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Abstract 

Recent progress in cryptanalysis on cryptographic hash functions has shown that the most of the 
hash functions based on the design principles of MD4 are susceptible to differential attack. This 
paper describes a new 256-bit hash function which is based on parallel branches having a 
stronger compression function. It is designed to have higher security than that of MD family and 
its variant. The performance of the new hash functions are evaluated and compared with SHA-
256 and FORK-256. It is shown that STITCH-256 exhibit the desired cryptographic properties 
and comparable with SHA-256 and FORK-256 in its compression function.  

 

1. Introduction 
MD4 [1] is the first cryptographic hash function which made use of the structure of 32-bit 
processors. It employs serial operations and treatment of little-endian architecture in its 
compression function. Just a year after its publication in 1990, an attack on the last 32 out of 
48 steps has been presented [2]. MD5 [3] turns out as a strengthen version of MD4 with 
additional round using the same structure but have a longer hash value. This design principle 
has long survived against any generic attacks when new techniques in cryptanalysis have 
treated the structure of MD in 1993 by Den Boer and Bosselaers [4]. They showed a way to 
find two different values of the IV and a common message M such that MD5 (IV, M) = MD5 
(IV’, M). However the attempt did not pose any threat to the usual applications of MD5 
because one cannot control the inputs of chaining variables.  The effort to find weaknesses in 
the structure of hash functions of MD-like design continued in 1996 when H. Dobbertin [4] 
found collisions for MD4 [5] and the last two out of three rounds of RIPEMD [6]. The attack 
was quite surprising since RIPEMD has a different structure than that of MD. The techniques 
used by H. Dobbertin on RIPEMD has been also used to produce collisions for MD4 and 
show that the two first rounds of MD4 are not one way [7]. He also chowed collisions for the 
compression function of MD5 with a chosen IV [8, 9]. These techniques have been improved 
by Wang et. al [10, 11, 12] to successfully find collisions for MD5, SHA-0 [13] and 
RIPEMD first proposal [14]. However RIPEMD-128/160 are the algorithms which are still 
immune against their attacks since there are no attacks on them are found so far. 
 
RIPEMD-128/160 has different structure than that of MD and SHA family. The compression 
functions are within two parallel branches which makes the attack harder since two branches 
have to be taken into account simultaneously. Both branches of RIPEMD-128/160 [16] need 
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Each branch function B1,…, B4 consists of eight steps where in each step k = 1, … , 8 the 
branch function updates the eight chaining variables using step transformation as illustrated 
in figure 2 [9]. 

 

Fig. 2 Step transformation of FORK-256 

 

Functions f and g map 32-bit words to 32-bit words are defined as 
 
f(x) = x + (ROL7 (x) ⊕ ROL22 (x)),     g(x) = x + (ROL13 (x) ⊕ ROL27 (x)).  
 
A more detail description can be found in [9].  
 
It is reported in both [10] and [11] that a number of weaknesses of FORK-256 has been 
discovered. This includes the unexpected property of parallel branches that allows pairs of 
messages that differ on only a small number of bits to be found. This possibly is caused by 
almost similar operations in both sides in a branch where functions f and g are used in a 
different order. In the following section, we describe our proposed cryptographic hash 
function STITCH-256 in more detail and highlight its difference with FORK-256 with strong 
justification.  

 
3. Description of STITCH-256 

STITCH-256 hashes 512-bit block messages to 256-bit message digests. Therefore an input 
message of arbitrary length is first padded by a single bit 1 next to the least significant bit of 
the message, followed by zero as many as possible until the length of the message is 448 
modulo 512. At least one bit and at most 512 are appended. Then a bit ‘1’ is appended, 
followed by a 64-bit unsigned big-endian representation of message length modulo 264 to the 
message. This procedure ensures that the length of the padded message is a multiple of 512. 
Padding for STITCT-256 can be represented as: 

  M          m || 10000….00001〈message length〉64 

 



3.1 STITCH-256 Compression Function
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256 Compression Function 

The compression function of STITCH-256 is originally motivated by the design of 
family which runs in parallel of two branches. STITCH
B1, B2, B3 and B4 as illustrated in Fig. 1. 

Fig. 3 Compression function of STITCH-256 

bit chaining variable at i-th iteration, is made up of 
E, F, G and H. SV is a fixed 32-bit salt value

initial values of STITCH-256 are the same as that used in SHA-224:
A= C1059ED8  B= 367CD507 
C= 3070DD17  D= F70E5939 
E= FFC00B31  F= 68581511 

G= 64F98FA7  H= BEFA4FA4 

To proceed to the iterated hash, each successive 512-bit message block 
, M2, …. , M15. Fig. 3 shows that CVi is updated to 

B1 (CVi, Σ1(M))) � (B2 (CVi, Σ2(M)) ] ⊗ [ ((CV

3(M))) ] 

thirty two expanded and rearranged 32-bit message words
message expansion and rearrangement is described in the next section. 
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CVi � SV) ⊕ B4 (CVi, 

bit message words Mi. The 
message expansion and rearrangement is described in the next section.  
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ϕ1 243F6A8885A308D3 ϕ2 

ϕ5 452821E638D01377 ϕ6 

ϕ9 9216D5D98979FB1B ϕ10 

ϕ13 BA7C9045F12C7F99 ϕ14 

256 Step Transformation, Bi 

Step transformation of STITCH-256 is designed to maximize the propagation of the 
intermediate values difference, i.e to lower the probability of the differential 

We allocate two phases for step transformation. The first s
transformation is illustrated in Fig. 4. 

 

Fig. 4. First phase of single step transformation Bi of STITCH-
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The message arrangement Σi(M) for all branches are different and are described 
next section. However, both P and Q in one branch accept the same message 
arrangement. The compression function of STITCH-256 uses four different constants

in a single step transformation and the arrangement 
wings. Table 1 shows the 16 different constants used in the 

compression function of STITCH-256.  
 

Table 1. Constants used in the compression function of STICTH

These constants are used to each branch ordered as in Table 2. 
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Table 2. The ordering of constants in each wings of each branch  

 

 

 

 

 

 

 

 

The constants are re-arranged as such to avoid the attack using cancellation technique. A 
single step transformation in each wing updates its new registers by producing the 
following outputs: 

A i+1 = cd �  f2(C, D, f1(A, B, Wi))  

Bi+1 = ca � f2(C, D, f1(A, B, Wi))  

Ci+1 = cb � f2(C, D, f1(A, B, Wi))  

Di+1 = cc � f2(C, D, f1(A, B, Wi))  

Ei+1 = ROT13 ( f4(E, Wi, f3(F, G, H)))  
Fi+1 = f3(F, G, H)  

Gi+1 = ca �  f3(F, G, H)  

Hi+1 = f4(E, Wi, f3(F, G, H))  
 
Functions f1, f2, f3 and f4 are different in each branch. This is to disturb the attempt of an 
attacker to find good differential characteristics for parallel branches. The functions used 
in the compression function of STITCH-256 are mentioned in Table 3. The selection of 
functions used in STITCH-256 is carefully chosen in a way that all of them exhibit 
cryptographically strong properties. 
 

Table 3. Boolean functions used in the compression function of STITCH-256 
Branch P Q 

 f1 f2 f3 f4 
B1 p⊗q⊗r (p∨ (q⊗ (~r))) ⊗r p ⊗ ((p ⊗ q)∧r) ((p⊗ (~q)) ∨ r) ⊗q 
B2 q⊗(p∨~r) (p∧(q ⊗ r)) ⊗q (p∧q)⊗(q∧r)⊗r (p∧(q⊗r))⊗r 
B3 (p ∨(q⊗ (~r))) ⊗q p ⊗ (p∧q) ⊗ (q∧r) ((p ⊗ q) ∧ r) ⊗ q q⊗ (p∨~r) 
B4 ((p⊗ (~r))∨ q) ⊗r p⊗q⊗r p⊗((p⊗(~r)) ∨q) (p ∨(q⊗ (~r))) ⊗q / 

q⊗(p∨~r) 

 

After each of a single step transformation is performed, the new register will be the input 
to the other wing of branch as illustrated in figure 5. This is the second phase of a single 

Branch  C1 C2 C3 C4 

B1 
P ϕ1 ϕ2 ϕ3 ϕ4 
Q - - - ϕ2 

B2 
P ϕ5 ϕ6 ϕ7 ϕ8 
Q - - - ϕ6 

B3 
P ϕ9 ϕ10 ϕ11 ϕ12 
Q - - - ϕ10 

B4 
P ϕ13 ϕ14 ϕ15 ϕ16 
Q - - - ϕ14 



step transformation. The propagation of intermediate values is maximized in a stitchi
way. 
 

 
Each branch iterates the step transformation for 32 rounds for both wings 
intermediate values for each iteration is swapped to the next wing in a branch as an input 
and the final registers are obtained after the final message word
concatenating all the registers from both wings:
A31|| B31|| C31|| D31|| E31

 
For iteration i+1, 0 ≤
producing the following outputs:
A i+1 = Ei  
Bi+1 = Gi  
Ci+1 = Fi 
Di+1 = Hi  
Ei+1 = Bi 
Fi+1 = Ai 
Gi+1 = Di 
Hi+1 = Ci 
 

3.3 Message expansion and rearrangement

To expand the message, 
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Fig. 5 Propagation of intermediate values in STITCH-256 
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Message expansion and rearrangement 

To expand the message, we modify formulas σ0 and σ1 used in SHA

parameters until the desired non-linear diffusion is achieved. Formula
256 are as follows:  

      

, Wi-16) + Wi-14 + σ0(Wi-9, Wi-2) + Wi-3 ⊗ SV 

The propagation of intermediate values is maximized in a stitching 

 
 

Each branch iterates the step transformation for 32 rounds for both wings P and Q. The 
intermediate values for each iteration is swapped to the next wing in a branch as an input 
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 0 ≤ i ≤ 15 

 16 ≤ i ≤ 32 



where σ0(x, y) = [ROT9(x) ⊗ y] ⊗ [ROT18(x) ⊗ y] ⊗ SHR3(x) and  

σ1 = [ROT15(x) ⊗ y] ⊗ [ROT30(x) ⊗ y] ⊗ SHR10(x) 

The total number of message words now becomes 32, where sixteen of them are the 
original message words and another sixteen are produced from the expansion process. To 
proceed to the iterated hash, we arrange the message words Wi as follows: Message 
words Wi where 0 ≤ i ≤ 15, are arranged alternatively (or positioned in the odd number of 
array)  such that the first message word M0 is arranged in the first array R0, second 
message word M1 in the third array R2, third message word M2 in the fifth array R5, so 
forth and so on until all the message words W0…W15  are arranged accordingly, filling up 

16 arrays. Message words Wi where 16 ≤ i ≤ 32 are then placed in the empty even arrays, 
such that W16 is placed in the second array R1, W17 is placed in the forth array R3, W18 is 
placed in the second array R6, so forth and so on. The arrangement of the original and the 
expanded message words is illustrated in table 4. 

Table 4 The arrangement of original and expanded message words in STITCH-256 

W0 W16 W1 W17 W2 W18 W3 W19 

W4 W20 W5 W21 W6 W22 W7 W23 

W8 W24 W9 W25 W10 W26 W11 W27 

W12 W28 W13 W29 W14 W30 W15 W31 

 

This arrangement now becomes the initial arrangement of message words Wi and we now 
read it as W0, …. W31. Next all the message words Wi are re-arranged for each branch 
following the arrangement described in Table 5. The number in each cell shows the 
message word’s index, W1, …. , W31. 

Table 5. The re-arrangement of original message words and their expansion words 
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4. Design Strategy 
The branch strategy in STITCH-256 is motivated by the design of RIPEMD-160 [15] which 
has two parallel lines running almost the same operations of MD5 and SHA-family hash 
functions. So far RIPEMD-160 hash function is still secure against the differential attack by 
Wang et. al [16] that was successfully attacking MD-family and SHA-family hash functions. 
The parallel design means that it has to take all the parallel branches simultaneously to build 
the differential characteristics with high probability. This is not a trivial job and another 
feature in STITCH which introduces message expansion and re-arrangement will increase the 
level of difficulty to build such characteristics.  We manage to reduce the step operation of 
each branch to contribute to fast implementation of STITCH-256 while maintaining the 
security aspect by having a carefully studied of selected cryptographically strong Boolean 
functions f1, f2, f3, f4.  

 

 

4.1 Design Principle 
 
Compression Function of STITCH-256  It consists of four parallel branches, which is 
implemented to accept 512-bit input messages and give away 256-bit output message 
digests. STITCH-family can be considered to accept 1024-bit input messages and 
produce 512-bit output message digests by having a 512-bit register words in every 
branch where each wing P and Q processes 256-bit  register words accordingly following 
the design principle of STITCH-256. In a case of STITCH-512, eight different Boolean 
functions will be involved in each branch and the number of constant values and the size 
of step transformations are doubled one time. However, we don’t focus in STITCH-
family in this paper; rather we just focus in STITCH-256. The security of compression 
function of STITCH-256 also comes highly from its message expansion and message re-
arrangement. We believe that the level of security can be increased with the high message 
difference propagation throughout the step transformations. This is realized with the 
design of STITCH-256 message expansion in which the calculated Hamming codes are 
propagating the influence of message words vertically and horizontally.  
 
Constants STITCH-256 uses 4 different constants in each branch, and they are used 
in different order in each wing in a branch. In total, STITCH-256 has 16 different 
constants for the four branches. The constants are the first digit of π, and differently 
selected to randomize the pattern of message differences.  
 
Boolean functions There is only one diffusion function used in STITCH-256: 
 fi = p ⊗ q ⊗ r. 

Diffusion function is used in step transformation in all the branches. For non-linear 
functions, there are 4 different bitwise Boolean functions used in each branch. We 



identified 12 distinct Boolean functions from Cellular Automata rules [21], and five of 
them are used twice to give sixteen Boolean functions in STITCH-256. All Boolean 
functions used in STITCH-256 are balanced functions, have been carefully studied for 
their cryptographic properties such as non-linearity, propagation criteria and high 
algebraic degree. The summary of their cryptographic properties are summarized in Table 
6.  

Table 6: Cryptographic properties of Boolean functions used in STITCH-256 
Boolean functions Non-linearity Propagation criterion 

of order m 
Algebraic degree of 
order n 

p⊗((p⊗(~r)) ∨ q) 2 1 2 
((p⊗ (~q)) ∨ r) ⊗q 2 1 2 
(p ∨(q⊗ (~r))) ⊗q 2 1 2 

((p⊗ (~r))∨ q) ⊗r 2 1 2 
(p∨ (q⊗ (~r))) ⊗r 2 1 2 
(p∧(q ⊗ r)) ⊗q 2 1 2 
p ⊗ (p∧q) ⊗ (q∧r) 2 1 2 
(p∧(q⊗r))⊗r 2 1 2 
p ⊗ ((p ⊗ q)∧r) 2 1 2 
(p∧q)⊗(q∧r)⊗r 2 1 2 
((p ⊗ q) ∧ r) ⊗ q 2 1 2 

 

For 3-variables Boolean functions, the desired cryptographic properties are the maximum 
non-linearity which is 2, propagation criterion of order 1 and high algebraic degree, 2. 
Further explanation of all the cryptographic properties can be referred to, for eg [22], 
[23], [24].  
 
Message expansion and message re-arrangements STITCH-256 expands the 
original message words from 16 to 32 32-bit message words. This is done by calculating 
dividing the message block of 512 bits into 16 32-bit message words, and the expansion 
is following the formulas specified earlier with an objective that the bits are mixed to the 
maximum. 
 

5. Preliminary Security Analysis of STITCH-256 

Assume that the attacker inserts a message difference ∆m = m’-m,  to the i-th branch and 
suppose the output difference ∆i is produced. The attacker expects that a collision might 
occur if the following event is satisfied: 

[ (CV + ∆1) + ∆2] ⊗ [(CV + ∆4) + ∆3)] + SV = 0 

         α                                  β 

Say the attacker simplify the operation by denoting (CV + ∆1) as α and (CV + ∆4 + ∆3) as β.  
There are several strategies that the attacker can take to fulfill this event. For every strategy, 
we provide the arguments on how to defeat the strategies. 



1. The attacker constructs α + ∆2 = -(β + ∆3 + SV) to have a collision to occur. He can also 
reduce the complexity by constructing ∆2= -∆3 and α= -(β+SV).  However differential 
pattern of the message words ∆2= -∆3 is difficult to achieve because the output of each 
branch is random. Therefore the probability to construct the differential pattern to occur 
with high probability is close to 2-128. 

2. The attacker constructs two distinct differential characteristics and expects that α = - ∆2 
and β = - ∆3. However this is also difficult to construct since both α and β contain 
random output differential ∆ in branch 1 and 4. Message reordering and bit propagation 
in a stitching way increase the probability for an attacker to construct differential 
characteristics with low probability. 

 
The strength of STITCH-256 lies in its message expansion which gives better bit 
propagation, message rearrangement which gives more difficulties for an attacker to 
construct differential characteristics with high probability and bit propagation through 
stitching step operation. The combination of these three characteristics gives better security 
for STITCH-256 on a whole. 
We compare the primitives, number of operations and cycles used in STITCH-256, FORK-
256 and SHA-256. The comparison is illustrated in Table 7. 

  

Table 7. Number of operations used in step transformation of STITCH-256, FORK-256 and SHA-256 
Operation STITCH-256 FORK-256 SHA-256 
Addition (+) 640 472 600 
Bitwise operation (⊗,∧,∨) 513 328 1024 
Shift (<< , >>) - - 96 
Shift rotation (<<< , >>>) 128 512 576 
TOTAL OPERATIONS 1281 1312 2296 
Block size (bits) 512 512 512 
Maximum message size (bits) 264 - 1 264 - 1 264 – 1 
Output size (bits) 256 256 256 
Rounds 32 32 64 

 
From table 6, we can see that STITCH-256 has lesser total operations than both FORK-256 
and SHA-256. This will constitute to a faster performance as a whole function. The whole 
function also has exhibited a good avalanche effect when half of the output bits are changed 
on average of 1000 sample experiments.  
 

6. Conclusion 
 

In this paper, a new cryptographic hash function, STITCH-256 is proposed. It takes arbitrary 
length of message and outputs 256 bits message digest. STITCH-256 introduces a few 
components in its structure, namely message expansion and rearrangement, and stitching step 
operations. These components are designed to give a better security in STITCH-256. 
STITCH-256 also processes the bits in four parallel branches inspired by RIPEMD and 
FORK-256 but compress the outputs from the four branches slightly different from that of 



FORK-256. STITCH-256 is a simple but elegant cryptographic hash functions. It has shown 
good bit propagation through the whole step operations and we hope to receive further 
analysis on the security of STITCH-256. 
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