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Abstract

Attribute based signatures allow users possessing a set of credentials to sign documents; although
the credentials of the signer can be verified, signers can still continue to retain a reasonable degree of
anonymity. In this work we discuss aspects regarding the security of some attribute based signature
schemes. In particular, we show multiple breaks in the existing threshold attribute based signature
schemes in [9]. We first claim that the scheme is not secure, since it allows, a signer possessing keys for
some attributes to perform universal forgery and produce a signature that can satisfy the threshold for a
set of attributes she does not possess. We then show a total break in the system, where the attacker can
derive a part of the secret key and act as the key generating authority to generate private keys for other
users. We also include examples of the attacks to highlight the flaws of this scheme, and other schemes
[10, 15, 8, 11] which have the same or a similar key construct.
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1 Introduction

There are several settings where one may need to obtain some permissions or a signature from an authority
having certain credentials, but it may be immaterial as to who the specific authorizer is. For example, Alice
may need an approval from a major in the army or a captain in the navy but it may not matter as to who
exactly gave her the permissions. There are also other situations where one may need to prove that they
possess specific credentials but would not want to reveal all their personal details in doing so. Let’s take the
example of Bob, a captain in the navy, who is going to a secret officers meet. He wouldn’t want to reveal
more about himself except to prove that he is an officer who is within his rights in attending the meet. These
are cases where attribute based signatures can be useful.

Attribute based signatures(ABS) allows the creation of a signature that can satisfy a predicate, using keys
given by attribute authorities. Attribute based encryption, which was introduced by Sahai and Waters [14]
and developed by several others [5, 1, 16] have been a major inspiration for ABS schemes. Attribute based
signatures, by their very nature, provide a reasonable degree of anonymity to the signer since a signer can
be identified only by the attributes used in the signature and not by any other specific user identity. This
property of providing anonymity to the signer gives ABS a flavor that can be found in signature schemes
such as, ring signatures [13], group signatures [3], and mesh signatures [2]. But the primary motivation for
ABS schemes is to produce a signature that ensures that the signer can satisfy a predicate of attributes.

Properties. Two important properties of attribute based signatures:

1. They are capable of addressing complex predicates or access control policies.

2. They must satisfy collusion resistance. Collusion resistance means that, even if multiple users collude,
they cannot produce a signature to satisfy a new predicate which none of them were able to satisfy
individually.
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1.1 Related work

ABS in the form of attribute based group signatures [7, 6] had been introduced by Khader in 2007. However,
the first formalization of attribute based signatures was given by [12] Maji et al. in 2008. Following this,
attribute based ring signatures was introduces by Li and Kim in [10]. In the recent past, there have been
several attribute based signature schemes focusing on interesting aspects like threshold [15, 9], and support
for multiple attribute authorities [9]. However, in our study of these schemes, we have observed that a
number of them are flawed and are susceptible to forgery and total break attacks.

1.2 Overview of our results

Breaks. In this paper we show breaks in the threshold attribute based signature scheme proposed by Li et
al. in [9]. We claim that the scheme is insecure since,

• a signer who does not possess the necessary number of attributes to satisfy the threshold of the predicate
can still produce a valid signature. (threshold forgery)

• a signer with some attributes, completely unrelated to the attributes of the predicate can forge a
signature. (universal forgery)

• any attacker can obtain a component of the secret key with which she can pose as the key generating
authority. (total break)

Since our attacks are based on the key construct in the scheme, we also show that these breaks hold for a) the
ABS scheme with multiple attribute authorities by the authors in the same paper [9]; b) attribute based ring
signature scheme in [10]; c) the threshold attribute based signature by Shahandashti and Safavi-Naini [15]
which is derived based on [10]; d) ABS for multi-level threshold circuits [8]; and e) Hidden attribute-based
signatures without anonymity revocation [11].

Organization of the paper. We begin with the preliminaries in the next section. In Section 3 we give
a brief intuition on the attacks, then present the ABS scheme in [9] and give a detailed description of the 3
attacks on the scheme using an example. In the subsequent section we present the attacks on the various
related schemes having similar key construction. We conclude with a summary of all the attacks and our
observations.

2 Preliminaries

In this section we present some of the preliminaries required for attribute based signatures and threshold
ABS.

2.1 Bilinear Pairing

Let G1, G2, GT be multiplicative groups of prime order p. The elements g1 ∈ G1 and g2 ∈ G2 are generators
of G1 and G2 respectively. A bilinear pairing is a map e : G1 × G2 → GT with the following properties:

1. Bilinear: e(g1
a, g2

b) = e(g1, g2)ab for all g1 ∈ G1,g2 ∈ G2, where a, b ∈ Zp.

2. Non-degenerate: There exists g1 ∈ G1 and g2 ∈ G2 such that e(g1, g2) 6= 1; in other words, the map
does not send all pairs in G1 ×G2 to the identity in GT .

3. Computability: There is an efficient algorithm to compute e(g1, g2) for all g1 ∈ G1 and g2 ∈ G2.

2.2 Lagrange Interpolation

Let q(x) be a d− 1 degree polynomial with each co-efficients in Zp . Then, given any set of d points on the
polynomial {q(i) : i ∈ S}, where S is a set of indices such that |S| = d, we can use Lagrange’s interpolation
to find q(j) for any j ∈ Zp as follows: (∆i,S(j) is termed the Lagrange coefficient)

q(j) =
∑
i∈S

q(i)∆i,S(j) , where ∆i,S(j) =
∏

j′∈S,j′ 6=i

j − j′

i− j′
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2.3 Attribute-Based Signature

Attribute based signature schemes consist of four algorithms: setup, key generation, signing and verification
algorithms, defined as follows:

Setup is run by a central authority. It takes as input the security parameter (d), and gives as output the
set of public parameters denoted by params and a master secret key, msk.

Key-Gen (or Extract) is run by the key generating authority. It takes as input, msk and a set of attributes
from the signer to produce D, a corresponding set of private keys for the signer.

Sign algorithm takes the signer’s private keys D, a predicate Υ, and a message m to produce a signature
σ.

Verify algorithm ensures that, a signature σ on a message m is pronounced as valid if it has been signed
by a signer having attributes that satisfy the predicate Υ.

2.4 Threshold Attribute-Based Signature

Threshold ABS is an attribute based signature where the predicate Υ is given by a (t, n)-threshold. This
says that a signer with atleast t out of the n attributes will be able to generate a valid signature. The formal
definition is as follows.

Definition: Threshold attribute-based signature schemes consists of following four algorithms:

Setup is run by a central authority. It takes as input the security parameter (d), and gives as output the
set of public parameters denoted by params and a master secret key, msk.

Key-Gen (or Extract) is run by the key generating authority. It takes as input msk and a set of signer
attributes (Uβ) to produce a corresponding set of private keys, D, for the signer.

Sign algorithm takes the signer’s private keys D, public parameters params, a fixed threshold t (integer),
an attribute subset U∗, and a message m to produce a signature σ.

Verify algorithm is run by a verifier. It outputs 1 when a signature σ on a message m is signed by a valid
signer who holds atleast t out of the n attributes in U∗ i.e. |Uβ ∩ U∗| ≥ t.

Correctness: A threshold-ABS scheme must satisfy the correctness property, i.e. a signature generated
by a signer with attribute set Uβ must pass the verification test for any U∗ if |Uβ ∩ U∗| ≥ t.

Unforgeablility: It is required for the above threshold-ABS scheme to be existentially unforgeabile under
chosen message and attribute attacks as follows:

Setup phase: The challenger C runs the Setup algorithm and gives the common public parameters params
to adversary A.

Query phase: Adversary can perform polynomially bounded number of queries in an adaptive manner
(interactively) as described below.

- KeyGen. A is allowed to query the keys for any set of attributes Uβ .

- Sign. A requests for the signature of a signer with (any) attribute set Uβ on any message m by
specifying a threshold t′ on an n−element attribute set U∗.

Forgery phase: At the end of the game, A outputs a forgery σ with respect to a set of attributes U∗,
threshold t′′ and message m′.

A wins the game if:

1. σ is a valid signature with respect to U∗, t′′,m′.

2. for all KeyGen queries on attribute set Uβ , we have |Uβ ∩ U∗| < t′′.

3. for all Sign queries on message m using signer attributes Uβ , m 6= m′ or |Uβ ∩ U∗| < t′′.

If no polynomial adversary has a considerable advantage in the above game, we say that the threshold-ABS
scheme is existentially unforgeable against chosen message and attribute set attacks.
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Collusion-resistance. Note here that the above game ensures the property collusion resistance and guar-
antees that no colluding group of users can create a signature that could not have been created by any one
of the colluders independently. This is because the adversary could have queried for the secret keys of all

elements in U∗ from KeyGen with different attribute sets Uβ as input, such that U∗ ⊆
⋃
β

{Uβ}.

3 Attacks

In this section we will present the breaks on some of the existing attribute-based signature schemes. We
will first take a detailed look at the construction of the flexible threshold ABS scheme in [9]. Then, with
the help of an example, we will look into detail the algebra involved for partially unblinding values from the
private key. This will give the adversary some intermediate values which can be used to create forgeries.
We’ll finally demonstrate the attacks of threshold forgery, universal forgery and total break on the given
scheme. We start with a brief insight on the attacks:

• All the attacked schemes use secret sharing to generate the private keys.

• Users of the system have more than sufficient shares -via dummy attributes- to reconstruct the secret,
but these are blinded with values purportedly to enforce reconstruction only when the protocol is
strictly followed.

• Through algebraic manipulations, we show how the shares can be unblinded by a malicious user and
how forgeries can be produced.

3.1 Construction of threshold ABS in [9]

Setup(d)→(params, msk).
First, define the attributes in universe U as elements in Zp . A d − 1 default attribute set from Zp
is given as Ω = {Ω1,Ω2, · · · ,Ωd−1}. Select a random generator g ∈ G1 , a random x ∈ Zp , and set
g1 = gx. Next, pick a random element g2 ∈ G1 and compute Z = e(g1, g2). Two hash functions are
also chosen such that H2, H4 : {0, 1}∗ → G1 . The public parameters is params and the master secret
key is msk.

params = (g, g1, g2,Z, d,H2, H4) msk = x.

Extract. To generate a private key for an attribute set ω, the following steps are taken:

• First, choose a d− 1 degree polynomial q(y) randomly such that q(0) = x;

• Generate a new attribute set ω̂ = ω ∪ Ω. For each i ∈ ω̂, choose ri ∈R Zp and compute

di0 = g
q(i)
2 ·H2(i)ri and di1 = gri ;

• Finally, output Di = (di0, di1) as the private key for each i ∈ ω̂

Sign. Suppose one has a private key for the attribute set ω. To sign a message m with predicate Υk,ω∗(·),
namely, to prove owning at least k attributes among an n-element attribute set ω∗, she selects a
k-element subset ω′ ⊆ ω ∩ ω∗ and proceeds as follows:

• First, she selects a default attribute subset Ω′ ⊆ Ω with |Ω′ |= d−k and chooses n+d−k random
values r′i ∈ Zp for i ∈ ω∗ ∪ Ω′.

• She computes,

σ0 = [Πi∈ω′∪Ω′d
∆i,S(0)
i0 ][Πi∈ω∗∪Ω′H2(i)r

′
i ]H4(m)s

σi =

{
d

∆i,S(0)
i1 · gr′i for i ∈ ω′ ∪ Ω′

gr
′
i for i ∈ ω∗\ω′

σ′0 = gs, with a randomly chosen value s ∈ Zp

• Signature: σ = (σ0 , {σi}i∈ω∗∪Ω′ , σ′0)

Verify. To verify the signature σ = (σ0 , {σi}i∈ω∗∪Ω′ , σ′0) of message m with threshold k for attributes
ω∗ ∪ Ω′, check if the following equation holds:

e(g, σ0)

[Πi∈ω∗∪Ω′e(H2(i), σi)]e(H4(m), σ′0)

?
= Z
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3.2 Attack instantiation

In this section we present the attacks on the above scheme. We’ll take the following example case into
consideration for the attack:

• Let d = 2 (for simplicity)

• Accordingly Ω = Ω1, (|Ω|= d− 1)

• Users set of attributes ω = {A,B,C,D}

• Let ω∗ = {A,P} (the signing attributes)

• Let the threshold k = 2 i.e the user needs to
have both attributes in ω∗ to generate a valid
signature.

• For simplicity we will denote H2(i) by Hi.

3.3 Setup and Extract

At the end of Setup(d), we have params = (g, g1, g2,Z, d,H2, H4) and msk = x.

1. Since d = 2 we consider a one-degree polynomial q(y) with q(0) = x. Let q(y) = 7y + x.

2. ω̂ = ω ∪ Ω = {A,B,C,D,Ω1}.

So we have the following private key values:

DA =
{
dA0 = g

q(A)
2 ·HrA

A , dA1 = grA
}

DB =
{
dB0 = g

q(B)
2 ·HrB

A , dB1 = grB
}

DC =
{
dC0 = g

q(C)
2 ·HrC

A , dC1 = grC
}

DD =
{
dD0 = g

q(D)
2 ·HrD

A , dD1 = grD
}

DΩ1
=
{
dΩ10 = g

q(Ω1)
2 ·HrΩ1

Ω1
, dΩ11 = grΩ1

}
3.4 Preliminaries for the attack

Attacker picks d private keys at a time and does the following computations:

Notations. For a set S = {A,B} when we evaluate the Lagrange co-efficient ∆i,S(0) at i = A, we will
denote the value as ∆AB . If i = B, then we denote it as ∆BA. Please note that ∆AB need not equal ∆BA.
Also note that, all the Lagrange coefficients (∆i,S(0)) are publicly computable.

Computations done by signer. We will evaluate Πi∈Sd
∆i,S(0)
i,0 for pairs of attributes. S takes values

from the set {{A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}}. This gives us,

X1 = gx2H
rA∆AB

A HrB∆BA

B X2 = gx2H
rA∆AC

A HrC∆CA

C

X3 = gx2H
rA∆AD

A HrD∆DA

D X4 = gx2H
rB∆BC

B HrC∆CB

C

X5 = gx2H
rB∆BD

B HrD∆DB

D X6 = gx2H
rC∆CD

C HrD∆DC

D

 (Primary equations) (1)

We will use the following notations for simplicity:

∆A1 = ∆AB −∆AC ∆B1 = ∆BA −∆BC

∆A2 = ∆AB −∆AD ∆B2 = ∆BA −∆BD

Now, the user computes the following:

Y1 =
X1

X2
= HrA∆A1

A HrB∆BA

B H−rC∆CA

C

Y2 =
X1

X3
= HrA∆A2

A HrB∆BA

B H−rD∆DA

D

Y3 =
X1

X4
= HrA∆AB

A HrB∆B1

B H−rC∆CB

C

Y4 =
X1

X5
= HrA∆AB

A HrB∆B2

B H−rD∆DB

D

We extend our notations to include:

∆A3 = ∆A1 −∆A2 = ∆AD −∆AC ∆B3 = ∆BA∆CB −∆B1∆CA

∆A4 = ∆A1∆CB −∆AB∆CA ∆B4 = ∆BA∆DB −∆B2∆DA

∆A5 = ∆A2∆DB −∆AB∆DA ∆B5 = ∆B3∆A5 −∆B4∆A4
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Then, the user does the following computations:

Z1 =
Y1

Y2
= HrA∆A3

A HrD∆DA

D H−rC∆CA

C

Z2 =
Y ∆CB

1

Y ∆CA
3

= HrA∆A4

A HrB∆B3

B

Z3 =
Y ∆DB

2

Y ∆DA
4

= HrA∆A5

A HrB∆B4

B (2)

Z4 =
Z∆A5

2

Z∆A4
3

= HrB∆B5

B (3)

Z5 = Z
1

∆B4
3 = H

∆A5/∆B4

A HrB
B = HrA∆̂

A ·HrB
B (4)

With these computations1 the signer is now ready to forge.

3.5 Attack 1: Forgery without satisfying threshold

The signer (who possesses attributes in ω) is now, going to sign a document claiming she has attribute
2-out-of-{A,P}. Note, here that the signer does not have the attribute P and has not received any private
key pertaining to the attribute P .

• ω = {A,B,C,D}

• d = 2 So, (d− 1) = 1

• Ω = {Ω1}

• ω∗ = {A,P}

3.5.1 Sign (Forge)

The attacker computes the following

σ0I = [{gq(A)
2 HrA

A }
∆AB · {gq(B)

2 HrB
B }

∆BA ][Hr′A
A Hr′P

P ]H4(m)s (5)

Note that, r′A, r′P and s are values that the signer picks during signing. Now, the signer raises (4) to the
exponent (−∆BA) and multiplies with σ0I .

σ0 = Z
(−∆BA)
5 × σ0I = gx2H

rAC
A [Hr′A

A Hr′P
P ]H4(m)s (6)

Here C is a constant, which can be computed by the signer. Now for the σi values:

σA = (grA)C .gr
′
A , σP = gr

′
P

Finally, σ′0 = gs. The signature is σ = {σ0 , {σi}i∈{A,P} , σ′0}

3.5.2 Verification correctness

e(g, σ0)

[Πi∈ω∗∪Ω′e(H2(i), σi)]e(H4(m), σ′0)
=
e(g, gx2 )e(g,HrAC

A )e(g,Hr′A
A )e(g,Hr′P

P )e(g,H4(m)s)

[e(HA, σA)e(HP , σP )]e(H4(m), gs)

=
e(g, gx2 )e

(
g,HrAC

A

)
e
(
g,Hr′A

A

)
e
(
g,Hr′P

P

)
[e (HA, (grA)C gr′A)e (HP , gr

′
P )]

= e(g, gx2 )

= Z

3.6 Attack 2: Universal forgery

We now show universal forgery of the proposed signature scheme by extracting the secret component hidden
in the signer’s keys.

1In this example, on careful computation, one can observe that ∆A4 is zero and Equation 3 can be obtained directly from
Z2 since ∆B3 is a non-zero value computable by the signer. Note that the remaining computation is unaffected by this and is
shown as is for simplicity.
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Computations for launching the attack. We will continue with the preliminary computations that we
have already done. We also know that the Lagrange coefficients for any set of attributes can be found. Thus,
the ∆ij values can be computed and therefore we can proceed to find:

δB = Z∆B5
−1

4 = HrB
B (7)

δA =

(
Z3

(δB)∆B4

)∆A5
−1

= HrA
A (8)

Using the components δA and δB , we can now do the following:

ρ =
X1

δA
∆ABδB

∆BA
= gx2 (9)

Now, with the value of gx2 the signer will be in a position to forge for any threshold of attributes and provide
the appropriate σi components to pass the verification tests.

3.6.1 Sign (Universal forgery)

The attacker (who possesses attributes in ω) is now, capable of signing a document claiming she has attribute
2-out-of-{L,M}. Note here that the signer does not have either of the 2 attributes L or M and has not received
any private key pertaining to these attributes.

• ω = {A,B,C,D}

• d = 2 So, (d− 1) = 1

• Ω = {Ω1}

• ω∗ = {L,M}

The forger generates the following signature and gives σ = {σ0 , {σi}i∈{L,M} , σ′0}.

σ0 = gx2 [Hr′L
L Hr′M

M ]H4(m)s

σi : σL = gr
′
L , σM = gr

′
M

σ′0 = gs

3.6.2 Verify (Correctness)

e(g, σ0)

[Πi∈ω∗∪Ω′e(H2(i), σi)] e(H4(m), σ′0)
=
e(g, gx2 )e

(
g,Hr′L

L

)
e
(
g,Hr′M

M

)
e (g,H4(m)s)

[e (HL, σL) e (HM , σM )] e (H4(m), gs)

=
e(g, gx2 )e

(
g,Hr′L

L

)
e
(
g,Hr′M

M

)
[e (HL, gr

′
L)e (HM , gr

′
M )]

= e(g, gx2 )

= Z

3.7 Attack 3: Total break - impersonating key issuing authority

The attacker now holds gx2 . With this, we show how she can generate the private keys for anyone.

To generate a private key for an attribute set ω, the attacker does the following:

• First, choose a d− 1 degree polynomial q(y). Say q(y) = 10y + x

• Generate a new attribute set ω̂ = ω ∪ Ω. For each i ∈ ω̂, choose ri ∈R Zp and compute di0 and di1.

di0 = g
q(i)
2 ·H2(i)ri = g10i

2 · gx2 ·H2(i)ri and di1 = gri

• Finally, output Di = (di0, di1) as the private key for each i ∈ ω̂

This shows a total break on the system.
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4 Attacks on schemes with similar key construct

In this section, we show that these attacks also hold in the case of other schemes which have the same or
similay key construction as in [9]. We’ll first look into the attribute based ring signature scheme of Kim and
Li in [10]. We will then show the attack on the (k, n) threshold scheme by Shahandashti and Safavi-Naini
in [15], then on the ABS with multiple attribute authorities [9]. We then proceed to show that the attacks
are also applicable on the ABS scheme for bounded multi-level threshold circuits [8] and also on the scheme
for hidden ABS without anonymity revocation presented in [11].

4.1 Total break on attribute based ring signature scheme

Here we would like to remark that [9] has been derived from [10] and that both their key extract phases are
exactly the same. We first present the key extraction phase of [10].

4.1.1 Key Extract

To generate a private key for an attribute set ω, the following steps are taken:

→ First, choose a d− 1 degree polynomial q(y) randomly such that q(0) = x;

→ Generate a new attribute set ω̂ = ω ∪ Ω. For each i ∈ ω̂, choose ri ∈R Zp.

→ Compute, di0 = g
q(i)
2 · (H2(i))

ri and di1 = gri ;

→ Finally, output Di = (di0, di1) as the private key for each i ∈ ω̂

4.1.2 Total break

It’s now easy to see that the di0 components in [10] are exactly the same as before. This allows us derive
the set of equations (1) which we called as the Primary Equations. From there we can proceed in the exact
same manner to get equations (2), then (3), (7), (8) and finally (9). This will allow the attacker to get gx2 .
Now, the attacker can use the strategy in Section 3.7 and impersonate the key generating authority.

4.2 Break on threshold attribute based signature scheme

The threshold attribute based signature scheme by Shahandashti and Safavi-Naini in [15] has been extended
from the previous ring signature scheme [10] to support (k, n) threshold. We will take a closer look at their
setup and key extraction phases before we identify the similarities and describe how the attack is applicable.

4.2.1 Construction

Setup(1k): Pick y randomly from Zp and set g1 = gy. Pick random elements g2, h, t1, t2, · · · , tn+1 from G1.

Define and output the following: T (x)
∆
= gx

n

2

n+1∏
i=1

t
∆i,N (x)
i and msk = y and mpk = (g, g1, g2, {ti}, h).

KeyGen(msk, A): To generate keys for the user attribute set A. Choose a random d−1 degree polynomial
q(x) such that q(0) = y, choose random elements ri ∈ Zp for i ∈ A, and output:

ssk =
{
g
q(i)
2 T (i)ri , gri

}
i∈A

4.2.2 Attack

We will first establish the congruence of the key generation in this scheme to that of [9]. Here, we can note that
T (i) is a publicly computable function, the definition of which has been established in the setup. Thus, we can
consider it to be equivalent to the hash functionH2(i) as used in schemes [9, 10] for the purposes of this attack.
If we now use the notation Ti to indicate the value of T (i) where i is the attribute under consideration and

then evaluate Πi∈Sssk
∆i,S(0)
i0 for pairs of attributes, S ∈ {{A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}}

to get:
X1 = gy2T

rA∆AB

A T rB∆BA

B X2 = gy2T
rA∆AC

A T rC∆CA

C

X3 = gy2T
rA∆AD

A T rD∆DA

D X4 = gy2T
rB∆BC

B T rC∆CB

C

X5 = gy2T
rB∆BD

B T rD∆DB

D X6 = gy2T
rC∆CD

C T rD∆DC

D
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If we now use the notation Hi to indicate the value of T (i) and also replace the msk which is y here, with
x. Then, we can get the set primary equations as in (1). From here on, the rest of the steps in extracting gy2
is exactly the same as before. Thus, with the help of gy2 , the attacker is capable of producing keys for any
set of attributes.

Generating Keys. To generate keys for the user attribute set A. The attacker chooses a random d − 1
degree polynomial q(x), such that q(0) = y, say q(x) = 10x + y. And chooses random elements ri ∈ Zp for
i ∈ A, and outputs:

ssk =
{
g10i

2 · gy2 · T (i)ri , gri
}
i∈A

4.3 Attack on ABS with multiple attribute authorities

ABS scheme with multiple attribute authorities is the second ABS scheme proposed in [9]. Here, we assume
there are k attribute authorities in addition to one central authority. This scheme has some variations in
its construction since it needs to be able to address multiple authorities. We will review the phases of the
construction of their scheme before we show how an attacker can break the system.

4.3.1 Construction

Setup. Assume that there are k distributed attribute authorities. Each of them is in charge of the issue
of attribute set Ai for 1 ≤ i ≤ k. Define a default attribute set Ωi of d elements for each attribute
authority. The central authority chooses s1, · · · , sk for all attribute authorities and hash functions
H2, H4, · · · , Hk, H : {0, 1}∗ → G1. In addition, the central authority chooses a random generator
g ∈ G1 , a random x ∈ Z∗p, and sets g1 = gx. Next, she picks a random element g2 ∈ G1 and computes
Z = e(g1, g2). For the attribute authority i, the secret key is si , which is assigned by the central
authority.

Extract. First, a user with identity u gets a secret key from the central authority as dca = g
x−Σk

i=1fsi (u)
2 .

Then, she can request attribute private key from the i-th attribute authority as follows: Assume the
user u is eligible to get an attribute set Ai,u from the attribute authority i. The attribute authority i
chooses a random d− 1 degree polynomial qi(·) such that qi(0) = fsi(u) and computes the private key

q(j) for user u as
{
dij0 = g

qi(j)
2 Hi(j)

rij , dij1 = grij
}
j∈Ai,u∪Ωi

.

Sign. Suppose one has a private key for attribute set Ai,u for 1 ≤ i ≤ k. To sign a message with predicate
Υ that for each i, at least ki out of ni attributes ω∗i are issued from the attribute authority i (Note ki
could be equal to 0). The user selects a ki-value attribute subset ω′i ⊆ Ai,u ∩ ω∗i . The following steps
are taken:

• First, the user chooses ri1, ri2, · · · , ri,ni+d−ki ∈ Z∗p and selects a d − ki default attribute subset
Ω′i ⊆ Ωi. Define Si = ω′i ∪ Ω′i;

• She also computes (σ0, {σij}j∈ω∗i ∪Ω′i
, σ′0), where:

σ0 =
∏

1≤i≤k

∏
j∈Si

d
∆j,Si

(0)

ij0

∏
j∈ω∗i \ω′i

Hi(j)
r′ij

 (H(m))s

{
σij = d

∆i,S(0)
ij1 gr

′
ij

}
j∈Si

,
{
σij = gr

′
ij

}
j∈ω∗i \ω′i

, σ′0 = gs

Verify. On input the signature (σ0, {σij}j∈ω∗i ∪Ω′i
, σ′0) with predicate Υ, compute

e(g, σ0)
?
= Z ·

∏
1≤i≤k

∏
j∈ω∗i ∪Ω′i

e(Hi(j), σij)e(H(m), σ′0)

If the equation holds, the signature is valid and the algorithm outputs accept. Otherwise, the algorithm
outputs reject.

9



4.3.2 Attack

In order to attack this system, a forger has to try and get part of the secret component of every authority.
The attacker can accomplish this as follows:

• Using the set of attributes {Ai,u∪Ωi} the user has from each authority i, the attacker forms equations

as in (1); the only difference being, gx2 will now be g
fsi (u)
2 .

• Following along the same way as before, the user can now extract g
fsi (u)
2 .

• Once the attacker extracts g
fsi (u)
2 for all 1 ≤ i ≤ k. She computes their product:

k∏
i=1

g
fsi (u)
2 = g

∑k
i=1 fsi (u)

2

• Multiplying it with the secret component given by the central authority :

dca × g
∑k

i=1 fsi (u)
2 = g

x−Σk
i=1fsi (u)

2 × g
∑k

i=1 fsi (u)
2 = gx2

Universal Forgery. Now, using the values gx2 and
{
g
fsi (u)
2

}
i=1,··· ,k

, the attacker can forge on any message

for any threshold of attributes. The signature is computed as (σ0, {σij}j∈ω∗i ∪Ω′i
, σ′0) where:

σ0 = dca ·
∏

1≤i≤k

gfsi (u)
2

∏
j∈ω∗i

Hi(j)
r′ij

 (H(m))s

{
σij = gr

′
ij

}
j∈ω∗i

, σ′0 = gs

Verification.

e(g, σ0) = Z ·

 ∏
1≤i≤k

∏
j∈ω∗i ∪Ω′i

e(Hi(j), σij)

 e(H(m), σ′0)

Correctness:

e(g , σ0) = e

g , dca ·
∏

1≤i≤k

gfsi (u)
2

∏
j∈ω∗i

Hi(j)
r′ij

 (H(m))s


= e

g , g
x−Σk

i=1fsi (u)
2 · g

∑k
i=1 fsi (u)

2

∏
1≤i≤k

∏
j∈ω∗i

Hi(j)
r′ij

 e(g,H(m))s

= e(g, gx2 ) ·
∏

1≤i≤k

∏
j∈ω∗i

e(g , Hi(j))
r′ij ) e(g,H(m))s

= Z ·
∏

1≤i≤k

∏
j∈ω∗i

e(gr
′
ij , Hi(j))) e(H(m), σ′0)

= Z ·

 ∏
1≤i≤k

∏
j∈ω∗i ∪Ω′i

e(Hi(j), σij)

 e(H(m), σ′0)

Hence, the verification passes. This shows that universal forgery can be performed on this scheme by any
attacker.

4.4 Attack on multi-level threshold ABS scheme

In this subsection we will focus on how the attack is possible on the multi-level threshold ABS scheme
proposed by Swarun et al in [8]. Here, inorder to achieve multi-level threshold properties, the authors use
the access structure that was first described in Goyal et al’s paper on bounded ciphertext policy ABE [4].
They denote the access tree structure by T . Now, let us look at how the key is generated for a signer
possessing a set of attributes θ such that only those users satisfying the access tree can produce a signature:
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4.4.1 Key Generation

The key generation algorithm outputs a private key that enables the signer to sign on any message m under
a bounded threshold circuit T , as long as T (θ) = 1. Choose a random polynomial q(x) for each non-leaf
node x in the universal bounded threshold circuit Tu. These polynomials are chosen in the following way in
a top-down manner, starting from the root node r. For each x, set the degree cx of the polynomial qx to be
one less than the threshold value, i.e., cx = num − 1. Now, for the root node r, set qr(0) = χ and choose
cr other points of the polynomial qr randomly to define it completely. For any other non-leaf node x, assign
qx(0) = qpar(x)(index(x)) and choose cx other points randomly to completely define qx.

The secret values are given to the user by generating a new attribute set θ∗ = θ ∪ δ. For all i ∈ θ∗ :

1. If i ∈ θ, for each x ∈ ΨTu

(a) Choose rx,i ∈ Z∗p

(b) Compute dx,i0 =
{
g
qx(i)
2 H2(x||i)rx,i

}
, dx,i1 = grx.i

2. If j ∈ δ, for each y ∈ ΦTu

(a) Choose ry,j ∈ Z∗p

(b) Compute dy,j0 =
{
g
qy(j)
2 H2(y||j)ry,j

}
, dy,j1 = gry,j

Thus the private key is {dx,i0, dx,i1|x ∈ ΨTu , i ∈ θ} ∪ {dy,i0, dy,i1|y ∈ ΦTu , i ∈ δ}.

4.4.2 Attack

In order to model this attack, we will first consider all the non-leaf nodes x at depth d − 1 i.e all x ∈ ΨTu .

By using our method of attack, we will try to extract g
qx(0)
2 , for each of these nodes. Once, we get these

values, we can use these to satisfy the threshold of the parent node and get its share of the secret and so
on until we reach the root. To do this we will first establish the congruence of the key generation in this
scheme to that of [9]. Here, we can note that H2(x||i) is a publicly computable function, the definition of
which has been established in the setup. Thus, we can consider it to be equivalent to the hash function
H2(i) as used in schemes [9, 10]. If we now use the notation Hxi to indicate the value of H2(x||i) where x is

the node under consideration and i is the attribute under consideration and then evaluate Πi∈Sd
∆i,S(0)
x,i0 for

pairs of attributes, S ∈ {{A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C,D}} to get the following equations. (It
is important here to note that this is possible because, a private key component is given for all of the users
attributes for each and every non-leaf node in ΨTu).

X1 = g
qx(0)
2 HrxA∆AB

xA HrxB∆BA

xB X2 = g
qx(0)
2 HrxA∆AC

xA HrxC∆CA

xC

X3 = g
qx(0)
2 HrxA∆AD

xA HrxD∆DA

xD X4 = g
qx(0)
2 HrxB∆BC

xB HrxC∆CB

xC

X5 = g
qx(0)
2 HrxB∆BD

xB HrxD∆DB

xD X6 = g
qx(0)
2 HrxC∆CD

xC HrxD∆DC

xD

This leads us to equations that have the exact same form as the primary equations in (1). Thus, we

can extract g
qx(0)
2 for all x ∈ ΨTu . Now, we have the secret shares of all the children nodes at depth

d − 1. We are in a position to interpolate and get the share of the parent nodes as well. By definition,
qx(0) = qpar(x)(index(x)), so we can use interpolation and get qpar(x)(0). Thus, by doing the procedure of

interpolation recursively at each level, we can get the value at the root, g
qr(0)
2 = gχ. Now, the attacker is

just as capable of generating keys for any set of attributes as the key generating authority.

4.5 Total break on hidden ABS without anonymity revocation

The hidden attribute-based signatures without anonymity revocation was proposed by Li and Kim in [11].
This scheme has been largely derived from the work in [9] and hence it has the exact setup and key-extract
phases as in [9] and [10].

Now, any signer who gets a set of keys from the key-generating authority, can use the same procedure as
described in Section 3.4 to retrieve the component gx2 . This will enable the attacker to use the strategy in
Section 3.7 and impersonate the key generating authority. Hence, the key extract algorithm in this scheme
[11] leads to a total break attack on the system.
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ABS Scheme Type of break Source
Flexible Threshold Total Break [LAS+10][9]

Multiple Authorities Universal Forgery [LAS+10][9]
Attribute-Based Ring Total Break [LK08][10]

Threshold Total Break [SSN09][15]
Multi-level threshold Total Break [KABPR10][8]

Hidden ABS Total Break [LK10][11]

Table 1: Table summarizing the attacks

5 Conclusion

The following table summarizes the attacks shown in the previous sections.
Our observations have led us to conclude that the attack is possible when the following conditions are

satisfied:

1. The universe of attributes U contains a sufficiently large number of elements as compared to the
threshold for a signature.

2. The user possesses a lot more than d attributes although (s)he might not have t out of the given U∗.

It is important here to note that the attack was made on the key construction and not on the signature
itself. The primary flaw in the key construction is the combination of Waters’ signature along with the idea
of secret shares to distribute the master secret, and at the same time giving each person lot more shares than
what is required for the computation. These additional shares - in the form of dummies and other attributes
the signer has which are not a part of ω∗, gave the signer multiple ways to recover a derivative of the master
secret key, which in turn lead to the attack. We are yet to see a scheme that makes use of the linear secret
sharing scheme combined with Waters’ signature, which is resistant to the attacks we have proposed here.
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