
Single-block collision attack on MD5

Marc Stevens

Cryptology Group, CWI
P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands

marc@marc-stevens.nl

January 19, 2012

Abstract

In 2010, Tao Xie and Dengguo Feng [XF10] constructed the first single-block collision
for MD5 consisting of two 64-byte messages that have the same MD5 hash. Details of their
attack, developed using what they call an evolutionary approach, has not been disclosed “for
security reasons”. Instead they have posted a challenge to the cryptology community to find
a new different single-block collision attack for MD5. This paper answers that challenge by
presenting a single-block collision attack based on other message differences together with
an example colliding message pair. The attack is based on a new collision finding algorithm
that exploits the low number of bitconditions in the first round. It uses a clever trick to
choose message blocks that satisfy bitconditions up to step 22 and additionally uses three
known tunnels to correct bitconditions up to step 25. The attack has an average runtime
complexity equivalent to 249.8 calls to MD5’s compression function.

1 Introduction

The first MD5 collision by Wang et al. [WY05] in 2004 has set off an research impulse in the
cryptanalysis of MD5. Their original attack can find collisions for MD5 in about 15 minutes up
to an hour on an IBM P690 with a computational cost equivalent to about 239 calls to MD5’s
compression function. Since then many improvements have been made [YS05, SNKO05, LL05,
Kli05, Ste06, Kli06]. Currently, collisions for MD5 based on Wang et al.’s differential paths can be
found in several seconds on a single powerful PC with a computational cost equivalent to about
224.1 compression function calls. These faster attacks use techniques based on tunnels [Kli06],
controlling rotations in the first round [Ste06] and additional differential paths. Xie and Feng
[XF09] have described promising message differences that might lead to a very fast attack, with
possible a runtime complexity of roughly 210 compressions. However, they have not published
an actual attack based on these message differences so far. Instead, they have constructed a
MD5 collision attack with a complexity of about 220.96 MD5 compressions using less promising
message differences. Our fastest collision attack [SSA+09] is based on slightly different message
block differences than those used by Wang et al. and has a theoretical computational cost of
about 216 compression function calls.

The above mentioned attacks have a limited potential for abuse due to the requirement that
the intermediate hash values given as input to the collision attack have to be identical. This
requirement is most easily fulfilled by having two identical prefixes. For that reason collision at-
tacks of this form are called identical-prefix collision attacks. In 2007, a more powerful collision

1

mailto:marc@marc-stevens.nl

attack called a chosen-prefix collision attack was introduced [SLdW07] that removes this require-
ment. This additional freedom comes at a cost: chosen-prefix collision attacks are significantly
slower and require more message blocks compared to identical-prefix collision attacks. Initially, a
chosen-prefix collision could be found with an average computational cost of about 249 compres-
sion function calls. Since then this attack has been improved to about 239 compression function
calls [SSA+09]. Also a very short chosen-prefix collision attack requiring only 512 + 84 = 596
bits1 and a computational cost of about 253.2 compressions has been presented [SSA+09]. The
most convincing abuse scenario of MD5 collision attacks was presented in 2009 when a rogue
Certification Authority certificate signed by a trusted commercial Certification Authority was
obtained using a chosen-prefix collision [SSA+09]. An overview of other abuse scenarios based
on identical-prefix collisions and chosen-prefix collisions is given in [SLdW12].

Recently even single-block identical-prefix collisions have been found by Xie and Feng [XF10],
although they do not present their new techniques or other details “for security reasons”. Instead,
they have made a challenge to the cryptographic community to find a different single-block
identical-prefix collision attack. This paper answers this challenge by presenting a new single-
block identical-prefix collision attack for MD5 and an example colliding message pair. Our new
collision attack uses the three known best tunnels and a new algorithm that exploits the very
low number of bitconditions in the first round to deal with a rather high number of bitconditions
in the second round.

2 Preliminaries

2.1 Notation

2.1.1 32-bit words

MD5 is designed with a 32-bit computing architecture in mind and operates on words (v31 . . . v0)

consisting of 32 bits vi ∈ {0, 1}. These 32-bit words are identified with elements v =
∑31

i=0 vi2
i

of Z232 (a shorthand for Z/232Z). In this paper we switch freely between the bitwise and Z232

representation of 32-bit words. For 32-bit words X = (xi)
31
i=0 and Y = (yi)

31
i=0 we use the

following notation:

• X ∧ Y = (xi ∧ yi)31i=0 is the bitwise AND of X and Y ;

• X ∨ Y = (xi ∨ yi)31i=0 is the bitwise OR of X and Y ;

• X ⊕ Y = (xi ⊕ yi)31i=0 is the bitwise XOR of X and Y ;

• X = (xi)
31
i=0 is the bitwise complement of X;

• X[i] is the i-th bit xi;

• X + Y and X − Y denote addition and subtraction, respectively, of X and Y in Z232 ;

• RL(X,n) and RR(X,n) are the cyclic left and right rotation, respectively, of X by n bit
positions:

RL(101001001111111111111111000000012, 5)

= 100111111111111111100000001101002;

1. When using chosen-prefixes having a bitlength of 512 · N − 84 with N ∈ N, otherwise extra padding bits are
required. Hence, the colliding messages are at least 1024 bits (2 message blocks) long.

2

2.1.2 Binary signed digit representation

A binary signed digit representation (BSDR) for an X ∈ Z232 is a sequence (ki)
31
i=0 such that

X =

31∑
i=0

ki2
i, ki ∈ {−1, 0, 1}.

For each non-zero X there exist many different BSDRs. We use the following notation for a
32-digit BSDR Z:

• Z[i] is the i-th signed bit of Z;

• RL(Z, n) and RR(Z, n) are the cyclic left and right rotation, respectively, of Z by n posi-
tions;

• w(Z) is the weight of Z.

• σ(Z) =
∑31

i=0 ki2
i ∈ Z232 is the 32-bit word for which Z is a BSDR.

2.1.3 Related variables and differences

In collision attacks we consider two related messages M and M ′. In this paper any variable X
related to the message M or its MD5 calculation may have a corresponding variable X ′ related to
the message M ′ or its MD5 calculation. Furthermore, for such a ‘matched’ variable X ∈ Z232 we
define δX = X ′−X and ∆X = (X ′[i]−X[i])31i=0, which is a BSDR of δX. For a matched variable
Z that is a tuple of 32-bit words, say Z = (z1, z2, . . .), we define δZ and ∆Z as (δz1, δz2, . . .) and
(∆z1,∆z2, . . .), respectively.

2.2 Definition of MD5

2.2.1 MD5 overview

MD5 works as follows on a given bit string M of arbitrary bit length, cf. [Riv92]:

1. Padding. Pad the message: first append a ‘1’-bit, next append the least number of ‘0’-bits
to make the resulting bit length equivalent to 448 modulo 512, and finally append the bit
length of the original unpadded message M as a 64-bit little-endian integer. As a result
the total bit length of the padded message M̂ is 512N for a positive integer N .

2. Partitioning. Partition the padded message M̂ into N consecutive 512-bit blocks M0,
M1, . . . , MN−1.

3. Processing. To hash a message consisting of N blocks, MD5 goes through N + 1 states
IHVi, for 0 ≤ i ≤ N , called the intermediate hash values. Each intermediate hash value
IHVi is a tuple of four 32-bit words (ai, bi, ci, di). For i = 0 it has a fixed public value
called the initial value (IV):

(a0, b0, c0, d0) = (6745230116, efcdab8916, 98badcfe16, 1032547616).

For i = 1, 2, . . . , N intermediate hash value IHVi is computed using the MD5 compression
function described in detail below:

IHVi = MD5Compress(IHVi−1,Mi−1).

3

4. Output. The resulting hash value is the last intermediate hash value IHVN , expressed as the
concatenation of the hexadecimal byte strings of the four words aN , bN , cN , dN , converted
back from their little-endian representation. As an example the IV would be expressed as

0123456789abcdeffedcba987654321016.

2.2.2 Definition of MD5Compress

MD5’s compression function MD5Compress uses solely 32-bit words. The input for the compres-
sion function MD5Compress(IHVin, B) consists of an intermediate hash value IHVin = (a, b, c, d)
consisting of four words and a 512-bit message block B. The compression function consists of
64 steps (numbered 0 to 63), split into four consecutive rounds of 16 steps each. Each step t
uses modular additions, a left rotation, and a non-linear function ft, and involves an Addition
Constant ACt and a Rotation Constant RCt. These are defined as follows:

ACt =
⌊
232 |sin(t+ 1)|

⌋
, 0 ≤ t < 64,

(RCt, RCt+1, RCt+2, RCt+3) =

(7, 12, 17, 22) for t = 0, 4, 8, 12,

(5, 9, 14, 20) for t = 16, 20, 24, 28,

(4, 11, 16, 23) for t = 32, 36, 40, 44,

(6, 10, 15, 21) for t = 48, 52, 56, 60.

The non-linear function ft depends on the round:

ft(X,Y, Z) =

F (X,Y, Z) = (X ∧ Y)⊕ (X ∧ Z) for 0 ≤ t < 16,

G(X,Y, Z) = (Z ∧X)⊕ (Z ∧ Y) for 16 ≤ t < 32,

H(X,Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t < 48,

I(X,Y, Z) = Y ⊕ (X ∨ Z) for 48 ≤ t < 64.

(1)

The message block B is partitioned into sixteen consecutive words m0, m1, . . . , m15 (with little-
endian byte ordering), and expanded to 64 words Wt, for 0 ≤ t < 64, of 32 bits each:

Wt =

mt for 0 ≤ t < 16,

m(1+5t) mod 16 for 16 ≤ t < 32,

m(5+3t) mod 16 for 32 ≤ t < 48,

m(7t) mod 16 for 48 ≤ t < 64.

We follow the description of the MD5 compression function from [HPR04] because its ‘unrolling’
of the cyclic state facilitates the analysis. For each step t the compression function algorithm
maintains a working register with four state words Qt, Qt−1, Qt−2 and Qt−3 and calculates a
new state word Qt+1. With (Q0, Q−1, Q−2, Q−3) = (b, c, d, a), for t = 0, 1, . . . , 63 in succession
Qt+1 is calculated as follows:

Ft = ft(Qt, Qt−1, Qt−2);

Tt = Ft +Qt−3 +ACt +Wt;

Rt = RL(Tt, RCt);

Qt+1 = Qt +Rt.

(2)

After all steps are computed, the resulting state words are added to the intermediate hash value
and returned as output:

MD5Compress(IHVin, B) = (a+Q61, b+Q64, c+Q63, d+Q62). (3)

4

2.3 Bitconditions

Our collision finding algorithm depends on a set of sufficient bitconditions on (Qt[b], Q
′
t[b]) that

facilitates the search for a message block pair that satisfies a given differential path. Table 1
lists the possible bitconditions that may be used. We define qt[b] to denote the bitcondition on
(Qt[b], Q

′
t[b]), and we define qt to denote all bitconditions (qt[i])

31
i=0 on (Qt, Q

′
t).

Table 1: Sufficient bitconditions.

Symbol condition on Qt[i] direct/indirect

. no condition direct
0 Qt[i] = 0 direct
1 Qt[i] = 1 direct
^ Qt[i] = Qt−1[i] indirect

3 Our single-block collision attack

3.1 Overview

For our single-block collision attack we have selected the following message differences:

δm8 = 225, δm13 = 231, δmi = 0 for 0 ≤ i < 16, i 6= 8, 13.

These message differences lead to the partial differential path presented in Table 2. We have
chosen these message differences due to their properties similar to those of the message differences
used by Xie and Fengg [XF10]: δm5 = 210 and δm10 = 231.

In Section 3.2, we first construct a full differential path and a set of sufficient bitcondi-
tions, based on the partial differential path given in Table 2, using our techniques presented in
[SLdW12]. Next, we present our new collision finding algorithm in Section 3.3 followed by the
collision attack complexity analysis in Section 3.4. Finally, we present a found example colliding
message pair each consisting of only a single block of 512 bits in Section 3.5.

3.2 Bitconditions

We used our differential path construction algorithm from [SLdW07]2 to construct a full differ-
ential path based on the partial differential path in Table 2.

In order to keep the number of necessary bitconditions in the first round to a minimum,
we have chosen to perform the connection over the steps 18–21, instead of our usual choice for
the steps 12–15. In particular, our new collision finding algorithm depends on a low number of
bitconditions on the variables Q2, Q7, Q8, Q12 and Q13, whereas all bitconditions on the variables
Q14 up to Q21 can be fulfilled freely. Differential paths of this form are usually only possible
if they start with δIHVin = (0, 0, 0, 0), which is not the case for chosen-prefix collision attacks
and the second near-collision attack in a two-block identical-prefix collision attack. However, a
single-block identical-prefix collision has only one message block pair and its compression starts
with δIHVin = (0, 0, 0, 0).

5

Table 2: Partial differential path

t δQt δFt δWt δT †t δR†t

26 27 − 222

27 −24 − 225 + 231

28 −24 − 211 + 225 + 231

29 24 − 216 − 225 0 0 27 − 222 216 + 231

30 24 − 225 + 231 24 + 211 − 225 + 231 0 211 − 226 −28 + 225

31 24 − 28 + 231 24 − 216 − 225 + 231 0 −211 − 216 −24 + 231

32 −28 +225 0 24 − 216 28 − 220

33 −220 −24 + 220 + 231 225 220 231

34 −220 + 231 28 + 231 0 24 220

35 231 0 0 −28 231

36 0 +220 0 0 0
37 0 +231 0 −220 231

38 231 231 0 0 0
39 231 0 0 0 0
40 231 231 231 0 0

41 – 55 231 231 0 0 0
56 231 231 225 225 231

57 0 231 0 0 0
58 0 231 0 0 0
59 0 0 231 0 0
60 0 0 0 0 0

61 0 0 0 0 0
62 0 0 0 0 0
63 0 0 0 0 0
64 0

† Note that δTt = δQt−3 + δFt + δWt and δRt ∈ {RL(X + δTt, RCt)−RL(X,RCt) | X ∈ Z232}.

3.3 Algorithm

We present our new collision finding algorithm as Algorithm 1. It is designed to allow any number
of bitconditions over Q14 up to Q21 by exploiting a large degree of freedom in the first round
(very few bitconditions). Our algorithm is extended by the three known best tunnels, whose
auxiliary bitconditions in the first round do not have an averse effect on the attack’s runtime
complexity.

Algorithm 1 can be roughly split into four parts:

1. Instantiation (1.–3.): randomly choose values for Q14 up to Q21 satisfying the given bit-
conditions. These values directly imply values for m6 (step 17), m11 (step 18), m0 (step
19), m5 (step 20) and Q1 (step 0).

2. Precomputations (4.–7.): first a lookup table is generated containing tuples of valid values
for Q2 up to Q7 and Q13 that satisfy equations for steps 1 (uses m1), 5 (uses m5), 6
(uses m6) and 16 (uses m1) and the given bitconditions. The lookup table is indexed by
the values of the bits of Q7 and Q13 that are involved with Q8 and Q12 due to indirect
bitconditions. These bitpositions are marked with ‘1’-bits in the 32-bit word masks B8 and
B13 in Algorithm 1.

2. Implementation available at http://code.google.com/p/hashclash.

6

http://code.google.com/p/hashclash

Table 3: Bitconditions

t qt[31] . . . qt[0]

-3 – 2

3 010.0.00 .0001... 01.1...0 00.000..

4 00000000 00000000 00000000 00000000

5 11101011 01111000 11010001 11011100

6 ...1.1.. 1....111 ..1.111. ..1...11

70

8^0

9 00000000 00000000 000000.0 0!0000+-

10 00000000 00000000 000000.0 0.00000+

11 11111111 11111111 11111101 1.11111+

121..00.+-

13^.^^ .^^^.... ..1.00+. ...^^^0+

14 010.0.00 .0001.^. 01+10--0 00.0001+

15 000.0.00 .00001+. 00+00--0 001000+-

16 0001010+ 100000+1 00+0-+-0 00100001

17 .0..10.+ 0+000++0 10+10--1 01+0.000

18 .01+1-+1 -+-+-01- --+0-+++ ---010+.

19 .-0++.+1 00+011-1 ++1----- +1--0+0.

20 ..-10^0. 1+010.11 011.+100 0011+.+.

21 .^11+.1. .1+-..1+ 11.^0010 0-10.^..

22 ..+.-... .-+...1+-... .-.-^.^.

231.0. .+-^..+0-... .+.-...0

24 ..^.1.0. .-0....00... 1+.+...1

25 0.....-. .0-...^.1... 1+.+...+

260. .-......1... +1.1....

27 -.....-. ..^....01... .1.-...^

28 -.....+. .^.....1-... ^..-....

29 0.....-.-1..0 ...+....

30 -.....-.00... ...+....

31 -.....1.1- ...+....

320. ...!....-

33 !....... ...-....!....

34 +....... ...-....!

35 +.......

36!....

37 !.......

38 +.......

39 – 56 +.......

57 1.......

58 0.......

59 – 64

Includes bitconditions for tunnels (see Table 4). Bitconditions (and rotations) are only verified up to Q29.
Variations of the above differential path over steps t = 29, . . . , 63 are allowed. E.g., differential paths with
different signs of ∆Qt[31].

3. Main loop (8.–11.): iterate over valid values for Q8 up to Q12 satisfying bitconditions and
the step equation for step 11 using m11: Find all values in the lookup table that satisfy all
indirect bitconditions between Q7 and Q8, and between Q12 and Q13 using the index. For
each of these values, the variables Q−3 up to Q16 are known and thus the entire message

7

Algorithm 1 Single-block collision finding algorithm

Input: IHVin ∈ (Z232)4;
Output: M 6= M ′ ∈ {0, 1}512 such that MD5Compress(IHVin,M) = MD5Compress(IHVin,M

′);
Uses the bitconditions given in Table 3 and the tunnels shown in Table 4.

Algorithm:

1. Initialize Q−3, Q−2, Q−1 and Q0 with IHVin

2. Randomly choose Q14, . . . , Q21 satisfying bitconditions†

3. Compute m6, m11, m0 and m5 at steps t = 17, 18, 19, 20, and Q1 (at step 0)

4. Generate lookup table:

5. Loop over all values for Q3, Q4, Q5 and Q6 that satisfy bitconditions†:

6. Compute Q7 (at step 6), Q2 (at step 5), m1 (at step 1) and Q13 (at step 16)

7. If Q7, Q2 and Q13 satisfy bitconditions‡ then
append tuple (Q2, Q3, Q6, Q7, Q13) to lookup table at index (Q7 ∧B8, Q13 ∧B13)

8. Loop over all values for Q9, Q10, Q11 and Q12 that satisfy bitconditions†:

9. Compute Q8 at step 11

10. If Q8 satisfies bitconditions (including indirect ones involving Q9) then
loop over all (Q2, Q3, Q6, Q7, Q13) in lookup table at index (Q8 ∧B8, Q12 ∧B13):

11. Compute m0, . . . ,m15 (at steps 0, . . . , 15) and Q22 and Q23

12. If Q22 and Q23 satisfy bitconditions then
Loop over tunnel T4 to alter m3, m4 and m7:

13. Compute m4 (step 4) and Q24 (step 23)

14. If Q24 satisfies bitconditions then
loop over tunnel T9 to alter m8, m9 and m12:

15. Compute m9 (step 9) and Q25 (step 24)

16. If Q25 satisfies bitconditions then
loop over tunnel T14 to alter m2, m3, m6 (at steps 6 and 17), m13 and m14:

17. Compute m14, m3, m8, m13 (steps 14, 3, 8, 13) and Q26 – Q29 (steps 25–28)

18. If Q26, Q27, Q28 and Q29 satisfy bitconditions then:

19. Let M = (mi)
15
i=0 and M ′ = M + δM

20. If MD5Compress(IHVin,M) = MD5Compress(IHVin,M
′) then return (M,M ′).

21. Repeat steps 1. through 20. (until a collision is found)

† Ignoring any indirect bitconditions involving variables Qi whose values are not yet known.
‡ Including all indirect bitconditions involving these variables and variables Qi whose values are known.
Note: The words B8, B13 ∈ Z232 are constants such that Bt[b] = 1⇔ qt[b] =‘^’ for t ∈ {8, 13}, b ∈ {0, . . . , 31}.

block is determined. Compute Q22 and Q23 and if they satisfy the given bitconditions then
do the last part.

4. Tunnels (12.–20.): use the three known best tunnels (see Table 4) to make very precise
corrections to the message block pair such that all bitcondition up to Q23 remain fulfilled.
For all message block pairs that satisfy bitconditions q−3 up to q29, check whether the
message block pair forms a collision.

Our algorithm uses the three known best tunnels that are described in Table 4 and allow to

8

efficiently satisfy bitconditions q24, q25 and q26.

Table 4: Tunnels for MD5.

Tunnel Change Affected Extra bitconditions? Bitmask�

T4 Q4[b] m3,m4,m7, Q24..Q64 Q5[b] = 0, Q6[b] = 1 14872e2316
T9 Q9[b] m8,m9,m12, Q25..Q64 Q10[b] = 0, Q11[b] = 1 fffffdbc16
T14 Q14[b] m13,m14,m6, Q26..Q64 Q15[b] = Q16[b] = 0, Q3[b] = Q14[b]† eb78d1dc16

Q3[b] m2,m3 Q4[b] = 0, Q5[b] = 1‡

? Extra bitconditions refer only to Qt[b] and not to Q′t[b]. E.g., Q5[b] = 0 is met by both q5[b] = ‘0’ and q5[b] = ‘+’.
� A 32-bit word whose ‘1’-bits describe the bits b that are used for tunnels in combination with Table 3.
† Bitcondition q3[b] = ‘.’ and no other indirect bitconditions may involve Q3[b].
‡ An extra bitcondition Q12[b] = Q13[b] may be used such that the change in m14 can be accurately predicted.

3.4 Complexity analysis

We have implemented our single-block collision attack in C++. The sources and a Windows
executable can be found at http://marc-stevens.nl/research. Our algorithm can be freely
parallelized by using different instantiations for each thread.

Our implementation frequently shows the number of message block pairs it has found that
satisfies bitconditions q−3, . . . , q29, together with the wall time that has passed. Based on these
numbers, we have experimentally determined the average runtime complexity of finding one
message block pair that satisfies bitconditions q−3, . . . , q29 being equivalent to about 215.96 MD5
compressions3. Furthermore, we have experimentally determined that the probability that a
message block pair satisfying q26, q27, q28 and q29 results in a collision is about 2−33.85. Hence,
our single-block collision attack has a runtime cost equivalent to about 215.96 · 233.85 = 249.81

MD5 compressions.

3.5 Results

Based on our complexity analysis and a number of computers available for our collision search, we
estimated that it would take approximately five weeks. As this was feasible enough, we started
the actual search.

It was our fortune that a collision was found a bit earlier, namely after only three weeks. We
present our found example colliding message pair in Table 5. The two colliding messages can
also be downloaded at http://marc-stevens.nl/research.

3. Measured on an Intel Core2 Q9550 cpu.

9

http://marc-stevens.nl/research
http://marc-stevens.nl/research

Table 5: Example single-block collision – in hexadecimal notation

Message 1
4d c9 68 ff 0e e3 5c 20 95 72 d4 77 7b 72 15 87

d3 6f a7 b2 1b dc 56 b7 4a 3d c0 78 3e 7b 95 18

af bf a2 00 a8 28 4b f3 6e 8e 4b 55 b3 5f 42 75

93 d8 49 67 6d a0 d1 55 5d 83 60 fb 5f 07 fe a2

Message 2
4d c9 68 ff 0e e3 5c 20 95 72 d4 77 7b 72 15 87

d3 6f a7 b2 1b dc 56 b7 4a 3d c0 78 3e 7b 95 18

af bf a2 02 a8 28 4b f3 6e 8e 4b 55 b3 5f 42 75

93 d8 49 67 6d a0 d1 d5 5d 83 60 fb 5f 07 fe a2

Common MD5 hash
008ee33a9d58b51cfeb425b0959121c9

4 Concluding remarks

Tao Xie and Dengguo Feng [XF10] have posted a challenge to the cryptology community to find a
new different single-block collision attack for MD5. In this paper we have met their challenge by
presenting a new single-block collision attack for MD5 that is based on other message differences
than those used by Xie and Feng. Our single-block collision attack has a runtime complexity
equivalent to about 249.8 calls to MD5’s compression function. Since Xie and Feng disclosed
very little details about their attack, we are unable to compare the complexities of these two
single-block collision attacks for MD5.

Furthermore, we have successfully implemented our collision attack which resulted in an
example colliding message block pair. Our implementation sources, a Windows executable and
the two colliding 64-byte messages can be found at http://marc-stevens.nl/research.

References

[HPR04] Philip Hawkes, Michael Paddon, and Gregory G. Rose, Musings on the Wang et al.
MD5 Collision, Cryptology ePrint Archive, Report 2004/264, 2004.

[Kli05] Vlastimil Klima, Finding MD5 Collisions on a Notebook PC Using Multi-message
Modifications, Cryptology ePrint Archive, Report 2005/102, 2005.

[Kli06] Vlastimil Klima, Tunnels in Hash Functions: MD5 Collisions Within a Minute,
Cryptology ePrint Archive, Report 2006/105, 2006.

[LL05] Jie Liang and Xuejia Lai, Improved Collision Attack on Hash Function MD5 , Cryp-
tology ePrint Archive, Report 2005/425, 2005.

[Riv92] Ronald L. Rivest, The MD5 Message-Digest Algorithm, Internet Request for Com-
ments, April 1992, RFC 1321.

10

http://marc-stevens.nl/research
http://eprint.iacr.org/2004/264
http://eprint.iacr.org/2004/264
http://eprint.iacr.org/2005/102
http://eprint.iacr.org/2005/102
http://eprint.iacr.org/2006/105
http://eprint.iacr.org/2005/425
http://www.ietf.org/rfc/rfc1321.txt

[SLdW07] Marc Stevens, Arjen K. Lenstra, and Benne de Weger, Chosen-Prefix Collisions for
MD5 and Colliding X.509 Certificates for Different Identities, EUROCRYPT (Moni
Naor, ed.), Lecture Notes in Computer Science, vol. 4515, Springer, 2007, pp. 1–22.

[SLdW12] Marc Stevens, Arjen K. Lenstra, and Benne de Weger, Chosen-prefix collisions for
MD5 and applications, 2012, to appear in: Internation Journal of Applied Cryptog-
raphy.

[SNKO05] Yu Sasaki, Yusuke Naito, Noboru Kunihiro, and Kazuo Ohta, Improved Collision
Attack on MD5 , Cryptology ePrint Archive, Report 2005/400, 2005.

[SSA+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra, David Mol-
nar, Dag Arne Osvik, and Benne de Weger, Short Chosen-Prefix Collisions for MD5
and the Creation of a Rogue CA Certificate, CRYPTO (Shai Halevi, ed.), Lecture
Notes in Computer Science, vol. 5677, Springer, 2009, pp. 55–69.

[Ste06] Marc Stevens, Fast Collision Attack on MD5 , Cryptology ePrint Archive, Report
2006/104, 2006.

[WY05] Xiaoyun Wang and Hongbo Yu, How to Break MD5 and Other Hash Functions,
EUROCRYPT (Ronald Cramer, ed.), Lecture Notes in Computer Science, vol. 3494,
Springer, 2005, pp. 19–35.

[XF09] Tao Xie and Dengguo Feng, How To Find Weak Input Differences For MD5 Collision
Attacks, Cryptology ePrint Archive, Report 2009/223, 2009.

[XF10] Tao Xie and Dengguo Feng, Construct MD5 Collisions Using Just A Single Block Of
Message, Cryptology ePrint Archive, Report 2010/643, 2010.

[YS05] Jun Yajima and Takeshi Shimoyama, Wang’s sufficient conditions of MD5 are not
sufficient , Cryptology ePrint Archive, Report 2005/263, 2005.

11

http://dx.doi.org/10.1007/978-3-540-72540-4_1
http://dx.doi.org/10.1007/978-3-540-72540-4_1
http://marc-stevens.nl/research/papers/IJACT12-StLdW.pdf
http://marc-stevens.nl/research/papers/IJACT12-StLdW.pdf
http://eprint.iacr.org/2005/400
http://eprint.iacr.org/2005/400
http://dx.doi.org/10.1007/978-3-642-03356-8_4
http://dx.doi.org/10.1007/978-3-642-03356-8_4
http://eprint.iacr.org/2006/104
http://dx.doi.org/10.1007/11426639_2
http://eprint.iacr.org/2009/223
http://eprint.iacr.org/2009/223
http://eprint.iacr.org/2010/643
http://eprint.iacr.org/2010/643
http://eprint.iacr.org/2005/263
http://eprint.iacr.org/2005/263

	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.1.1 32-bit words
	2.1.2 Binary signed digit representation
	2.1.3 Related variables and differences

	2.2 Definition of MD5
	2.2.1 MD5 overview
	2.2.2 Definition of MD5Compress

	2.3 Bitconditions

	3 Our single-block collision attack
	3.1 Overview
	3.2 Bitconditions
	3.3 Algorithm
	3.4 Complexity analysis
	3.5 Results

	4 Concluding remarks
	References

