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Abstract

We study mix-nets with randomized partial checking (RPC) as proposed by Jakobsson,
Juels, and Rivest (2002). RPC is a technique to verify the correctness of an execution both
for Chaumian and homomorphic mix-nets. The idea is to relax the correctness and privacy
requirements to achieve a more efficient mix-net.

We identify serious issues in the original description of mix-nets with RPC and show
how to exploit these to break both correctness and privacy, both for Chaumian and homo-
morphic mix-nets. Our attacks are practical and applicable to real world mix-net imple-
mentations, e.g., the Civitas and the Scantegrity voting systems.

1 Introduction

A mix-net is a protocol that provides anonymity for a group of senders. This notion was first
introduced by Chaum in 1981 [2] to implement anonymous channels in general and electronic
voting schemes in particular. A voter submits an encrypted ballot and the mix-net later out-
puts the plaintexts in random order. Other applications of mix-nets include anonymous web
browsing [8], private payment systems [16], and multiparty computation [13].

The original mix-net proposed by Chaum is a decryption mix-net that works as follows
with mix-servers M1, . . . ,Mk. The jth mix-server generates a key pair (pk j , sk j) and pub-
lishes the public key. To encrypt a message mi, the ith sender forms a ciphertext ci,0 =
Encpk1

(Encpk2
(· · ·Encpkk

(mi) · · · )). The mix-servers then take turns and “peel off” a layer
of encryption and permute the result before publishing it. More precisely, the jth mix-server
computes ci,j = Decskj

(cπj(i),j−1) for a random permutation πj . Note that the output of the last
mix-server is the list of randomly permuted plaintexts. Chaum’s mix-net preserves the privacy
of the senders as long as at least one server keeps its secret key and its random permutation
secret, but a single mix-server can replace all ciphertexts with ciphertexts of his own choosing.

Jakobsson, Juels, and Rivest [15] proposed Randomized Partial Checking (RPC) as a tech-
nique to address this problem and gave heuristic arguments showing that it should be difficult to
change more than a small number of ciphertexts. The idea is strikingly simple: each mix-server
is challenged to reveal how he processed a random subset of his input ciphertexts. If more than
a handful of the ciphertexts are processed incorrectly, then he should get caught. In this scheme
a single mix-server clearly does not provide privacy, but it seems that several mix-servers taken
together still provide fairly strong privacy guarantees.

1



For homomorphic cryptosystems, Park, Itoh and Kurosawa [20] introduced re-encryption
mix-nets. Here the mix-servers generate a single joint public key with a verifiably secret shared
secret key and decryption is replaced by re-encryption, followed by a joint verifiable decryption
step. This means that the size of the ciphertext is independent of the number of mix-servers.
Sako and Kilian constructed the first universally-verifiable mix-net [23], where senders can ver-
ify that the entire shuffle was performed correctly (and not just that their own input was included
in the output). Sako and Kilian’s construction was based on cut-and-choose zero-knowledge
proofs; Neff [18] and Furukawa and Sako [7] gave much more efficient zero-knowledge proofs
of shuffles.

Many of the works in the field aim to improve the efficiency of the mix-net, e.g., [12, 11, 9,
14], but most mix-nets not based on proofs of shuffles have been broken or vulnerabilities have
been found.

1.1 Motivation and Contribution

Random partial checking (RPC) is fast and in contrast to efficient proofs of shuffles [18, 7] it is
compatible with any cryptosystem for which a mix-server can efficiently prove that it processed
a single ciphertext correctly. Thus, it is one of few mix-nets that can be used with cryptosystems
conjectured to be secure against quantum computers. Currently, it is also the only viable option
to construct a universally verifiable mix-net from any cryptosystem. Furthermore, it is perhaps
the most common heuristically secure mix-net found in real implementations. Jakobsson et al.
only claim a restricted form of security for their mix-net, but as such it has resisted all attacks
for 10 years. This makes it an important cryptographic construction to study.

We show that the description of RPC by Jakobsson et al. [15] does not capture their ideas
correctly. More precisely, we have discovered fully practical attacks on both the privacy and
the correctness of their protocol and notable real world implementations of it, e.g., the Civitas
voting system [4]. Using similar ideas we can also attack the correctness of related schemes,
e.g., the Scantegrity voting system [3] that was used in real elections including Takoma Park City
Municipal Elections 2009 and 2011. The most serious attack allows an adversary to replace
the complete output of the mix-net without detection by corrupting a single mix-server, but
we can also break the anonymity of targeted senders at low cost in terms of the number of
corrupted senders. Furthermore, we show that even if the issues we have identified are handled
correctly, an adversary can replace t ciphertexts in the homomorphic mixing without detection
with probability roughly (3/4)t and not 2−t as claimed. Finally, we argue informally that there
is no blackbox proof of security for homomorphic mix-nets with RPC.

The proper interpretation of our results is not that the basic ideas behind RPC are flawed,
but we think RPC should not be used at all with homomorphic mix-nets, and it should not be
used for Chaumian mix-nets until there is a rigorous proof of security. We believe that modeling
and proving the security is possible if only the issues identified in this paper are rectified and
hope to provide such a proof in future work.
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2 Notation

We consider a mix-net employing k pairs of mix-serversM1, . . . ,M2k that provide anonymity
for a group of N senders P1, . . . ,PN . It is convenient to think of each pair of consecutive
mix-serversM2j−1,M2j as if they are executed by a single entity. We denote a cryptosystem
by CS = (Gen,Enc,Dec), where Gen, Enc, and Dec denote the key generation algorithm, the
encryption algorithm, and the decryption algorithm respectively. The key generation algorithm
Gen outputs a pair (pk , sk) consisting of a public key and a private key. We letMpk , Cpk , and
Rpk be the sets of plaintexts, ciphertexts, and randomizers, respectively, associated with the
public key pk . We write c = Encpk (m, r) for the encryption of a plaintext m using randomness
r, and Decsk (c) = m for the decryption of a ciphertext c. We often view Enc as a probabilistic
algorithm and drop r from our notation. Recall that a cryptosystem is called homomorphic if
for every public key pk : Mpk , Cpk , and Rpk are groups and for every m0,m1 ∈ Mpk and
r0, r1 ∈ Rpk we have

Encpk (m0, r0)Encpk (m1, r1) = Encpk (m0m1, r0 + r1) .

Homomorphic cryptosystems allow ciphertexts to be re-encrypted. This means that anybody
with access to the public key can take a ciphertext c and form c · Encpk (1, r), for a randomly
chosen r ∈ Rpk , and the resulting ciphertext is identically, but independently, distributed to the
original ciphertext.

We extend our notation to lists of keys. For a plaintextm and lists of public and private keys
pk = (pk1, . . . , pk `) and sk = (sk1, . . . , sk `), we write

Encpk (m) = Encpk1
(Encpk2

(· · ·Encpk`
(m) · · · )) and

Decsk (c) = Decsk`
(Decsk`−1

(· · ·Decsk1(c) · · · )) .

3 Randomized Partial Checking

In this section we provide a brief description of the mix-net with randomized partial checking
(RPC) proposed by Jakobsson et al. [15] that focuses on the most common variations. We
mostly borrow their notation in the following for easy reference.

The mix-net with RPC is not intended to provide full correctness or privacy; it gains in
efficiency by relaxing the security requirements. The goal is to prevent mix-servers from unde-
tectably modifying many inputs; it is easy to see that a malicious server can succeed in changing
a small number of inputs with constant probability. Assuming that the penalty for being iden-
tified as a cheater is severe, the authors of [15] argue that this suffices. The privacy guarantees
are also relaxed: while the exact correspondence between senders and their inputs is hidden,
some information may still be leaked (e.g., that a specific input did not originate with a specific
sender).

RPC is proposed as a general technique to verify the correctness of both homomorphic and
Chaumian mix-nets. A key requirement on the underlying cryptosystem is that it allows a party
to transform a ciphertext c into a ciphertext c′ using a cryptographic transformationXj , and then
prove that it did so correctly. For a homomorphic mix-net,Xj denotes random re-encryption and
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proving that this was done correctly amounts to revealing the randomness used. For a Chaumian
mix-net Xj denotes decryption. To prove that the transformation was applied a zero-knowledge
proof of correct decryption can be used. However, if the cryptosystem allows using the secret
key to recover the randomness used to form a ciphertext from the ciphertext itself, then the
randomness can simply be revealed. This interesting feature is not mentioned in [15]. In the
following we assume for concreteness that the cryptosystem has this special feature.

3.1 Key Distribution

There is a public key pk and a corresponding secret key sk for the mix-net. For the homomorphic
mix-net, the keys are simple joint keys of all mix-servers, whereas for the Chaumian mix-net
they are lists of 2k keys. For homomorphic mixing, the joint secret key is typically verifiably
secret shared among the mix-servers [6] and not known by any subset smaller than a certain
threshold. For the Chaumian mix-net, Mj knows the jth component of the secret key, sk j ,
and each such key is verifiably secret shared among all the mix-servers. The threshold used
determines the privacy and robustness of the mix-net.

3.2 Ballot Preparation and Encryption

Each sender Pi prepares his plaintext mi, computes ci,0 = Encpk (mi), and sends it to the
bulletin board. Pfitzmann [22, 21] pointed out that this ciphertext must either be non-malleable
(CCA2-secure) on its own, or augmented with a non-interactive zero-knowledge proof of knowl-
edge of the plaintext to provide this property. For concreteness we assume that the latter ap-
proach is used.

3.3 Initial Ballot Checking

When all voters have submitted their ciphertexts, all duplicates are removed (preserving a single
copy) and ciphertexts with invalid proofs are discarded. Without loss of generality, we assume
that this results in a list of N distinct well-formed ciphertexts (c1,0, . . . , cN,0).

3.4 Permutation Commitment

Each server Mj selects a permutation πj on N elements uniformly at random. The server
publishes on the bulletin board a commitment to πj or π−1j depending on j being odd or even.
The commitment consists of N integer commitments of the form

Γ
(In)
j =

(
ζwi,j [πj(i)]

)N
i=1

or Γ
(Out)
j =

(
ζwi,j [π

−1
j (i)]

)N
i=1

,

depending on the parity of j, where ζw[i] denotes a commitment to integer i under randomness
w. We simply let γi,j denote the ith commitment of mix-serverMj , i.e., γi,j is an element of
Γ
(In)
j or Γ

(Out)
j depending on the parity of j.
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3.5 Mix-net Processing

Each server Mj , in turn accepts a ciphertext list (c1,j−1, . . . , cN,j−1) from the bulletin board
as input, and computes a list (c1,j , . . . , cN,j) as output and publishes it on the bulletin board,
where input ciphertext goes through the cryptographic transformation ci,j = Xj(cπj(i),j−1).
For the homomorphic mixing, the transformation Xj re-encrypts the input ciphertext. For the
Chaumian mix-net, Xj is the decryption algorithm executed with the secret key sk j .

3.6 Correctness Check

Each mix-serverMj is verified as follows. The mix-servers jointly select a collection of cipher-
texts from its input or output list, depending on j being even or odd. The selection method is
explained in the next section. Mix-serverMj is then asked to reveal a collection of input/output
correspondences related to the selected ciphertexts. Suppose thatMj wishes to reveal informa-
tion that allows anyone to verify that an input ciphertext ck,j−1 maps to ci,j . The mix-serverMj

reveals the triple (k, i, rk,i,j) where rk,i,j is the information required to validate the transforma-
tion ci,j = Xj(ck,j−1). In the case of the Chaumian mix-net, rk,i,j is the randomness chosen by
a sender when encrypting ci,j to obtain ck,j−1; in the case of the homomorphic mix-net, rk,i,j is
the randomness value chosen byMj itself for re-encrypting ck,j−1.

Additionally, Mj reveals his commitment to the mapping from ck,j−1 to ci,j . An odd-
numbered mix-server Mj , for the selected ciphertext ci,j , decommits to γi,j (revealing k =
πj(i)) whereas an even-numbered mix-server, for the selected ciphertext ck,j−1, decommits γk,j
(revealing i = π−1j (k)).

If all the input/output correspondences are verified, then the mix-server passes the correct-
ness check. Otherwise, he is identified as a cheater.

Inconsistent Permutation Commitments are Possible. We observe that Jakobsson et al. do
not stress the importance of checking that the opened commitments of integers are consistent
with a permutation. That is, all the revealed commitments γi,j’s (or γk,j’s) must open to dis-
tinct values. In fact, they emphasize that the verification of correspondences can be performed
independently, i.e., it is easy to parallelize. In Section 6, we explore this issue in depth.

3.7 Selection Strategy

Jakobsson et al. propose different schemes for how to select a subset for each mix-server’s
inputs. The pairwise dependent selection scheme is favored and can be described as follows.
Two adjacent mix-servers are paired to ensure that no overlapping correspondences are revealed.
The output list (c1,2j−1, . . . , cN,2j−1) of an odd-numbered mix-server is divided in two groups
of ciphertexts. ThenM2j−1 is challenged with one group andM2j with the other one.

The partitioning of the output list of an odd-numbered mix-servers is done as follows. Mix-
servers jointly compute a random seedR. One way to do this is that each mix-server commits to
a random valueRj before starting verification. Then, they open their commitments and compute
R as the XOR of all Rj’s. The seed R can be used to determine which challenges each mix-
server needs to answer. For achieving universal verifiability, RPC combines the random seed
R with the contents of the bulletin board, denoted by BB, to compute a seed Q2j−1, e.g., by
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computing the hash valueH(H(R,BB), j) whereH is a cryptographic hash function. The seed
Q2j−1 is interpreted as a vector of N boolean values of which half are true which is used to
divide (c1,2j−1, . . . , cN,2j−1) in two disjoint groups.

The correctness check of mix-servers can be done in two ways: in phase with mixing, i.e.,
right after each mix-server pair has published his output list, or after all mixing has been per-
formed, i.e., the last mix-server has published his output list. Both schemes are proposed for
homomorphic mixing, but if cheating is detected in the second scheme, then the culprit would
be kicked out and the mixing restarted. Only when the mixing proceeds without any detected
cheating does joint decryption take place. For Chaumian mixing the correctness check is sug-
gested to take place in phase. If a mix-server is identified as a cheater, then his secret key is
recovered and his input decrypted in the open.

3.8 Ballot Decryption

For the homomorphic mix-net, once the mixing operation is complete without detecting any
cheating mix-server, the holders of the secret key sk (the mix-servers or some other entities)
jointly decrypt all output ciphertexts, yielding the full list of plaintext ballots. This decryption
operation is not needed in the case of a decryption mix-net, since the Xj transformations have
already performed all necessary decryptions.

4 Pfitzmann’s Attack and a Generalization

It is easy to see that for the homomorphic mix-net with RPC, the attack of Pfitzmann [22, 21]
can be adopted to break the privacy of any given sender with probability 1/2. This forms the
basis of our attacks on privacy, so it is worthwhile to describe it in detail.

The first mix-server knows the correspondence between voters and ciphertexts. He targets a
sender with a submitted ciphertext c. Then he chooses an integer δ of suitable size randomly and
replaces one of his outputs by cδ. With probability 1/2 this is not detected during RPC. Then
he waits until the mix-net produces an output, identifies two plaintexts m and m∗ that satisfy
m∗ = mδ, and concludes that m was submitted by the targeted sender.

With more processing, Pfitzmann’s basic attack can be generalized to break the privacy of
s senders while keeping the probability of detection equal to 1/2. To target some ciphertexts
c1, . . . , cs, the first mix-server chooses random values δ1, . . . , δs and replaces one of its outputs
by the product

∏s
i=1 c

δi
i . When the mix-net produces an output, the attacker identifies s + 1

plaintexts m1, . . . ,ms,m
∗ in the final list that satisfy m∗ =

∏s
i=1m

δi
i . Then it concludes that

the ith targeted ciphertext is an encryption of mi.

5 On the Need for Duplicate Removal Everywhere

Recall that duplicate ciphertexts in the list of initial ciphertexts are removed (preserving only
the first posted copy). Jakobsson et al. do not emphasize that each mix-server must perform this
operation before processing its input. In this section we explore the consequences of failing to
do so in a Chaumian mix-net with RPC.
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Consider the adversary that corrupts s(s + 1)/2 senders, and the first and last mix-servers.
For simplicity, let us assume that the adversary targets the first s ciphertexts c1,0, . . . , cs,0. For
each i, the adversary removes the first layer of encryption by computing ci,1 = Decsk1(ci,0),
using the secret key of the first corrupted mix-server. He then makes i independent encryptions
of ci,1 under the public key of the first mix-server. This way, the adversary has prepared 1 + 2 +
. . . + s = s(s + 1)/2 ciphertexts which will be sent by the same number of corrupted senders
— each submitting one ciphertext. By construction there are i+ 1 related ciphertexts of the ith
targeted ciphertext. By looking at the input list of the last mix-server, the adversary can identify
the targeted senders’ ciphertexts (encrypted under the public key of the last mix-server) based
on the number of duplicates. Since the last mix-server is corrupted, he learns the plaintexts of
the targeted senders. As s+ s(s+ 1)/2 ≤ N must hold, this attack can break privacy of at most
O(
√
N) senders.

Jakobsson et al. do suggest to employ a CCA2 secure encryption scheme like OAEP-based
RSA [1] to make the initial encryption non-malleable. The problem illustrated by the above
attack is that the composition of the cryptosystems of the mix-servers only remain CCA2 secure
as long as the first mix-server remain uncorrupted.

Clearly, the attack is prevented if every mix-server removes the duplicates before processing
its input list. Notice that he final output list, i.e., the mixed output, can contain duplicates.

We do not see any way to extend the above attack to a homomorphic mix-net with RPC.

6 Inconsistent Commitments are Dangerous

Jakobsson et al. [15] do not mention that it is essential to verify that those parts of the permu-
tation commitments Γ

(In)
j (or Γ

(Out)
j ) that are opened must be consistent with a permutation.

Unfortunately, this also turns out to be the way that implementors have interpreted the paper. A
prominent research group in electronic voting generously gave us access to their private source
code of their homomorphic mix-net with RPC and it suffered from this flaw. Another notable
and publicly available example of an implementation with this flaw is the Civitas [4] election
system (version 0.7.1), implemented by Clarkson et al. The Scantegrity scheme [3] employs a
checking approach that resembles random partial checking and suffers from this flaw.

In this section we show how this flaw can be exploited to break either the correctness or the
privacy, or a little bit of both, without detection.

6.1 Breaking Privacy without Detection

This attack applies only to the homomorphic mix-net with RPC. Recall our generalization of
Pfitzmann’s attack from Section 4 that breaks the privacy of s senders with detection probability
1/2. We show how to mount a variation of this attack without being detected. The adversary
targets some s ciphertexts c1, . . . , cs. It chooses random values δ1, . . . , δs and computes the
product c =

∏s
i=1 c

δi
i . Then it corrupts two senders and the first pair of mix-servers (here we

assume that they are operated by a single entity). The two corrupt senders are asked to submit
two ciphertexts that are re-encryptions of one another. The first mix-server behaves honestly and
it is corrupted only in that it keeps track of the ciphertexts submitted by the corrupted senders
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and how they are re-encrypted. Let ci1,1 and ci2,1 be these ciphertexts in its output list and note
that the adversary knows how to transform ci2,1 into ci1,1 by re-encryption.

Recall that γi,2 denotes a commitment to π−12 (i) ifM2 behaves honestly. The second mix-
serverM2 behaves honestly except that:

1. It defines γi2,2 to be a commitment to π−12 (i1). The remaining N − 1 commitments,
including γi1,2, a commitment to π−12 (i1), are computed in the usual way.

Note thatM2 can not open both γi1,2 and γi2,2 in a way that is consistent with a permu-
tation since they are commitments to the same index i1.

2. It replaces ci2,1 with the maliciously constructed ciphertext c. The modified list is then
re-encrypted and shuffled to give the output list (c1,2, . . . , cN,2).

The attacker has replaced the ciphertext of one of the corrupted senders with a re-encryption
of c. If the attack goes undetected, the adversary can clearly identify the targeted senders’
plaintexts as in the generalization of Pfitzmann’s attack.

To see that the attack is not detected by RPC, first note that both commitments γi1,2 and
γi2,2 verify correctly. Then observe that cπ2(i1),2 is in fact a re-encryption of both ci1,1 and ci2,1
andM2 can provide the randomness needed to verify this. The attack can be extended to break
the privacy of rs senders without detection by using r + 1 commitments of i1 and introducing
r + 1 ciphertexts submitted by corrupted senders that are re-encryptions of each other.

Depending on the method used to decode messages, the attack will be detected when the
output plaintexts are interpreted. Thus, in practice, the above attack could probably only be
executed once before implementors identified the issue.

Interestingly, even if decommitted values are verified to be distinct, the above attack with
two ciphertexts originating from a single ciphertext input by a corrupted party performs better
than the attacks considered by Jakobsson et al. We discuss this is Section 7.

6.2 Rigging an Election without Detection

This attack applies to the homomorphic mix-net with RPC, and if the duplicates are not removed
(see Section 5), it is also applicable to the Chaumian mix-net. A straightforward adaptation of
the attack applies to the Scantegrity voting system [3].

The adversary corrupts the first sender and the first mix-server. The first sender is asked to
use m as his plaintext. During the attack all other encrypted votes are replaced by m. The first
mix-server simply replaces all the ciphertexts by c1,0, i.e., the submitted ciphertext by the first
sender which is an encryption ofm. The modified list is then correctly transformed and shuffled
to produce the output list (c1,2, . . . , cN,2). To avoid being detected, the first mix-server chooses
all the γi,1’s as commitments to 1, i.e., all of them are opened to 1. Clearly, the first mix-server
can then provide the evidence that c1,0 maps to all ci,2’s. Therefore, the output list of the last
mix-server is N encryptions of m and the attack is not detected.

To make the resulting output look less unrealistic, the attacker can of course submit encryp-
tions of several different plaintexts and choose a suitable distribution over these and apply the
attack for each such plaintext.
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We stress that there is no way to notice this attack except manually inspecting the list of
decommitted integers. Thus, this attack could in fact already have been exploited in executions
of mix-nets with RPC, so we suggest that transcripts of old executions of such implementations
are inspected manually.

7 What Is the Best We Can Hope For?

Note that even if duplicates are removed everywhere and it is verified that all opened commit-
ments contain distinct integers to prevent the attacks of the previous sections, then this does not
guarantee that all the unopened commitments are consistent with a permutation. We show that
we can still replace ciphertexts in the homomorphic mix-net or eliminate in Chaumian mix-net
with notably better probability than the attack considered optimal by Jakobsson et al.

The attack is essentially the same as in Section 6.2 except that only one ciphertext submitted
by an honest sender is replaced by a copy of the ciphertext of the corrupted sender. Then
the probability of detection is 1/4, since the attack is only detected if the two commitments
containing the same integer are opened. The attack can be repeated independently t times to
replace t ciphertexts with probability (3/4)t.

For the homomorphic mix-net, replacing ciphertexts translates to replacing the final plain-
texts, i.e., the output of the mix-net. For Chaumian mix-net our replacements corresponds to
replacing the final plaintext if the last mix-server in the chain makes the replacements; other-
wise, since the duplicates are removed, replacing ciphertexts results in eliminating plaintexts
from the final mixed output.

8 On the Universal Verifiability of RPC

Recall that a mix-net is called universally verifiable if it ensures correctness even if the adversary
corrupts all parties, and consider the case where checking takes place at the end of the mixing. If
all mix-servers are corrupted, then they can try to cheat by repeatedly: replacing t ciphertexts in
their output, picking a random seed as in the protocol, and checking if the resulting challenges
can be answered. The attack is successful if a replacement is found that passes the correctness
check. Assuming the adversary repeats the procedure q times, Jakobsson et al. argue that
the success probability in each attempt is bounded by 2−t and then apply the union bound to
conclude that the probability of success is roughly 1− (1− 2−t)q ≤ q2−t.

8.1 An Improved Attack

There is a more clever attack on the public verifiability of homomorphic mixing with RPC. A
straightforward application of the idea of Section 7 shows that the success probability can be
increased to roughly 1− (1− (3/4)t)q. In other words, the adversary can change 1/ log(4/3) ≈
2.4 times as many ciphertexts as claimed for a given number of trial and success probability in
the homomorphic mixing case. For example, to change t = 192 ciphertexts the adversary has
to prepare and do 280 hash queries. This should be compared with the claimed bound of 80
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ciphertexts for corresponding complexity. This attack also applies to the Chaumian mixing even
if the duplicates are removed. This requires that the replacement is done by the last mix-server.

8.2 When Checking Is Performed at the End of the Mixing

Universal verifiability is considerably weaker when in-phase checking is used. The problem
is that in-phase checking allows the adversary to replace a few ciphertexts in each each mix-
server. Replacing kt ciphertexts in this way goes undetected with probability roughly

(
1 −

(1 − (3/4)t)q
)k (instead of 1 − (1 − (3/4)tk)q) for homomorphic mixing. For example, with

k = 5, t = 192, and roughly 280 queries to the hash function, the adversary can replace almost
one thousand ciphertexts. If we really care about public verifiability, then this is unlikely to be
acceptable. This also holds for Chaumian mixing even if the duplicates are removed everywhere
but the replaced ciphertexts are eliminated except for the last mix-server.

This leaves us with two options for Chaumian mix-nets: either we adopt checking in-phase
with mixing and accept the weaker guarantee on universal verifiability, or we use checking after
mixing.

There is a fairly obvious attack on a Chaumian mix-net with RPC if the checking is per-
formed at the end of the mixing and this is why Jakobsson et al. do not suggest this type of
checking. The problem is that the adversary can corrupt the first mix-server, replace some ci-
phertexts, and simply wait for the output of the mix-net. Then he will be caught, but before this
happens the votes of the targeted voters have already been revealed.

To prevent this attack and still use checking after mixing, we propose to protect senders
plaintexts with an innermost cryptosystem whose secret is shared between the mix servers and
only recovered after the checking has been successfully performed. This can also be imple-
mented by letting each server generate an additional key pair and letting the joint key be the list
of all the additional public keys. This avoids the need for a costly distributed key generation
protocol, but increases the size of ciphertexts. Another problem with this scheme is that the
execution can only be aborted if cheating is detected.

Note that the problem with checking at the end of the mixing does not appear in a homomor-
phic mix-net with RPC since nothing is revealed about the plaintexts until after the checking is
completed successfully.

9 On the Provable Security of RPC

Even cryptographic protocols proposed without a proof of security by experienced cryptogra-
phers can often be broken, and this seems to be particularly true for mix-nets. Historically the
proposals of heuristically secure mix-nets [20, 11, 12, 14, 9] have been followed by discovery
of security flaws [22, 21, 5, 17, 24].

A formal proof of security does not guarantee that no attack will ever be found (proofs can
have subtle errors, assumptions can be wrong, and the adversarial model can be unrealistic), but
it increases the confidence in the security of the scheme significantly.
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9.1 Homomorphic Mix-Net with RPC

We argue informally that homomorphic mix-nets with RPC, e.g., based on El Gamal cannot be
proven secure using a blackbox reduction in the simulation paradigm, even if the issues explored
in this paper are handled correctly.

A definition of security in the simulation paradigm requires that no efficient distinguisher
can tell a suitable ideal model with a simulator from a real model with a real adversary. Suppose
that there is a real adversary and a distinguisher that contradicts this claim. We must use them
to break the semantic security of the cryptosystem. The first step would be to do a hybrid
argument such that two hybrids only differ in that in one of the hybrids the ith voter encrypts
his true message and in the other he encrypts some bogus message, e.g. zero. Then to exploit
the adversary in a blackbox way we would:

1. Accept a public key from the semantic security experiment as input and somehow embed
this into the public key used by voters. We could for example pretend that the public
key belongs to one of the honest senders and simulate the verifiable secret sharing of the
secret key without knowing the secret key at all.

2. Simulate the execution until the ith voter prepares its ciphertext and interrupt the execu-
tion at this point. Then we hand the true plaintext and the bogus plaintext to the experi-
ment and wait for a ciphertext in return which is used as the ciphertext of the ith sender
in the continued simulation.

3. Simulate the decryption of the given ciphertext to the true plaintext, and output the output
of the distinguisher. (In a homomorphic mix-net we must keep track of how it is permuted
through the mix-net to be able to do this.)

The problem with the homomorphic mix-net with RPC is that a corrupted mix-server with
probability 3/4 can replace a ciphertext by any ciphertext and before the distinguisher outputs
its result, the adversary expects to see the plaintext of this ciphertext in the output of the mix-
net. Thus, the adversary is given access to a restricted decryption oracle before the distinguisher
guesses which model it is interacting with. In other words, for the adversary to be useful to the
reduction, the simulator must solve almost the same problem as the reduction is intended to do.

9.2 Chaumian Mix-Net with RPC

Proving the security of the Chaumian mix-net with RPC based on a CCA2 secure cryptosystem
where the vulnerabilities explored in this paper are resolved seems hard, but not impossible.
The challenge is to capture the restricted forms of privacy and soundness that it exhibits. The
obvious way to resolve the problem with limited privacy is to assume that there are sufficiently
many mix-servers to get full privacy, but it turns out to be non-trivial to determine how many
mix-servers are needed.

Gomulkiewicz et al. [10] study the probability distribution of the permutations linking the
input and outputs of a mix-net with RPC given the information revealed. They show that the
distance between this distribution and the uniform distribution isO( 1

N ) even when there is only
a constant number of mix-servers. Contrary to what is claimed, this result does not capture the
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privacy of a mix-net with RPC. The problem is that it does not take a priori plaintext knowledge
into account. To see this, consider an execution where all plaintexts are “white” and one plain-
text “black”. Suppose further that the adversary already knows that “black” was submitted by
either the first or the second voter. Then for any constant number of mix-servers he can deduce
who of the two first voters voted “black” with good probability by simply examining the RPC.
It is clear that the statistical distance in this case does not even tend to zero with the security
parameter.

10 Interpretation and Discussion

It is easy to add consistency checks to the random partial checking protocol, but such consistency
checks are missing in the description of Jakobsson et al. [15]. Implementers should of course
follow the description of a cryptographic protocol strictly to make sure that their implementation
capture the intentions of the protocol designers, so it is not surprising that the consistency checks
are missing in all implementations we have considered. Thus, we think it is fair to consider the
issues we have identified as flaws in the protocol and not as mere implementation bugs, although
we realize that different interpretations are possible. Both the Civitas [4] and the Scantegrity [3]
teams have reported that they have already mended, or are about to mend, their implementations.

Our attack on correctness is easily generalized to be very difficult for a human to discover by
a manual sanity check of the values revealed during random partial checking. Thus, we choose
to view our attack as undetectable in practice, despite that it can be detected using an algorithm
that performs the needed consistency checks.

It is hard to exaggerate how fortunate we are to be able to retroactively verify that the attack
on correctness did not take place in a given execution. We strongly suggest that all implementers
of random partial checking (or similar schemes) perform the needed verifications for all con-
ducted elections. The Scantegrity team has already reported that no tampering took place in
elections using their scheme.

We stress that all the issues described in this paper were found in an attempt to prove the
security of random partial checking and we are convinced that any attempt to do so would have
revealed the same issues. Thus, we think that our work illustrates the importance of precise
descriptions and rigorous proofs of security. Proofs of security can have subtle bugs and models
can be unrealistic, but we think that protocols without proofs of security should not be trusted.
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