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Boris Köpf1, Laurent Mauborgne1, and Mart́ın Ochoa2,3

1 IMDEA Software Institute, Spain
2 Siemens AG, Germany

3 TU Dortmund, Germany
{boris.koepf,laurent.mauborgne}@imdea.org

martin.ochoa@cs.tu-dortmund.de

Abstract. The latency gap between caches and main memory has been
successfully exploited for recovering sensitive input to programs, such as
cryptographic keys from implementation of AES and RSA. So far, there
are no practical general-purpose countermeasures against this threat.
In this paper we propose a novel method for automatically deriving
upper bounds on the amount of information about the input that an
adversary can extract from a program by observing the CPU’s cache
behavior. At the heart of our approach is a novel technique for efficient
counting of concretizations of abstract cache states that enables us to
connect state-of-the-art techniques for static cache analysis and quanti-
tative information-flow. We implement our counting procedure on top of
the AbsInt TimingExplorer, one of the most advanced engines for static
cache analysis. We use our tool to perform a case study where we derive
upper bounds on the cache leakage of a 128-bit AES executable on an
ARM processor with a realistic cache configuration. We also analyze this
implementation with a commonly suggested (but until now heuristic)
countermeasure applied, obtaining a formal account of the correspond-
ing increase in security.

1 Introduction

Many modern computer architectures use caches to bridge the latency gap be-
tween the CPU and main memory. Caches are small, fast memory that store the
contents of previously accessed main memory locations; they can improve the
overall performance because typical memory access patterns exhibit locality of
reference. On today’s architectures, an access to the main memory (i.e. a cache
miss) may imply an overhead of hundreds of CPU cycles w.r.t. an access to the
cache (cache hit).

While the use of caches is beneficial for performance, it can have negative ef-
fects on security: An observer who can measure the time of memory lookups can
see whether a lookup is a cache hit or miss, thereby learning partial information
about the state of the cache. This partial information has been used for extract-
ing cryptographic keys from implementations of AES [14,21,32], RSA [34], and
DSA [7]. In particular AES is vulnerable to such cache-attacks, because most
high-speed software implementations make heavy use of look-up tables. Cache
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attacks are the most effective known attacks against AES and allow to recover
keys within minutes [21].

A number of countermeasures have been proposed against cache attacks.
They can be roughly put in two classes: (1) Avoiding the use of caches for sensi-
tive computations. This can be achieved, e.g. by using dedicated hardware imple-
mentations, or by disabling caches in software implementations. Both solutions
obviously defeat cache attacks; however they are not not universally applicable,
e.g. due to lack of available hardware support, or for reasons of performance. (2)
Mitigation strategies. Proposals include disabling high-resolution timers, hard-
ening of schedulers [21], and preloading [32] of tables to eliminate attack vectors
and reduce leakage, respectively. Such strategies are implemented, e.g. in the
OpenSSL 1.0 [6] version of AES, however, their effectiveness is highly dependent
on the OS and the CPU. Without considering/modeling all implementation de-
tails, such mitigation strategies necessarily remain heuristic. In summary, there
is no general-purpose countermeasure against cache attacks that is backed-up
by mathematical proof.

In this paper we propose a novel method for establishing formal security
guarantees against cache-attacks. The guarantees we obtain are upper bounds
on the amount of information about the input that an adversary can extract by
observing the CPU’s cache state after execution of the program; they are based
on the actual program binary and a concrete processor model and can be derived
entirely automatically. At the heart of our approach is a novel technique for
effective model-counting that enables us to connect state-of-the-art techniques
for static cache analysis and quantitative information-flow analysis.

Technically, we build on prior work on static cache analysis [12] that was
primarily used for the estimation of worst-case execution time by abstract inter-
pretation [20]. There, two abstract domains for cache-states are introduced; one
of them captures a superset of the memory locations that may be in the cache,
the other captures a subset of the memory locations that must be in the cache.
For the purpose of this paper it suffices to know that both abstract analyses are
sound, i.e. that each of them computes a superset of the set of reachable cache-
states. We also leverage techniques from quantitative-information-flow analysis
that enable establishing bounds for the amount of information that a program
leaks about its input. One key observation is that (an upper bound on) the num-
ber of reachable states of a program corresponds to (an upper bound on) the
number of leaked bits [27, 37]. Such upper bounds can be obtained by comput-
ing super-sets of the sets of reachable states by abstract interpretation, and by
determining their size [27].

We develop a novel technique for counting the number of cache states rep-
resented by the abstract states of the static cache analyses described above. In
particular, we give formulas and algorithms that compute the respective sizes
of the set of states represented by the may- and must-analysis, and for their
intersection. We give a concise implementation of our counting procedures in
Haskell [5] and we connect this counting engine to the AbsInt a3 [1], the state-
of-the-art tool for static cache analysis. a3 efficiently analyzes binary code based
on accurate models of several modern embedded processors with a wide range
of cache types (e.g. data caches, instruction caches, or mixed) and replacement
strategies. Using this tool-chain, we perform an analysis of a binary implemen-
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tation of 128-bit AES from the PolarSSL library [4], based on a 32-bit ARM
processor with a 4-way set associative data cache with LRU replacement strat-
egy and different cache sizes. We analyze this implementation with and without
the preloading countermeasure applied and for two different adversary models,
obtaining the following results.

Without preloading, the derived upper bounds for the leakage in one run
(about the payload and the key) exceed the size of the key and are hence too large
for practical use. With preloading and a powerful adversary model, however, the
derived bounds drop to values ranging from 55 to 1 bits, for cache sizes ranging
from 16KB to 128KB. For a less powerful but realistic adversary the bounds
drop even further to ranges from 6 to 0 bits, yielding strong security guarantees.
This case study shows that the automated, formal security analysis of realistic
cryptosystems and accurate real processor models is in fact feasible.

In summary, our contributions are threefold. Conceptually, we show how
state-of-the-art tools for quantitative information-flow analysis and static cache
analysis can be combined for quantifying cache side-channels. Technically, we
develop and implement novel methods for counting abstract cache states. Prac-
tically, we perform a formal cache-analysis of a binary AES 128 implementation
on a realistic processor model.

2 Preliminaries

In this section we revisit concepts from quantitative information-flow analysis. In
particular, we introduce measures of confidentiality based on information theory
in Section 2.1, and we present techniques for their approximation in Section 2.2.

2.1 Quantifying Information Leaks

A (deterministic) channel is a function C : S → O mapping a finite set of secrets
S to a finite set of observations O. We characterize the security of a channel in
terms of the difficulty of guessing the secret input from the observation. This
difficulty can be captured using information-theoretic entropy, where different
notions of entropy correspond to different kinds of guessing [17]. In this paper, we
focus on min-entropy as a measure, because it is associated with strong security
guarantees [37].

Formally, we model the choice of a secret input by a random variable X with
ran(X) = S and the corresponding observation by a random variable Y with
ran(Y ) = O. The dependency between X and Y is formalized as a conditional
probability distribution PY |X with PY |X(o, s) = 1 if C(s) = o, and 0 otherwise.
We consider an adversary that wants to determine the value of X from the value
of Y , where we assume that X is distributed according to PX . The adversary’s
a priori uncertainty about X is given by the min-entropy [36]

H∞(X) = − log2 max
s
PX(s)

of X, which captures the probability of correctly guessing the secret in one shot.
The adversary’s a posteriori uncertainty is given by the conditional min-entropy
H∞(X|Y ), which is defined by

H∞(X|Y ) = − log2

∑
o

PY (o) max
s
PX|Y (s, o)
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and captures the probability of guessing the value of X in one shot when the
value of Y is known.

The (min-entropy) leakage L of a channel with respect to the input distribu-
tion PX is the reduction in uncertainty about X when Y is observed,

L = H∞(X)−H∞(X|Y ) ,

and is the logarithm of the factor by which the probability of guessing the secret
is reduced by the observation. Note that L is not a property of the channel alone
as it also depends on PX . We eliminate this dependency as follows.

Definition 1 (Maximal Leakage). The maximal leakage ML of a channel C
is the maximal reduction in uncertainty about X when Y is observed

ML(C) = max
PX

(H∞(X)−H∞(X|Y )) ,

where the maximum is taken over all possible input distributions.

For computing an upper bound for the maximal leakage of a deterministic
channel, it suffices to compute the size of the range of C. While these bounds
can be coarse in general, they are tight for uniformly distributed input.

Lemma 1.
ML(C) ≤ log2 |C(S)| ,

where equality holds for uniformly distributed PX .

Proof. The maximal leakage of a (probabilistic) channel specified by the distri-
bution PY |X can be computed by ML(PY |X) = log2

∑
o maxs PY |X(o, s), where

the maximum is assumed (e.g.) for uniformly distributed input [15,28]. For deter-
ministic channels, the number of non-zero (hence 1) summands matches |C(S)|.

2.2 Static Analysis of Channels

In this paper we consider channels of programs, which are channels that are given
by the semantics of (deterministic, terminating) programs. In this setting, the set
of secrets is a part of the initial state of the program, and the set of observables
is a part of the final state of the program. Due to Lemma 1, computing upper
bounds on the maximal leakage of a program can be done by determining the
set of final states of the program. Computing this set from the program code
requires computation of a fixed-point and is not guaranteed to terminate for
programs over unbounded state-spaces. Abstract interpretation [20] overcomes
this fundamental problem by resorting to an approximation of the state-space
and the transition relation. By choosing an adequate approximation one can
enforce termination of the fixed-point computation after a finite number of steps.
The soundness of the analysis follows from the soundness of the abstract domain,
which is expressed in terms of a concretization function (denoted γ) relating
elements of the abstract domain to concrete properties of the program, ordered
by implication.

For the purpose of this paper, we define soundness with respect to a channel,
i.e., we will use a concretization function mapping to sets of observables (where
implication corresponds to set inclusion).
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Definition 2. An abstract element t] is sound for a concretization function γ
with respect to a channel C : S → O if and only if C(S) ⊆ γ(t]).

The following theorem is an immediate consequence from Lemma 1; it states
that a counting procedure for γ(t]) can be used for deriving upper bounds on
the amount of information leaked by C.

Theorem 1. Let t] be sound for γ with respect to C. Then

ML(C) ≤ log2

∣∣γ(t])
∣∣ .

For a more detailed account of the connection between abstract interpretation
and quantitative information-flow, see [27].

3 Cache Channels

In this section, we define channels corresponding to two adversary models that
can only observe cache properties. We also revisit two abstract domains for
reasoning about cache-states and show how they relate to those channels. We
begin with a primer on caching.

3.1 Caches

Typical caches work as follows. The main memory is partitioned into blocks of
size B that are referenced using locations loc. A cache consists of a number of
sets, each containing a fixed number of lines that can each store one memory
block. The size A of the cache sets is called the associativity of the cache. Each
memory block can reside in exactly one cache set, which is determined by the
block’s location. We can formally define a single cache set as a mapping

t : {1, . . . , A} → loc ∪ {⊥} ,

from line numbers to locations, where ⊥ represents an empty line. A cache is
a tuple of independent cache sets. For simplicity of presentation, we focus on
single cache sets throughout the paper, except for the case study in Section 6.

What happens when a memory block is requested depends on the replacement
strategy. Here we focus on the LRU (Least Recently Used) strategy, which is used
e.g. in the Pentium I processor. With LRU, each cache set forms a queue. When
a memory block is requested, it is appended to the head of the queue. If the
block was already stored in the cache (cache hit), it is removed from its original
position; if not (cache miss), it is fetched from main memory. Due to the queue
structure of sets, memory blocks age when other blocks are looked up, i.e. they
move towards the tail of the queue and (due to the fixed length of the queue) are
eventually removed. For a formalization of the LRU set update function see [12]
or Appendix A. For a formalization of alternative update functions, such as FIFO
(First In First Out) see [35]. Depending on the concrete processor model, data
and instructions are processed using dedicated caches or a common one [12].
Unless mentioned otherwise (e.g. in the experiments for AES), our results hold
for any cache analysis that is sound.
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3.2 Two Adversary Models Observing the Cache

We consider a scenario where multiple processes share a common CPU. We as-
sume that one of these processes is adversarial and tries to infer information
about the computations of a victim process by inspecting the cache after ter-
mination. We distinguish between two adversaries Advprec and Advprob. Both
adversaries can modify the initial state of the cache with memories in their vir-
tual memory space, which we assume is not shared between processes, but they
differ in their ability of observing the final cache state:

Advprec : This adversary can observe the precise content of the cache at the end
of the victim’s computation.

Advprob : This adversary can observe which blocks of his virtual memory space
are in the cache after the victim’s computation.

The channel corresponding to the adversary Advprec simply maps the victim’s in-
put to the corresponding final cache state. The channel corresponding to Advprob

can be seen as an abstraction of the channel corresponding to Advprec, as it can
be described as the composition of the channel of Advprec with a function blur
that maps all memory blocks not belonging to the adversary’s virtual memory
space to one undistinguishable element. Advprob corresponds to the adversaries
encountered in synchronous “prime and probe” attacks [32], which observe the
cache-state by performing accesses to different locations and use timing mea-
surements to distinguish whether they are contained in the cache or not.

Considering that our adversary models allow some choice of the initial state,
they formally define families of channels that are indexed by the adversarially
chosen part of the initial cache. To give an upper bound on the leakage of all
channels in those families we would need relational information, which is not
supported by the existing cache analysis tools. One possible solution is to con-
sider an abstract initial state approximating all possible adversary choices, which
leads to imprecision in the analysis. In the particular case of a LRU replacement
strategy, we can use the following property:

Proposition 1. For caches with LRU strategy, the leakage to Advprec (Advprob)
w.r.t. any initial cache state containing only memory locations from the adver-
sary’s memory space corresponds to the leakage to Advprec (Advprob) w.r.t. an
empty initial cache state.

This result follows from the following observation: for each initial cache state
containing locations disjoint from the victim’s memory space, the first i lines of
the final cache state will contain the locations accessed by the victim, and the
remaining lines will contain the first A− i locations of the initial state shifted to
the right, where i depends on that particular run of the victim. That is, modulo
the adversarial locations, the number of possible final cache states corresponding
to an empty initial state matches the number of final cache states corresponding
to an initial state that does not contain locations from the victim’s memory
space. The assertion then follows immediately from Theorem 1. Proposition 1
will be useful in our case study, since the analysis we use provides a more accurate
final state when run with an initial empty cache.
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3.3 Abstract Domains for Cache Analysis

Alt et al. [12] propose abstract interpretation techniques for cache analysis and
prove their soundness with respect to reachability of cache states, which corre-
sponds to soundness w.r.t the channel of Advprec according to Definition 2. In
particular, they present two abstract domains for cache-states: The first domain
corresponds to a may-analysis and represents the set of memory locations that
possibly reside in the cache. The second domain corresponds to a must-analysis
and represents the set of memory locations that are definitely in the cache. In
both cases, an abstract cache set is represented as a function

t] : {1, . . . , A} → 2loc

mapping set positions to sets of memory locations. In the following we will use t1
]

and t2
] for abstract sets corresponding to the may and must analysis respectively.

For the may analysis, the concretization function γ∪ is defined by

γ∪(t1
]) = {t | ∀j ∈ {1, . . . , A} : t(j) =⊥ ∨ ∃i ≤ j : t(j) ∈ t1](i)} .

This definition implies that each location that appears in the concrete state
appears also in the abstract state, and the position in the abstract state is a lower
bound for the position in the concrete. For the must analysis, the concretization
function γ∩ is defined by

γ∩(t2
]) = {t | ∀i ∈ {1, . . . , A} : ∀a ∈ t2](i) : ∃ j ≤ i : t(j) = a} .

This definition implies that each location that appears in the abstract state is
required to appear in the concrete, and its position in the abstract is an upper
bound for its position in the concrete.

Example 1. Consider the following program running on a 4-way fully associa-
tive (i.e. only one set) data cache where . . . x . . . stands for an instruction that
references location x, and let e, a, b are pairwise distinct locations.

if . . . e . . . then . . . a . . . else . . . b . . .

With an empty initial abstract cache before execution, the abstract may- and
must-analyses return

t1
] = [{a, b}, {e}, {}, {}] and t2

] = [{}, {e}, {}, {}]

as final states, respectively. The following caches states are contained in their
respective concretizations:

[a,⊥,⊥,⊥], [a, b, e,⊥], [⊥, e, a, b] ∈ γ∪(t1
])

[a, e,⊥,⊥], [e,⊥,⊥,⊥], [⊥, e, a, b] ∈ γ∩(t2
])

Notice that both concretizations include the two possible states [a, e,⊥,⊥] and
[b, e,⊥,⊥] (which is due to the soundness of the analyses) but also impossible
states (which is due to the imprecision of the analysis). In particular, states in
which empty cache lines are followed by non-empty cache lines are artifacts of
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the abstraction (i.e. they cannot occur according to the concrete cache semantics
from [12], as we prove in the Appendix). More precisely, we have

∀i, j ∈ {1, . . . , A} : t(i) =⊥ ∧ j > i =⇒ t(j) = ∅ . (1)

It is hence sufficient to consider only the concrete states that also satisfy (1),
which enables us to derive tighter bounds in Section 4. For simplicity of notation
we will implicitly assume that (1) is part of the definition of γ∪ and γ∩.

To obtain the channel corresponding to the adversary model Advprob, we just
need to apply blur to the concretization of the must and may cache analysis,
which is equivalent to first applying blur to the sets appearing in the abstract
elements and then concretizing.

4 Counting Cache States

We have introduced channels corresponding to two adversaries, together with
sound abstract interpretations. The final step needed for obtaining an auto-
matic quantitative information-flow analysis from Theorem 1 are algorithms for
counting the concretizations of the abstract cache states presented in Section 3.3,
which we present next. As before, we restrict our presentation to single cache
sets. Counting concretizations of caches with multiple sets can be done by taking
the product of the number of concretizations of each set.

4.1 Concrete states respecting may

We begin by deriving a formula for counting the concretizations of an abstract
may-state t1

]. To this end, let ni =
∣∣t1](i)∣∣, n∗i =

∑i
j=1 nj , for all i ∈ {1, . . . , A}

and n∗ = n∗A. The definition of γ∪(t1
]) informally states that when reading the

content of t] and t ∈ γ∪(t1
]) from head to tail in lockstep, each non-empty line

in t has appeared in the same or a previous line of t1
]. That is, for filling line

k of t there are n∗k possibilities, of which k − 1 are already used for filling lines
1, . . . , k− 1. The number of concrete states with a fixed number i of non-empty
lines is hence given by

i∏
k=1

(n∗k − (k − 1)) (2)

As the definition of γ∪ does not put a lower bound on the number i of nonempty
lines, we need to consider all i ∈ {1, . . . , A}. We obtain the following explicit
formula for the number of concretizations of t1

].

Proposition 2 (Counting May).

∣∣γ∪(t1
])
∣∣ =

A∑
i=0

i∏
k=1

(n∗k − (k − 1))

Example 2. When applied to the abstract may-state t1
] = [{a, b}, {e}, {}, {}]

obtained from the analysis of the program in Example 1 we obtain
∣∣γ∪(t1

])
∣∣ = 11,

which illustrates that the bounds obtained by Proposition 2 can be coarse.
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4.2 Concrete states respecting must

For counting the concretizations of an abstract must-state t2
], let mi =

∣∣t2](i)∣∣,
m∗i =

∑i
j=1mj , for all i ∈ {1, . . . , A} and m∗ = m∗A. The definition of γ∩

informally states that when reading the lines of an abstract state t2
] and a

concrete state t ∈ γ∩(t2
]) from head to tail in lockstep, each element of t2

] has
already appeared in the same or a previous line of t. More precisely, the mj

elements contained in line j of t2
] appear in lines 1, . . . , j of t, of which m∗j−1

are already occupied by the must-constraints of lines 1, . . . , j − 1. This leaves(
j−m∗

j−1
mj

)
mj ! possibilities for placing the elements of t2

](j), which amounts to a

total of
A∏

j=1

(
j −m∗j−1

mj

)
mj ! (3)

possibilities for placing all elements in t2
]. However, notice that m∗ ≤ A is

possible, i.e. must-constraints can leave cache lines unspecified. The number of
possibilities for filling those unspecified lines is

A∏
k=m∗+1

(`− (k − 1)) , (4)

where ` = |loc| is the number of possible memory locations.
Finally, observe that (3) and (4) count concrete states in which each line is

filled. However, the definition γ∩ only mandates that at least m∗ lines of each
concrete state be filled. We account for this by introducing a variable i that
ranges from m∗ to A. We modify (3) by choosing from min(i, j) instead of j
positions4 and we modify (4) by replacing the upper bound by i. This yields the
following for explicit formula for the number of concretizations of t2

].

Proposition 3 (Counting Must).

∣∣γ∩(t2
])
∣∣ =

A∑
i=m∗

 A∏
j=1

(
min(i, j)−m∗j−1

mj

)
mj !

i∏
k=m∗+1

(`− (k − 1))


Example 3. When applied to the must-state t2

] = [{}, {e}, {}, {}] and a set of
locations loc = {a, b, c, d, e}, Proposition 3 yields a number of 81 concretizations
of t2

]. This over-approximation stems from the fact that the abstract state re-
quires only the containment of e and that the rest of the lines can be chosen
from loc.

We next tackle this imprecision by considering the intersection of may and must.

4.3 Concrete states respecting must and may

For computing the number of concrete states respecting both t2
] and t1

] we reuse
the notation introduced in Sections 4.1 and 4.2. As in Section 4.2 we use (3) for
counting the cache lines constrained by the must-information. However, instead

4 The index j still needs to go up to A in order to collect all constraints
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of filling the unconstrained lines with all possible memory locations, we now
choose only from the lines specified by the may-information. The counting is
similar to equation (2), the difference being that, as in (4), the product starts
with k = m∗ + 1 because the content of m∗ lines is already fixed by the must-
constraints. The key difference to (4) is that now we pick only from at most n∗k
lines instead of ` lines. We obtain the following proposition.

Proposition 4 (Counting May and Must).

∣∣γ∪(t1
]) ∩ γ∩(t2

])
∣∣ ≤ A∑

i=m∗

 A∏
j=1

(
min(i, j)−m∗j−1

mj

)
mj !

i∏
k=m∗+1

(n∗k − (k − 1))


Two comments are in order. First, notice that the inequality Proposition 4 stems
from the fact that the lines unconstrained by the must-information may be
located at positions j < k. Using the constraint n∗j instead of n∗k would lead
to tighter bounds, however, an explicit formula for this case remains elusive.
Second, observe that the rightmost product is always non-negative. For this it is
sufficient to prove that the first factor n∗m∗+1 −m∗ is non-negative, because the
value of subsequent factors decreases by at most 1. Assume that n∗m∗+1−m∗ < 0
(and hence n∗m∗ < m∗). By (1), n∗j < j implies that line j is empty for all concrete
states, which for j = m∗ contradicts the requirement that all states contain at
least m∗ lines.

Example 4. When applied to the abstract cache states t1
] = [{a, b}, {e}, {}, {}]

and t2
] = [{}, {e}, {}, {}] from Example 1, Proposition 4 delivers a total of 9

concrete states.

It is easy to see that the expression in Proposition 4 can be evaluated in time
O(A3) because both the factorial and and n∗i can be computed in linear time
and they are nested in two loops of length at most A. Although efficient, an
approximation using Proposition 4 can be coarse: In Example 4 we computed
a bound of 9 states, although (as is easily verified manually) there are only
4 concrete states respecting the constraints of both abstract states. We have
developed more accurate (but more complex) variants of Proposition 4 that yield
the exact bounds for this example, however, they are also not tight in general.

In the absence of a closed expression for the exact number of concrete states,
one can proceed by enumerating the set of all concrete states respecting may,
and filtering out those not respecting must. We present an implementation of
the exact counting by enumeration in Section 5.2 The price to pay for this
brute-force approach is a worst-case time complexity of O(A!), e.g. if there are
no must-constraints and the first location of the abstract may-state contains
A or more locations. This is not a limitation for the small associativities often
encountered in practice (A = 2 or A = 4), however, for fully associative caches in
which A equals the total number of lines of the cache, the approximation given
by Proposition 4 is the more adequate tool.

4.4 Counting for Probing Adversaries

For counting the possible observations of Advprob for arbitrary replacement
strategies, we can apply the techniques presented above to previously blurred
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abstract states. For the case of a LRU strategy, we obtain the following better
bounds.

Proposition 5. The number of observations Advprob can make is bounded by

min(n∗, A)−m∗ + 1

The assertion follows from the fact that, after the computation, each cache set
will first contain the victim’s locations (which Advprob cannot distinguish), and
then a fixed sequence of locations from the adversary’s virtual memory whose
length only depends on the number of the victim’s blocks. I.e., when starting
from an empty cache set, the adversary can only observe the length of the final
cache set. This size is at least m∗ (because at least that number of lines must be
filled), and at most min(n∗, A). The additional 1 accounts for the empty state.

5 Implementation

In this section we report on the implementation of a tool for quantifying cache
leaks. Its building blocks are the AbsInt a3 tool for static cache analysis, and a
novel counting engine for cache-states based on the results presented in Section 4.

5.1 Abstract Interpreter

The AbsInt a3 [1] is a suite of industral-strength tools for the static analysis
of embedded systems. In particular, a3 comprises tools (called aiT and Timing-
Explorer) for the estimation of worst-case execution times based on the static
cache analysis by Alt et al. [12]. The tools cover a wide range of CPUs, such as
ERC32, TriCore, M68020, LEON3 and several PowerPC models (aiT), as well
as CPU models with freely configurable LRU cache (TimingExplorer). We base
our implementation on the TimingExplorer for reasons of flexibility.

The TimingExplorer receives as input a program binary and a cache configu-
ration and delivers as output a control flow graph in which each (assembly-level)
instruction is annotated by the corresponding abstract may and must informa-
tion, where memory locations are represented by strings, abstract cache lines are
lists of memory locations, abstract sets are lists of abstract lines, and abstract
caches are lists of abstract sets. We extract the annotations of the final state of
the program, and provide them as input to the counting engine.

5.2 Counting Engine

We implemented an engine for counting the concretizations of abstract cache
states according to the development in Section 4. Our language of choice is
Haskell [5], because it allows for a concise representation of sums, products, and
enumerations using list comprehensions. For brevity of presentation, we give only
the procedures for exact counting sketched in Section 4.3.

We use the following data types for representing abstract cache sets, which
matches the output of the TimingExplorer described above.

type Loc = String type ConcreteSet = [Loc]

type AbstractLine = [Loc] type AbstractSet = [AbstractLine]

The function allStates is the core of the exact counting of concrete cache states
in the intersection defined by may and must.
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allStates :: AbstractSet -> AbstractSet -> [ConcreteSet]

allStates may must = filter (checkMust must) (genAllMay may)

As described in Section 4.3, this is achieved by enumerating all concrete states
that satisfy a given set of may-constraints (done by genAllMay), and keeping only
those that also satisfy the must-constraints (done by filtering with checkMust).
At the core of the function genAllMay is the following function genMay that
returns all concretizations of the same length as the given abstract set,

genMay:: AbstractSet -> [ConcreteSet]

genMay (a:as) = [c:cs| c<-a, cs<-genMay (carry (delete c a) as)]

genMay [] = [[]]

where it relies on a function carry that carries unused may-constraints to the
next line of the abstract state.

Finally, the function checkMust tests whether a concrete set satisfies the
must-constraints, by checking whether all elements in line number n (denoted
by as!!(n-1)) of the abstract state also appear in the prefix of length n of the
concrete state.

checkMust :: AbstractSet -> ConcreteSet -> Bool

checkMust as cs = and [elem a (take n cs)| n<-[1..length as],

a<-as!!(n-1)]]

6 Case Study

In this section we report on a case-study where we use the methods developed
in this paper for analyzing the cache side-channel of a widely used AES imple-
mentation on a realistic processor model with different cache configurations.

6.1 Target Implementations

Code. We analyze the implementation of 128 bit AES encryption from the Po-
larSSL library [4], a lightweight crypto suite for embedded platforms. As is stan-
dard for software implementations of AES, the code consists of single loop (cor-
responding to the rounds of AES) in which heavy table lookups are performed to
indices computed using bit-shifting and masking, see Appendix C for details. We
also analyze a modified version of this implementation, where we add a loop that
loads the entire lookup table into the cache before encryption. This preloading
has been suggested as countermeasure against cache attacks because, intuitively,
all lookups during encryption will hit the cache.

Platform. We compile the AES C source code into a binary for the ARM7TDMI [2]
CPU using the GNU ARM GCC compiler [3]. Although the original ARM7TDMI
does not have any caches, the AbsInt TimingExplorer supports this CPU with
the possibility of specifying arbitrary configurations of data/instruction/mixed
caches with LRU strategy. For our experiments we use data caches with sizes
of 16-128 KB, associativity of 4 ways, and a line size of 32 Bytes, which are
common configurations in practice.
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6.2 Improving Precision by Partitioning

The TimingExplorer can be very precise for simple expressions, but loses pre-
cision when analyzing array lookups to non-constant indexes. This source of
imprecision is well-known in static analysis, and abstract interpretation offers
techniques to regain precision, such as abstract domains specialized for arrays,
or automatic refinement of transfer functions. For our analysis, we use results on
trace partitioning [29], which consists in performing the analysis on a partition
of all possible runs of a program, each partition yielding more precise results.

We have implemented a simple trace partitioning strategy using program
transformations that do not modify the data cache (which is crucial for the
soundness of our approach). For each access to the look-up table, we introduce
conditionals on the index, where each branch corresponds to one memory block,
and we perform the table access in all branches. As the conditionals cover all
possible index values for the table access, we add one memory access to the index
before the actual table look-up, which does not change the cache state for an
LRU cache strategy, since the indices have to be fetched before accessing the
table anyway. An example of the AES code with trace partitioning can be found
in Appendix C.

Note that the same increase in precision could be achieved without program
transformation if the trace partitioning were implemented at the level of the
abstract interpreter, which would also allow us to consider instruction caches
and cache strategies beyond LRU. Given that the TimingExplorer is closed-
source, we opted for partitioning by code transformation.

6.3 Results and Security Interpretation

The results of our analysis with respect to the adversary Advprec are depicted in
Figure 1. For AES without preloading of tables, the bounds we obtained exceed
160 bits for all cache sizes. For secret keys of only 128 bits, they are not precise
enough for implying meaningful security guarantees. With preloading, however,
those bounds drop down to 55 bits for caches sizes of 16KB and to only 1 bit for
sizes of 128KB, showing that only a small (in the 128KB case) fraction of the
key bits can leak in one execution.

The results of our analysis with respect to the (less powerful, but more re-
alistic) adversary Advprob are depicted in Figure 2. As for Advprec, the bounds
obtained without preloading exceed the size of the secret key. With preloading,
however, they remain below 6 bits and even drop to 0 bits for caches of 128KB,
giving a formal proof of noninterference for this implementation and platform.

To formally argue tightness of the non-zero bounds, we would need to show
that this information can be effectively recovered (i.e. devise an attack), which is
out of the scope of this paper. Manual inspection of the final cache states shows
that the non-zero bounds stem from AES tables sharing the same set with other
memory locations used by the AES code, which may indeed be exploitable.

7 Prior Art

Timing attacks against cryptosystems date back to [24]. They can be divided into
those exploiting timing variations due to control-flow [16,24] and those exploiting
timing variations of the execution platform, e.g. due to caches [8,10,14,32,33,34],
or branch prediction units [9]. In this paper we focus solely on caching.
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Fig. 1. Upper bounds for the maximal leakage w.r.t. the adversary Advprec and a
4-way set associative cache with 32B lines of sizes 16KB-128KB

Fig. 2. Upper bounds for the maximal leakage w.r.t. the adversary Advprob and a
4-way set associative cache with 32B lines of sizes 16KB-128KB

The literature on cache attacks is stratified according to a variety of different
adversary models: In time-driven attacks [10, 14] the adversary can observe the
overall execution time of the victim process and estimate the overall number
of cache hits and misses. In trace-driven attacks [8] the adversary can observe
whether a cache hit or miss occurs, for every single memory access of the victim
process. In access-driven attacks [32,34] the adversary can probe the cache either
during computation (asynchronous attacks) or after completion (synchronous
attacks) of the victim’s computation, giving him partial information about the
memory locations accessed by the victim. Finally, some attacks assume that the
adversary can choose the cache state before execution of the victim process [32],
whereas others require that the cache does not contain the locations that looked-
up by the victim during execution [10]. The information-theoretic bounds we
derive hold for single executions of synchronous access-driven adversaries, where
we consider initial states that are either empty or do not contain the victim’s
data. The derivation of bounds for alternative adversary models is left future
work.
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A number of mitigation techniques have been proposed to counter cache at-
tacks. Examples include coding guidelines [19] for thwarting cache attacks on x86
CPUs, or novel cache-architectures that are more resistant to cache attacks [39].
One commony proposed technique is preloading of tables [14, 32]. However, as
observed by [32],

[. . . ], it should be ensured that the table elements are not evicted by the
encryption itself, by accesses to the stack, inputs or outputs. Ensuring
this is a delicate architecture-dependent affair [. . . ].”

The methods developed in this paper enable us to perform a formal analysis of
the preloading heuristic. A model for statistical estimation of the effectiveness
of AES cache attacks based on sizes of cache lines and lookup tables has been
presented in [38]. The goal of our work is different in that we aim for provable
security guarantees based on accurate processor models and the actual code.

Technically, our work builds on methods from quantitative information-flow
analysis (QIF) [18], where the automation by reduction to counting problems
appears in [13, 23, 30, 31], and the connection to abstract interpretation in [27].
Prior applications of QIF to side-channels in cryptosystems [25,26,28] are limited
to stateless systems. For the analysis of caches, we rely on the abstract domains
from [12] and their implementation in the AbsInt TimingExplorer [1]. Finally,
our work goes beyond language-based approaches that consider caching [11, 22]
in that we rely on more realistic models of caches and aim for more permissive,
quantitative guarantees.

8 Conclusions and future work

We have shown that cache side-channels can be automatically quantified. For
this, we have leveraged powerful tools for static cache analysis and quantitative
information-flow analysis, which we connect using novel techniques for counting
the concretizations of abstract cache states. We have demonstrated the practi-
cality of our approach by deriving information-theoretic security guarantees for
an off-the-shelf implementation of 128-bit AES (with and without a commonly
suggested countermeasure) on a realistic model of an embedded CPU.

Our prime targets for future work are to develop abstract cache domains that
enable the derivation of bounds that hold for an arbitrary number of executions
of the victim process, and to extend our quantification to cater for alternative
adversary models, such as asynchronous, trace-based, and timing-based. Progress
along these lines will enable the automatic derivation of formal, quantitative
security guarantees for a larger class of relevant attack scenarios.
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9. O. Aciiçmez, Çetin Kaya Koç, and J.-P. Seifert. Predicting secret keys via branch
prediction. In The Cryptographers’ Track at the RSA Conference (CT-RSA ’07),
volume 4377 of Lecture Notes in Computer Science, pages 225–242. Springer, 2007.
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A Omitted Proofs

The concrete cache updating function for a set t for access of a location m as
defined in [12] defines a new set t′ as follows
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U(t,m) =



t′(1) = m,
t′(i) = t(i− 1) | i = 2 . . . h,
t′(i) = t(i) | i = h+ 1 . . . A; if ∃h : t(h) = m

t′(1) = m,
t′(i) = t(i− 1) for i = 2 . . . A; otherwise

This can be generalized for a list 〈m1, . . . ,mk〉 of locations:

U(t, 〈m1, . . . ,mk〉) = U(U(. . .U(t,m1) . . . ),mk)

Lemma 2. Let Φ be the following property over cache sets t:

Φ(t) : t(k) = ∅ ⇒ ∀ k′ > k t(k′) = ∅.

Then if an initial concrete state t satisfies Φ, then the final concrete state after
the update of a sequence of memory references by means of the cache update
function U also respects Φ.

Proof. We consider the case where the cache consists of only one cache set (the
generalization is similar). We apply induction on the list of memory references
for:

t′ = U(t, 〈m1, . . . ,mk〉)

If the list is empty, the claim follows trivially. Otherwise, there are two cases:

∃h : t(h) = m: As m is in the cache, it is shifted to the first position and all
other locations are placed afterwards. Therefore Φ holds on the resulting cache.

otherwise: As m is not in the cache, it is inserted in the first positions and
the existing locations are placed afterwards. Therefore Φ holds on the resulting
cache.

B Excerpt final cache state of AES with preloading
(16KB, 4-Way, LRU, 32B line size)

must = [
[["0x1f000"],[],[],[]], [["0x1f020"],[],[],[]],
[["0x1f040"],[],[],[]], [["0x1f060"],[],[],[]],
[["0x1f080"],[],[],[]], [["0x1f0a0"],[],[],[]],
[[],["0x1f0c0","0x280c0"],[],[]], [[],["0x1f0e0","0x280e0"],[],[]],
[[],["0x1f100","0x28100"],[],[]], [[],["0x1f120","0x28120"],[],[]],
[[],["0x1f140","0x28140"],[],[]], [["0x28160"],["0x1f160"],[],[]],
[["0x1f180"],[],[],[]], [["0x1f1a0"],[],[],[]],
[["0x1b1c0"],[],["0x191c0"],[]], [[],["0x151e0","0x1f1e0"],[],[]],
[[],[],[],["0x13200"]], [],
[[],["0x9240","0x1f240"],[],[]], [[],["0x1e260","0x1f260"],[],[]],
...]

may = [
[["0x1f000"],[],[],[]], [["0x1f020"],[],[],[]],
[["0x1f040"],[],[],[]], [["0x1f060"],[],[],[]],
[["0x1f080"],[],[],[]], ["0x1f0a0"],[],[],[]],
["0x1f0c0","0x280c0"],[],[],[]], ["0x1f0e0","0x280e0"],[],[],[]],
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[["0x1f100","0x28100"],[],[],[]], [["0x1f120","0x28120"],[],[],[]],
[["0x1f140","0x28140"],[],[],[]], [["0x28160"],["0x1f160"],[],[]],
[["0x1f180"],[],[],[]], [["0x1f1a0"],[],[],[]],
[["0x1b1c0"],["0x151c0","0x171c0","0x191c0","0x1f1c0"],[],[]], [["0x151e0","0x1f1e0"],[],[],[]],
[["0x13200","0x1f200"],["0x11200"],[],[]], [["0x11220","0x1f220"],["0xf220"],["0x9220","0xb220","0xd220"],[]],
[["0x9240","0x1f240"],[],[],[]], [["0x1e260","0x1f260"],[],[],[]],
...]

C AES Transformation with Partitioning (Snippet)

In the encrypting process of the AES code as implemented in [4], access to the
look-up tables are performed for example in the various AES forward rounds.
For encryption for example, the forward rounds are initially contained in a loop,

for(j = (nr >> 1) - 1; j > 0; j--) {
AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);

}

where for a 128 bit key nr=10. The AES forward round is defined as:

#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \

X0 = *RK++ ^ FT0[ ( Y0 ) & 0xFF ] ^ \
FT1[ ( Y1 >> 8 ) & 0xFF ] ^ \
FT2[ ( Y2 >> 16 ) & 0xFF ] ^ \
FT3[ ( Y3 >> 24 ) & 0xFF ];

...
}

For partitioning (see 6.2) we have defined a function TEST INDEX as follows:

#define TEST_INDEX(i,a,v) { \
if(i<4) { \

v = a[i]; \
} \
else{ \

if(i<12){ \
v = a[i]; \

} \
...

if(i<252){ \
v = a[i]; \

}\
else {\

v = a[i];\
}

...
}

This code checks the range of the index i within a partition of the possible
index range of table a. In this case i ranges from 0 to 255, partitioned in 33
sub-ranges of length at most 8 corresponding to the sets associated to the table
blocks within a given sub-range. Then we have changed the original look-up by
the following semantically equivalent code.

#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \
/* temporary variable */ \
unsigned long t; \
\
TEST_INDEX(Y0,FT0,t); \
X0 = *RK++ ^ t; \
TEST_INDEX(Y1 >> 8,FT1,t); \
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X0 ^= t; \
TEST_INDEX(Y2 >> 16,FT2,t); \
X0 ^= t; \
TEST_INDEX(Y3 >> 24,FT3,t); \
X0 ^= t;
...}
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