
STITCH-256: A New Dedicated Cryptographic Hash Function

Norziana Jamil, Ramlan Mahmood, Muhammad Reza Z’aba, Nur Izura Udzir, Zuriati Ahmad
Zukarnaen.

Abstract

Recent progress in cryptanalysis on cryptographic hash functions has shown that the most of the
hash functions based on the design principles of MD4 are susceptible to differential attack. This
paper describes a new 256-bit hash function which is based on parallel branches having a
stronger compression function. It is designed to have higher security than that of MD family and
its variant. The performance of the new hash functions are evaluated and compared with SHA-
256 and FORK-256. It is shown that STITCH-256 exhibit the desired cryptographic properties
and comparable with SHA-256 and FORK-256 in its compression function.

1. Introduction
MD4 [1] is the first cryptographic hash function which made use of the structure of 32-bit
processors. It employs serial operations and treatment of little-endian architecture in its
compression function. Just a year after its publication in 1990, an attack on the last 32 out of
48 steps has been presented [2]. MD5 [3] turns out as a strengthen version of MD4 with
additional round using the same structure but have a longer hash value. This design principle
has long survived against any generic attacks when new techniques in cryptanalysis have
treated the structure of MD in 1993 by Den Boer and Bosselaers [4]. They showed a way to
find two different values of the IV and a common message M such that MD5 (IV, M) = MD5
(IV’, M). However the attempt did not pose any threat to the usual applications of MD5
because one cannot control the inputs of chaining variables. The effort to find weaknesses in
the structure of hash functions of MD-like design continued in 1996 when H. Dobbertin [4]
found collisions for MD4 [5] and the last two out of three rounds of RIPEMD [6]. The attack
was quite surprising since RIPEMD has a different structure than that of MD. The techniques
used by H. Dobbertin on RIPEMD has been also used to produce collisions for MD4 and
show that the two first rounds of MD4 are not one way [7]. He also chowed collisions for the
compression function of MD5 with a chosen IV [8, 9]. These techniques have been improved
by Wang et. al [10, 11, 12] to successfully find collisions for MD5, SHA-0 [13] and
RIPEMD first proposal [14]. However RIPEMD-128/160 are the algorithms which are still
immune against their attacks since there are no attacks on them are found so far.

RIPEMD-128/160 has different structure than that of MD and SHA family. The compression
functions are within two parallel branches which makes the attack harder since two branches
have to be taken into account simultaneously. Both branches of RIPEMD-128/160 [16] need

almost same operation of MD5 and SHA algorithm resulting in its efficiency was
degenerated almost half of them.
overcome this disadvantage of RIPEMD
having four branches. They also manage to reduce the number of operations for step
functions of each line. However the speed performance of FO
SHA-256 and memory requirement are bigger than that of RIPEMD
Matusiewiez et.al [17, 18
collision for a complete version of FORK
FORK-256 shows a pretty good design since there is no successful attack found so far on its
complete version. However,
collision against a complete version of FORK
weakness in FORK-256 and therefore
operations with good speed performance and security

In this paper, we briefly describe FORK
proposed cryptographic hash function called STITCH
is presented in Section 4 and we conclude the paper in Section 5.

2. A brief description of cryptographic hash function

FORK-256 is a dedicated hash function that maps 256 bits of state and 512 bits of message to
256 bits of hash value. It is proposed by Hong et. al [9] and is based on the classical Merkle
Damgard iterative structure. The compression function of FORK
branches as illustrated in figure 1 in which each branch processes set of message words in
different order.

almost same operation of MD5 and SHA algorithm resulting in its efficiency was
degenerated almost half of them. This is described by Hong et. al [
overcome this disadvantage of RIPEMD-128/160 by introducing FORK
having four branches. They also manage to reduce the number of operations for step
functions of each line. However the speed performance of FORK-256 is slower than that of

256 and memory requirement are bigger than that of RIPEMD
17, 18] also showed that their technique can be used to yield a near

collision for a complete version of FORK-256 with a complexity of 2
256 shows a pretty good design since there is no successful attack found so far on its

complete version. However, Matusiewiez's technique is claimed to be extended
collision against a complete version of FORK-256 [19]. This has motivated us to identify the

256 and therefore STITCH-256 is designed with more careful step
eed performance and security requirement in mind.

In this paper, we briefly describe FORK-256 hash function in Section 2, followed by a new
proposed cryptographic hash function called STITCH-256 in Section 3, its security analysis
is presented in Section 4 and we conclude the paper in Section 5.

A brief description of cryptographic hash function FORK-256

256 is a dedicated hash function that maps 256 bits of state and 512 bits of message to
256 bits of hash value. It is proposed by Hong et. al [9] and is based on the classical Merkle
Damgard iterative structure. The compression function of FORK-256 con
branches as illustrated in figure 1 in which each branch processes set of message words in

Fig. 1 The high level of compression function of FORK-256

almost same operation of MD5 and SHA algorithm resulting in its efficiency was
g et. al [15] in which they

128/160 by introducing FORK-256bit hash function
having four branches. They also manage to reduce the number of operations for step

256 is slower than that of
256 and memory requirement are bigger than that of RIPEMD-320. Furthemore,

] also showed that their technique can be used to yield a near-
ity of 2125 hash computation.

256 shows a pretty good design since there is no successful attack found so far on its
Matusiewiez's technique is claimed to be extended to find a

. This has motivated us to identify the
is designed with more careful step

requirement in mind.

on in Section 2, followed by a new
256 in Section 3, its security analysis

256 is a dedicated hash function that maps 256 bits of state and 512 bits of message to
256 bits of hash value. It is proposed by Hong et. al [9] and is based on the classical Merkle-

256 consists of four parallel
branches as illustrated in figure 1 in which each branch processes set of message words in

256

Each branch function B1,…, B4 consists of eight steps where in each step k = 1, … , 8 the
branch function updates the eight chaining variables using step transformation as illustrated
in figure 2 [9].

Fig. 2 Step transformation of FORK-256

Functions f and g map 32-bit words to 32-bit words are defined as

f(x) = x + (ROL7 (x) ⊕ ROL22 (x)), g(x) = x + (ROL13 (x) ⊕ ROL27 (x)).

A more detail description can be found in [9].

It is reported in both [10] and [11] that a number of weaknesses of FORK-256 has been
discovered. This includes the unexpected property of parallel branches that allows pairs of
messages that differ on only a small number of bits to be found. This possibly is caused by
almost similar operations in both sides in a branch where functions f and g are used in a
different order. In the following section, we describe our proposed cryptographic hash
function STITCH-256 in more detail and highlight its difference with FORK-256 with strong
justification.

3. Description of STITCH-256

STITCH-256 hashes 512-bit block messages to 256-bit message digests. Therefore an input
message of arbitrary length is first padded by a single bit 1 next to the least significant bit of
the message, followed by zero as many as possible until the length of the message is 448
modulo 512. At least one bit and at most 512 are appended. Then a bit ‘1’ is appended,
followed by a 64-bit unsigned big-endian representation of message length modulo 264 to the
message. This procedure ensures that the length of the padded message is a multiple of 512.
Padding for STITCT-256 can be represented as:

 M m || 10000….00001〈message length〉64

3.1 STITCH-256 Compression Function

The compression function of STITCH
RIPEMD-family which runs in parallel of two branches. STITCH
branches, B1, B2, B3 and B4 as

CVi is a 256-bit chaining variable at
registers A, B, C, D, E
initial values of STITCH

To proceed to the iterated hash,
32-bit words M0, M1,
computing:

CVi+1 = [(CVi � B1 (

Σ4(M))) � (B3 (CVi, Σ3

where Σj(M) is thirty two
message expansion and rearrangement is described in the next section.

256 Compression Function

The compression function of STITCH-256 is originally motivated by the design of
family which runs in parallel of two branches. STITCH
B1, B2, B3 and B4 as illustrated in Fig. 1.

Fig. 3 Compression function of STITCH-256

bit chaining variable at i-th iteration, is made up of
E, F, G and H. SV is a fixed 32-bit salt value

initial values of STITCH-256 are the same as that used in SHA-224:
A= C1059ED8 B= 367CD507
C= 3070DD17 D= F70E5939
E= FFC00B31 F= 68581511

G= 64F98FA7 H= BEFA4FA4

To proceed to the iterated hash, each successive 512-bit message block
, M2, …. , M15. Fig. 3 shows that CVi is updated to

B1 (CVi, Σ1(M))) � (B2 (CVi, Σ2(M))] ⊗ [((CV

3(M)))]

thirty two expanded and rearranged 32-bit message words
message expansion and rearrangement is described in the next section.

motivated by the design of
family which runs in parallel of two branches. STITCH-256 has four parallel

th iteration, is made up of eight 32-bit word
salt value, 0x67452301. The

224:

bit message block M is split into 16
is updated to CVi+1 by

CVi � SV) ⊕ B4 (CVi,

bit message words Mi. The
message expansion and rearrangement is described in the next section.

3.2 STITCH-256 Step Transformation

Step transformation of STITCH
intermediate values difference, i
characteristics. We allocate two phases for step transformation. The first s
transformation is illustrated in Fig.

Fig.

First phase of step transformation is a
divided into two halves
update the new registers.

The message arrangement
next section. However, both
arrangement. The compression function of STITCH

first digit of π, in a single step transformation and the arrangement
different for both wings
compression function of STITCH

Table 1. Constants used in the compression function of STICTH

These constants are used to ea

ϕ1 243F6A8885A308D3 ϕ2

ϕ5 452821E638D01377 ϕ6

ϕ9 9216D5D98979FB1B ϕ10

ϕ13 BA7C9045F12C7F99 ϕ14

256 Step Transformation, Bi

Step transformation of STITCH-256 is designed to maximize the propagation of the
intermediate values difference, i.e to lower the probability of the differential

We allocate two phases for step transformation. The first s
transformation is illustrated in Fig. 4.

Fig. 4. First phase of single step transformation Bi of STITCH-

of step transformation is a phase where the chaining variables
divided into two halves, P and Q, and mixes with the message words
update the new registers.

The message arrangement Σi(M) for all branches are different and are described
next section. However, both P and Q in one branch accept the same message
arrangement. The compression function of STITCH-256 uses four different constants

in a single step transformation and the arrangement
wings. Table 1 shows the 16 different constants used in the

compression function of STITCH-256.

Table 1. Constants used in the compression function of STICTH

These constants are used to each branch ordered as in Table 2.

13198A2E03707344 ϕ3 A4093822299F31D0 ϕ4

BE5466CF34E90C6C ϕ7 C0AC29B7C97C50DD ϕ8

D1310BA698DFB5AC ϕ11 2FFD72DBD01ADFB7 ϕ12

24A19947B3916CF7 ϕ15 0801F2E2858EFC16 ϕ16

P

256 is designed to maximize the propagation of the
.e to lower the probability of the differential

We allocate two phases for step transformation. The first step

-256

phase where the chaining variables CVi is equally
and mixes with the message words Mi and constants to

nd are described in the
in one branch accept the same message

256 uses four different constants, the

in a single step transformation and the arrangement of the constants are
. Table 1 shows the 16 different constants used in the

Table 1. Constants used in the compression function of STICTH-256

 082EFA98EC4E6C89

 3F84D5B5B5470917

 B8E1AFED6A267E96

 636920D871574E69

Q

Table 2. The ordering of constants in each wings of each branch

The constants are re-arranged as such to avoid the attack using cancellation technique. A
single step transformation in each wing updates its new registers by producing the
following outputs:

A i+1 = cd � f2(C, D, f1(A, B, Wi))

Bi+1 = ca � f2(C, D, f1(A, B, Wi))

Ci+1 = cb � f2(C, D, f1(A, B, Wi))

Di+1 = cc � f2(C, D, f1(A, B, Wi))

Ei+1 = ROT13 (f4(E, Wi, f3(F, G, H)))
Fi+1 = f3(F, G, H)

Gi+1 = ca � f3(F, G, H)

Hi+1 = f4(E, Wi, f3(F, G, H))

Functions f1, f2, f3 and f4 are different in each branch. This is to disturb the attempt of an
attacker to find good differential characteristics for parallel branches. The functions used
in the compression function of STITCH-256 are mentioned in Table 3. The selection of
functions used in STITCH-256 is carefully chosen in a way that all of them exhibit
cryptographically strong properties.

Table 3. Boolean functions used in the compression function of STITCH-256
Branch P Q

 f1 f2 f3 f4
B1 p⊗q⊗r (p∨ (q⊗ (~r))) ⊗r p ⊗ ((p ⊗ q)∧r) ((p⊗ (~q)) ∨ r) ⊗q
B2 q⊗(p∨~r) (p∧(q ⊗ r)) ⊗q (p∧q)⊗(q∧r)⊗r (p∧(q⊗r))⊗r
B3 (p ∨(q⊗ (~r))) ⊗q p ⊗ (p∧q) ⊗ (q∧r) ((p ⊗ q) ∧ r) ⊗ q q⊗ (p∨~r)
B4 ((p⊗ (~r))∨ q) ⊗r p⊗q⊗r p⊗((p⊗(~r)) ∨q) (p ∨(q⊗ (~r))) ⊗q /

q⊗(p∨~r)

After each of a single step transformation is performed, the new register will be the input
to the other wing of branch as illustrated in figure 5. This is the second phase of a single

Branch C1 C2 C3 C4

B1
P ϕ1 ϕ2 ϕ3 ϕ4
Q - - - ϕ2

B2
P ϕ5 ϕ6 ϕ7 ϕ8
Q - - - ϕ6

B3
P ϕ9 ϕ10 ϕ11 ϕ12
Q - - - ϕ10

B4
P ϕ13 ϕ14 ϕ15 ϕ16
Q - - - ϕ14

step transformation. The propagation of intermediate values is maximized in a stitchi
way.

Each branch iterates the step transformation for 32 rounds for both wings
intermediate values for each iteration is swapped to the next wing in a branch as an input
and the final registers are obtained after the final message word
concatenating all the registers from both wings:
A31|| B31|| C31|| D31|| E31

For iteration i+1, 0 ≤
producing the following outputs:
A i+1 = Ei
Bi+1 = Gi
Ci+1 = Fi
Di+1 = Hi
Ei+1 = Bi
Fi+1 = Ai
Gi+1 = Di
Hi+1 = Ci

3.3 Message expansion and rearrangement

To expand the message,

parameters until the desired non
STITCH-256 are as follows

 Mi

 σ1(Wi-7,

Wi

The propagation of intermediate values is maximized in a stitchi

Fig. 5 Propagation of intermediate values in STITCH-256

Each branch iterates the step transformation for 32 rounds for both wings
intermediate values for each iteration is swapped to the next wing in a branch as an input

nal registers are obtained after the final message word in a branch
the registers from both wings:

31|| F31|| G31|| H31

≤ i ≤ 30, the step transformation updates its new regist
producing the following outputs:

Message expansion and rearrangement

To expand the message, we modify formulas σ0 and σ1 used in SHA

parameters until the desired non-linear diffusion is achieved. Formula
256 are as follows:

, Wi-16) + Wi-14 + σ0(Wi-9, Wi-2) + Wi-3 ⊗ SV

The propagation of intermediate values is maximized in a stitching

Each branch iterates the step transformation for 32 rounds for both wings P and Q. The
intermediate values for each iteration is swapped to the next wing in a branch as an input

in a branch is iterated by

30, the step transformation updates its new registers by

SHA-256 by testing a few

ormulas σ0 and σ1 used in

 0 ≤ i ≤ 15

 16 ≤ i ≤ 32

where σ0(x, y) = [ROT9(x) ⊗ y] ⊗ [ROT18(x) ⊗ y] ⊗ SHR3(x) and

σ1 = [ROT15(x) ⊗ y] ⊗ [ROT30(x) ⊗ y] ⊗ SHR10(x)

The total number of message words now becomes 32, where sixteen of them are the
original message words and another sixteen are produced from the expansion process. To
proceed to the iterated hash, we arrange the message words Wi as follows: Message
words Wi where 0 ≤ i ≤ 15, are arranged alternatively (or positioned in the odd number of
array) such that the first message word M0 is arranged in the first array R0, second
message word M1 in the third array R2, third message word M2 in the fifth array R5, so
forth and so on until all the message words W0…W15 are arranged accordingly, filling up

16 arrays. Message words Wi where 16 ≤ i ≤ 32 are then placed in the empty even arrays,
such that W16 is placed in the second array R1, W17 is placed in the forth array R3, W18 is
placed in the second array R6, so forth and so on. The arrangement of the original and the
expanded message words is illustrated in table 4.

Table 4 The arrangement of original and expanded message words in STITCH-256

W0 W16 W1 W17 W2 W18 W3 W19

W4 W20 W5 W21 W6 W22 W7 W23

W8 W24 W9 W25 W10 W26 W11 W27

W12 W28 W13 W29 W14 W30 W15 W31

This arrangement now becomes the initial arrangement of message words Wi and we now
read it as W0, …. W31. Next all the message words Wi are re-arranged for each branch
following the arrangement described in Table 5. The number in each cell shows the
message word’s index, W1, …. , W31.

Table 5. The re-arrangement of original message words and their expansion words
Br
an
ch
/W

i

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

B1 0

1

2
6

2
7

2
0

2
1

1
4

1
5

8

9

2

3

2
8

2
9

2
2

2
3

1
6

1
7

1
0

1
1

4

5

3
0

3
1

2
4

2
5

1
8

1
9

1
2

1
3

6

7

B2 1
4

1
5

2
0

2
1

2
6

2
7

0

1

2
2

2
3

2
8

2
9

2

3

8

9

3
0

3
1

4

5

1
0

1
1

1
6

1
7

6

7

1
2

1
3

1
8

1
9

2
4

2
5

B3 2
4

2
5

1
8

1
9

1
6

1
7

1
0

1
0

1
6

1
7

1
0

1
1

4 5 3
0

3
1

8 9 2 3 2
8

2
9

2
2

2
3

0 1 2
6

2
7

2
0

2
1

1
4

1
5

B4 2
4

2
5

1
8

1
9

1
2

1
3

6

7

1
6

1
7

1
0

1
1

4 5 3
0

3
1

8 9 2 3 2
8

2
9

2
2

2
3

0 1 2
6

2
7

2
0

2
1

1
4

1
5

4. Design Strategy
The branch strategy in STITCH-256 is motivated by the design of RIPEMD-160 [15] which
has two parallel lines running almost the same operations of MD5 and SHA-family hash
functions. So far RIPEMD-160 hash function is still secure against the differential attack by
Wang et. al [16] that was successfully attacking MD-family and SHA-family hash functions.
The parallel design means that it has to take all the parallel branches simultaneously to build
the differential characteristics with high probability. This is not a trivial job and another
feature in STITCH which introduces message expansion and re-arrangement will increase the
level of difficulty to build such characteristics. We manage to reduce the step operation of
each branch to contribute to fast implementation of STITCH-256 while maintaining the
security aspect by having a carefully studied of selected cryptographically strong Boolean
functions f1, f2, f3, f4.

4.1 Design Principle

Compression Function of STITCH-256 It consists of four parallel branches, which is
implemented to accept 512-bit input messages and give away 256-bit output message
digests. STITCH-family can be considered to accept 1024-bit input messages and
produce 512-bit output message digests by having a 512-bit register words in every
branch where each wing P and Q processes 256-bit register words accordingly following
the design principle of STITCH-256. In a case of STITCH-512, eight different Boolean
functions will be involved in each branch and the number of constant values and the size
of step transformations are doubled one time. However, we don’t focus in STITCH-
family in this paper; rather we just focus in STITCH-256. The security of compression
function of STITCH-256 also comes highly from its message expansion and message re-
arrangement. We believe that the level of security can be increased with the high message
difference propagation throughout the step transformations. This is realized with the
design of STITCH-256 message expansion in which the calculated Hamming codes are
propagating the influence of message words vertically and horizontally.

Constants STITCH-256 uses 4 different constants in each branch, and they are used
in different order in each wing in a branch. In total, STITCH-256 has 16 different
constants for the four branches. The constants are the first digit of π, and differently
selected to randomize the pattern of message differences.

Boolean functions There is only one diffusion function used in STITCH-256:
 fi = p ⊗ q ⊗ r.

Diffusion function is used in step transformation in all the branches. For non-linear
functions, there are 4 different bitwise Boolean functions used in each branch. We

identified 12 distinct Boolean functions from Cellular Automata rules [21], and five of
them are used twice to give sixteen Boolean functions in STITCH-256. All Boolean
functions used in STITCH-256 are balanced functions, have been carefully studied for
their cryptographic properties such as non-linearity, propagation criteria and high
algebraic degree. The summary of their cryptographic properties are summarized in Table
6.

Table 6: Cryptographic properties of Boolean functions used in STITCH-256
Boolean functions Non-linearity Propagation criterion

of order m
Algebraic degree of
order n

p⊗((p⊗(~r)) ∨ q) 2 1 2
((p⊗ (~q)) ∨ r) ⊗q 2 1 2
(p ∨(q⊗ (~r))) ⊗q 2 1 2

((p⊗ (~r))∨ q) ⊗r 2 1 2
(p∨ (q⊗ (~r))) ⊗r 2 1 2
(p∧(q ⊗ r)) ⊗q 2 1 2
p ⊗ (p∧q) ⊗ (q∧r) 2 1 2
(p∧(q⊗r))⊗r 2 1 2
p ⊗ ((p ⊗ q)∧r) 2 1 2
(p∧q)⊗(q∧r)⊗r 2 1 2
((p ⊗ q) ∧ r) ⊗ q 2 1 2

For 3-variables Boolean functions, the desired cryptographic properties are the maximum
non-linearity which is 2, propagation criterion of order 1 and high algebraic degree, 2.
Further explanation of all the cryptographic properties can be referred to, for eg [22],
[23], [24].

Message expansion and message re-arrangements STITCH-256 expands the
original message words from 16 to 32 32-bit message words. This is done by calculating
dividing the message block of 512 bits into 16 32-bit message words, and the expansion
is following the formulas specified earlier with an objective that the bits are mixed to the
maximum.

5. Preliminary Security Analysis of STITCH-256

Assume that the attacker inserts a message difference ∆m = m’-m, to the i-th branch and
suppose the output difference ∆i is produced. The attacker expects that a collision might
occur if the following event is satisfied:

[(CV + ∆1) + ∆2] ⊗ [(CV + ∆4) + ∆3)] + SV = 0

 α β

Say the attacker simplify the operation by denoting (CV + ∆1) as α and (CV + ∆4 + ∆3) as β.
There are several strategies that the attacker can take to fulfill this event. For every strategy,
we provide the arguments on how to defeat the strategies.

1. The attacker constructs α + ∆2 = -(β + ∆3 + SV) to have a collision to occur. He can also
reduce the complexity by constructing ∆2= -∆3 and α= -(β+SV). However differential
pattern of the message words ∆2= -∆3 is difficult to achieve because the output of each
branch is random. Therefore the probability to construct the differential pattern to occur
with high probability is close to 2-128.

2. The attacker constructs two distinct differential characteristics and expects that α = - ∆2
and β = - ∆3. However this is also difficult to construct since both α and β contain
random output differential ∆ in branch 1 and 4. Message reordering and bit propagation
in a stitching way increase the probability for an attacker to construct differential
characteristics with low probability.

The strength of STITCH-256 lies in its message expansion which gives better bit
propagation, message rearrangement which gives more difficulties for an attacker to
construct differential characteristics with high probability and bit propagation through
stitching step operation. The combination of these three characteristics gives better security
for STITCH-256 on a whole.
We compare the primitives, number of operations and cycles used in STITCH-256, FORK-
256 and SHA-256. The comparison is illustrated in Table 7.

Table 7. Number of operations used in step transformation of STITCH-256, FORK-256 and SHA-256
Operation STITCH-256 FORK-256 SHA-256
Addition (+) 640 472 600
Bitwise operation (⊗,∧,∨) 513 328 1024
Shift (<< , >>) - - 96
Shift rotation (<<< , >>>) 128 512 576
TOTAL OPERATIONS 1281 1312 2296
Block size (bits) 512 512 512
Maximum message size (bits) 264 - 1 264 - 1 264 – 1
Output size (bits) 256 256 256
Rounds 32 32 64

From table 6, we can see that STITCH-256 has lesser total operations than both FORK-256
and SHA-256. This will constitute to a faster performance as a whole function. The whole
function also has exhibited a good avalanche effect when half of the output bits are changed
on average of 1000 sample experiments.

6. Conclusion

In this paper, a new cryptographic hash function, STITCH-256 is proposed. It takes arbitrary
length of message and outputs 256 bits message digest. STITCH-256 introduces a few
components in its structure, namely message expansion and rearrangement, and stitching step
operations. These components are designed to give a better security in STITCH-256.
STITCH-256 also processes the bits in four parallel branches inspired by RIPEMD and
FORK-256 but compress the outputs from the four branches slightly different from that of

FORK-256. STITCH-256 is a simple but elegant cryptographic hash functions. It has shown
good bit propagation through the whole step operations and we hope to receive further
analysis on the security of STITCH-256.

References

[1] R. Rivest. The MD4 Message-Digest Algorithm, Request for Comments (RFC) 1320”,
Internet Activities Board, Internet Privacy Task Force, 1992.
[2] B. d. Boer, and A. Bosselaers. An Attack on the Last Two Rounds of MD4, In J.
Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91, volume 576 of LNCS, pages 194-
203. Springer-Verlag, 1991.
[3] R. Rivest. The MD5 Message-Digest Algorithm, Request for Comments (RFC) 1321”,
Internet Activities Board, Internet Privacy Task Force, 1992.
[4] B. d. Boer, and A. Bosselaers. Collisions for the Compression Function of MD5, In Advances
in Cryptology – EuroCRYPT ’93, volume 765 of LNCS, pages 193-304. Springer-Verlag, 1994.
[5] H. Dobbertin. Cryptanalysis of MD4, Journal of Cryptology 11:4, pp. 253-271, 1998.
[6] H. Dobbertin. RIPEMD with Two Round Compression Function is Not Collision-Free,
Journal of Cryptology, 10(1):51–70, 1997.
[7] H. Dobbertin. The first two rounds of MD4 are not one-way, In Fast Software Encryption –
FSE ’98, volume 1372 of LNCS, pages 284–292. Springer, 1998.
[8] H. Dobbertin. Cryptanalysis of MD5, Presented at the rump session of EUROCRYPT ’96,
May 12-16, 1996.
[9] H. Dobbertin. The Status of MD5 After a Recent Attack. CryptoBytes, 2(2):1,3–6, 1996.
[10] X. Wang, Y. L. Yin, and H. Yu. Efficient Collision Search Attacks on SHA-0, In Advance
in Cryptology – CRYPTO 05, vol. 3621 of LNCS, pp. 1-16, Springer-Verlag, August 2005.
[11] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1, In Advances in
Cryptology – CRYPTO 05, vol. 3621 of LNCS, pp. 17-36, Springer-Verlag, August 2005.
[12] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions, In Advances in
Cryptology – EUROCRYPT 2005, LNCS 3494, Springer-Verlag, pp. 19-35, 2005.
[13] FIPS 180. Secure Hash Standard (SHS). National Institute of Standards and Technology,
May 1993. Replaced by [20].
[14] H. Dobbertin, A. Bosselaers and B. Preneel. RIPEMD-160, A Strengthened Version of
RIPEMD, FSE ’96, LNCS 1039, Springer-Verlag, pp. 71-82, 1996.
[15] D. Hong, J. Sung, S. Hong, S. Lee, and D. Moon. A New Dedicated 256-bit Hash Function:
FORK-256, First NIST Workshop on Hash Functions, 2005.
[16] B. Preneel, A. Bosselaers, and H. Dobbertin. RIPEMD-160: A Strenghtened Version of
RIPEMD. In D. Gollman, editor, Fast Software Encryption – FSE ’96, volume 1039 of LNCS,
pages 71-82. Springer-Verlag, 1997.
[17] K. Matusiewiez, T. Peyrin, O. Billet, S. Contini, and J. Pieprzyk. Cryptanalysis of FORK-
256, In Proc. Fast Software Encryption 2007, March 26-28, 2007, Luxumbourg; LNCS 4593,
Springer, 2007.
[18] K. Matusiewiez, S. Contini, and J. Pieprzyk. Weaknesses of the FORK-256 compression
function, IACR Cryptology e-print Archive 2006, report 2006/317.

[19] S. Kontini, K. Matusiewicz, and J. Pieprzyk. Extending FORK-256 Attack to the Full Hash
Function, Proc. ICICS 2007, December 12-15, Zhengzhou, China; LNCS 4861, Springer, 2007.
[20] National Institute of Standards and Technology. Secure hash standard(SHS). FIPS 180-2,
August 2002.
[21] S. Wolfram. Universality and complexity in cellular automata. Physica D, 10:1-35, 1984.
[22] T. Siegenthaler. Correlation-immunity of non-linear combining functions for cryptographic
applications, IEEE Trans. On Information Theory, vol. IT-30, no. 5, pp. 776-780, 1984.
[23] P. Camion, C. Carlet, P. Charpin, and N. Sendrier, On correlation immune functions, in
Advances of Cryptology, CRYPTO 1991, Santa Barbara, USA, 1991, 00. 86-100.
[24] B. Preneel, W. V. Leekwijck, L. V. Linden, R. Govaerts, and J. Vandewalle. Propagation
Characteristics of Boolean functions. In Advances in Cryptology – EUROCRYPT ’90, vol. 437
of Lecture Notes in Computer Science, pp. 155-165. Springer-Verlag, Berlin, Heidelberg, New
York, 1991.

