table 15
for the polynomial equations in Appendix). However s55+t can be recovered from bit s3+t and equation
s3+t + s55+t within the same faulty round t = 236; the bit s45+t can be recovered from bit s2+t and
equation s2+t + s45+t; the bit s54+t from s2+t and s2+t + s54+t; and bit s32+t can be recovered from bit
s42+t and equation s32+t + s42+t. However bits s25+t, s34+t and s24+t (in faulty round t = 238) can be
recovered by directly referring to the corresponding bits s19+t, s28+t and s18+t in faulty round t = 236
respectively.

Considering faulty round t = 242, another 8 subkey bits can be found (cf. Table 17 for the polynomial
equations in Appendix), i.e. bits k484, . . . , k491 with 6 unknown internal state bits, i.e. s62+t, s23+t, s29+t,
s32+t, s27+t and s24+t, which need to be solved by referring to the equivalent bits in faulty round t = 238,
i.e. bits are s50+t, s11+t, s17+t, s20+t, s15+t and s12+t respectively; while 2 unknown internal state bits,
i.e. s36+t and s34+t need to be solved by referring to the equivalent bits in faulty round t = 236, i.e. s18+t

and s16+t respectively.
Next, we consider faulty round t = 246 to find 8 more subkey bits, namely, k492, . . . , k499 (cf. Table

18 for the polynomial equations in Appendix). However bits s63+t and s36+t are unknown, preventing the
recovery of k492 and k493 respectively, if only t = 246 is considered. This unknown bit can be recovered
by referring to the equivalent bit, i.e. s39+t and s12+t respectively in faulty round t = 238.

12 Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar, Willy Susilo, and Jennifer Seberry

Finally, we consider faulty round t = 250 as the last target round as no more subkeys can be recovered
from later rounds. In this round, only one subkey bit (i.e. t = 250) can be found (cf. Table 19 for the
polynomial equations in Appendix). However the internal state bit, s62 needs to be recovered by referring
to bit s50+t in faulty round t = 246 before k500 can be solved.

4.7 Attack Complexity

Result on KATAN32. Our experimental simulation of the attack on KATAN32 shows that 21 subkey
bits from faulty rounds t = 231, 237, 243, 249 can be recovered, requiring collectively 20 specific internal
state bit positions (regardless of the round number) to be considered as target faulty bits, as shown in
Table 5, 6, 7 and 8 in Appendix. The average number of fault injections needed to successfully hit these
20 target faulty bits is 115 (where the average is taken over 10,000 trials).

Since the highest index of the subkey bits is H = 498 and the lowest index is L = 474 (hence H−L =
24 < 80) the target subkey bits can be found in the 80-bit key register within rounds 209 ≤ t ≤ 236.
Therefore, to recover the secret key, we need to guess the remaining 59 bits of the key register and then
to clock the key register backward until round t = 0. This reduces the complexity of the attack to 259

computations compared to 280 by exhaustive key search.

Result on KATAN48. The attack on KATAN48 results in recovering 25 subkey bits considering faulty
rounds t = 234, 238, 242, 246, 250 which requires collectively 27 specific internal state bits positions to be
considered as target faulty bits, as shown in Table 10, 11, 12, 13, 14 in Appendix. The average number of
required fault injections to successfully hit these 27 target faulty bits is 211 (where the average is taken
over 10,000 trials).

The highest and the lowest subkey bit indexes are H = 500 and L = 476, respectively (hence
H − L = 24 < 80), so all the subkey bits can be found within the content of the 80-bit key register at
rounds 210 ≤ t ≤ 237. Therefore, to recover the secret key we need to guess the remaining 55 bits of the
key register and then to clock backward until round t = 0 to recover the secret key. Thus, finding the
correct key requires 255 computations in this attack.

Result on KATAN64. In attacking KATAN64 we consider faulty rounds t = 236, 238, 242, 246, 250 to
recover (at least) the same 25 subkey bits as in the attack on KATAN48 which requires collectively 44
specific internal state bit positions to be faulty as shown in Table 15, 16, 17, 18 and 19 in Appendix. The
average number of required fault injections to successfully hit these 44 target faulty bits is 278 (where
the average is taken over 10,000 trials). This results in an attack with complexity 255 (Noticing that the
highest index of the subkey bits is H = 491 and the lowest index is L = 476 (i.e. H − L = 15 < 80);
hence, these 25 target subkey bits can be found in the 80-bit secret key register and we only need to
guess the remaining 55 bits of the key register).

References

[1] Abdul-Latip, S.F., Reyhanitabar, M.R., Susilo, W., Seberry, J.: Extended Cubes: Enhancing the Cube Attack by
Extracting Low-Degree Non-Linear Equations. In: Cheung, B. et al. (Eds.) ASIACCS 2011. ACM, pp. 296–305 (2011)

[2] Bard, G.V., Courtois, N.T., Jr, J.N., Sepehrdad, P., Zhang, B.: Algebraic, AIDA/Cube and Side Channel Analysis of
KATAN Family of Block Ciphers. In: Gong, G., Gupta, K.C. (Eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 176–196.
Springer, Heidelberg (2010)

[3] Biham, E., Biryukov, A.: An Improvement of Davies’ Attack on DES. In: Santis, A. D. (Ed.) EUROCRYPT 1994.
LNCS, vol. 950, pp. 461–467. Springer, Heidelberg (1994)

[4] Blum, M., Luby, M., Rubinfield, R.: Self-Testing/Correcting with Application to Numerical Problems. In: STOC, pp.
73–83. ACM, New York (1990)

[5] Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems. In: Kaliski, B.S (Ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)

Fault Analysis of the KATAN Family of Block Ciphers 13

[6] Boneh, D., DeMillo, R., Lipton, R.: On the Importance of Checking Cryptographic Protocols for Faults. In: Fumy, W.
(Ed.) EUROCRYPT 1997. LNCS, vol. 1223, pp. 37–51. Springer, Heidelberg (1997)

[7] de Cannière, C., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A Family of Small and Efficient Hardware-
Oriented Block Ciphers. In: Clavier, C., Gaj, K. (Eds.) CHES 2009. LNCS, vol. 5754, pp. 272–288. Springer, Heidelberg
(2009)

[8] Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux, A. (Ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009)

[9] Hoch, J.J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater, J.-J. (Eds.) CHES 2004. LNCS,
vol. 3156, pp. 240–253. Springer, Heidelberg (2004)

[10] Hoj́ık, M., Rudolf, B.: Differential Fault Analysis of Trivium. In: Nyberg, K. (Ed.) FSE 2008. LNCS, vol. 5086, pp.
158–172. Springer, Heidelberg (2008)

[11] Hoj́ık, M., Rudolf, B.: Floating Fault Analysis of Trivium. In: Chowdhury, D.R., Rijmen, V., Das, A. (Eds.) IN-
DOCRYPT 2008. LNCS, vol. 5365, pp. 239–250. Springer, Heidelberg (2008)

[12] Hu, Y., Zhang, F., Zhang, Y.: Hard Fault Analysis of Trivium. Cryptology ePrint Archive, Report 2009/333 (2009)

[13] Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. In: Communication and Cryptology, pp. 227–233.
Kluwer Academic Publisher (1994)

[14] Skorobogatov, S.P., Anderson, R.J.: Optical Fault Induction Attacks. In: Kaliski Jr, B.S., Koç, C.K., Paar, C. (Eds.)
CHES 2002. LNCS, vol. 2523, pp. 31–48. Springer, Heidelberg (2002)

[15] Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential Attack. IACR ePrint Archive, Report
2007/413 (2007), http://eprint.iacr.org/2007/413

[16] Vielhaber, M.: AIDA Breaks BIVIUM (A&B) in 1 Minute Dual Core CPU Time. Cryptology ePrint Archive, Report
2009/402, IACR (2009)

A Appendix

Tables 5, 6, 7 and 8 show the polynomial equations resulting from proper and faulty ciphertext differential
for faulty rounds t = 231, 237, 243, 249 for KATAN32.

Table 2. Fault induction after t = 231 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s8+t ∆c7 s10+t

s9+t ∆c8 s11+t

s10+t ∆c9 s12+t

s11+t ∆c17 s9+t

s19+t ∆c28 s22+t

s20+t ∆c29 s23+t

s21+t ∆c30 s24+t

s22+t ∆c31 s25+t

14 Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar, Willy Susilo, and Jennifer Seberry

Table 3. Fault induction after t = 237 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s1+t ∆c28 s19+t + s23+t + s28+t + k480 + s21+ts24+t

∆c24 s22+t + s26+t + s31+t + k474 + s24+ts27+t

∆c6 s6+t

∆c4 s4+t + s15+t + k481 + s0+ts5+t + s7+ts9+t

s2+t ∆c29 s20+t + s24+t + s29+t + k478 + s22+ts25+t

∆c27 s4+t

∆c25 s0+t

∆c5 s5+t + s16+t + k479 + s1+ts6+t + s8+ts10+t

s3+t ∆c30 s25+t + s30+t + k476 + s23+ts26+t

∆c28 s5+t

∆c26 s1+t

∆c12 s8+t

∆c6 s6+t + s17+t + k477 + s2+ts7+t + s9+ts11+t

s4+t ∆c27 s2+t

∆c7 s7+t + s18+t + k475 + s3+ts8+t + s10+ts12+t

s5+t ∆c30 s7+t

∆c28 s3+t

∆c21 s21+t + s26+t + k484 + s19+ts22+t

∆c8 s19+t

s9+t ∆c2 s11+t

s10+t ∆c12 s12+t

s11+t ∆c7 s9+t

s12+t ∆c12 s10+t

s19+t ∆c22 s22+t

s20+t ∆c23 s23+t

s21+t ∆c24 s24+t

s22+t ∆c25 s25+t

s23+t ∆c26 s26+t

∆c12 s20+t

s24+t ∆c27 s27+t

∆c20 s7+t + s18+t + s22+t + s27+t + k475 + k482 + s3+ts8+t+
s10+ts12+t + s20+ts23+t + 1

∆c13 s21+t

Fault Analysis of the KATAN Family of Block Ciphers 15

Table 4. Fault induction after t = 243 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s0+t ∆c21 s22+t + s27+t + k494 + s20+ts23+t

s1+t ∆c27 s6+t

∆c22 s23+t + s28+t + k492 + s21+ts24+t

∆c20 s3+t

s2+t ∆c28 s7+t

∆c23 s24+t + s29+t + k490 + s22+ts25+t

∆c21 s4+t

∆c19 s0+t

s3+t ∆c24 s25+t + s30+t + k488 + s23+ts26+t

∆c22 s5+t

∆c20 s1+t

∆c0 s6+t + s17+t + k489 + s2+ts7+t + s9+ts11+t

s4+t ∆c25 s26+t + s31+t + k486 + s24+ts27+t

∆c21 s2+t

∆c1 s7+t + s18+t + k487 + s3+ts8+t + s10+ts12+t

s18+t ∆c4 s21+t

∆c1 s4+t + s15+t + k493 + s0+ts5+t + s7+ts9+t

s19+t ∆c5 s22+t

∆c2 s5+t + s16+t + k491 + s1+ts6+t + s8+ts10+t

s21+t ∆c7 s24+t

s22+t ∆c8 s25+t

∆c5 s19+t

s23+t ∆c9 s26+t

∆c6 s20+t

s24+t ∆c10 s27+t

∆c7 s21+t

s26+t ∆c20 s21+t + s23+t + s31+t + k486 + k496 + s19+ts22+t+
s24+ts27+t + 1

∆c9 s23+t

Table 5. Fault induction after t = 249 rounds of KATAN32

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s4+t ∆c19 s22+t + s26+t + s31+t + k498 + s24+ts27+t

s5+t ∆c20 s0+t

s21+t ∆c1 s24+t

s23+t ∆c3 s26+t

∆c0 s20+t

s25+t ∆c2 s22+t

Table 9 below shows the difference characteristics for faulty rounds t = 237 for KATAN32. Denote
’0’ and ’1’ as differential values 0 and 1 respectively of the corresponding ciphertext bit differential ∆cj ,
and ’-’ as unknown differential value.

16 Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar, Willy Susilo, and Jennifer Seberry

Table 6. Difference characteristics for KATAN32 (faulty round t=237)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 - 0 - 0 - - 0 - - 0 1 0 0 0 0 0 0 0 0 0 - 0 - - - - 1 -
1 0 0 1 - 0 - 0 - - 0 - - - 1 0 0 0 0 0 0 0 0 0 - 0 - - - - 1 - -
2 0 1 - 0 - 0 - - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 - - - - 1 - - -
3 1 - 0 - - - - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - - - - - - - -
4 - 0 - 0 - 0 0 0 0 - - - - 0 0 0 0 0 0 0 0 0 0 0 - - 1 - - - - -
5 0 - 0 - 0 0 0 0 - - - - - 0 0 0 0 0 0 0 0 0 0 - - 1 - - - - - -
6 - 0 - 0 0 0 0 - - - - - - 0 0 0 0 0 0 0 0 0 - - 1 - - - - - - 0
7 0 - 0 0 - 0 - - - - - - - 0 0 0 0 0 0 1 0 - - 1 - - - - - - - -
8 - 0 0 0 - 0 - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - - - - - - - -
9 0 0 0 0 0 1 0 - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 - - - - 0 - - -
10 0 0 0 0 - 0 - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - - - - - - - -
11 0 0 0 1 0 0 0 - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 - - 0 0 - - - -
12 0 0 1 0 - 0 - 0 - - - - - 0 0 0 0 0 0 - 0 - 0 - - 0 0 - - - - -
13 0 1 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0
14 1 0 0 0 0 0 0 0 0 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0
15 0 0 0 0 0 0 0 0 0 - 0 - - 0 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0 1
16 0 0 0 0 0 0 0 0 - 0 - - - 0 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0 1 0
17 0 0 0 0 0 0 0 - 0 - - - - 0 0 0 0 0 0 0 0 0 - 0 1 - 0 0 0 1 - 0
18 0 0 0 0 - 0 - 0 - - - - - 0 0 0 0 0 0 1 0 - 0 1 - 0 0 - 1 - 0 -
19 0 0 0 - 0 - 0 - - - - 1 - 0 0 0 0 0 1 0 - 0 1 - 0 0 0 1 - 0 - -
20 0 0 - 0 - 0 - - - - 1 - - 0 0 0 0 1 0 - 0 1 - 0 0 0 1 - 0 - - -
21 0 0 0 - 0 - - - - 1 - - - 0 0 0 0 0 - 0 1 - 0 0 0 1 0 0 - 0 - -
22 - 0 - 0 - - - - 1 - - - - 0 0 1 0 - 0 1 - 0 0 0 1 - 0 - - - - -
23 0 - 0 - - - - 1 - - - - - 0 0 0 - 0 1 - 0 0 0 1 0 0 - - - - - -
24 - 0 - - - - 1 - - - - - - 0 0 - 0 1 - 0 0 0 1 0 0 - 0 - - - - -
25 0 - - 0 0 1 - - - - - - - 0 0 0 1 - 0 0 0 1 0 0 0 0 - - - - - -
26 - - 0 0 1 - - - - - - - - 0 0 1 - 0 0 0 1 0 0 0 0 - - - - - - -
27 - 0 0 0 - - 0 - 1 - - - - 0 0 - 0 0 0 1 0 0 0 0 0 - 0 - - - - -
28 0 0 0 - 0 0 0 1 - 0 - 0 - 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - -
29 0 0 - 0 0 0 1 - 0 - 0 - - 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - - -
30 0 - 0 0 0 1 - 0 - 0 - - 0 0 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - - - -
31 - 0 0 0 1 - 0 - 0 - - 0 - 0 0 1 0 0 0 0 0 0 0 0 0 - 0 - - - - 1

∆cj

sj+t

Tables 10, 11, 12, 13 and 14 show the polynomial equations resulting from proper and faulty ciphertext
differential for faulty rounds t = 234, 238, 242, 246, 250 for KATAN48.

Table 7. Fault induction after t=234 rounds of KATAN48

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s6+t ∆c26 s15+t

∆c25 s14+t

s9+t ∆c28 s17+t

s11+t ∆c18 s19+t + 1

s29+t ∆c41 s37+t

s30+t ∆c42 s38+t

Fault Analysis of the KATAN Family of Block Ciphers 17

Table 8. Fault induction after t=238 rounds of KATAN48

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s4+t ∆c9 s12+t + 1
∆c16 s13+t

s5+t ∆c17 s14+t

s6+t ∆c24 s15+t

s8+t ∆c47 s0+t

∆c13 s16+t

s9+t ∆c14 s17+t

s10+t ∆c15 s18+t

s11+t ∆c16 s19+t

s12+t ∆c17 s20+t

∆c16 s29+t

∆c15 s3+t

s13+t ∆c17 s30+t

s14+t ∆c18 s31+t

∆c17 s5+t

s15+t ∆c19 s32+t

∆c6 s7+t

s16+t ∆c20 s33+t

∆c13 s8+t

s17+t ∆c38 s29+t + s35+t + s41+t + k482 + s30+ts38+t

∆c21 s34+t

∆c14 s9+t

∆c12 s16+t + s25+t + k479 + s3+ts12+t + s10+ts18+t

s18+t ∆c22 s35+t

∆c15 s10+t

s19+t ∆c46 s1+t

∆c40 s31+t + s37+t + s43+t + k480 + s32+ts40+t

∆c14 s18+t + s27+t + k477 + s5+ts14+t + s12+ts20+t

s29+t ∆c33 s37+t

s30+t ∆c25 s38+t

∆c17 s13+t + s22+t + k483 + s0+ts9+t + s7+ts15+t

s31+t ∆c36 s33+t + s39+t + s45+t + k478 + s34+ts42+t + 1
∆c35 s39+t

∆c18 s14+t + s23+t + k481 + s1+ts10+t + s8+ts16+t

∆c7 s4+t

∆c1 s4+t + s40+t + s46+t + k476 + s35+ts43+t

s32+t ∆c36 s40+t

s33+t ∆c37 s41+t

s34+t ∆c38 s42+t

s35+t ∆c39 s43+t

18 Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar, Willy Susilo, and Jennifer Seberry

Table 9. Fault induction after t=242 rounds of KATAN48

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s6+t ∆c45 s14+t

∆c10 s15+t

s12+t ∆c9 s20+t + 1
∆c8 s29+t

∆c7 s3+t

s15+t ∆c46 s7+t

s16+t ∆c47 s8+t

∆c12 s33+t

s17+t ∆c13 s34+t

∆c6 s9+t

s18+t ∆c14 s35+t

∆c7 s10+t

s19+t ∆c15 s36+t

s30+t ∆c17 s38+t

∆c9 s13+t + s22+t + k491 + s0+ts9+t + s7+ts15+t

s31+t ∆c35 s40+t + s46+t + k484 + s35+ts43+t

∆c29 s34+t + s40+t + k490 + s29+ts37+t

∆c18 s39+t

∆c10 s14+t + s23+t + k489 + s1+ts10+t + s8+ts16+t

s33+t ∆c31 s36+t + s42+t + k488 + s31+ts39+t

∆c29 s41+t

∆c12 s16+t + s25+t + k487 + s3+ts12+t + s10+ts18+t

s34+t ∆c38 s1+t

∆c30 s42+t

s35+t ∆c33 s38+t + s44+t + k486 + s33+ts41+t

∆c31 s43+t

∆c14 s18+t + s27+t + k485 + s5+ts14+t + s12+ts20+t

s36+t ∆c32 s44+t

s39+t ∆c37 s0+t

∆c36 s5+t

∆c18 s31+t

Fault Analysis of the KATAN Family of Block Ciphers 19

Table 10. Fault induction after t=246 rounds of KATAN48

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s2+t ∆c33 s10+t

∆c31 s29+t + s35+t + s41+t + k498 + s30+ts38+t

s3+t ∆c41 s12+t

∆c32 s36+t + s42+t + k496 + s31+ts39+t

s5+t ∆c43 s14+t

∆c36 s13+t

∆c34 s38+t + s44+t + k494 + s33+ts41+t

s8+t ∆c39 s16+t

∆c37 s41+t + s47+t + k492 + s36+ts44+t

∆c31 s0+t

s10+t ∆c41 s18+t

∆c39 s1+t

s12+t ∆c0 s29+t

s13+t ∆c44 s21+t

∆c1 s30+t

s14+t ∆c2 s31+t

s15+t ∆c44 s6+t

∆c38 s7+t

s16+t ∆c4 s33+t

s18+t ∆c6 s35+t

s19+t ∆c7 s36+t

s30+t ∆c9 s38+t

∆c1 s13+t + s22+t + k499 + s0+ts9+t + s7+ts15+t

s31+t ∆c10 s39+t

∆c2 s14+t + s23+t + k497 + s1+ts10+t + s8+ts16+t

s33+t ∆c12 s41+t

∆c4 s16+t + s25+t + k495 + s3+ts12+t + s10+ts18+t

s36+t ∆c32 s3+t

∆c15 s44+t

∆c7 s19+t + s28+t + k493 + s6+ts15+t + s13+ts21+t

Table 11. Fault induction after t=250 rounds of KATAN48

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s8+t ∆c29 s41+t + s47+t + k500 + s36+ts44+t

s44+t ∆c7 s36+t

Tables 15, 16, 17, 18 and 19 show the polynomial equations resulting from proper and faulty ciphertext
differential for faulty rounds t = 236, 238, 242, 246, 250 for KATAN64.

20 Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar, Willy Susilo, and Jennifer Seberry

Table 12. Fault induction after t=236 rounds of KATAN64

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s8+t ∆c37 s3+t

s16+t ∆c38 s28+t

s20+t ∆c36 s32+t + s42+t

s28+t ∆c38 s16+t

s30+t ∆c34 s18+t

s31+t ∆c35 s19+t

s33+t ∆c36 s42+t

s45+t ∆c61 s2+t + s54+t

s46+t ∆c62 s3+t + s55+t

∆c25 s2+t

s54+t ∆c61 s2+t + s45+t

Table 13. Fault induction after t=238 rounds of KATAN64

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s2+t ∆c55 s39+t + s45+t + s54+t + k482 + s41+ts50+t

∆c10 s52+t + s61+t + k476 + s48+ts57+t

s5+t ∆c27 s10+t

∆c13 s0+t

s6+t ∆c28 s11+t

s8+t ∆c16 s3+t

s10+t ∆c27 s5+t

s17+t ∆c27 s29+t + s39+t

s18+t ∆c28 s30+t + s40+t

s21+t ∆c37 s33+t

∆c19 s9+t

∆c18 s17+t + s30+t + k481 + s1+ts6+t + s13+ts25+t + 1

s24+t ∆c53 s0+t

∆c34 s46+t

∆c22 s12+t

s25+t ∆c54 s1+t

∆c35 s47+t

∆c26 s16+t + s29+t + k483 + s0+ts5+t + s12+ts24+t

∆c23 s13+t

∆c22 s21+t + s34+t + k479 + s5+ts10+t + s17+ts29+t + 1

s26+t ∆c24 s14+t

s27+t ∆c25 s15+t

s28+t ∆c39 s16+t

s29+t ∆c40 s17+t

s31+t ∆c28 s40+t

s32+t ∆c36 s20+t

s33+t ∆c37 s21+t

∆c30 s42+t

s36+t ∆c33 s45+t

Fault Analysis of the KATAN Family of Block Ciphers 21

Table 16 (Continued)

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s39+t ∆c55 s2+t

∆c36 s48+t

s41+t ∆c38 s50+t

s43+t ∆c59 s6+t

∆c53 s0+t + s52+t

s45+t ∆c55 s2+t + s54+t

s46+t ∆c56 s3+t + s55+t

s47+t ∆c44 s56+t + 1
∆c35 s25+t + s38+t + k477 + s9+ts14+t + s21+ts33+t

s48+t ∆c49 s39+t + s45+t + s51+t + s60+t + k478 + s47+ts56+t

∆c45 s57+t + 1
∆c36 s39+t

s50+t ∆c63 s40+t + s46+t + s55+t + k480 + s42+ts51+t

∆c38 s41+t

Table 14. Fault induction after t=242 rounds of KATAN64

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s3+t ∆c56 s15+t

∆c13 s8+t

s5+t ∆c58 s17+t

∆c15 s10+t

s7+t ∆c60 s19+t

∆c17 s12+t

s8+t ∆c4 s3+t

s17+t ∆c58 s5+t

s19+t ∆c60 s7+t

∆c17 s31+t + s41+t

s24+t ∆c22 s46+t

s25+t ∆c48 s43+t + s52+t + k490 + s39+ts48+t

∆c23 s47+t

∆c14 s16+t + s29+t + k491 + s0+ts5+t + s12+ts24+t

∆c10 s21+t + s34+t + k487 + s5+ts10+t + s17+ts29+t + 1

s28+t ∆c14 s16+t

s34+t ∆c19 s43+t

s39+t ∆c24 s48+t

s40+t ∆c25 s49+t

s41+t ∆c51 s46+t + s55+t + k488 + s42+ts51+t

∆c39 s50+t + s53+t + s62+t + k484 + s49+ts58+t

∆c26 s50+t

∆c17 s19+t + s32+t + k489 + s3+ts8+t + s15+ts27+t

s45+t ∆c55 s50+t + s59+t + k486 + s46+ts55+t

∆c21 s23+t + s36+t + k485 + s7+ts12+t + s19+ts31+t

s46+t ∆c31 s55+t

s47+t ∆c32 s56+t

s48+t ∆c24 s39+t

s49+t ∆c34 s58+t

s50+t ∆c60 s0+t

∆c35 s59+t

∆c26 s41+t

22 Shekh Faisal Abdul-Latip, Mohammad Reza Reyhanitabar, Willy Susilo, and Jennifer Seberry

Table 15. Fault induction after t=246 rounds of KATAN64

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s3+t ∆c56 s8+t

∆c44 s15+t

s4+t ∆c57 s9+t

∆c45 s16+t

s10+t ∆c58 s5+t

s11+t ∆c52 s23+t

∆c40 s54+t + s63+t + k492 + s50+ts59+t

s15+t ∆c56 s27+t

∆c44 s3+t

s16+t ∆c45 s4+t

s19+t ∆c60 s31+t

∆c48 s7+t

s20+t ∆c61 s32+t

s23+t ∆c9 s45+t

s30+t ∆c3 s39+t

s33+t ∆c6 s42+t

s38+t ∆c2 s16+t + s29+t + k499 + s0+ts5+t + s12+ts24+t

s41+t ∆c5 s19+t + s32+t + k497 + s3+ts8+t + s15+ts27+t

s42+t ∆c15 s51+t

∆c6 s20+t + s33+t + k495 + s4+ts9+t + s16+ts28+t

s45+t ∆c43 s50+t + s59+t + k494 + s46+ts55+t

∆c18 s54+t

∆c9 s23+t + s36+t + k493 + s7+ts12+t + s19+ts31+t

s50+t ∆c48 s0+t

∆c39 s46+t + s55+t + k496 + s42+ts51+t

∆c23 s59+t

∆c14 s41+t

s55+t ∆c19 s46+t

s59+t ∆c43 s39+t + s45+t + s54+t + k498 + s41+ts50+t

∆c23 s50+t

Table 16. Fault induction after t=250 rounds of KATAN64

Faulty Ciphertext Bit Polynomial Equations
Bit Differential

s3+t ∆c39 s53+t + s62+t + k500 + s49+ts58+t

s40+t ∆c1 s49+t

