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Abstract

In their seminal work on authentication, Wegman and Carter pro-
pose that to authenticate multiple messages, it is sufficient to reuse the
same hash function as long as each tag is encrypted with a one-time
pad. They argue that because the one-time pad is perfectly hiding, the
hash function used remains completely unknown to the adversary.

Since their proof is not composable, we revisit it using a universally
composable framework. It turns out that the above argument is insuf-
ficient: information about the hash function is in fact leaked in every
round to the adversary, and after a bounded finite amount of rounds
it is completely known. We show however that this leak is very small,
and Wegman and Carter’s protocol is still ε-secure, if ε-almost strongly
universal2 hash functions are used.

This implies that the secret key corresponding to the choice of
hash function can be recycled for any task without any additional
error than this ε. For example, if all the messages from many rounds
of quantum key distribution are authenticated in this way, the error
increases linearly in the number of rounds.

1 Introduction

If a player, say, Bob, receives a message x that claims to come from Alice,
he might wish to know if this is true, or if the message was generated or
modified by some adversary. This task is called authentication, and in their
seminal work [1], Wegman and Carter showed that it can be achieved by
appending a tag t to the message (often called a message authentication
code or MAC), where t = hk(x), {hk}k∈K is a family of almost strongly
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universal2 (ASU2) hash functions1, and k is a secret key shared by Alice
and Bob.

There exist ASU2 families that require roughly 2 log log |X | + 3 log |T |
bits of shared secret key [3], where X is the message alphabet and T the tag
alphabet. Wegman and Carter [1] propose a scheme to use even less bits
of key when multiple messages are to be authenticated: each tag should be
encrypted with a fresh one-time pad (OTP), but the same hash function can
be used each time. Alice thus appends the tag ti = hk1(xi) ⊕ ki2 to her ith

message xi, where k1 is used for all messages and ki2 is a fresh key used only
in this round. Asymptotically this scheme consumes only log |T | bits of key
per round.

To prove the security of this scheme, Wegman and Carter show that
given any amount of message-tag pairs (x1, t1), (x2, t2), . . . , the secret key
k1 is still perfectly uniform. They then argue that the probability of an
adversary successfully falsifying any new message is the same as for the first
message, which is guaranteed to be small by the properties of the ASU2 hash
functions. Many works reuse this scheme and sketch the proof in a similar
way, e.g., [4–7].

However, proving that a protocol is secure in a stand-alone model does
not necessarily guarantee that it is still secure when combined with other
protocols, not even when combined with itself like Wegman and Carter’s
scheme. A lot of research has gone into composability of cryptographic
tasks in recent years. A general framework for proving composable security
was developed by Canetti [8, 9], and dubbed Universally Composable (UC)
security. Independently, Backes, Pfitzmann and Waidner [10,11] introduced
the equivalent notion of Reactive Simulatability. These security notions have
been extended to the quantum setting by Ben-Or and Mayers [12] and Un-
ruh [13, 14]. Composable security for key recycling in authentication has
been studied in the case of quantum messages by Hayden, Leung and May-
ers [15], but to the best of our knowledge has not been treated when the
messages are classical.

An essential application of information-theoretic authentication is in
quantum key distribution (QKD) protocols.2 Every (classical) message ex-
changed between the two parties generating the key needs to be authenti-
cated with information-theoretic security in order to guarantee the overall
unconditional security of the protocol. Recycling the hash function is a
practical way to save a large part of the secret key consumed in each round.
And as Wegman and Carter’s security proof does not fit in any composable
security framework, this raises the question of whether this application is
still secure. Some works, e.g., [17, 18], attempt to study this problem by

1ASU2 hashing was only formally defined later by Stinson [2]. A family of functions is
said to be ASU2 if any two different messages are almost uniformly mapped to all pairs
of tags. An exact definition is given in Definition 3.1 on page 7.

2We refer to textbooks such as [16] for a general overview of QKD.
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analyzing the security of authentication when the secret keys used are not
perfect. Abidin and Larsson [18] suggest that when QKD and authentica-
tion are combined recursively, and the (imperfect) secret key resulting from
QKD is fed back into the next round of authentication and QKD, the total
error rate could increase exponentially in the number of rounds.

New results. We therefore study Wegman and Carter’s authentication
scheme with key recycling [1] using the UC framework from [9].3 We show
that the hash function is gradually leaked to the adversary, even when the
key used for the OTP is perfect. This leakage is however very small: we
prove that this scheme is indeed ε-UC-secure if the hash functions used are
ε-ASU2.

In fact, we use almost XOR universal2 (AXU2) hash functions4, which
are slightly weaker than ASU2 functions. We show that the recycled key is
close to perfectly uniform and independent from all other random variables
produced throughout the protocol. This means that the recycled key can
be reused for any task, not only for subsequent rounds of authentication.

An immediate consequence of this and the composition theorem [9] is5

that if this authentication scheme is used ℓ times in each round of an ε′-UC-
secure QKD protocol, which is run r times, recycling the same hash function
throughout, the final key has distance at most r(ℓε+ ε′) from uniform.

Structure of this paper. In Section 2 we introduce the elements from
the UC framework that we need in this work. We briefly define the security
notion and state the universal composition theorem. In Section 3 we first
model the UC security for standard authentication without recycling. In
Section 4 we then model authentication with key recycling, and prove that
using ε-AXU2 hash functions and a OTP results in a scheme which is ε-
UC-secure. In Section 5 we take a closer look at the secret key which is
leaked to the environment, and show that an optimal attack over ℓ rounds of
authentication which takes advantage of this key leakage has error exactly ℓε.
And finally in Section 6 we illustrate the composition theorem by applying
it to the case of many rounds of authentication with key recycling and QKD.

In Appendix A we give a proof of security of standard authentication,
as defined in Section 3. And in Appendix B we give some more details on
impersonation attacks.

3Even though we ultimately wish to show that this protocol is composable in a quantum
world, it is sufficient to consider classical UC security, since Unruh’s lifting theorem [14]
proves that classical UC security of a classical scheme implies quantum UC security.

4See Definition 4.1 on page 9 for an exact definition.
5Technically we also need Unruh’s lifting theorem [14] for this statement to be abso-

lutely correct, see Footnote 3.
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2 UC security

The UC framework is a very general method allowing arbitrary multipartite
cryptographic protocols to be represented and analyzed. Here we focus only
on the elements needed for our analysis of information-theoretic authenti-
cation. In particular, we do not need to model corruption or consider the
running time of the adversary or environment. For a complete treatment of
UC security we refer to [9] and [14] for the classical and quantum settings
respectively.

The essence of UC security is to compare the real situation — involving
players following the given protocol and an active adversary — to some ideal
process. If the two cannot be distinguished by the environment — in partic-
ular, if the adversary cannot achieve something which is impossible within
the ideal process — then one can be substituted for the other in any setting.
For example, if a key distribution protocol is indistinguishable from the ideal
setting in which the parties receive a perfect key from a trusted source, then
any encryption protocol that is secure with a perfect key is also secure when
this key distribution protocol is used instead, i.e., the two protocols can be
composed. This gives rise to the universal composition theorem: any two
protocols which are UC secure can be concurrently composed and remain
secure.

More precisely, for every task considered we need to define some ideal
functionality F, which takes all the inputs from the parties and performs
the desired task in an ideal way. For example, in the case of authentication
analyzed in Section 3, it is always possible for an adversary to cut or jumble
the line, making sure the original message is not received. The ideal func-
tionality can thus at best guarantee that the receiver gets either the original
message or an error. It receives a message x from the sender and either a
block or a let through command from the adversary, and then delivers x
to the receiver or produces an error message depending on the adversary’s
choice.

The environment Z is allowed to choose the inputs given to every party,
receives all outputs and can communicate freely throughout the protocol
with the adversary A. Since the communication between the adversary
and the ideal functionality F is different from when he interacts with the
real players, he could immediately alert the environment Z of this. In the
ideal process we therefore replace A by a simulator S, which can be seen
as a buffer between the environment and the ideal functionality. S often
internally simulates A, from which it gets its name.

Definition 2.1 (UC security [9]). A protocol π ε-UC-realizes the ideal func-
tionality F, or, more succinctly, is ε-UC-secure, if for all adversaries A there
exists a simulator S for which no environment Z can distinguish with proba-
bility more than ε if it is interacting with A and players running π or S and
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players using the ideal functionality F.

We illustrate this for the case of authentication in Figure 1.
The above definition can in fact be simplified [9]: it is sufficient to con-

sider a dummy adversary that forwards all messages to the environment and
lets it decide what responses to send. Security against all other adversaries
holds if it holds for the dummy adversary. In the next sections we therefore
restrict our proofs to the dummy adversary.

The main composability theorem can now be stated:

Theorem 2.2 (Universal composition [9]). Let π and ρ be two protocols
such that ρ ε1-UC-realizes F and πF ε2-UC-realizes G when using F as a
subroutine. Then πρ (ε1 + ε2)-UC-realizes G when using ρ as a subroutine.

3 Standard authentication

Information-theoretic authentication is usually considered in a setting where
two players P1 and P2 share a secret key k ∈ K and are connected by a
channel under the control of an adversary. They wish to guarantee that a
message received by P2 claiming to come from player P1 was neither gen-
erated nor altered by the adversary. These two types of attacks are often
called impersonation and substitution.

For any protocol which encodes a message by appending a tag, i.e., sends
y = (x, t) when the message is x, security against impersonation attacks
follows from security against substitution attacks. Since this is the only kind
of protocol that we are concerned with, we only consider security against
substitution attacks in the body of this paper, and refer to Appendix B for
the proof of this reduction.

In Section 3.1 we define UC security for authentication, and in Section 3.2
we describe a secure authentication protocol, the proof of which is given in
in Appendix A.

3.1 Security

To send a message x, P1 uses the key k to generate a new message y con-
taining some redundancy, e.g., y = (x, hk(x)) where {hk}k∈K is a family of
hash functions. Upon receiving y′, P2 checks whether it is valid given the
key k, and if so, outputs the corresponding6 x′. In the previous example
with y′ = (x′, t′), P2 checks that t′ = hk(x

′) and accepts x′ if this is the case
or produces an error ⊥ otherwise. This protocol is depicted on the left in
Figure 1.

Since the channel is completely under the control of the adversary, he
can always cut it or completely jumble the message. Hence in the ideal case

6The function y = fk(x) has to be injective to guarantee the uniqueness of x′.
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Figure 1 – On the left: the real situation. Players P1 and P2 run the au-
thentication protocol using their shared key k. The output of P2 is either an
error ⊥ if he detected some cheating, or the message x′ which might or might
not be equal to the input x. On the right: the ideal situation. Some ideal
functionality F either gives P2 the original message x or an error ⊥ depending
on the decision of the simulator S.

it is not possible to guarantee that the original message is received, only that
P2 is not tricked into accepting a falsified message. The ideal functionality F

for authentication can be seen as a perfect channel with a switch controlled
by the adversary: he can either switch it on and let the message through,
or switch it off and let it produce an error. This is depicted on the right in
Figure 1.

An authentication scheme is then ε-UC-secure if the environment Z can-
not distinguish between these two situations. To get a more concrete security
criterion, we need to define the simulator’s actions in the case of the dummy
adversary A, who simply forwards y to Z and forwards the response y′ to
P2.

After receiving the message x from the ideal functionality F, the simula-
tor S must send some y to Z. To do so, it picks a key k ∈ K uniformly at
random and runs the same protocol as P1 to generate y. When it gets y′

from Z, it checks whether y = y′ and sends either ok or ⊥ to F. Note that
this simulator always accepts if the message was not modified, i.e., the ideal
case has perfect robustness.

Let X be the random variable describing the initial message x ∈ X , Y
the corresponding encoding generated by P1 in the real case and S in the
ideal case, and Y ′ the response from Z. Let X̃ and X̂ be random variables
over the alphabet X ∪{⊥} describing the outputs of P2 in the real and ideal
cases respectively. In the real case Z has access to the joint random variable
XY Y ′X̃ and in the ideal case it sees XY Y ′X̂. An authentication scheme is
then ε-UC-secure if for any X and Y ′ chosen by Z, the statistical distance
between the real and ideal cases satisfies

1

2

∑

x,y,y′,x′

∣

∣PXY Y ′X̃(x, y, y′, x′)− P
XY Y ′X̂

(x, y, y′, x′)
∣

∣ ≤ ε. (1)
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3.2 Protocol

To satisfy Eq. (1) it is sufficient to use a family of strongly universal2 hash
functions {hk}k∈K and define y := (x, hk(x)) with the key k distributed
uniformly over K. Then, as described above, P2 checks that t′ = hk(x

′) for
the y′ = (x′, t′) he receives, and accepts x′ if this is the case or produces an
error ⊥ otherwise.

Definition 3.1 (strongly universal2 hash function [2]7). A family of hash
functions {hk : X → T }k∈K is said to be ε-almost strongly universal2 (ε-
ASU2) if for k chosen uniformly at random and all x1, x2 ∈ X with x1 6= x2
and all t1, t2 ∈ T ,

Pr [hk(x1) = t1 and hk(x2) = t2] ≤
ε

|T |
. (2)

We give the proof that ε-ASU2 hashing results in an authentication
scheme that is ε-UC-secure in Appendix A.

4 Authentication with key recycling

If we wish to authenticate many messages and we use the protocol from
Section 3, a new hash function and therefore a (completely) new key must
be used in every round. This is however not necessary: as we show in
Section 4.2, part of the key used to choose the hash function is ε-close to
uniform from the point of view of the environment, and can therefore be
recycled for further use. Before proving this, we first model this new protocol
and its ideal functionality in Section 4.1.

Like for standard authentication analyzed in Section 3, we consider only
substitution attacks here, in which the adversary modifies a valid message
and tag. For impersonation attacks we refer to Appendix B.

4.1 Security

To model the key recycling, we must view this recycled key as an extra
output of the protocol. An authentication scheme with key recycling can be
seen as a combination of a key distribution protocol — which only has one
output, a secret key — and an authentication scheme — which only has one
output, a message. For simplicity we also split the ideal secret key shared by
the two players in two parts, k = (k1, k2), one which is recycled, k1, and one
which is consumed, k2. The rest of the model is the same as for standard
authentication described in Section 3.1: P1 uses the shared key (k1, k2) to

7The more common definition of strongly universal2 hashing [2, 3, 7, 19] has an extra
condition, namely that for all x ∈ X and t ∈ T , Pr [hk(x) = t] = 1

|T |
. This is however not

a necessary condition to prove the security of authentication, so we omit it.
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Figure 2 – On the left: the real situation. Players P1 and P2 run the au-
thentication protocol using their shared keys k1, k2. They both output k1 for
recycling and P2 additionally produces either an error ⊥ if he detected some
cheating, or the message x′ which might or might not be equal to the input
x. On the right: the ideal situation. Some ideal functionality F generates a
perfect key k1 and additionally either gives P2 the original message x or an
error ⊥ depending on the decision of the simulator S.

generate a new message y containing some redundancy, P2 checks that y′ is
a valid message given (k1, k2) and accepts the corresponding x′ if that is the
case. This is depicted on the left in Figure 2.

In the ideal case, the ideal functionality F generates a new secret key k1,
which is therefore perfectly uniform and independent from the environment.
The rest is identical to standard authentication. The ideal functionality
also sends either the original message x or an error ⊥ to P2 depending on
the decision of the simulator S. The simulator S for the dummy adversary
generates its own local keys k1 and k2 and runs the same protocol as P1

to generate y. Upon receiving y′ from the environment it checks whether
y′ = y and sends either ok or ⊥ to F. Here too, the simulator always accepts
if the message was not modified, i.e., the ideal case has perfect robustness.
This is depicted on the right in Figure 2.

Let X be the random variable describing the initial message x ∈ X , Y
the corresponding encoding generated by P1 in the real case and S in the
ideal case, and Y ′ the response from Z. Let X̃ and X̂ be random variables
over the alphabet X ∪{⊥} describing the outputs of P2 in the real and ideal
cases respectively. And finally let K̃ and K be the random variables for the
distribution of k1 in the real and ideal cases respectively. Thus, in the real
case Z has access to the joint random variable XY Y ′X̃K̃ and in the ideal
case it sees XY Y ′X̂K. An authentication scheme is then ε-UC-secure if for
any X and Y ′ chosen by Z, the statistical distance between the real and
ideal cases satisfies

1

2

∑

x,y,y′,x′,k1

∣

∣PXY Y ′X̃K̃(x, y, y′, x′, k1)− P
XY Y ′X̂K

(x, y, y′, x′, k1)
∣

∣ ≤ ε. (3)
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4.2 Protocol

The protocols we wish to analyze in this setting encode a message x as
y = (x, hk1(x)⊕ k2), where {hk1 : X → T }k1∈K is a family of hash functions
that map the message to some bit string t ∈ T = {0, 1}m, k2 ∈ T and ⊕ is
the bitwise XOR. Then, as described above, P2 checks that t′ = hk1(x

′)⊕k2
for the y′ = (x′, t′) he receives, and accepts x′ if this is the case or produces
an error ⊥ otherwise.

These hash functions do not need to be ε-ASU2, it is sufficient for
gk1,k2(x) = hk1(x) ⊕ k2 to have this property. The property needed for
{hk1}k1∈K has been dubbed ε-almost XOR universal2 by Rogaway [6], ε-otp
secure by Krawczyk [4, 5], and ε-∆ universal by Stinson [19].8

Definition 4.1 (XOR universal2 hash function [6]). A family of hash func-
tions {hk : X → T }k∈K for T = {0, 1}m is said to be ε-almost XOR
universal2 (ε-AXU2) if for k chosen uniformly at random and all x1, x2 ∈ X
with x1 6= x2 and all t ∈ T ,

Pr [hk(x1)⊕ hk(x2) = t] ≤ ε. (4)

It is immediate from this definition that the hash function gk1,k2(x) :=
hk1(x)⊕ k2 is ε-ASU2, i.e., for all x1, x2 ∈ X with x1 6= x2 and all t1, t2 ∈ T ,

Pr [gk1,k2(x1) = t1 and gk1,k2(x2) = t2] ≤
ε

|T |
.

Since XORing a uniform string k2 to any value yields a uniform string we
also have

Pr [gk1,k2(x1) = t1] = Pr
[

gk1,k2(x1) = t1

∣

∣

∣
K̃ = k1

]

=
1

|T |
, (5)

where K̃ is the random variable for the recycled part of the key. Combining
the two equations above gives

Pr [gk1,k2(x2) = t2|gk1,k2(x1) = t1] ≤ ε. (6)

We now have all the ingredients needed to prove the security.

Theorem 4.2. Let π be an authentication scheme that encodes a message
x as y = (x, hk1(x) ⊕ k2) and recycles k1, where {hk1 : X → T }k1∈K is a
family of ε-almost XOR universal2 hash functions, and (k1, k2) are chosen
uniformly at random from K × T . Then π is ε-UC-secure.

8Stinson [19] generalizes this notion to any additive abelian group T instead of only
bit strings.
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Proof. We need to show that Eq. (3) is satisfied for any distributions PX

and PY ′ . First, for y = (x, t), if the environment chooses y′ = (x, t′), then
the real and ideal protocols both either accept x if t′ = t or reject it if t′ 6= t.
This means that

PX̃ |XY Y ′(x
′|x, (x, t), (x, t′)) = P

X̂ |XY Y ′(x
′|x, (x, t), (x, t′))

=

{

0 if x′ 6= ⊥ XOR t′ 6= t,

1 if x′ = ⊥ XOR t′ = t,

hence X̃ and X̂ are completely determined by XY Y ′ and can be dropped.
The LHS of Eq. (3) thus reduces to

1

2

∑

x,t,t′,k1

PXY Y ′(x, (x, t), (x, t′))

∣

∣

∣

∣

PK̃|XY Y ′(k1|x, (x, t), (x, t
′))−

1

|K|

∣

∣

∣

∣

.

Furthermore, from Eq. (5) we know that K̃ is independent from XY , and
therefore also from XY Y ′, hence PK̃|XY Y ′(k1|x, (x, t), (x, t

′)) = 1
|K| . We can

thus assume w.l.o.g. that the adversary chooses x′ 6= x.
For y′ = (x′, t′) and x′ 6= x, the random variable X̃ can take two values,

⊥ if cheating was detected or x′ if the players were fooled. X̂ however always
produces an error ⊥. Separating the summation in the LHS of Eq. (3) over
these two values gives

1

2

∑

x,t,x′,t′,k1

PXY Y ′(x, (x, t), (x′, t′))

∣

∣

∣

∣

PX̃K̃|XY Y ′(⊥, k1|x, (x, t), (x, t
′))−

1

|K|

∣

∣

∣

∣

+
1

2

∑

x,t,x′,t′,k1

PXY Y ′X̃K̃(x, (x, t), (x′, t′), x′, k1). (7)

We show in the following that

PX̃K̃|XY Y ′(⊥, k1|x, (x, t), (x
′, t′)) ≤

1

|K|
(8)

for all values of x, t, x′, t′, k1. This implies that Eq. (7) sums up to twice the
value of the second term, i.e.,

∑

x,t,x′,t′,k1

PXY Y ′X̃K̃(x, (x, t), (x′, t′), x′, k1)

=
∑

x,t,x′,t′

PXY Y ′(x, (x, t), (x′, t′))
∑

k1

PX̃K̃|XY Y ′(x
′, k1|x, (x, t), (x

′, t′))

=
∑

x,t,x′,t′

PXY Y ′(x, (x, t), (x′, t′))PX̃ |XY Y ′(x
′|x, (x, t), (x′, t′))

≤
∑

x,t,x′,t′

PXY Y ′(x, (x, t), (x′, t′))ε = ε,
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where to reach the last line we used

PX̃ |XY Y ′(x
′|x, (x, t), (x′, t′)) = Pr

[

hk1(x
′)⊕ k2 = t′

∣

∣hk1(x)⊕ k2 = t
]

and Eq. (6).
Finally, we show that Eq. (8) holds. The LHS can be decomposed as

PX̃K̃|XY Y ′(⊥, k1|x, (x, t), (x
′, t′))

= PK̃|XY Y ′(k1|x, (x, t), (x
′, t′))PX̃ |XY Y ′K̃(⊥|x, (x, t), (x′, t′), k1). (9)

Because (x′, t′) are chosen by the environment when holding (x, t), they do
not influence the distribution of K̃ given XY , so

PK̃|XY Y ′(k1|x, (x, t), (x
′, t′)) = PK̃|XY (k1|x, (x, t)).

And as argued above in the case where x′ = x, from Eq. (5) we know that
K̃ is independent from XY , so PK̃|XY (k1|x, (x, t)) = 1

|K| . Combining this

with PX̃|XY Y ′K̃(⊥|x, (x, t), (x′, t′), k1) ≤ 1 and Eq. (9) proves Eq. (8).

5 Secret key leakage

An immediate application of the UC security of authentication with key
recycling is to reuse the same hash function to authenticate multiple mes-
sages, only renewing the part of the key XORed to the tag. The universal
composition theorem (Theorem 2.2) says that if we do this ℓ times and each
individual protocol is ε-UC-secure, then the composed protocol has error at
most ℓε.9

In this section we show that this composition theorem is tight for all
protocols with ε = 1/|T |, where T is the alphabet for the tag, i.e., there
exists an attack such that after ℓ rounds the adversary has probability at
least ℓε of having successfully forged a message, for any ℓ ≤ 1/ε.

Let us define {Fℓ}ℓ to be a sequence of random variables taking the
value 1 if the adversary successfully falsifies a message in any of the first ℓ
rounds, and 0 otherwise. Then a quick calculation shows us that for any
0 ≤ ℓ ≤ 1/ε− 1,

PFℓ+1|Fℓ
(1|0) =

PFℓ+1
(1)− PFℓ+1Fℓ

(1, 1)

PFℓ
(0)

=
(ℓ+ 1)ε− ℓε

1− ℓε
=

ε

1− ℓε
.

This means that in every successive round, the adversary’s probability of
successfully forging a message increases. This happens because— as we show
in Theorem 5.1 here below — some information about the hash function is
leaked in every round — even if the key used for the OTP is perfectly

9We illustrate this application of the composition theorem in Section 6.
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uniform — and the entropy of the hash function gradually decreases, until
the adversary has enough information to successfully falsify a new message
with probability 1.

This result contrasts strongly with the non-composable analysis found
in [1]. There, the adversary simply collects the pairs of messages and tags
(x1, t1), (x2, t2), . . . , and attempts to falsify a message in each round, inde-
pendently from the attempts in previous rounds. In this case, due to the
hiding property of the OTP, the distribution of the hash function always
remains perfectly uniform given these message-tag pairs.

Theorem 5.1. Let π be an authentication scheme that encodes a message
x as y = (x, hk1(x) ⊕ k2) and recycles k1, where {hk1 : X → T }k1∈K is a
family of 1

|T | -almost XOR universal2 hash functions. For any 1 ≤ ℓ ≤ |T |,
let this protocol be used ℓ times with the same key k1 ∈ K initially chosen
uniformly at random, and a new uniformly random k2 ∈ T in each round.
Then, there exists an attack such that after ℓ rounds,

H(K|Zℓ) ≤ log
|K|

|T |
+

(

1−
ℓ

|T |

)

log (|T | − ℓ) ,

where K represents the choice of k1 and Zℓ consists of all the inputs and out-
puts of the protocol (except for K) and the communication with the dummy
adversary from these ℓ rounds. Furthermore, the adversary has probability
at least ℓ/|T | of successfully falsifying one of the first ℓ messages.

Proof. Since the environment can choose the distribution of the messages
to be authenticated in the ℓ rounds, we take them to always be the same
message x. The environment also always substitutes the same message x′ 6=
x for x in each round. To be successful, it needs to guess correctly the value
c = hk1(x) ⊕ hk1(x

′), since t′ = t⊕ c, where t is the tag that comes with x
and t′ is the correct tag for x′. The environment therefore makes a list of
the |T | possible values for c, and in each round eliminates one from its list.

In the first round the environment is given (x, t1) by the dummy adver-
sary. It picks a c1 from its list and sends (x′, t1 ⊕ c1) back to the dummy
adversary. The legitimate player accepts the message received from the
adversary only if c1 = hk1(x) ⊕ hk1(x

′), which happens with probability
p1 = |T |−1.

If the environment is unsuccessful at falsifying the message, it can cross
c1 off its list. In the second round it then receives (x, t2), picks a new c2 6= c1,
and sends (x′, t2 ⊕ c2). This time its success probability is p2 = (|T | − 1)−1,
since it only has |T | − 1 elements c left on its list.

If we repeat this for each round, the success probability in the ℓth round
given that the previous ℓ− 1 were unsuccessful is pℓ = (|T | − ℓ+ 1)−1. We
now prove by induction that the probability of successfully falsifying at least
one message with this strategy is exactly ℓ/|T |. Let Fℓ be a random variable
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taking the value 1 if the adversary successfully falsifies a message in any of
the first ℓ rounds, and 0 otherwise. We have PF1

(1) = p1 = 1/|T |. And if
PFℓ−1

(1) = (ℓ− 1)/|T |, then

PFℓ
(1) = PFℓ−1

(1) + PFℓ−1
(0)pℓ =

ℓ− 1

|T |
+

(

1−
ℓ− 1

|T |

)

1

|T | − ℓ+ 1
=

ℓ

|T |
.

Let z0 represent any value of Zℓ in which the adversary fails to falsify
any message, and z1 be the case where he does trick the players. If he is
successful, he immediately learns the correct value c, and thus

H(K|Zℓ = z1) = log
|K|

|T |
.

If the adversary is not successful, he has still managed to cross ℓ values for
c off his list, so

H(K|Zℓ = z0) = log
|K|

|T |
(|T | − ℓ) .

Combining the two equations above with the corresponding probabilities,
we get

H(K|Zℓ) =
ℓ

|T |
log

|K|

|T |
+

(

1−
ℓ

|T |

)

log
|K|

|T |
(|T | − ℓ) .

6 Example: Layered QKD and authentication

As illustration of the universal composition theorem (Theorem 2.2) we sketch
the security proof for a composition of quantum key distribution (QKD) and
authentication with key recycling. The two players must share an initial key
which is long enough to select the hash function and encrypt the tags for ev-
ery message exchanged during the first round of QKD. The recycled key and
new key produced by the QKD protocol are then used for the authentication
in subsequent rounds. W.l.o.g. we assume the initial key to be perfect. If the
authentication scheme is ε1-UC-secure, and is needed ℓ times in each round
of QKD, and the QKD protocol is ε2-UC-secure and repeated r times, it is
immediate from the composition theorem that the final key — the concate-
nation of all unused secret key bits produced in each round and the recycled
hash function — has distance at most r(ℓε1 + ε2) from uniform.

To sketch this, we first consider the composition of the ℓ rounds of au-
thentication with key recycling, which we illustrate in Figure 3. In the ideal
setting, the different rounds of the ideal authentication are all independent.
So the statistical distance between the environment’s (Z) view of ℓ rounds
of ideal authentication and ℓ−1 rounds of ideal authentication with 1 round
of the real protocol is at most ε1. Likewise, if we compare the second and
third lines of Figure 3, the environment Z′ can notice a difference with prob-
ability at most ε1. Since Z′ is simply Z with an additional internal round

13



Ideal Ideal Ideal

Z

Ideal Ideal Real

ZZ′

Ideal Real Real

ZZ′Z′′

Real Real Real

ZZ′Z′′

ε

ε

ε

Key2

Key2 Key2

Keys Key2 Key2

k1k′1k′′1

k1k1k′1

k1k1k1

k1k1k1

Figure 3 – The bottom line represents the environment’s (Z) view of the
composition of many rounds of an authentication protocol with key recycling.
Each box Real contains the two legitimate players and the adversary, depicted
separately in Figure 2. The recycled key k1 is passed from one protocol to
the next. The rest of the communication between the environment, players
and adversary is stylized by the two arrows beneath the box. The top line
represents the ideal case, in which each box Ideal contains the players, ideal
functionality and simulator. By substituting one real protocol for an ideal one,
the distance between the environment’s views increases by at most ε.
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of authentication (which Z can run on its own anyway), Z does not have
an advantage greater than ε1 either. By repeating this reasoning and using
the triangle inequality for the statistical distance, we find that ℓ rounds of
authentication with key recycling have error at most ℓε1.

Next, we look at the composition of ℓ rounds of authentication and 1
round of QKD. Let K̃1 be the key recycled by the authentication protocols,
K̃2 the output of the QKD protocol, let K1 and K2 be their ideal counter-
parts, and let ρẼ and ρE be the quantum states held by the environment in
the real and ideal cases, consisting of all the information it gathered, the clas-
sical messages, tags, falsified messages, and quantum information gleaned
from the quantum channel. We need to show that the (trace) distance10

between the real and ideal situations is bounded by ℓε1 + ε2, i.e.,

1

2

∥

∥

∥
ρK̃1K̃2Ẽ

− ρK1
⊗ ρK2

⊗ ρE

∥

∥

∥

tr
≤ ℓε1 + ε2. (10)

Since the composition of authentication protocols is close to ideal for all
environments, it is in particular secure for an environment that runs a QKD
protocol and attempts to distinguish between the real and ideal settings by
looking at the output of the QKD protocol. Hence

1

2

∥

∥

∥
ρK̃1K̃2Ẽ

− ρK1
⊗ ρ

K̂2E

∥

∥

∥

tr
≤ ℓε1,

where K̂2 is the output of the QKD protocol run with the ideal authentica-
tion. By the security definition of QKD [20], the protocol is ε2-UC-secure
if, when using an ideal authentication protocol, we have

1

2

∥

∥

∥
ρ
K̂2E

− ρK2
⊗ ρE

∥

∥

∥

tr
≤ ε2.

Combining the two equations above and the triangle inequality proves (10).
The final step consists in showing that r rounds of QKD and authenti-

cation has error at most r(ℓε1 + ε2). The reasoning is however identical to
the ℓ sequential compositions of just authentication depicted in Figure 3, so
we omit it.
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Appendices

A Security proof for standard authentication

We prove here the security of standard authentication with ε-ASU2 hashing
as defined in Definition 3.1. Note that this proof does not need the extra
requirement that Pr [hk(x) = t] = 1

|T | , which is often part of the ε-ASU2

definition (see Footnote 7 on page 7).

Lemma A.1. Let π be an authentication scheme that encodes a message x
as y = (x, hk(x)), where {hk : X → T }k∈K is a family of ε-almost strongly
universal2 hash functions, and k is chosen uniformly at random from K.
Then π is ε-UC-secure.

Proof. We need to show that Eq. (1) is satisfied for any distributions PX

and PY ′ . Let y = (x, t) and y′ = (x′, t′). If the environment chooses x′ = x,
both the real protocol and ideal functionally behave identically and are indis-
tinguishable — they both accept x if t′ = t and produce an error otherwise.
We can therefore assume w.l.o.g. that x′ 6= x. In this case, the simulator in
the ideal situation always outputs an error ⊥, i.e., P

X̂
(⊥) = 1. The security

criterion (1) therefore reduces to

∑

x,t,x′,t′

PXY Y ′X̃(x, (x, t), (x′, t′), x′) ≤ ε.

Splitting the random variable Y = XT in its two parts, and combining
the following equations,

PXY Y ′(x, (x, t), (x′, t′)) = PXTY ′(x, t, (x′, t′))

= PX(x)PT |X(t|x)PY ′|XT (x
′, t′|x, t),

PT |X(t|x) = Pr[hk(x) = t],

P
X̂ |XY Y ′(x

′|x, (x, t), (x′, t′)) = Pr[hk(x
′) = t′|hk(x) = t],
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we get

∑

x,t,x′,t′

PXY Y ′X̃(x, (x, t), (x′, t′), x′)

=
∑

x,t,x′,t′

PX(x)PY ′|XT (x
′, t′|x, t) Pr[hk(x) = t and hk(x

′) = t′]

≤
∑

x,t,x′,t′

PX(x)PY ′|XT (x
′, t′|x, t)

ε

|T |

=
∑

t

ε

|T |
= ε.

B Impersonation attacks

B.1 Security

In an impersonation attack, the adversary (or environment in case of a
dummy adversary) does not wait for the legitimate parties to authenticate a
message, instead he generates his own y′ before receiving any y. In the ideal
case, the simulator then always sends an error ⊥ to the ideal functionality
who transmits it to P2.

Since no input x and corresponding y are present, the security criterion
for standard authentication (Eq. (1)) then reduces to

1

2

∑

y,x

∣

∣P
Y ′X̃

(y, x)− P
Y ′X̂

(y, x)
∣

∣ ≤ ε, (11)

and we say that an authentication protocol is ε-UC-secure against imper-
sonation attacks if Eq. (11) holds.

In the case of key recycling, the decision of P2 to accept or reject the
message might be correlated to the key k1, i.e., the random variables X̃ and
K̃ can be correlated. It is therefore important that in this setting too, the
ideal functionality produces a new key K which is perfectly uniform and
independent from Y ′X̂. The corresponding security criterion (Eq. (3)) then
reduces to

1

2

∑

y,x,k1

∣

∣PY ′X̃K̃(y, x, k1)− P
Y ′X̂K

(y, x, k1)
∣

∣ ≤ ε, (12)

and we say that an authentication protocol with key recycling is ε-UC-secure
against impersonation attacks if Eq. (12) holds.

Although these might, at first look, seem like a simplification of their
substitution-attack counterparts, it is in fact possible to construct (artificial)
protocols that have an impersonation error roughly twice as large as the
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substitution error.11 However, in the special case where the encoding of
the message x is of the form y = (x, t), we show in the following section
that security against impersonation attacks follows from security against
substitution attacks.

B.2 Reduction to substitution attacks

Lemma B.1. Let π be an authentication scheme (with or without key recy-
cling) that encodes a message x as y = (x, t). If π is ε-UC-secure (against
substitution attacks), then it is also ε-UC-secure against impersonation at-
tacks.

We prove this statement for a scheme with key recycling. The proof
when no recycling is performed is identical except for the omission of the
random variables K and K̃.

Proof. If
1

2

∑

y,x,k1

∣

∣PY ′X̃K̃(y, x, k1)− P
Y ′X̂K

(y, x, k1)
∣

∣ > ε,

then there exists a specific y′ = (x′, t′) for which

1

2

∑

x,k1

∣

∣

∣
PX̃K̃|Y ′(x, k1|y

′)− P
X̂K|Y ′(x, k1|y

′)
∣

∣

∣
> ε.

So w.l.o.g. we can take PY ′(y′) = 1.
In the case of a substitution attack, the environment chooses any distri-

bution PX such that PX(x′) = 0. Then upon receiving y it sends y′ = (x′, t′).
In the ideal case, the simulator and ideal functionality therefore always trans-
mit an error, and in the real case P2 accepts the message x′ with the same
probability as for the impersonation attack. So P

X̂K|Y ′ and PX̃K̃|Y ′ have ex-
actly the same distributions in the cases of substitution and impersonation
attacks. Hence

1

2

∑

x,y,y′,x̄,k1

∣

∣PXY Y ′X̃K̃(x, y, y′, x̄, k1)− P
XY Y ′X̂K

(x, y, y′, x̄, k1)
∣

∣

≥
1

2

∑

y′,x̄,k1

∣

∣PY ′X̃K̃(y′, x̄, k1)− P
Y ′X̂K

(y′, x̄, k1)
∣

∣ > ε.

11Let {hk : {0, 1} → {0, 1}m}k be a set of functions such that for all k, hk(0) = 0m, and 1
is uniformly mapped (over the choice of k) to all t ∈ {0, 1}m\{0m}. Let the authentication
protocol encode the message x ∈ {0, 1} as (x⊕k1, hk2

(x⊕k1)). If the environment performs
an impersonation attack by sending the message y = (0, 0m), this will be accepted with
probability 1. If the environment performs a substitution attack, he first has to choose a
message x, then receives the corresponding y from the dummy adversary, and has to choose
a new y′ 6= y. For all x, with probability 1/2 the corresponding encoding is y = (0, 0m),
and so the impersonation attack outlined above works only with probability 1/2.
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B.3 Tighter bound

The bound on the impersonation error from Lemma B.1 is not always tight.
In particular, in the case of the authentication protocol with key recycling
given in Section 4.2 it is possible to get a better result. Due to the tight
bound in Eq. (5) we find that this scheme is 1

|T | -UC-secure against imper-
sonation attacks.

Lemma B.2. Let π be an authentication scheme that encodes a message x as
y = (x, hk1(x)⊕k2) and recycles k1, where {hk1 : X → T }k1∈K is a family of
ε-almost XOR universal2 hash functions, and (k1, k2) are chosen uniformly
at random from K × T . Then π is 1

|T | -UC-secure against impersonation
attacks.

Proof. We need to show that for all distributions PY ′ , Eq. (12) holds for
ε = 1

|T | . Since in the ideal case X̂ = ⊥ and K is independent from Y ′X̂ , the

LHS of Eq. (12) reduces to

1

2

∑

x,t,k1

PY ′(x, t)

(

PX̃K̃|Y ′(x, k1|x, t) +

∣

∣

∣

∣

PX̃K̃|Y ′(⊥, k1|x, t)−
1

|K|

∣

∣

∣

∣

)

. (13)

And because from Eq. (5),

PX̃K̃|Y ′(x, k1|x, t) = Pr
[

hk1(x)⊕ k2 = t and K̃ = k1

]

= PK̃(k1) Pr
[

hk1(x)⊕ k2 = t
∣

∣

∣
K̃ = k1

]

=
1

|K||T |
,

Eq. (13) is equal to 1
|T | .

Note that in the case of standard authentication with ε-ASU2 hashing, if
we had made the extra assumption that Pr [hk(x) = t] = 1

|T | (see Footnote 7

on page 7), we would also have found that the corresponding scheme is 1
|T | -

UC-secure against impersonation attacks. However, from Eq. (2) alone, we
can at best get the bound

Pr [hk(x) = t] =
∑

t′

Pr
[

hk(x) = t and hk(x
′) = t′

]

≤ ε,

which only guarantees that the scheme is ε-UC-secure against impersonation
attacks.
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