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Abstract

Recent progress in cryptanalysis on cryptograpaghtfunctions has shown that the most of the
hash functions based on the design principles o#iME2 susceptible to differential attack. This
paper describes a new 256-bit hash function whsclibased on parallel branches having a
stronger compression function. It is designed teeH@gher security than that of MD family and
its variant. The performance of the new hash fanstiare evaluated and compared with SHA-
256 and FORK-256. It is shown that STITCH-256 ekhile desired cryptographic properties
and comparable with SHA-256 and FORK-256 in its paeasion function.

1.

Introduction

MD4 [1] is the first cryptographic hash function st made use of the structure of 32-bit
processors. It employs serial operations and trewttnof little-endian architecture in its
compression function. Just a year after its pubboain 1990, an attack on the last 32 out of
48 steps has been presented [2]. MD5 [3] turnsasué strengthen version of MD4 with
additional round using the same structure but lmalager hash value. This design principle
has long survived against any generic attacks wiem techniques in cryptanalysis have
treated the structure of MD in 1993 by Den Boer Bodselaers [4]. They showed a way to
find two different values of the IV and a commonssegeV such thaMD5 (IV, M) = MD5
(IvV’, M). However the attempt did not pose any threatht usual applications of MD5
because one cannot control the inputs of chainan@bles. The effort to find weaknesses in
the structure of hash functions of MD-like desigmtinued in 1996 when H. Dobbertin [4]
found collisions for MD4 [5] and the last two odttbree rounds of RIPEMD [6]. The attack
was quite surprising since RIPEMD has a differéntcsure than that of MD. The techniques
used by H. Dobbertin on RIPEMD has been also useatdduce collisions for MD4 and
show that the two first rounds of MD4 are not oreeyW7]. He also chowed collisions for the
compression function of MD5 with a chosen 1V [8, Bhese techniques have been improved
by Wang et. al [10, 11, 12] to successfully findlismns for MD5, SHA-O [13] and
RIPEMD first proposal [14]. However RIPEMD-128/1&6€e the algorithms which are still
immune against their attacks since there are agletton them are found so far.

RIPEMD-128/160 has different structure than thabi@f and SHA family. The compression
functions are within two parallel branches whichkesthe attack harder since two branches
have to be taken into account simultaneously. Botéimches of RIPEMD-128/160 [16] need



2.

almost same operation of MD5 and SHA algorithm Itesy in its efficiency was
degenerated almost half of th¢ This is described by Hgnet. al 15] in which they
overcome this disadvantage of RIPE-128/160 by introducing FOFR-256bit hash function
having four branches. They also manage to redueentimber of operations for st
functions of each line. However the speed perforaasf FCRK-256 is slower than that
SHA-256 and memory requirement are bigger than thaRIBfEMD-320. Furthemore,
Matusiewiez et.al 7, 1§ also showed that their technique can be usedield v nee-

collision for a complete version of FOI-256 with a compleity of 2'%°> hash computation.
FORK-256 shows a pretty good design since there is acessful attack found so far on

complete version. HoweveMatusiewiez's technique is claimed to be exte to find a

collision against a complete version of FC-256 [19] This has motivated us to identify t
weakness in FORKR56 and thereforeSTITCH-256 is designed with more careful st
operations with good sed performance and secu requirement in mint

In this paper, we briefly describe FO-256 hash funatin in Section 2, followed by a ne
proposed cryptographic hash function called STI-256 in Section 3, its security analy
is presented in Section 4 and we conclude the paggection 5

A brief description of cryptographic hash function FORK-256

FORK-256 is a dedicated hash function that maps 25@bgtate and 512 bits of messag
256 bits of hash value. It is proposed by Hon@E[9] and is based on the classical Me-
Damgard iterative structure. The compression famctif FORk-256 coisists of four parallel
branches as illustrated in figure 1 in which eaciinbh processes set of message wort
different order.
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Fig. 1 The high level of compression function of f3256



Each branch function B1,..., B4 consists of eighpstehere in each stép= 1, ... , 8 the
branch function updates the eight chaining varmliging step transformation as illustrated
in figure 2 [9].
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Fig. 2 Step transformation of FORK-256

Functionsf andg map 32-bit words to 32-bit words are defined as
f(x) =x + (ROL’ (x) O ROL* (X)), g(X) =x+ (ROL*3(x) O ROL* (X)).
A more detail description can be found in [9].

It is reported in both [10] and [11] that a numiaérweaknesses of FORK-256 has been
discovered. This includes the unexpected propértyacallel branches that allows pairs of
messages that differ on only a small number of toitse found. This possibly is caused by
almost similar operations in both sides in a bramtiere functiond andg are used in a
different order. In the following section, we deber our proposed cryptographic hash
function STITCH-256 in more detail and highlighg difference with FORK-256 with strong
justification.

. Description of STITCH-256

STITCH-256 hashes 512-bit block messages to 256iegsage digests. Therefore an input
message of arbitrary length is first padded bynglsibit 1 next to the least significant bit of
the message, followed by zero as many as possittietie length of the message is 448
modulo 512. At least one bit and at most 512 amgeaged. Then a bit ‘1’ is appended,
followed by a 64-bit unsigned big-endian represgmteof message length modul8®2o the
message. This procedure ensures that the lenglie gfadded message is a multiple of 512.
Padding for STITCT-256 can be represented as:

M < m|| 10000....0000hessage lengtky



3.1STITCH-256 Compression Functi

The compression function of STIT(-256 is originally motivated by the design
RIPEMD-family which runs in parallel of two branches. STH-256 has four parallel
branchesB1, B2, B3 and B4 :illustrated in Fig. 1.
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Fig. 3 Compression function of STITCH-256

B1

CV; is a 256bit chaining variable ai-th iteration, is made up ceight 32-bit word
registersA, B, C, D,E, F, GandH. SVis a fixed 32-bitsalt valu, 0x67452301. The
initial values of STITCI-256 are the same as that used in S:24-
A= C1059ED8 B=367CD507
C=3070DD17 D= F70E5939
E= FFC00B31 F= 68581511
G= 64F98FA7 H= BEFA4FA4

To proceed to the iterated haeach successive 51#% message blocM is split into 16
32-bit wordsMo, Mi, My, .... , Ms. Fig. 3 shows thaCV, is updated taCVi:1 by
computing:

CVii = [ (CVig B1 (CV, Z:(M))) g (B2 CV,, Zx(M)) ] O [ (CVi g SV O B4 (CV,

24M))) & (B3 CV, 25(M))) ]

where Z;(M) is thirty two expanded and rearranged [@2-message wori M;. The
message expansion and rearrangement is descrilieel mext sectior



3.2STITCH-256 Step Transformati, B;

Step transformation of STITC-256 is designed to maximize the propagation of
intermediate values difference.e to lower the probability of the different
characteristics.We allocate two phases for step transformation. Tinst <tep
transformation is illustrated in Fi4.

Fig. 4. First phase of single step transformatigoBSTITCH-256

First phaseof step transformation is phase where the chaining variabCV, is equally
divided into two halve, P andQ, and mixes with the message woM; and constants to
update the new registe

The message arrangem¢;(M) for all branches are differenh@ are describein the
next section. However, botlP and Q in one branch accept the same mes:
arrangement. The compression function of STI-256 uses four different consta, the
first digit of 1, in a single step transformation and the arrangeiof the constants are
different for both wings. Table 1 shows the 16 different constants usedthim
compression function of STITC-256.

Table 1. Constants used in the compression funcfi@TICTH-256

¢, | 243F6A8885A308D3 | ¢, | 13198A2E03707344 | ¢, | A4093822299F31D0 | ¢, 082EFA98ECAEGCS9
#s | 452821E638D01377 | ¢, | BES466CF34E90C6C | ¢, | COAC29B7C97C50DD | @ 3F84D5B5B5470917
$o | 9216D5D98979FB1B | ¢, | D1310BA69SDFBSAC | @, | 2FFD72DBDO1ADFB7 | ¢, | BSELAFED6A267E96
$13 | BA7C9045F12C7F99 | @,, | 24A19947B3916CF7 | ¢,s | O801F2E2858EFC16 | ¢, | 636920D871574E69

These constants are used tch branch ordered as in Table 2.




Table 2. The ordering of constants in each wingsach branch

Branch C G, G Cy
o el 6 lelals
= [el e e lels
e
S

The constants are re-arranged as such to avoltdek using cancellation technique. A
single step transformation in each wing updatesnéw registers by producing the
following outputs:

A1 =cgB f2(C, D,fi(A, B, W))
Biv1 = ca 8 f2(C, D, f1(A, B, W))
Ci+1 = Cb H fZ(Cl Dyfl(A) B! VVI))

D1 =c.H fz(C, D,fl(A, B, VV|))

Ei1 = R()T13 ( f4(E| Wi, f3(F| G’ H)))
Fi+1 =f3(F, G, H)

G =caB f3(F, G, H)

His = f4(E, W, f3(F, G, H))

Functionsf,, f,, f andf, are different in each branch. This is to disturb #éttempt of an
attacker to find good differential characteristios parallel branches. The functions used
in the compression function of STITCH-256 are namméid in Table 3. The selection of

functions used in STITCH-256 is carefully chosenairway that all of them exhibit
cryptographically strong properties.

Table 3. Boolean functions used in the compresiinction of STITCH-256

Branch P Q
fy f, fa fs
Bl pdq0r (PC (9O (=r))) Or pO ((pO g)Cr) (PO (=a))Cr Og
B2 q0(pC~1) (PE(@ O ) Oq (PCa)T(QCnOr (PC(qdn)0r
B3 (p (90 (=1))) Og pO (pCqg) O (9Cr) (pPO0gCnOq dJ (pC~1)
B4 (PO (=N)Cqg)dr pOqdr pO((pO(-1)) Ca) (p C(qd (=n))) Oq /
o (p0-r)

After each of a single step transformation is penfed, the new register will be the input
to the other wing of branch as illustrated in figg&. This is the second phase of a single



step transformatioriThe propagation of intermediate values is maximiaed stitchng
way.

Fig. 5 Propagation of intermediate values in STITZ36

Each branch iterates the step transformation foro82ds for both wingP andQ. The
intermediate values for each iteration is swappeithé next wing in a branch as an in
and the final registers are obtained after the final message in a branc is iterated by
concatenating athe registers from both win

Asz1l| Baal| Gaal| Dsal| Bsal| Faall Geall Hea

For iterationi+l, 0 < i < 30, the step transformation updates its new ters by
producing the following output

Aii1=E
Bi1=G
Ci+1=F
Dit1 = H
E+1 =B
Fe1 = A
Gi+1 =D
Hiv1 =G

3.3Message expansion and rearrange

To expand the messawe modify formulass, ando; used inSHA-256 by testing a few
parameters until the desired rlinear diffusion is achieved.dfmules o, ando; used in
STITCH-256 are as follow:

Mi 0<i<15
Wi

01(Wi7, Wi.16) + W14 + 0o(Wig, Wip) + Wiz [0 SV 16<i<32



whereagy(x, y) = [ROT(x) O y] O [ROT*¥(x) O y] O SHR(x) and
0,= [ROT™¥(x) O y] O [ROTx) O y] O SHR(X)

The total number of message words now becomes B2rewsixteen of them are the
original message words and another sixteen areupeatdfrom the expansion process. To
proceed to the iterated hash, we arrange the messagisW as follows: Message
wordsW, where O< i < 15, are arranged alternatively (or positionechi ¢dd number of
array) such that the first message wdMg is arranged in the first array,, second
message wordl; in the third arrayR,, third message worlll, in the fifth arrayRs, so
forth and so on until all the message wovds..W,s are arranged accordingly, filling up
16 arrays. Message worldé where 16<i < 32 are then placed in the empty even arrays,
such thatWg is placed in the second arrRy, Wi is placed in the forth arraiys, Wigis
placed in the second arr&y, so forth and so on. The arrangement of the algnd the
expanded message words is illustrated in table 4.

Table 4 The arrangement of original and expandessage words in STITCH-256

Wo Wie A W7 W, Wig Ws Wig
Wi Wag Ws Way We Wo, W Was
We Waq Wo Was Wig Wae Wiy Woy
Wi; Wag Wia Wag Wiq Wag Wis Way

This arrangement now becomes the initial arrangéwfemessage wordé/ and we now
read it asWp, .... W1 Next all the message wordfg are re-arranged for each branch
following the arrangement described in Table 5. Huenber in each cell shows the
message word’s inde¥, .... , Wss.

Table 5. The re-arrangement of original messagelsvand their expansion words

0| 1|2|3|4|5|6|7(8(9/1|1|1|1|21|2|1|1|{1{1]2|2|2|2|2|2|2|2{2]2]|3
0[{1|/2|3/4|(5/6|/7/8{9|/0|1|23{4/5/6|/7|8|9]|0

= W

B2

B3

B4




4. Design Strategy

The branch strategy in STITCH-256 is motivated gy design of RIPEMD-160 [15] which
has two parallel lines running almost the same agmers of MD5 and SHA-family hash
functions. So far RIPEMD-160 hash function is sicure against the differential attack by
Wang et. al [16] that was successfully attacking-fbily and SHA-family hash functions.
The parallel design means that it has to takehellparallel branches simultaneously to build
the differential characteristics with high probd#lil This is not a trivial job and another
feature in STITCH which introduces message exparanal re-arrangement will increase the
level of difficulty to build such characteristicd/e manage to reduce the step operation of
each branch to contribute to fast implementationS®ITCH-256 while maintaining the
security aspect by having a carefully studied déded cryptographically strong Boolean
functionsfy, fy, fs, fa.

4.1 Design Principle

Compression Function of STITCH-256 It consists of four parallel branches, which is
implemented to accept 512-bit input messages anel @ivay 256-bit output message
digests. STITCH-family can be considered to accep24-bit input messages and
produce 512-bit output message digests by havirkd Zbit register words in every
branch where each wirfggandQ processes 256-bit register words accordinglyfaihg

the design principle of STITCH-256. In a case of T®IH-512, eight different Boolean
functions will be involved in each branch and thenber of constant values and the size
of step transformations are doubled one time. Henewe don’t focus in STITCH-
family in this paper; rather we just focus in STH@56. The security ofompression
function of STITCH-256 also comes highly from itessage expansion and message re-
arrangement. We believe that the level of seceaty be increased with the high message
difference propagation throughout the step tramsétions. This is realized with the
design of STITCH-256 message expansion in whichctleulated Hamming codes are
propagating the influence of message words velyieald horizontally.

Constants  STITCH-256 uses 4 different constants in each diraand they are used
in different order in each wing in a branch. InatptSTITCH-256 has 16 different
constants for the four branches. The constantsherdirst digit of i, and differently
selected to randomize the pattern of message eliftess.

Boolean functions  There is only one diffusion function used in STH-Q56:
fi=pOqOr.

Diffusion function is used in step transformatian all the branches. For non-linear

functions, there are 4 different bitwise Booleamdiions used in each branch. We



identified 12 distinct Boolean functions from Cé#luAutomata rules [21], and five of
them are used twice to give sixteen Boolean funstimm STITCH-256. All Boolean
functions used in STITCH-256 are balanced functidias/e been carefully studied for
their cryptographic properties such as non-lingarjiropagation criteria and high
algebraic degree. The summary of their cryptog@ploperties are summarized in Table

6.
Table 6: Cryptographic properties of Boolean fuoresi used in STITCH-256
Boolean functions Non-linearity Propagation criveri | Algebraic degree of
of orderm ordern

pO((PO(Cn)Cq) 2
(PO (=9))C ) dqg
(P (@O (=n) Og

(PO (=n)C q) Or
(pC (O (=n))) Or
(PO ) Og
p O (pCq) O (qCn)
(PC(g@n)ar
pO (PO g)Cr)
(PC)T(9CnOr
(PO0gCnOq

N NN [N NN N NN NN
RRlRrRr R RrR(Rr| R~
NN N[N NN NN NN

For 3-variables Boolean functions, the desired toggaphic properties are the maximum
non-linearity which is 2, propagation criterionatler 1 and high algebraic degree, 2.
Further explanation of all the cryptographic prdigsrcan be referred to, for eg [22],
[23], [24].

M essage expansion and message r e-ar rangements STITCH-256 expands the
original message words from 16 to 32 32-bit messawges. This is done by calculating
dividing the message block of 512 bits into 16 &viessage words, and the expansion
is following the formulas specified earlier with ahjective that the bits are mixed to the
maximum.

5. Préiminary Security Analysisof STITCH-256

Assume that the attacker inserts a message differem = m’-m, to thei-th branch and
suppose the output differen¢g is produced. The attacker expects that a collisioght
occur if the following event is satisfied:

[(CV+AL)+A2]O[(CV +A4)+A3)]+SV =0
\_Y_) ;‘_!
a p
Say the attacker simplify the operation by denof@y + Al) asa and (CV +A4 + A3) asp.
There are several strategies that the attacketag@anto fulfill this event. For every strategy,
we provide the arguments on how to defeat theegies.



1. The attacker constructs+ A2 = -(3 + A3 + SV) to have a collision to occur. He can also
reduce the complexity by constructing@= -A3 ando= -(B+SV). However differential
pattern of the message worti2= -A3 is difficult to achieve because the output offeac
branch is random. Therefore the probability to tauts the differential pattern to occur
with high probability is close to 22

2. The attacker constructs two distinct differentibhiacteristics and expects that - A2
and f = - A3. However this is also difficult to construct snbotho and contain
random output differentiak in branch 1 and 4. Message reordering and bitggaion
in a stitching way increase the probability for attacker to construct differential
characteristics with low probability.

The strength of STITCH-256 lies in its message exam which gives better bit
propagation, message rearrangement which gives mdifieulties for an attacker to
construct differential characteristics with higholpability and bit propagation through
stitching step operation. The combination of thékgee characteristics gives better security
for STITCH-256 on a whole.

We compare the primitives, number of operations @ydes used in STITCH-256, FORK-
256 and SHA-256. The comparison is illustrated abl€ 7.

Table 7. Number of operations used in step trangition of STITCH-256, FORK-256 and SHA-256

Operation STITCH-256 FORK-256 SHA-256
Addition (+) 640 472 600
Bitwise operation((,[,0) 513 328 1024

Shift (<<, >>) - - 96

Shift rotation €<< , >>>) 128 512 576
TOTAL OPERATIONS 1281 1312 2296
Block size (bits’ 51z 51z 51z
Maximum message size (bits)| ®*21 -1 -1
Output size (bits 25€ 25€ 25€
Rounds 32 32 64

From table 6, we can see that STITCH-256 has lastaroperations than both FORK-256
and SHA-256. This will constitute to a faster pemfiance as a whole function. The whole
function also has exhibited a good avalanche efiden half of the output bits are changed
on average of 1000 sample experiments.

. Conclusion

In this paper, a new cryptographic hash function,T€H-256 is proposed. It takes arbitrary
length of message and outputs 256 bits messagstdi§&ITCH-256 introduces a few
components in its structure, namely message expaasid rearrangement, and stitching step
operations. These components are designed to gibettar security in STITCH-256.
STITCH-256 also processes the bits in four pardii@inches inspired by RIPEMD and
FORK-256 but compress the outputs from the foundinas slightly different from that of



FORK-256. STITCH-256 is a simple but elegant crgpéphic hash functions. It has shown
good bit propagation through the whole step opamatiand we hope to receive further
analysis on the security of STITCH-256.
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