
Eavesdropping on Satellite Telecommunication

Systems
draft

Benedikt Driessen

Horst-Goertz Institute for IT Security

Ruhr-University Bochum, Germany

benedikt.driessen@rub.de

February 2, 2012

Abstract

While communication infrastructures rapidly intertwine with our daily
lives, public understanding of underlying technologies and privacy impli-
cations is often limited by their closed-source nature. Lacking the funding
and resources of corporations and the intelligence community, developing
and expanding this understanding is a sometimes tedious, but nonetheless
important process. In this sense, we document how we have eavesdropped
on our own communication in the Thuraya satellite network. We have used
open-source software to build on recent work which reverse-engineered and
cryptanalized both stream ciphers currently used in the competing satel-
lite communication standards GMR-1 and GMR-2. To break Thuraya’s
encryption (which implements the GMR-1 standard) in a real-world sce-
nario, we have enhanced an existing ciphertext-only attack. We have used
common and moderately expensive equipment to capture a live call ses-
sion and executed the described attack. We show that, after computing
less than an hour on regular PC-hardware, we were able to obtain the
session key from a handful of speech data frames. This effectively allows
decryption of the entire session, thus demonstrating that the Thuraya
system (and probably also SkyTerra and TerreStar, who are currently1

implementing GMR-1) is weak at protecting privacy.

1 Introduction

In a time were even casual communication is gradually shifting towards the
digital realm, the need to understand underlying technologies, protocols and
privacy guarantees becomes ever more pressing. While the notion of “digital
realm” captures virtually everything from “classic” telecommunication technol-
ogy (e.g., GSM, UMTS) to Email, Skype and Facebook, GSM was (and still is) a
compelling example why it is necessary for the public to openly discuss and un-
derstand closed-source systems. Historically, GSM relied on a set of undisclosed

1According to a Hughes press release from April 2, 2009, see http://www.hughes.

com/HNSAgreement_with_SkyTerra_and_TerreStar_to_Implement_GMR1-3G_Satellite_Air_

Interface.htm

1



encryption algorithms and was widely believed to be secure since it did provide
“voice privacy”. However, soon2 after the algorithms were reverse-engineered [4],
subsequent cryptanalysis [2,3,13] revealed serious weaknesses, casting doubt on
the level of privacy and alerting security-conscious users.

In this sense, it is our firm belief that security weaknesses need to be exposed
and demonstrated in order to asses their impact, to establish awareness and en-
force evolution. This is, again, best demonstrated by GSM and its successors:
Following the series of attacks on GSM, it is observable that a “shift of con-
sciousness” has indeed happened in the telecommunication world: ZUC [9,10] is
a stream cipher, developed and endorsed by China for inclusion in the emerging
LTE standard, UMTS’ long-term successor. The cipher has been made avail-
able for public scrutiny for over a year, a strategy clearly motivated by attacks
on GSM [1]. The publication of ZUC is accompanied by a series of workshops
created specifically for the purpose of evaluating the security of the cipher (and
derived security mechanisms).

In line with our philosophy on disclosure and demonstration we continue re-
cent work [6] on reverse-engineering of the encryption methods in contemporary
satellite telephony systems. In this paper we document an attack on the Thu-
raya satellite network, detail hard- and software required for its implementation
and report on the results. Since Thuraya is only one incarnation of the GMR-1
standard family, we assume that our attack also applies to other systems such
as SkyTerra and TerreStar.

2 Background

In this section we introduce the background necessary for our attack. We shortly
explain the basic notions of satellite telephony, and review the cipher imple-
mented in the Thuraya system.

2.1 Thuraya and the GMR-1 Network Architecture

The Thuraya network implements the GEO-Mobile Radio (GMR-1) standard
and provides satellite telephony for most of Europe, the Middle East, North,
Central and East Africa, Asia and Australia. Thuraya offers a diverse range
of products for fixed installations, handhelds (i.e., satphones) and even solu-
tions for the maritime environment. With the help of Thuraya, voice, fax and
IP-based data can be transmitted were “traditional” infrastructures (e.g., GSM,
UMTS, WLAN, etc.) are not available. The Thuraya network consists of two
operational3 satellites (Thuraya-2 and Thuraya-3) and a set of terrestrial gate-
ways and one primary gateway (located in Sharjah, UAE) handling the entire
network as depicted in Figure 1. Gateway stations provide the connectivity
to tethered networks, e.g., telephone calls to a landline are forwarded to the
Public Switched Telephone Network (PSTN), and enable maintenance and con-
figuration purposes. For this so called ground segment, conventional wavelength
(C-Band) signals are used.

2Interestingly, even before the A5/1 and A5/2 algorithms were reverse-engineered by
Briceno [4], Golic presented cryptanalysis [11] on what he calls the “alleged A5/1 cipher”,
which was indeed very close to the real cipher.

3Thuraya-1 has ceased to operate in May 2007 and has been moved to “junk orbit” [14].

2



Figure 1: Layout of the GMR-1 network

The user segment operates on L-band carriers assigned to spotbeams, which
are Thuraya’s equivalent to cells in GSM (albeit covering far more area). In the
L-band the 34 MHz frequency band from 1.525 GHz to 1.559 GHz is assigned
for space-to-earth (downlink) communication while the uplink operates between
1.6265 GHz and 1.6605 GHz. Uplink and downlink are divided into 1087 paired
carrier frequencies, with a spacing of 31.25 KHz. Just like in GSM, the Time
Division Multiple Access (TDMA) time slot architecture is employed which
partitions a carrier into disjunct timeslots of a fixed length.

Several logical channels (called channels from now on) can share a carrier
frequency by being mapped on different timeslots. Due to the this architecture,
a channel is uniquely determined by a frequency and a sequence of Timeslot
Numbers (TN). There are different types of channels, but all are either Traffic
CHannels (TCH) for voice or fax data, or Control CHannels (CCH). Data is sent
over any channel in the form of frames, each with a distinct 19-bit Frame Number
(FN), which are encoded to add redundancy and protect against transmission
failures. For some channels, the encoded data is subsequently encrypted. The
encoded (and encrypted) data is finally modulated before it is transmitted via
the phone’s antenna. The encoding scheme differs from channel to channel and
is dependent on the respective reliability requirements as defined in the various
standards.

Specific channels relevant for our attack are the Frequency Correction CHan-
nel (FCCH), the Common Control CHannel (CCCH) and the Traffic CHannel
3 (TCH3). The FCCH is initially used by the satphone to determine its relative
time and frequency error in order to synchronize with the system. The CCCH is
used to send information to the phone when a new channel (e.g. TCH3) needs
to be established4. These assignments message contain an Absolute Radio-
Frequency Channel Number (ARFCN) and a TN, which is, as explained above,
all that is required to use the channel. After TCH3 is set up on the up- and
downlink, it can be used to transmit speech data.

4TCH3 is typically established at the beginning of a call.

3



2.2 Encryption in Thuraya

When a call is established in GMR-1, after setting up an appropriate channel
(e.g. TCH3), the satellite initiates authentication by sending a request to the
phone. This request contains a random number R, which is sent to the phone’s
SIM card where a specific secret key S is stored. Given (R,S), the SIM card
derives a session key K and an authentication token. After authentication, en-
cryption is switched on and all subsequent frames on the relevant channel are
encrypted by a stream cipher. Keystream is generated for each frame individu-
ally, using the session key K and the frame number N of the frame as input for
a black-box algorithm denoted as A5-GMR-1 in the GMR-1 specifications [7].

Figure 2: The A5-GMR-1 cipher

Although communication between satellites and the user segment is stan-
dardized and documented by ETSI, no details about the actual cryptographic
algorithms used for voice encryption are disclosed. However, the cipher has
recently been reverse-engineered and published in a paper, were the authors
also propose different attacks [6]. As can be seen in Figure 2, A5-GMR-1 is
a variant of the (weak) A5/2 cipher, which is still employed in GSM-systems
worldwide. This discovery is only a mild surprise, since the GMR-standards are
closely related to GSM.

Since A5/2 is well known and its derivative A5-GMR-1 is thoroughly de-
scribed in afore mentioned paper, we will now only briefly re-examine the ci-
pher. A5-GMR-1 is a stream-cipher with a 64-bit key, it consists of four LFSRs
R1, R2, R3 and R4 (c.f. Figure 2, the LFSRs are enumerated from top to bot-
tom) which are of different lengths. Each of the LFSRs has a pentanomial
as feedback polynomial, which is used to update the LFSR’s state when the
LFSR is clocked. Clocking of R1-R3 is controlled by R4, which, in combination
with the clock-controller function C(·), implements the irregular clocking scheme
known from A5/2. After R1-R3 have been clocked, four bits of each LFSR are
extracted of which three are fed into a majority-function

M(x2, x1, x0) = x2x1 + x2x0 + x0x1

which returns 1 if more then one input bit is 1 and 0 otherwise. The outputs
of the majority-function and the other extracted bits are combined by XORing
them to form one bit of keystream.

4



The cipher is operated in two modes, initialization and generation mode.
Running the cipher in former mode includes setting the initial state of the
cipher, which is done in the following way:

1. All four registers are set to zero.

2. A 64-bit initialization vector α = (α0, ..., α63) is computed by XORing the
bits of the 19-bit frame-number N and 64-bit session key K, i.e.,

α = F(K,N) = (K0,K1,K2,K3 +N6,K4 +N7,K5 +N8,K6 +N9,

K7 +N10,K8 +N11,K9 +N12,K10 +N13,

K11 +N14,K12 +N15,K13 +N16,K14 +N17,

K15 +N18,K16,K17, ...,K21,K22 +N4,

K23 +N5,K24, ...,K59,K60 +N0,K61 +N1,

K62 +N2,K63 +N3)

3. α is clocked into all four registers, i.e., R1 is clocked and one bit of α is
XORed with the feedback-bit, R2 is clocked and XORed with the same
bit of α, etc. While doing this, no irregular clocking takes place.

4. The least-significant bits of all four registers are set to 1, i.e., R1,0 =
R2,0 = R3,0 = R4,0 = 1.

We denote the whole initialization process by

(β0, ..., β18
︸ ︷︷ ︸

R1

, β19, ..., β40
︸ ︷︷ ︸

R2

, β41, ..., β63
︸ ︷︷ ︸

R3

, β64, ..., β80
︸ ︷︷ ︸

R4

) = G(K,N),

where β is a 81-bit string, comprised of the consecutive bits of the four initialized
registers. After all registers are initialized, irregular clocking is activated and
the cipher is clocked for 250 times. The resulting output bits are discarded.
After initialization, the cipher is ready for generating actual keystream bits

z
(N)
250 , z

(N)
251 , z

(N)
252 , ...

In Thuraya, a frame of length l, sent on the downlink, is encrypted by

keystream bits z
(N)
250 , ..., z

(N)
250+l, whereas the corresponding uplink frame uses bits

z
(N)
250+l+1, ..., z

(N)
250+2l.

3 A Ciphertext-Only Attack on TCH3

The attack we present in the following is a variant of the ciphertext-only attack
presented in [6], which itself was inspired by previous attacks [2, 13] on A5/2.
We now briefly review the proposed attack which exploits several weaknesses
which are either due to the design of the cipher or due to the use of the cipher
in GMR-1:

1. Given R4, the clocking behavior of A5-GMR-1 is uniquely determined.

2. Since the inputs to each majority-component are only from one register,
one bit of keystream can always be expressed as a quadratic equation over
GF (2), which can easily be linearized.

5



3. In GMR-1, encryption is applied after encoding and scrambling5, which
are all linear operations in GF (2).

4. For each two keystreams generated by the same session key but different
frame-numbers, the respective initial states are linearly related by the
XOR-differences of the frame-numbers.

Due to the first and second observation and given some keystream bits for a
particular frame N we can guess R4, clock the entire cipher for several times
and generate a linearized system of equations

A · x = z(N), (1)

describing keystream bits as linear combinations of the initial state of R1, R2 and
R3. If we guess R4 correctly and A has full rank, solving the equation system
gives the correct initial state which can easily be used to obtain the session key.
Please note that, even if the session key is fixed, for different frame-numbers
not only the keystream but also the initial state and the matrix describing its
relation to the keystream will be different. The size of x (i.e., the number of
variables in Equation (1)) and hence the minimum6 number of known keystream
bits can be computed by

v =

(
18− k1

2

)

+

(
21− k2

2

)

+

(
22− k3

2

)

+ (18− k1) + (21− k2) + (22− k3)

where k1, k2 and k3 are the number of bits we additionally may guess for R1-
R3. By replacing variables by constants we can decrease the size of the equation
system and the number of required keystream bits, but also increase the average
amount of bits to guess for the whole attack to 215+k1+k2+k3 .

We now use the principle we have outlined above (and the fact that encryp-
tion is applied to encoded data) for a ciphertext-only attack which explicitly
targets the TCH3 channel in Thuraya. Encoding, scrambling and encrypting a
160-bit speech-frame d(N) with frame-number N can be expressed as

c(N) = d(N) ·G+ s+ z(N),

where G is the generator matrix of the code, s is a 208-bit pseudo-random
scrambling sequence, z(N) the keystream generated for this frame and c(N) the
resulting 208-bit codeword. G and s are known, additionally a parity-check
matrix H can be derived from G with H · w = 0 iff w = v · G. Due to this
property, if we invert scrambling for a codeword c(N), we get

H ·
(

c(N) + s
)

= H ·
(

d(N) ·G+ z(N)
)

= H · z(N).

Given a syndrome r(N) = H ·
(
c(N) + s

)
, we can again set up an equation system

in variables x0, x1, ..., xv−1 of the initial state by guessing R4, clocking the cipher
250 times (to account for the warm-up phase) and another 208 times, i.e.

H · (A · x) = S · x = r(N).

5While encoding adds redundancy, scrambling is used to “[...] randomize the number of 0s
and 1s in the output bit stream.” [8].

6We need at least as many keystream bits as we have variables and thus equations. How-
ever, since not all equations we obtain by clocking the cipher based on R4 are necessarily
linearly independent, we may need even more keystream bits.

6



Here, A is the 208×v matrix that describes the linear relation between x and the
bits z250, z251..., z457 generated by the cipher. Please note that H is a 48× 208
matrix and subsequently S is a 48× v matrix which implies that for v > 48 this
system is not uniquely solvable.

Now we describe the actual steps of our attack for which we assume that we
are in possession of one descrambled codeword c(N0)

′

= c(N0) + s and n 48-bit
syndromes r(N0) = H ·c(N0)

′

, r(N1), ..., r(Nn−1) which correspond to TCH3 down-
link data encrypted under the same session key. Our attack is parameterized by
(n, k1, k2, k3) and recovers the initial state β = G(K,N0). Before we proceed,
we need to introduce the helper-function V(·) which can be applied to extract
certain bits of the 81-bit state of A5-GMR-1. Depending on the configuration
of the attack, V(·) will extract a bitstring which corresponds to these positions
of the overall state whose bits we have guessed (i.e., R4 and parts of the other
registers).

1. Systematically guess the bitstring γ which has 20+ k1 + k2 + k3 bits (also
incorporating the fixed bit per LFSR). For each syndrome 0 ≤ i < n do
the following:

(a) Compute the 81-bit difference δ = G(0, N0) + G(0, Ni) in the initial-
ization state for frame-number N0 and Ni.

(b) Modify γ by XORing it with the corresponding positions of δ, i.e.,
γ′ = γ + V(δ).

(c) Based on γ′ and δ generate a linearized 458 × v matrix B which
describes the linear relation between the initial state for N0 and the
458 keystream bits generated for r(Ni).

(d) Discard the first 250 rows of B to obtain a 208× v matrix B
′.

(e) Compute the 48×v matrix S
′ = H ·B′ and add those rows of S′ (and

the corresponding bits from r(Ni)) to the equation system S · x = r,
which are linearly dependent from all previously existing rows of S.

(f) Abort if S has full rank.

2. Solve the equation system by computing x = S
−1 · r and combine the

guessed bits and x appropriately to obtain the 81-bit initialization state
candidate β.

3. Initialize A5-GMR-1 with β and clock it to obtain 208 bits of keystream
z(N0) for c(N0)

′

and verify that

H ·
(

c(N0)
′

+ z(N0)
′

)
!
= 0.

If this equation holds, decrypting c(N0)
′

produced a valid codeword. This
implies we have produced the correct keystream and therefore (most likely)
the correct initial state.

Once we have β = G(K,N0) we can set up another equation system

L · α = β with α = L
−1 · β = F(K,N0)

where L describes the process of clocking α into all four LFSRs (and setting
the lowest bit per LFSR to 1). Then we can easily derive the session key, i.e.,
K = F(α,N0).

7



4 Executing the Attack

Here we describe our implementation of the attack, which includes the hard-
and software we have used. We stress that our attack only targets the downlink,
which is due to two reasons:

1. The downlink can be received at least everywhere in the area of the as-
signed spotbeam. Listening to the uplink on the other hand requires a
close proximity to the targeted satphone.

2. It is not in our interest to develop a full-blown interceptor. We simply want
to show that our attack is practicable. Furthermore, if we can extract the
session key from the downlink, we can also decrypt the uplink.

We conclude this section with the results we have obtained by attacking our
own speech data, intercepted from an actual satphone conversation.

4.1 Hard- and Software

The hardware necessary to eavesdrop on Thuraya’s L-band frequencies consists
of an appropriate antenna and a Software Defined Radio (SDR) system. In
principal, a directional antenna can be built with a very low budget. However,
it turned out that assembling a helical antenna with exact tuning is a delicate
process, so we opted for a commercial antenna which can be bought as accessory
for Thuraya docking-stations. A USRP-2 and a contemporary PC comprise
the SDR system, where GNUradio-based [5] software is used for receiving and
filtering data, and code from the OsmocomGMR project7 [12] is responsible for
demodulating and descrambling TCH3 frames. Eavesdropping on ARFCN 1007,
the frequency identifier assigned to the spotbeam covering most of Germany,
we were able to intercept TCH3 assignment messages. Tuning to the assigned
channel we have captured downlink speech data from our own Thuraya SO-2510
phone which gave us a predictable timing behavior and a reliable source of data
– without interfering with the privacy of uninvolved parties.

4.2 Implementation

For the implementation of our attack we have established8 a set of parameters,

n = 32, k1 = 0, k2 = 2, k3 = 4, N0 = 0,

which implies that the equation systems we generate have v = 532 variables,
therefore S is a matrix of dimension 532× 532. In order to construct these ma-
trices, we require a minimum of ⌈532/48⌉ = 12 TCH3 frames. This is typically

7OsmocomGMR is a subproject of Osmocom, see http://www.osmocom.org. The aim of the
Osmocom project is to establish open-source implementations of a wide range of communica-
tion standards, e.g., GSM, TETRA and even GMR-1. The implementation of OsmocomGMR
is still in its infancy but evolved enough for our purposes.

8Determining k1, k2 and k3 was done in a heuristic fashion with the aim to minimize linear
dependencies – thus keeping n low – and also the size of S in order to reduce computational
overhead for solving equation systems. It remains an open question to mathematically deter-
mine how many and even more which bits of R1-R3 to guess, given constraints such as a fixed
number of frames, to achieve optimal performance.

8



enough, but due to linear dependencies sometimes more frames are used, al-
though never more than n = 32. Given these parameters, to obtain one session
key we need to generate and solve 221 equation systems and consequentially
test as many state candidates (by decoding via another matrix operation) on
average. In order to speed up the process we have divided our attack into two
steps:

1. In the offline phase we generate and store all S matrices for a particular
choice of (n, k1, k2, k3) and a starting frame-number N0 from which all
following numbers are derived incrementally, i.e., Ni = N0 + i for 0 <
i < n. While adding rows to the matrix, we consider the frame-number
induced XOR-differences in the initialization states and maintain an upper
triangular form of the matrix. This feature of S allows to quickly test for
linear dependencies, makes the matrix consume less space when stored on
disk and enables faster solving in the online phase.

2. In the online phase, we iterate over all stored matrices, reconstruct r from
captured TCH3 data (and auxiliary information) and solve the equation
system, which requires only backward-substitution due to the form of the
matrix.

Please note this subtlety: Due to the fact that we maintain upper triangular
form in the offline phase, rows in S are often linear combinations of several rows
which would also apply to the right-hand side of an actual equation system.
Since the offline phase is (mostly) independent of any real data (i.e., we generate
S, but not r), we need to store information on how to combine the respective
bits of the syndromes to obtain the corresponding vector r. Also note that
the offline phase uses a fixed set of frame-numbers, since these are part of the
initialization process. However, the TCH3 frames we use in the online phase
do not necessarily need to have the same frame-numbers, it is only important
that they have the same XOR-differences (and the corresponding frames were
received without transmission errors).

4.3 Results

Now we present the results of actually carrying out the attack. In the of-
fline phase we have generated approximately 350GB of LZ-compressed data.
We have executed our attack against a set of 32 TCH3 frames with successive
frame-numbers and matching XOR-differences. The online phase completed af-
ter 64% of the searchspace was tested, taking 43 minutes on an Intel Xeon E5540
processor. As a result, we have obtained the session key for one call, allowing
decryption of the complete session. Since the speech codec used in GMR-1 is
still being reverse-engineered by the OsmocomGMR project, we are currently
not9 able to actually reproduce the communication that took place.

5 Conclusion

We have described a ciphertext-only attack on the recently reverse-engineered
A5-GMR-1 stream cipher, which is used to secure the Thuraya satellite commu-

9We note that there is still a remainder of “security by obscurity” in Thuraya (and GMR-1),
although – quite ironically – not due to security related mechanisms.

9



nication system. Our attack and its implementation is specifically tailored for
a real-world attack on Thuraya, but most likely applies to all communication
systems based on the GMR-1 standard. We detail the hard- and software com-
ponents we have used to capture and decode downlink speech data. We have
executed the proposed attack with a non-optimized implementation on regular
PC-hardware and only a handful of encrypted TCH3 frames (and some pre-
computed data). We have obtained the encryption key in less than an hour of
computation, showing that our attack is indeed feasible. Our attack is easy to
extend to the uplink and even more easy to parallelize. It can be further im-
proved by using GPUs or even FPGAs to ultimately obtain real-time decryption
capabilities.

We subsume our results with the explicit warning that solely GMR-1 based
systems should not be relied on if strong privacy is required.

Acknowledgement

Understanding existing, closed-source communication infrastructures, their se-
curity aspects and implications is inherently important and only made possible
by dedicated individuals. Therefore, we gratefully acknowledge that implement-
ing and carrying out our attack would not have been possible without the avail-
ability of the OsmocomGMR [12] project.

We also thank Daehyun Strobel for fruitful discussions and his deep under-
standing of modulation methods.

References

[1] Steve Babbage. The History and Pre-History of ZUC. Technical report,
2011. Available from: http://www.dacas.cn/zuc11/slides/session1/

Steve%20Babbage.ppt.

[2] Elad Barkan, Eli Biham, and Nathan Keller. Instant Ciphertext-Only
Cryptanalysis of GSM encrypted communication. In International Cry-
tology Conference (CRYPTO), pages 600–616, 2003.

[3] Alex Biryukov, Adi Shamir, and David Wagner. Real Time Cryptanalysis
of A5/1 on a PC. In Fast Software Encryption (FSE), 2000.

[4] M. Briceno, I. Goldberg, and D. Wagner. A pedagogical implementa-
tion of the GSM A5/1 and A5/2 “voice privacy” encryption algorithms,
1999. Originally published at http://www.scard.org, mirror at http:

//cryptome.org/gsm-a512.htm.

[5] Jonathan Corgan. GNURadio, January 2012. Available from: http://

gnuradio.org/.

[6] Benedikt Driessen, Ralf Hund, Carsten Willems, Christof Paar, and
Thorsten Holz. Don’t Trust Satellite Phones: A Security Analysis of Two
Satphone Standards. In IEEE Symposium on Security and Privacy, 2012.
To appear.

10



[7] ETSI. ETSI TS 101 376-3-9 V1.1.1 (2001-03); GEO-Mobile Radio Interface
Specifications; Part 3: Network specifications; Sub-part 9: Security related
Network Functions; GMR-1 03.020, 2001.

[8] ETSI. ETSI TS 101 376-5-3 V1.2.1 (2002-04); GEO-Mobile Radio Interface
Specifications; Part 5: Radio interface physical layer specifications; Sub-
part 3: Channel Coding; GMR-1 05.003, 2002.

[9] ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Al-
gorithms 128-EEA3 and 128-EIA3. Document 1: 128-EEA3 and 128-EIA3
Specification. Version 1.4, 2010.

[10] ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algo-
rithms 128-EEA3 and 128-EIA3. Document 2: ZUC Specification. Version
1.4, 2010.

[11] Jovan Dj. Golic. Cryptanalysis of alleged A5 stream cipher. In Proceed-
ings of the 16th annual international conference on Theory and application
of cryptographic techniques, EUROCRYPT’97, pages 239–255. Springer-
Verlag, 1997.

[12] Sylvain Munaut. OsmocomGMR, January 2012. Available from: http:

//gmr.osmocom.org/.

[13] Slobodan Petrovic and Amparo Fuster-Sabater. Cryptanalysis of the A5/2
Algorithm. Technical report, 2000. http://eprint.iacr.org/.

[14] TBS. The Satellite Encyclopedia, January 2012. Available from: http:

//www.tbs-satellite.com/tse/online/sat_thuraya_1.html.

11


