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Abstract. The MISTY1 block cipher has a 64-bit block length, a 128-bit user key and a
recommended number of 8 rounds. It is a Japanese CRYPTREC-recommended e-government
cipher, an European NESSIE selected cipher, and an ISO international standard. Despite
of considerable cryptanalytic efforts during the past fifteen years, there has been no pub-
lished cryptanalytic attack on the full MISTY1 cipher algorithm. In this paper, we present
related-key differential and related-key amplified boomerang attacks on the full MISTY1
under certain weak key assumptions: We describe 2103.57 weak keys and a related-key dif-
ferential attack on the full MISTY1 with a data complexity of 261 chosen ciphertexts and a
time complexity of 287.94 encryptions; and we also describe 292 weak keys and a related-key
amplified boomerang attack on the full MISTY1 with a data complexity of 260.5 chosen plain-
texts and a time complexity of 280.18 encryptions. For the very first time, our results exhibit
a cryptographic weakness in the full MISTY1 cipher (when used with the recommended 8
rounds), and show that the MISTY1 cipher is distinguishable from a random function and
thus cannot be regarded to be an ideal cipher.

Key words: Block cipher, MISTY1, Differential cryptanalysis, Amplified boomerang
attack, Related-key cryptanalysis, Weak key.

1 Introduction

The block cipher MISTY1 [33] was designed by Matsui and published in 1997. It has a
64-bit block length, a 128-bit user key, and a variable number of rounds; the officially
recommended number of rounds is 8. We consider the version of MISTY1 that uses the
recommended 8 rounds in this paper, which is also the most widely discussed version so
far. MISTY1 has a Feistel structure with a total of ten key-dependent logical functions FL
— two FL functions at the beginning plus two inserted after every two rounds. It became a
CRYPTREC [10] e-government recommended cipher in 2002, and a NESSIE [35] selected
block cipher in 2003, and was adopted as an ISO [15] international standard in 2005 and
2010.

MISTY1 has attracted extensive attention since its publication, and its security has
been analysed against a wide range of cryptanalytic techniques [1,12,25,26,29,32,38–42]. In
summary, the main previously published cryptanalytic results on MISTY1 are as follows.
In 2008, Dunkelman and Keller [12] described impossible differential attacks [3, 23] on
6-round MISTY1 with FL functions and 7-round MISTY1 without FL functions. In the
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Table 1. Main cryptanalytic results on MISTY1

#Rounds FL #Keys Attack Type Data Time Source

6 (1− 6) yes 2128 Impossible differential 251CP 2123.4Enc. [12]

6 (1− 6) yes 2128 Higer-order differential 253.7CP 264.4Enc. [40, 41]

6 (3− 8) yes 2128 Integral 232CC 2126.1Enc. [38]

7 (1− 7) yes 2128 Higer-order differential 254.1CP 2120.7Enc. [41, 42]

7† (2− 8) yes 273 Related-key amplified boomerang 254CP 255.3Enc. [29]

8† (1− 8) yes 290 Related-key amplified boomerang 263CP 270Enc. [9]

8† (1− 8) yes 2105‡ Related-key differential 263CC 286.6Enc. [11]

full yes 2103.57 Related-key differential 261CC 287.94Enc. Sect. 4

292 Related-key amplified boomerang 260.5CP 280.18Enc. Sect. 5

†: Exclude the first/last two FL functions, ‡: There is a flaw, see Section 5 for detail.

same year, Lee et al. [29] gave a related-key amplified boomerang attack [4, 14, 20] on
7-round MISTY1 with FL functions under a class of 273 weak key1, and Tsunoo et al. [41]
presented a higher-order differential attack [22, 27] on 6 and 7-round MISTY1 with FL
functions (without making a weak key assumption). In 2009, Sun and Lai [38] presented an
integral attack on 6-round MISTY1 with FL functions, following Knudsen and Wagner’s
attack [24] on 5-round MISTY1. Most recently, following Lee et al.’s work, Chen and Dai [9]
presented a 7-round related-key amplified boomerang distinguisher with probability 2−118

under a class of 290 weak keys and gave a related-key amplified boomerang attack on the
8-round MISTY1 with only the first 8 FL functions; and in [11] they described a 7-round
related-key differential characteristic with probability 2−60 under a class of 2105 weak keys
and finally presented a related-key differential attack on the 8-round MISTY1 with only
the last 8 FL functions. So far, there has been no published (non-generic) cryptanalytic
attack on the full 8 rounds of MISTY1 yet.

Related-key cryptanalysis [2,21] assumes that the attacker knows the relationship be-
tween one or more pairs of unknown keys; certain current real-world applications may
allow for practical related-key attacks, for example, key-exchange protocols and hash
functions [17]. Related-key differential cryptanalysis [17] takes advantage of how a spe-
cific difference in a pair of inputs of a cipher or function can affect a difference in the pair
of outputs of the cipher or function, where the pair of outputs are obtained by encrypt-
ing the pair of inputs using two different keys with a specific difference. The related-key
amplified boomerang attack [4, 14, 20] is a combination of related-key cryptanalysis and
the amplified boomerang attack [18]; the amplified boomerang attack is a variant of the
boomerang attack [43]. Remarkably, under certain weak key assumptions the related-key
differential cryptanalysis technique was used in 2009 by Biryukov et al. [8] to obtain the
the first cryptanalytic attack on the full version of the AES [36] block cipher with 256
key bits; and the related-key amplified boomerang attack technique was used to yield the
first cryptanalytic attacks on the full versions of both AES with 192/256 key bits and
KASUMI [16] — a variant of MISTY1, without using a weak key assumption, by Biham
et al. [5, 13] and Biryukov et al. [7], respectively.

In this paper, for the very first time we show that the full MISTY1 cipher can be
distinguished from a random function (in the related-key model): Building on Chen and
Dai’s work described in [9,11], we present related-key differential and amplified boomerang
attacks on the full MISTY1 cipher under certain weak key assumptions. First, we spot
some flaws in Dai and Chen’s differential cryptanalytic results presented in [11], and find
that there are only about 2102.57 weak keys in their weak key class such that their 7-round

1 A weak key is defined as a key under which the concerned cipher is more vulnerable to be attacked.
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related-key differential holds, but with probability 2−58; and we observe that there are
also a different class of 2102.57 weak keys under which there exists a 7-round related-key
differential with probability 2−58. We use the 7-round related-key differentials to break
the full MISTY1. Finally, we find that under the class of 290 weak keys described in [9],
Chen and Dai’s 7-round related-key amplified boomerang distinguisher actually has a
probability of 2−116, instead of 2−118, which can be used to attack the full MISTY1; and
similar results hold for three other classes of weak keys of the same size. Table 1 summarises
our and previously published main cryptanalytic results on MISTY1, where CP and CC
refer respectively to the numbers of chosen plaintexts and chosen ciphertexts, Enc. refers
to the required number of encryption operations of the relevant version of MISTY1, and
“yes” means “with FL functions”.

The remainder of the paper is organised as follows. In the next section, we describe the
notation, the MISTY1 cipher and the related-key amplified boomerang attack. In Sections
3 and 4 we review Chen and Dai’s cryptanalytic results and give our differential and
amplified boomerang cryptanalytic results on MISTY1, respectively. Section 5 concludes
this paper.

2 Preliminaries

In this section we give the notation, and briefly describe the MISTY1 cipher and the
related-key amplified boomerang attack.

2.1 Notation

The bits of a value are numbered from left to right, starting with 1. We use the following
notation throughout this paper.

⊕ bitwise logical exclusive OR (XOR)
∩ bitwise logical AND
∪ bitwise logical OR
|| bit string concatenation
◦ functional composition. When composing functions X and Y, Y ◦X denotes the

function obtained by first applying X and then Y

2.2 The MISTY1 Block Cipher

MISTY1 [33] employs a complex Feistel structure with a 64-bit block length and a 128-bit
user key. It uses the following three functions FL,FI, FO, which are respectively depicted
in Fig. 1-(a), Fig. 1-(b) and Fig. 1-(c) with their respective subkeys to be described below.

– FL : {0, 1}32×{0, 1}32 → {0, 1}32 is a key-dependent linear function. If X = (XL||XR)
is a 32-bit block and Y = (Y1||Y2) is a 32-bit block of two 16-bit words Y1, Y2, then

FL(X,Y ) = (XL ⊕ ((XR ⊕ (XL ∩ Y1)) ∪ Y2), XR ⊕ (XL ∩ Y1)).

– FI : {0, 1}16×{0, 1}16 → {0, 1}16 is a non-linear function. IfX = (XL(9 bits)||XR(7 bits))
and Y = (Y1(7 bits)||Y2(9 bits)) are 16-bit blocks, then FI(X,Y ) is computed as fol-
lows, where XL0, XR0, · · · , XL3, XR3 are 9 or 7-bit variables, S9 is a 9×9-bit bijective
S-box, S7 is a 7 × 7-bit bijective S-box, the function Extnd extends from 7 bits to 9
bits by concatenating two zeros on the left side, and the function Trunc truncates two
bits from the left side.
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Fig. 1. MISTY1 and its components

1. XL0 = XL, XR0 = XR;
2. XL1 = XR0, XR1 = S9(XL0)⊕ Extnd(XR0);
3. XL2 = XR1 ⊕ Y2, XR2 = S7(XL1)⊕ Trunc(XR1)⊕ Y1;
4. XL3 = XR2, XR3 = S9(XL2)⊕ Extnd(XR2);
5. FI(X,Y ) = (XL3||XR3).

– FO : {0, 1}32×{0, 1}64×{0, 1}48 → {0, 1}32 is a non-linear function. If X = (XL||XR)
is a 32-bit block, Y = (Y1||Y2||Y3||Y4) is a 64-bit block of four 16-bit words Y1, Y2, Y3, Y4,
and Z = (Z1||Z2||Z3) is a 48-bit block of three 16-bit words Z1, Z2, Z3, then FO(X,Y, Z)
is defined as follows, where XL0, XR0, · · · , XL3, XR3 are 16-bit variables.
1. XL0 = XL, XR0 = XR;
2. For j = 1, 2, 3:

XLj = XRj−1, XRj = FI(XLj−1 ⊕ Yj , Zj)⊕XRj−1;
3. FO(X,Y, Z) = (XL3 ⊕ Y4)||XR3.

MISTY1 uses a total of ten 32-bit subkeys KL1,KL2, · · · ,KL10 for the FL functions,
twenty-four 16-bit subkeys KIij for the FI functions, and thirty-two 16-bit subkeys KOil

for the FO functions, (1 6 i 6 8, 1 6 j 6 3, 1 6 l 6 4), all derived from a 128-bit user key
K. The key schedule is as follows.

1. Represent K as eight 16-bit words K = (K1,K2, · · · ,K8).
2. Generate a different set of eight 16-bit words K ′

1,K
′
2, · · · ,K ′

8 by

K ′
i = FI(Ki,Ki+1), for i = 1, 2, · · · , 8,

where the subscript i + 1 is reduced by 8 when it is larger than 8, (similar for some
subkeys in the following step).

3. The subkeys are as follows.

KOi1 = Ki,KOi2 = Ki+2,KOi3 = Ki+7,KOi4 = Ki+4;

KIi1 = K ′
i+5,KIi2 = K ′

i+1,KIi3 = K ′
i+3;

KLi = K i+1
2
||K ′

i+1
2

+6
, for i = 1, 3, 5, 7; otherwise,KLi = K ′

i
2
+2

||K i
2
+4.
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Fig. 2. A related-key amplified boomerang distinguisher

MISTY1 takes a 64-bit plaintext P as input, and has a variable number of rounds;
the recommended number of rounds is 8. Its encryption procedure is as follows, where
L0, R0, · · · , Li, Ri are 32-bit variables, KOj = (KOj1||KOj2||KOj3||KOj4), and KIj =
(KIj1||KIj2||KIj3), (j = 1, 2, · · · , 8); see Fig. 1-(d).

1. (L0||R0) = (PL||PR).

2. For i = 1, 3, 5, 7:

Ri = FL(Li−1,KLi), Li = FL(Ri−1,KLi+1)⊕ FO(Ri,KOi,KIi);
Ri+1 = Li, Li+1 = Ri ⊕ FO(Li,KOi+1,KIi+1).

3. Ciphertext C = FL(R8,KL10)||FL(L8,KL9).

We refer to the 8 rounds in the above description as Rounds 1, 2, · · · , 8, respectively.

2.3 The Related-Key Amplified Boomerang Attack

A related-key amplified boomerang attack is based on a related-key amplified boomerang
distinguisher, which treats a block cipher E : {0, 1}n×{0, 1}k → {0, 1}n as a cascade of two
sub-ciphers E = E1 ◦E0 and requires that there exists a related-key differential ∆α → ∆β
with probability p for E0: PrX∈{0,1}n [E

0
KA

(X)⊕E0
KB

(X⊕α) = β] = PrX∈{0,1}n [E
0
KC

(X)⊕
E0

KD
(X ⊕ α) = β] = p, and a related-key differential ∆γ → ∆δ with probability q for E1:

PrX∈{0,1}n [E
1
KA

(X) ⊕ E1
KC

(X ⊕ γ) = δ] = PrX∈{0,1}n [E
1
KB

(X) ⊕ E1
KD

(X ⊕ γ) = δ] = q,
where the four unknown user keys KA,KB, KC ,KD satisfy KB = KA ⊕ ∆K0, KC =
KA ⊕∆K1 and KD = KC ⊕∆K0, with ∆K0 and ∆K1 being two known differences. See
Fig. 2.

A quartet consisting of two randomly chosen pairs of plaintexts (P, P ∗ = P ⊕ α)
and (P ′, P ′∗ = P ′ ⊕ α) satisfies E0

KA
(P ) ⊕ E0

KB
(P ∗) = E0

KC
(P ′) ⊕ E0

KD
(P ′∗) = β with

probability p2. Assuming that the intermediate values after E0 distribute uniformly over all
possible values, we get E0

KA
(P )⊕E0

KC
(P ′) = γ with probability 2−n. Once this occurs, then

E0
KB

(P ∗)⊕E0
KD

(P ′∗) = γ holds with probability 1, for E0
KB

(P ∗)⊕E0
KD

(P ′∗) = (E0
KA

(P )⊕
E0

KB
(P ∗))⊕ (E0

KC
(P ′)⊕E0

KD
(P ′∗))⊕ (E0

KA
(P )⊕E0

KC
(P ′)) = β ⊕ β ⊕ γ = γ. As a result,

the probability that the quartet satisfies EKA
(P )⊕EKC

(P ′) = EKB
(P ∗)⊕EKD

(P ′∗) = δ
is expected to be about (Pr(∆α → ∆β))2 · 2−n · (Pr(∆γ → ∆δ))2 = 2−n · p2 · q2; while for
a random cipher, the probability is about 2−n×2 = 2−2n.

Therefore, if p · q > 2−n/2, the related-key amplified boomerang distinguisher can
distinguish between E and a random cipher given a sufficient number of plaintext pairs.
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Note that in addition to those assumptions [28] used in differential cryptanalysis [6], the
related-key amplified boomerang attack requires another assumption about independence,
and we refer the reader to [19,34] for a more formal discussion of the assumptions as well
as the attack technique. These assumptions mean that, in some cases, the probability of a
related-key amplified boomerang distinguisher may be overestimated or underestimated,
and so is the success probability of the attack. Anyway, it seems reasonable to take the
worst case assumption from the point of the user of a cipher. An application of such
an attack was given by Dunkelman et al. [13] to break the full KASUMI cipher with a
practical complexity, and its validity was experimentally verified.

3 2103.57 Weak Keys of the Full MISTY1 for a Related-Key Differential
Attack

In this section, we first review Dai and Chen’s class of 2105 weak keys and their 7-round
related-key differential characteristic with probability 2−60 under the class of weak keys.
Then, we show that there are actually only 2102.57 weak keys such that the 7-round related-
key differential characteristic holds, and it has a probability of 2−58. Next we devise a
related-key differential attack on the full MISTY1 when the user key used is a weak key
from the class of 2102.57 weak keys. At last we describe another class of 2102.57 weak keys
under which similar results hold.

3.1 A Class of 2105 Weak Keys due to Dai and Chen

First define three constants which will be used subsequently: A 7-bit constant a = 0010000,
a 16-bit constant b = 0010000000010000, and another 16-bit constant c = 00100000000000
00, all in binary notation. Observe that b = (a||02||a) and c = (a||09).

Let KA,KB be two 128-bit user keys defined as follows:

KA = (K1,K2,K3,K4,K5,K6,K7,K8),

KB = (K1,K2,K3,K4,K5,K
∗
6 ,K7,K8).

By the key schedule of MISTY1 we can get the corresponding eight 16-bit words for
KA,KB, which are denoted as follows.

K ′
A = (K ′

1,K
′
2,K

′
3,K

′
4,K

′
5,K

′
6,K

′
7,K

′
8),

K ′
B = (K ′

1,K
′
2,K

′
3,K

′
4,K

′∗
5 ,K

′∗
6 ,K

′
7,K

′
8).

Then, the class of weak keys is defined to be the set of all possible values for (KA,KB)
that satisfy the following 10 conditions, where K6,12 denotes the 12-th bit of K6, and
similar for K7,3,K7,12,K8,3,K

′
4,3,K

′
4,12,K

′
7,3.

K6 ⊕K∗
6 = c; (1)

K ′
5 ⊕K ′∗

5 = b; (2)

K ′
6 ⊕K ′∗

6 = c; (3)

K6,12 = 0; (4)

K7,3 = 1; (5)

K7,12 = 0; (6)

K8,3 = 1; (7)

K ′
4,3 = 1; (8)

K ′
4,12 = 1; (9)

K ′
7,3 = 0. (10)



7

Now let us analyse the number of the weak keys. First observe that when Condition
(1) holds, then Condition (2) holds with certainty.

Note that K ′
4 = FI(K4,K5),K

′
6 = FI(K6,K7), K

′∗
6 = FI(K∗

6 ,K7),K
′
7 = FI(K7,K8).

By performing a computer search, we get

|{(K4,K5)|Conditions (8) and (9)}| = 230;

|{(K6,K7,K8)|Conditions (1), (3), (4), (5), (6), (7) and (10)}| = 227.

Therefore, Dai and Chen [11] concluded that there are a total of 2105 possible values
for KA satisfying the above 10 conditions, and thus there are 2105 weak keys.

3.2 Dai and Chen’s 7-Round Related-Key Differential Characteristic

Under the class of 2105 weak keys (KA,KB) described in Section 3.1, Dai and Chen de-
scribed the following 7-round related-key differential characteristic∆α → ∆β: (b||032||c) →
(032||c||016) with probability 2−60 for Rounds 2–8, where 032 represents a binary string of
32 zeros, and so on. In Fig. 5 in Appendix A we illustrate the related-key differential
characteristic in detail, where R4,3 denotes the 3-rd bit of R4 (the right half of the output
of Round 4), and R4,12 denotes the 12-th bit of R4.

As a result, Dai and Chen presented a related-key differential attack on 8-round
MISTY1 without the first two FL functions, by conducting a key recovery on FO1 in
a way similar to the early abort technique for impossible differential cryptanalysis intro-
duced in [32]

3.3 A Corrected Class of Weak Keys and Improved 7-Round Related-Key
Differential

We first focus on the FI73 function in Dai and Chen’s 7-round related-key differential
characteristic, where the probability is 2−16. Observe that KI73 = K ′

2. Dai and Chen
assumed a random distribution when calculating the probability of the differential ∆c →
∆c for FI73, and thus obtained a probability value of 2−16, (An alternative explanation is
to consider the two S9 S-boxes, each having a probability value of 2−8). However, intuitively
we should make sure that a weak key (KA,KB) should also satisfy the condition that the
differential ∆c → ∆c is a possible differential for FI73; otherwise, the differential ∆c → ∆c
would have a zero probability, and the 7-round differential characteristic would be flawed.
Thus, we should put the following additional condition when defining a set of weak keys:

PrFI(·,K′
2)
(∆c → ∆c) > 0. (11)

Motivated by this, we perform a computer programming to test the number of K ′
2

satisfying Condition (11), and we find that the number of K ′
2 satisfying Condition (11) is

equal to 215. As a consequence, we know that the number of (K2,K3) satisfying Condition
(11) is 231, thus not all 232 possible values for (K2,K3) meet Condition (11), so this is
really a flaw in Dai and Chen’s results. Furthermore, we find that for each satisfying K ′

2,
there are exactly two pairs of inputs to FI73 which follow the differential ∆c → ∆c, that
is to say, the probability PrFI(·,K′

2)
(∆c → ∆c) = 2−15, twice as large as the probability

value 2−16 used by Dai and Chen.
Next we focus on the FI21 function in Dai and Chen’s 7-round related-key differential

characteristic, where the probability is 2−16, and KI21 = K ′
7. Likewise, we should make

sure that a weak key (KA,KB) should also satisfy the condition that the differential
∆b → ∆c is a possible differential for FI21; otherwise, the differential ∆b → ∆c would have
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a zero probability, and the 7-round differential characteristic would be flawed. Similarly,
we should put another condition when defining a set of weak keys:

PrFI(·,K′
7)
(∆b → ∆c) > 0. (12)

By performing a computer programming we find that the number of K ′
7 satisfying

Condition (12) is 24320 ≈ 214.57; on the other hand, the number of K ′
7 satisfying Con-

ditions (1), (3), (4), (5), (6), (7) and (10) is 215 (and for each satisfying K ′
7 there are

212 possible values for (K ′
6,K8)), so not all the possible values of K ′

7 satisfying Condi-
tions (1), (3), (4), (5), (6), (7) and (10) satisfy Condition (12). After a further test, we
get that the number of K ′

7 satisfying Conditions (1), (3), (4), (5), (6), (7), (10) and (12)
is 12160 ≈ 213.57. As a result, we know that the number of (K6,K7,K8) satisfying Con-
ditions (1), (3), (4), (5), (6), (7), (10) and (12) is 213.57 × 212 = 225.57, so this is another
flaw in Dai and Chen’s results. Furthermore, we have that PrFI(·,K′

7)
(∆b → ∆c) is 2−15 for

each of 9600 satisfying values for K ′
7, 2

−14 for each of 2432 satisfying values for K ′
7, and

6
216

≈ 2−13.42 for each of 128 satisfying values for K ′
7.

In summary, there are approximately 2102.57 weak keys satisfying Conditions (1)–(12),
and the 7-round related-key differential ∆α → ∆β has a minimum probability of 2−58

under a weak key (KA,KB). In particular, we have the following result.

Proposition 1. In the class of 2102.57 weak keys satisfying Conditions (1)–(12),

1. there are 216 possible values for K1, 2
16 possible values for K3, and 216 possible values

for K5;
2. there are 225.57 possible values for (K6,K7,K8); in particular there are a total of 213.57

possible values for K ′
7, and for every possible value of K ′

7 there are 212 possible values
for (K ′

6,K8);
3. there are a total of 28 possible values for K ′

2,8−16, 2
16 possible values for K ′

3, and 28

possible values for K ′
4,8−16, where K ′

2,8−16 denotes bits (8, · · · , 16) of K ′
2 and K ′

4,8−16

denotes bits (8, · · · , 16) of K ′
4;

4. PrFI(·,∀K′
7)
(∆b → ∆c) ≥ 2−15,PrFI(·,∀K′

2)
(∆c → ∆c) = 2−15.

3.4 Attacking the Full MISTY1 under the Class of 2102.57 Weak Keys

The 7-round related-key differential with probability 2−58 can be used to conduct a related-
key differential attack on the full MISTY1 when the user key used is a weak key from the
class of 2102.57 weak keys.

Preliminary Results. We first concentrate on the propagation of the input difference
α(= b||032||c) of the 7-round differential through the preceding Round 1, including the
FL1 and FL2 functions, under (KA,KB); see Fig. 3.

Under (KA,KB), by the key schedule of MISTY1 we have

∆KO11 = ∆K1 = 0,∆KO12 = ∆K3 = 0,

∆KO13 = ∆K8 = 0,∆KO14 = ∆K5 = 0,

∆KI11 = ∆K ′
6 = c,∆KI12 = ∆K ′

2 = 0,∆KI13 = ∆K ′
4 = 0,

∆KL1 = ∆(K1||K ′
7) = 0,∆KL2 = ∆(K ′

3||K5) = 0.

As depicted in Fig. 3, the right half of α is (016||c), so the FI11 function has a zero input
difference; however since ∆KO11 = 0 and ∆KI11 = c, the output difference of FI11 is b
with probability 1. The input difference of the FI12 function is c, thus the first S9 function
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in FI12 has an input difference a||02, and we assume its output difference is A ∈ {0, 1}9;
the S7 function in FI12 has a zero input and output difference. The second S9 function in
FI12 has an input difference A, and we assume its output difference is B ∈ {0, 1}9. As a
result, the FI12 function has an output difference X = (Trunc(A)||(B ⊕ (02||Trunc(A)))).
A simple computer programming reveals that Trunc(A) can take all 27 possible values,
and thus we assume that X can take all values in {0, 1}16.

Since the input difference of the FI13 function is 09||a, the first S9 function in FI13 has
a zero input difference. The S7 function in FI13 has an input difference a, and we assume
its output difference is D ∈ {0, 1}7, which can take only 26 possible values. The second
S9 function in FI13 has an input difference 02||a, and we assume its output difference is
E ∈ {0, 1}9. Consequently, the FI13 function has an output difference Y = ((a⊕D)||(E⊕
(02||(a⊕D)))), and it can take about 215 values in {0, 1}16; we denote the set of 215 values
by Sd.

The FL1 function has an output difference (016||c), so its input difference can only be

of the form

32 bits︷ ︸︸ ︷
00?0000000000000||00?0000000000000, which will be denoted by η = (ηL, ηR)

in the following descriptions, where the question marker “?” represents an indeterminate
bit; and when the first question marker takes a zero value, the second question marker can
take only 1, that is η has only three possible values, (The specific form depends on the
values of the two subkey bits K1,3 and K ′

7,3). The FL2 function has an output difference

(X⊕c)||(X⊕Y ⊕(09||a)), so its input difference is indeterminate, denoted by “?” in Fig. 3.
From the above analysis we can see that the subkeys KI121 and KI131 do not affect

the values of X and Y , and thus they are not required when checking whether a candidate
plaintext pair generates the input difference α = (b||032||c) of the 7-round related-key
differential. Further, as K ′

3 = FI(K3,K4),K
′
4 = FI(K4,K5), K

′
6 = FI(K6,K7) and K ′

7 =
FI(K7,K8), we have the following result.

Proposition 2. Only the subkeys (K1,K
′
2,8−16,K3,K4,K5,K6,K7,K8) are required when

checking whether a candidate plaintext pair produces the input difference α = (b||032||c) of
the 7-round related-key differential.

Attack Procedure. We first precompute two hash tables T1 and T2. Observe that from
the left halves of a pair of plaintexts we only need (K1,K3,K

′
2,8−16) when computing the

output difference X of the FI12 function and only need (K1,K
′
6,K

′
7,K8,K

′
4,8−16) when

computing the output difference Y of the FI13 function. To generate T1 and T2, we do the
following procedure under every 32-bit value x = (xL||xR).

1. For every possible K1:
(a) Compute Z = (xL ∩ K1) ⊕ ((xL ⊕ ηL) ∩ K1) ⊕ ηR, and proceed to the following

steps only when Z = c.
(b) For every possible (K3,K

′
2,8−16), compute the output difference of FI12 as X.

2. Store all satisfying (K1,K3,K
′
2,8−16) into Table T1 indexed by (x, η,X).

3. For every possible K ′
7:

(a) Compute W = ηL ⊕ (((xL ∩K1) ⊕ xR) ∪K ′
7) ⊕ (((xL ∩K1) ⊕ xR ⊕ c) ∪K ′

7), and
proceed to the following steps only when W = 0.

(b) For every possible (K ′
6,K8,K

′
4,8−16), compute the output difference of FI13 as Y .

4. Store the values of (K6,K7,K8) corresponding to all satisfying (K ′
6,K

′
7,K8) into Table

T2 indexed by (x, η, Y,K1,K
′
4,8−16).

There are 216 possible values for K1, 2
16 possible values for K3, 2

8 possible values for
K ′

2,8−16, and 3 possible values for η. For a fixed (x, η,X), on average there are 216× 2−1×



10

⊕

⊕
∩

∪

K1

K
′
7

⊕ ⊕

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI112 = 0

∆KI111 = a

K1

⊕ ⊕

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI122

KI121

K3

⊕ ⊕

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI132

KI131

K8

⊕

K5 ⊕

⊕

⊕
∩

∪

K
′
3

K5

η =

32 bits

︷ ︸︸ ︷

00?0000000000000||00?0000000000000 ?

b X

c

0

b||016 016||c

09||a X ⊕ (09||a)

Y X ⊕ (09||a)

X ⊕ Y ⊕ (09||a)

016||c (X ⊕ c)||(X ⊕ Y ⊕ (09||a))

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI122

KI121

X = (Trunc(A)||(B ⊕ (02||Trunc(A))))

0

a||02 A

A

0

Trunc(A)

B S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI132

KI131

Y = ((a ⊕ D)||(E ⊕ (02||(a ⊕ D))))

0

a

D

02||a

E

a ⊕ D

0

Fig. 3. Propagation of α through the inverse of Round 1 with FL1 and FL2

216×28×2−16 = 223 satisfying values for (K1,K3,K
′
2,8−16) in T1. The precomputation for

T1 takes about 232×3×216×216×28 ≈ 273.59 FI computations, and T1 requires a memory
of about 224 × 232 × 3× 216 × 16+16+8

8 ≈ 275.91 bytes. There are 213.57 possible values for
K ′

7, 2
12 possible values for (K ′

6,K8), 2
8 possible values for K ′

4,8−16, and 215 possible values

for Y . For a fixed (x, η, Y,K1,K
′
4,8−16), on average there are 213.57 × 2−1 × 212 × 2−15 =

29.57 satisfying values for (K ′
6,K

′
7,K8) in T2. The precomputation for T2 takes about

232 × 3× 216 × 213.57 × 212 × 28 × 2 ≈ 284.16 FI computations, and T2 requires a memory
of about 29.57 × 232 × 3 × 215 × 216 × 28 × 6 ≈ 284.74 bytes. Note that we can use several
tricks to optimise the procedure to reduce the computational complexity for generating
the two tables, but anyway it is negligible compared with the computational complexity
of the following online attack procedure.

We devise the following attack procedure to break the full MISTY1 when a weak key
is used.

1. Initialize zero to an array of 295.57 counters corresponding to all the 295.57 possible
values for (K1,K

′
2,8−16,K3,K4,K5,K6,K7,K8).

2. Choose 260 ciphertext pairs (C,C∗ = C ⊕ (032||c||016)). In a chosen-ciphertext attack
scenario, obtain the plaintexts for the ciphertexts C,C∗ under KA,KB, respectively,
and we denote by P = (PLL||PLR, PRL||PRR) the plaintext for ciphertext C en-
crypted under KA, by P ∗ = (PL∗

L||PL∗
R, PR∗

L||PR∗
R) the plaintext for ciphertext C∗

encrypted under KB.
3. Check whether a plaintext pair (P, P ∗) meets the condition (PLL||PLR)⊕(PL∗

L||PL∗
R)

= η by first checking the 30 bit positions with a zero difference and then checking the
remaining two bit positions. Keep only the satisfying plaintext pairs.

4. For every remaining plaintext pair (P, P ∗), do the following sub-steps.
(a) Guess a possible value for (K ′

3,K5), and compute (X,Y ) such that

(X ⊕ c)||(X ⊕ Y ⊕ (09||a)) = FL(PRL||PRR,K
′
3||K5)⊕ FL(PR∗

L||PR∗
R,K

′
3||K5).

Execute the next steps only if Y ∈ Sd; otherwise, repeat this step with another
subkey guess.
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(b) Access Table T1 at entry (PLL||PLR, η,X) to get the satisfying values for (K1,K3,
K ′

2,8−16).

(c) For each satisfying value for (K1,K3,K
′
2,8−16), retrieve K4 from the equation

K ′
3 = FI(K3,K4), compute K ′

4 = FI(K4,K5), and access Table T2 at entry
(PLL||PLR, η, Y,K1,K

′
4,8−16) to get the satisfying values for (K6,K7,K8).

(d) Increase 1 to each of the counters corresponding to the obtained values for (K1,
K ′

2,8−16, K3,K4,K5,K6,K7,K8).

5. For a value of (K1,K
′
2,8−16,K3,K4,K5,K6,K7,K8) whose counter number is equal

to or larger than 3, exhaustively search the remaining 7 key bits with two known
plaintext-ciphertext pairs. If a value of (K1,K2, · · · ,K8) is suggested, output it as the
user key of the full MISTY1.

Attack Complexity. The attack requires 260 × 2 = 261 chosen ciphertexts. In Step 3,
only 260 × 2−30 × 3

4 ≈ 229.58 palintext pairs are expected to satisfy the condition, and it
takes about 260 memory accesses to obtain the satisfying palintext pairs. Step 4(a) has a
time complexity of about 229.58×216×216×2 = 262.58 FL computations. In Step 4(b), for a
plaintext pair and a possible value for (K ′

3,K5), on average we obtain 223 possible values for
(K1,K3,K

′
2,8−16), as discussed in the procomputation phase; due to the filtering condition

in Step 4(a), Step 4(b) has a time complexity of about 229.58 × 215

216
× 232 × 223 = 283.58

memory accesses (if conducted on a 64-bit computer). In Step 4(c), for a plaintext pair and
a possible value for (K1,K3,K5,K

′
2,8−16,K

′
3), on average we obtain 29.57 possible values

for (K6,K7,K8), (as discussed in the procomputation phase), thus Step 4(c) has a time
complexity of about 228.58 × 232 × 223 × 29.57 = 293.15 memory accesses. Step 4(d) has
a time complexity of about 293.15 × 2 = 294.15 memory accesses, where the factor “2”
represents that a single operation requires two memory accesses when conducted on a
64-bit computer.

The probability that the counter for a wrong (K1,K
′
2,8−16,K3,K4,K5,K6,K7,K8) has

a number equal to or larger than 3 is approximately
∑260

i=3[
(
260

i

)
· (2−64)i · (1−2−64)2

60−i] ≈
2−14.67. Thus, it is expected that there are a total of 295.57 × 2−14.67 = 280.9 wrong values
of (K1,K

′
2,8−16,K3,K4,K5,K6,K7,K8) whose counters have a number equal to or larger

than 3. Thus it requires 280.9 × 27 + 280.9 × 27 × 2−64 ≈ 287.9 trial encryptions to check
them in Step 5. In Step 5, a wrong value of (K1,K2, · · · ,K8) is suggested with probability
2−64×2 = 2−128, so the number of suggested values for (K1,K2, · · · ,K8) is expected to
be 287.9 × 2−128 = 2−40.1, which is rather low. Thus, the time complexity of the attack is
dominated by Steps 4(c), 4(d) and 5. On a general 64-bit personal computer (with Intel
Xeon Processor E5630 running on Ubuntu 10.04), we check that a full encryption using
an optimised MISTY1 implementation twice as fast as the one given in [37] by the cipher
designer equals about 212 memory accesses in terms of time. Therefore, the attack has
a total time complexity of about 293.15 × 2−12 + 294.15 × 2−12 + 287.9 ≈ 287.94 MISTY1
encryptions.

The counter for the correct key has an expected number of 260 × 2−58 = 4, and the
probability that the counter for the correct key has a number equal to or larger than 3

is approximately
∑260

i=3[
(
260

i

)
· (2−58)i · (1 − 2−58)2

60−i] ≈ 0.76. Therefore, the related-key
differential attack has a success probability of 76%.

The memory complexity of the attack is dominated by the space for the array of
295.57 counters, which is 295.57 × 95.57

8 ≈ 299.2 bytes. It is worthy to note that there exist
time-memory tradeoff versions to the above attack.
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3.5 Another Class of 2102.57 Weak Keys

In the above sub-sections we have described a class of 2102.57 weak keys and a related-key
differential attack on the full MISTY1 under a weak key. However, we observe that there
exists another class of 2102.57 weak keys under which similar results hold. The new weak
key class is obtained by setting K ′

7,3 = 1, which is further classified into two sub-classes by
the possible values of the subkey bit K1,3. This will affect only the FL10 function in the
7-round related-key differential, but the output difference of FL10 will be fixed once K1,3

is given, that is, the right half of the output difference of the resulting 7-round related-
key differential will be c||c when K1,3 = 1, and 016||c when K1,3 = 0. Thus, by choosing
a number of ciphertext pairs with a corresponding difference we can conduct a similar
attack on the full MISTY1 under every sub-class of weak keys. In total, we have 2103.57

weak keys under which a related-key differential attack can break the full MISTY1.

4 292 Weak Keys of the Full MISTY1 for a Related-Key Amplified
Boomerang Attack

In this section, we first review Chen and Dai’s class of 290 weak keys and their 7-round
related-key amplified boomerang distinguisher with probability 2−118. Next, we describe
a slight improvement to Chen and Dai’s 7-round related-key amplified boomerang dis-
tinguisher, which has a probability of 2−116, and then present a related-key amplified
boomerang attack on the full MISTY1 under the class of 290 weak keys. Finally, we de-
scribe three other classes of 290 weak keys under which there exist similar results.

4.1 A Class of 290 Weak Keys due to Chen and Dai

First define the same three constants a, b, c as used in Section 3.1, that is a 7-bit constant
a = 0010000, a 16-bit constant b = 0010000000010000, and another 16-bit constant c =
0010000000000000, all in binary notation.

Let KA,KB,KC ,KD be four 128-bit user keys defined as follows:

KA = (K1,K2,K3,K4,K5,K6,K7,K8),

KB = (K1,K
∗
2 ,K3,K4,K5,K6,K7,K8),

KC = (K1,K2,K3,K4,K5,K
∗
6 ,K7,K8),

KD = (K1,K
∗
2 ,K3,K4,K5,K

∗
6 ,K7,K8).

By the key schedule of MISTY1 we can get the corresponding eight 16-bit words for
KA,KB,KC ,KD, which are denoted as follows.

K ′
A = (K ′

1,K
′
2,K

′
3,K

′
4,K

′
5,K

′
6,K

′
7,K

′
8),

K ′
B = (K ′∗

1 ,K
′∗
2 ,K

′
3,K

′
4,K

′
5,K

′
6,K

′
7,K

′
8),

K ′
C = (K ′

1,K
′
2,K

′
3,K

′
4,K

′∗
5 ,K

′∗
6 ,K

′
7,K

′
8),

K ′
D = (K ′∗

1 ,K
′∗
2 ,K

′
3,K

′
4,K

′∗
5 ,K

′∗
6 ,K

′
7,K

′
8).

Then, the class of weak keys is defined to be the set of all possible values for (KA,KB,
KC ,KD) that satisfy the following 12 conditions, where K5,3 denotes the 3-rd bit of K5,
and similar for K5,12,K

′
4,3,K7,3,K7,12,K8,3.

K2 ⊕K∗
2 = c; (13)

K6 ⊕K∗
6 = c; (14)



13

K ′
1 ⊕K ′∗

1 = b; (15)

K ′
5 ⊕K ′∗

5 = b; (16)

K ′
2 ⊕K ′∗

2 = c; (17)

K ′
6 ⊕K ′∗

6 = c; (18)

K5,3 = 1; (19)

K5,12 = 0; (20)

K ′
4,3 = 0; (21)

K7,3 = 1; (22)

K7,12 = 0; (23)

K8,3 = 0. (24)

Now let us analyse the number of the weak keys. First observe that when Condition
(13) holds, then Condition (15) holds with certainty; when Condition (14) holds, Condition
(16) holds with certainty.

Note that K ′
2 = FI(K2,K3),K

′∗
2 = FI(K∗

2 ,K3),K
′
4 = FI(K4,K5),K

′
6 = FI(K6,K7),

K ′∗
6 = FI(K∗

6 ,K7). By performing a computer search, we get

|{(K2,K3)|Conditions (13) and (17)}| = 216;

|{(K4,K5)|Conditions (19), (20) and (21)}| = 229;

|{(K6,K7)|Conditions (14), (18), (22) and (23)}| = 214.

Therefore, Chen and Dai [9] got that there are a total of 290 possible values for KA

satisfying the above 12 conditions, and thus there are 290 weak keys.

4.2 Chen and Dai’s 7-Round Related-Key Amplified Boomerang
Distinguisher

We now describe Chen and Dai’s related-key amplified boomerang distinguisher for Rounds
1–7 under the class of 290 weak keys (KA,KB,KC ,KD) described in Section 4.1.

The first related-key differential ∆α → ∆β for this distinguisher is the 2-round related-
key differential (048||b) → (032||c||016) with probability 1 for Rounds 1–2 under (KA,KB)
or under (KC ,KD), where 048 represents a binary string of 48 zeros and so on. The
second related-key differential ∆γ → ∆δ for this distinguisher is the 5-round related-key
differential (048||b) → 0 with probability 2−27 for Rounds 3–7 under (KA,KC) or under
(KB,KD). In Fig. 6 in Appendix A we illustrate the two related-key differentials in detail,
where R4,3 denotes the 3-rd bit of R4 (the right half of the output of Round 4), and R4,12

denotes the 12-th bit of R4.
Consequently, Chen and Dai obtained a 7-round related-key amplified boomerang dis-

tinguisher with probability 12×(2−27)2×2−64 = 2−118 under a weak key (KA,KB,KC ,KD).
As a result, they presented an attack on 8-round MISTY1 without the last two FL func-
tions, by conducting a key recovery on FO8 (in a way similar to the early abort technique
used in [32]).

4.3 An Improved 7-Round Related-Key Amplified Boomerang Distinguisher

First focus on the FI73 function in the second related-key differential ∆γ → ∆δ used
in Chen and Dai’s 7-round distinguisher, where the probability is 2−16. Observe that
KI73 = K ′

2 or K ′∗
2 , depending on which pair from a quartet is considered. Chen and Dai

used a probability value of 2−16 for the differential ∆c → ∆c operating on FI73. Similar to
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what we mention in Section 3.3, we should make sure that a weak key (KA,KB,KC ,KD)
should also satisfy the condition that the differential ∆c → ∆c is a possible differential for
FI73; otherwise, the differential ∆c → ∆c would have a zero probability, and the 7-round
distinguisher would be flawed. Thus, we should put the following two additional conditions
when defining a set of weak keys:

PrFI(·,K′
2)
(∆c → ∆c) > 0; (25)

PrFI(·,K′∗
2 )(∆c → ∆c) > 0. (26)

After performing a computer programming, we surprisingly find that the number of
(K2,K3) satisfying Conditions (13),(17),(25) and (26) is equal to the number of (K2,K3)
satisfying Conditions (13) and (17), that is |{(K2,K3)|Conditions (13), (17), (25) and (26)}|
= 216. This means that the class of weak keys satisfying Conditions (13)–(26) is the same
as the class of weak keys satisfying Conditions (13)–(24) due to Chen and Dai. But nev-
ertheless we find something valuable: For each possible K ′

2 or K ′∗
2 , there are exactly two

pairs of inputs to FI73 which follow the differential ∆c → ∆c, that is to say, the differential
∆c → ∆c for FI73 has a probability of 2−15, twice as large as the probability value used
by Chen and Dai.

Therefore, the second related-key differential∆γ → ∆δ used in Chen and Dai’s 7-round
distinguisher actually has a probability of 2−26, and the resulting 7-round distinguisher
has probability 12 × (2−26)2 × 2−64 = 2−116 under a weak key (KA,KB,KC ,KD).

Particularly we have the following result.

Proposition 3. In the class of 290 weak keys satisfying Conditions (13)–(26),

1. there are 216 possible values for K1, 2
14 possible values for K5, and 215 possible values

for K8;
2. there are 214 possible values for (K6,K7); in particular there are a total of 213 possible

values for K7, and for every possible value of K7 there are 2 possible values for K6;
3. there are a total of 216 possible values for K ′

3;
4. PrFI(·,∀K′

2)
(∆c → ∆c) = PrFI(·,∀K′∗

2 )(∆c → ∆c) = 2−15.

4.4 Attacking the Full MISTY1 under the Class of 290 Weak Keys

We devise a related-key amplified boomerang attack on the full MISTY1 under a weak
key from the weak key class, basing it on the 7-round related-key amplified boomerang
distinguisher with probability 2−116.

Preliminary Results. First concentrate on the propagation of the output difference
δ(= 0) of the 7-round distinguisher through the following Round 8, including the FL9 and
FL10 functions, under (KA,KC) or under (KB,KD); see Fig. 4.

Under (KA,KC), by the key schedule of MISTY1 we have

∆KO81 = ∆K8 = 0,∆KO82 = ∆K2 = 0,

∆KO83 = ∆K7 = 0,∆KO84 = ∆K4 = 0,

∆KI81 = ∆K ′
5 = b,∆KI82 = ∆K ′

1 = 0,∆KI83 = ∆K ′
3 = 0,

∆KL9 = ∆(K5||K ′
3) = 0,∆KL10 = ∆(K ′

7||K1) = 0.

Since δ = 0, the FI81 and FI82 functions both have a zero input difference. The first
S9 and S7 in FI81 both have a zero input difference, however, as ∆KI81 = b we know
the second S9 in FI81 has an input difference 02||a, thus the output difference of the FI81
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K8

FI81 ⊕ ⊕
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⊕
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0
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Fig. 4. Propagation of δ through Round 8 with FL9 and FL10

function has a form of a||X, where X ∈ {0, 1}9 can take only 28 possible values, and we
denote by Sa the set of the 28 possible values for X. Since ∆KO82 = 0 and ∆KI82 = 0,
the FI82 function has a zero output difference. Since ∆KO83 = 0, the FI83 function has
an input difference a||X. We assume the output difference for FI83 is Y . Then, the FO8

function has an output difference (a||X)||(Y ⊕ (a||X)), so the FL9 function has an input
difference (a||X)||(Y ⊕ (a||X)), but its output difference is indeterminate (Denoted by the
question marker in Fig. 4). The FL10 function has a zero input and output difference.

The same results hold for the propagation of δ under (KB,KD); note that X and Y
under this case may take a different value from that case under (KA,KC).

Finally, since the FI82 function has a zero input and output difference, by the structure
of the FO function we observe that only the subkeys (K1,K

′
3,K5,K

′
5,K

′∗
5 ,K7,K

′
7,K8)

are required when checking whether a candidate quartet consisting of two ciphertext
pairs produces the output difference δ = 0 of the 7-round distinguisher. Since K ′

5 =
FI(K5,K6),K

′∗
5 = K ′

5 ⊕ b and K ′
7 = FI(K7,K8), we have the following result.

Proposition 4. Only the subkeys (K1,K
′
3,K5,K6,K7,K8) are required when checking

whether a candidate quartet consisting of two ciphertext pairs satisfies the output difference
δ = 0 of the 7-round distinguisher.

Attack Procedure. First we precompute two hash tables T1 and T2, as follows.
Table T1. Note that KI81 = K ′

5 or K ′∗
5 (= K ′

5 ⊕ b), KO83 = K7, and KI83 = K ′
3. Under

every possible (K ′
3,K

′
5,K7), we compute (∆µ,∆ν) for every x = (xL||xR) ∈ {0, 1}32,

as follows.

µ = FI81(xL,K
′
5)⊕ FI81(xL,K

′
5 ⊕ b),

ν = FI83(FI81(xL,K
′
5)⊕XR ⊕K7,K

′
3)⊕

FI83(FI81(xL,K
′
5 ⊕ b)⊕XR ⊕K7,K

′
3).

By the structure of FI, we know the left 7 bits of µ must be a, and µ has the form
a||X, that is µ = (a||X), where X ∈ Sa, where Sa is defined above. For a fixed
(K ′

3,K
′
5,K7, µ, ν), on average there are 232 × 2−8 × 2−16 = 28 satisfying values for x.

We store the satisfying values of x into table T1 indexed by the value (K ′
3,K

′
5,K7, X, ν).

There are 216 possible values for K ′
3, at most 216 possible values for K ′

5, 2
13 possible

values for K7, 2
8 possible values for µ, and 216 possible values for ν, thus this precom-

putation takes about 216 × 216 × 213 × 28 × 216 × 4 = 271 FI computations, and T1
requires a memory of about 216 × 216 × 213 × 28 × 216 × 28 × 4 = 279 bytes.
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Table T2. Under every possible (K1,K
′
7,K8), we compute λ = (K8||016)⊕FL−1

10 (x,K
′
7||K1)

for each x ∈ {0, 1}32. There are 216 possible values forK1, 2
13 possible values forK7, 2

15

possible values for K8, and 216 possible values for K ′
7. Note that K7 = FI−1(K ′

7,K8).
For a fixed (x, λ,K7), on average there are 216 × 215 × 2−32 = 0.5 satisfying values for
(K1,K

′
7,K8); for a fixed (K1,K7,K8), there are 232 satisfying (x, λ). We make table

T2 in the following manner:

For every possible K7:

For every possible (K1,K8):

– Compute K ′
7 = FI(K7,K8).

– Find all the 232 possible (x, λ) such that λ = (K8||016)⊕ FL−1
10 (x,K

′
7||K1).

– Store (K1,K8) into Table T2 indexed first by K7 and then by (x, λ).
– Set a binary marker with two possible statuses, “up” and “down”, to the

set of 232 tuples (K7,K1,K8, x, λ). The marker’s initial status is down.

That is, for a K7, there are 231 markers corresponding to the 231 possible values of
(K1,K8); and 232 different (x, λ) that work under the same (K7,K1,K8) share the
same marker. T2 requires a memory of about 213 × 216 × 215 × 232 × 4 = 278 bytes.
This precomputation has a time complexity of about 213 × 216 × 215 × 232 = 276 FL−1

computations.

Now we can give the following attack procedure to break the full MISTY1.

1. Initialize zero to an array of 275 counters corresponding to all the 275 possible values
for (K1,K

′
3,K5,K6,K7,K8).

2. Choose a set of 258.5 plaintext pairs (P, P ∗ = P ⊕ (048||b)), and another set of 258.5

plaintext pairs (P ′, P ′∗ = P ′⊕(048||b)). In a chosen-plaintext attack scenario, obtain the
ciphertexts for the plaintexts P, P ∗, P ′, P ′∗ under KA,KB,KC ,KD, respectively, and
we denote by C = (CLL||CLR, CRL||CRR) the ciphertext for plaintext P encrypted
under KA, by C∗ = (CL∗

L||CL∗
R, CR∗

L||CR∗
R) the ciphertext for plaintext P

∗ encrypted
under KB, by C ′ = (CL′

L||CL′
R, CR′

L||CR′
R) the ciphertext for plaintext P

′ encrypted
under KC , and by C ′∗ = (CL′∗

L ||CL′∗
R, CR′∗

L ||CR′∗
R) the ciphertext for plaintext P ′∗

encrypted under KD.

3. Check whether a candidate quartet (C,C∗, C ′, C ′∗) meets both the following conditions
by storing the ciphertext pairs (C,C∗) and (C ′, C ′∗) into a hash table indexed by the
values CRL||CRR||CR∗

L||CR∗
R and CR′

L||CR′
R||CR′∗

L ||CR′∗
R.

(CRL||CRR)⊕ (CR′
L||CR′

R) = 0, (CR∗
L||CR∗

R)⊕ (CR′∗
L ||CR′∗

R) = 0.

Keep only the satisfying quartets.

4. For every remaining quartet (C,C∗, C ′, C ′∗), do the following sub-steps.

(a) Choose all the possible K ′
3 satisfying the following conditions:

(CLR ∪K ′
3)⊕ CLL ⊕ (CL′

R ∪K ′
3)⊕ CL′

L = a||X ′,

(CL∗
R ∪K ′

3)⊕ CL∗
L ⊕ (CL′∗

R ∪K ′
3)⊕ CL′∗

L = a||X∗,

where X ′, X∗ represents two indeterminate 9-bit values, (X ′, X∗ can be different
for different quartets, but obviously their values are fixed for a given quartet and
K ′

3).

(b) For every satisfying K ′
3, do as follows.

i. Guess K5, and compute the difference just before the FL−1
9 function between

C and C ′, and the difference just before the FL−1
9 function between C∗ and
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C ′∗. Let

FL−1
9 (CLL||CLR,K5||K ′

3)⊕ FL−1
9 (CL′

L||CL′
R,K5||K ′

3)

= a||X ′||(Y ′ ⊕ (a||X ′)),

FL−1
9 (CL∗

L||CL∗
R,K5||K ′

3)⊕ FL−1
9 (CL′∗

L ||CL′∗
R,K5||K ′

3)

= a||X∗||(Y ∗ ⊕ (a||X∗)),

where Y ′, Y ∗ represent specific 16-bit values.
ii. Guess K7; by Proposition 3-(2) we know there are two corresponding values for

K6 (for each guessed K7), and we denote them by K̃6 and K6. Then, do the
following four sub-steps.

A. Compute

K̃ ′
5 = FI(K5, K̃6);K

′
5 = FI(K5,K6).

B. For (C,C ′), access Table T1 at entry (K ′
3, K̃

′
5,K7, X

′, Y ′) to get the possible
32-bit inputs to the FO8 function excluding the XOR operation with KO81.
As discussed earlier, when X ′ ∈ Sa, on average there are 28 possible inputs,
and we denote them by x̃1, x̃2, · · · , x̃256; when X ′ does not belong to Sa we
get no input and go to execute Step 4(b)(ii)(D). Similarly, for (C∗, C ′∗),
access Table T1 at entry (K ′

3, K̃
′
5,K7, X

∗, Y ∗) to get the possible 32-bit
inputs to the FO8 function excluding the XOR operation with KO81, and
we denote them by x̃∗1, x̃

∗
2, · · · , x̃∗256 when X∗ ∈ Sa; when X ′ does not belong

to Sa there is no input and we execute Step 4(b)(ii)(D).
C. For i = 1, 2, · · · , 256, access Table T2 at entry (K7, CLL|| CLR, x̃i) and

flip the corresponding marker up. For i = 1, 2, · · · , 256, access Table T2 at
entry (K7, CL∗

L||CL∗
R, x̃

∗
i ) and check whether the corresponding marker is

up or down; if it is up, get the corresponding (K1,K8) and increase 1 to the
counter corresponding to the guessed (K1,K

′
3,K5, K̃6, K7,K8), otherwise

execute the next iteration (Initialize the markers in T2 to be down after
finishing all the 256 iterations).

D. Repeat the above two sub-steps (B) and (C) similarly for the case K
′
5.

When X ′ or X∗ does not belong to Sa, there is no input, and we execute
Step 4(b)(ii) with another guess for K7. (If this sub-step is done, go to Step
4(b)(ii), etc.)

5. For a value of (K1,K
′
3,K5,K6,K7,K8) whose counter has a non-zero number, exhaus-

tively search the remaining key bits with two known plaintext-ciphertext pairs. If a
value of (K1,K2, · · · ,K8) is suggested, output it as the user key of the full MISTY1.

Note that in Step 4(b)(ii) we check the two pairs from a candidate quartet one after
the other, instead of checking them simultaneously. This is the early abort technique for
the (related-key) rectangle attack, described in [31] as well as in Chapter 4.4 of [30].

Attack Complexity. The attack requires 258.5 × 4 = 260.5 chosen plaintexts. There are
a total of 258.5 × 258.5 = 2117 candidate quartets (C,C∗, C ′, C ′∗), of which only 2117 ×
(2−32)2 = 253 quartets are expected to satisfy the two conditions in Step 3. It takes about
259.5 memory accesses to obtain the satisfying quartets. For every remaining quartet, on
average there exist 216×(2−7)2 = 22 possible values for K ′

3 satisfying the two conditions in
Step 4(a). Step 4(a) has a time complexity of about 253×216×4× 1

2 = 270 FL computations.
There are a total of 214 possible values for K5, thus Step 4(b)(i) has a time complexity
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of 253 × 22 × 214 × 4 × 1
2 = 270 FL computations (Note that some required intermediate

values have been computed in Step 4(a)). There are a total of 213 possible values for K7,
so Step 4(b)(ii)(A) has a time complexity of 253×22×214×213×2 = 283 FI computations.
Step 4(b)(ii)(B) has a time complexity of about 253 × 22 × 214 × 213 × 256×32

64 +253 × 22 ×
214 × 213 × 2−1 × 256×32

64 = 3 · 288 memory accesses (if conducted on a 64-bit computer),
due to one-bit filtering condition on X ′. Because of one-bit filtering condition on X∗, Step
4(b)(ii)(C) has a time complexity of about 253 × 22 × 214 × 213 × 2−2 × 256 × 2 = 289

memory accesses. Step 4(b)(ii)(D) has a time complexity of about 3 · 288 + 289 = 5 · 288
memory accesses.

The probability that the counter for a wrong (K1,K
′
3,K5,K6,K7,K8) has a non-zero

number is approximately
∑2117

i=1 [
(
2117

i

)
· (2−128)i · (1 − 2−128)2

117−i] ≈ 2−11. Thus, it is ex-
pected that there are a total of 275 × 2−11 = 264 wrong values of (K1,K

′
3,K5,K6,K7,K8)

whose counters are non-zero, so in total we need to access the array of counters only
264 times in Steps 4(b)(ii)(C) and 4(b)(ii)(D). The 264 wrong values of (K1,K

′
3,K5,

K6,K7,K8) make at most 279 possible values for (K1,K2, · · · ,K8), and thus it requires
279 + 279 × 2−64 ≈ 279 trial encryptions to check them in Step 5. In Step 5, a wrong value
of (K1,K2, · · · ,K8) is suggested with probability 2−64×2 = 2−128, so it is expected that
there remain 279 × 2−128 = 2−49 values for (K1,K2, · · · ,K8); that is to say, the number of
suggested wrong user keys is rather low. Hence, the time complexity of the attack is domi-
nated by Steps 4(b)(ii)(B), 4(b)(ii)(C) and 4(b)(ii)(D), which is 3·288+289+5·288 ≈ 291.33

memory accesses, plus Step 5. Therefore, by the evaluation used in Section 3.4, the attack
has a total time complexity of about 291.33 × 2−12 + 279 ≈ 280.18 MISTY1 encryptions.

The counter for the correct key has an expected number of 2117 × 2−116 = 2, and the
probability that the counter for the correct key has a non-zero number is approximately∑2117

i=1 [
(
2117

i

)
· (2−116)i · (1 − 2−116)2

117−i] ≈ 0.86. Therefore, the related-key impossible
boomerang attack has a success probability of 86%.

The memory complexity of the attack is dominated by the space for the array of 275

counters, which is 275 × 75
8 ≈ 278.23 bytes. Taking the storage space for T1 and T2 into

consideration, we need a total memory space of 279 + 278 + 278.23 ≈ 280.07 bytes.
It is very worthy to note that we can slightly reduce the memory space by splitting T1

into two smaller tables which mainly correspond to FI81 and FI83 respectively, but at the
cost of a few more memory accesses in the attack procedure.

4.5 Three Other Classes of 290 Weak Keys

The above sub-sections have shown a class of 290 weak keys and a related-key amplified
boomerang attack on the full MISTY1 under a weak key. Nevertheless, there exist three
other classes of 290 weak keys under which there are similar results. The new weak key
classes are obtained by setting other possible values for the two subkey bits (K5,3,K5,12),
which are further classified into several sub-classes by the possible values of the two subkey
bits combination (K ′

3,3,K
′
3,12). This will affect only the FL2 function of the first related-

key differential, and the input difference of FL2 will be fixed once the setting is given,
provided that the output difference of FL2 is 09||a||b. Likewise, by choosing a number of
plaintext pairs with a corresponding difference we can conduct a similar attack on the full
MISTY1 under every sub-class of weak keys. In total, we have 292 weak keys under which
a related-key amplified boomerang attack can break the full MISTY1.

One might consider obtaining more weak keys by setting K ′
4,3 = 1, instead of K ′

4,3 = 0
used in our results. This case will affect only the output difference of the FL4 function
of the first related-key differential, and it seems that we can further classify the resulting
class of weak keys into two sub-classes according to the possible values of the subkey bit
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K6,3, as we did before. However, this case is not possible, because K6,3 ⊕K∗
6,3 = 1, and a

detailed analysis reveals that under the condition that the input difference of FL4 is c||016,
the output difference of FL4 under one plaintext pair from a candidate quartet is definitely
not equal to the output difference of FL4 under the other plaintext pair from the candidate
quartet. Consequently, the XOR of the four differences concerned between the two sub-
ciphers when constructing an amplified boomerang distinguisher is definitely non-zero, so
the four related-key differentials cannot form an amplified boomerang distinguisher.

5 Conclusions

The MISTY1 block cipher has received considerable attention and its security has been
thoroughly analysed since its publication, particularly the European NESSIE project an-
nounced that “no weaknesses were found in the selected designs” when making the portfolio
of selected cryptographic algorithms including MISTY1. In this paper, we have described
2103.57 weak keys for a related-key differential attack on the full MISTY1 and 292 weak
keys for a related-key amplified boomerang attack on the full MISTY1.

For the very first time, our results exhibit a cryptographic weakness in the full MISTY1
cipher algorithm , particularly from an academic point of view: The cipher does not behave
like a random function (in the related-key model); thus it cannot be regarded to be an ideal
cipher. From a practical point of view, our results do not pose a significant threat to the
security of MISTY1, for the presented attacks work under the assumptions of weak-key and
related-key scenarios and their complexity is beyond the power of a general computer of
today. But nevertheless the weak key classes mean that a large fraction of all possible 2128

keys in the whole key space of MISTY1 is weak in the sense of related-key cryptanalysis,
roughly, one of every twenty million keys in the larger set of 2103.57 weak keys, and thus
the chance of picking such a weak key at random is not trivial; in this sense, the presence
of these weak keys has an impact on the security of the full MISTY1 cipher.
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26. Kühn, U.: Improved cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS,
vol. 2365, pp. 61–75. Springer, Heidelberg (2002)

27. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications and Cryptography,
pages 227–233, 1994. Academic Publishers.

28. Lai, X., Massey, J.L., Murphy, S: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)

29. Lee, S., Kim, J., Hong, D., Lee, C., Sung, J., Hong, S., Lim, J.: Weak key classes of 7-round MISTY 1
and 2 for related-key amplied boomerang attacks. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 91-A(2), 642–649 (2008)

30. Lu, J.: Cryptanalysis of block ciphers. PhD thesis, University of London, UK (2008)

31. Lu, J., Kim, J.: Attacking 44 rounds of the SHACAL-2 block cipher using related-key rectangle crypt-
analysis. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E91-A(9), 2588-2596 (2008).

32. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the efficiency of impossible differential crypt-
analysis of reduced Camellia and MISTY1. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 370–386. Springer, Heidelberg (2008)

33. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267,
pp. 54–68. Springer, Heidelberg (1997)

34. Murphy, S.: The return of the cryptographic boomerang. IEEE Transactions on Information Theory
57(4), 2517-2521 (2011)

35. NESSIE — New European Schemes for Signatures, Integrity, and Encryption, final report of European
project IST-1999-12324.



21

36. National Institute of Standards and Technology (NIST). Advanced Encryption Standard (AES), FIPS-
197 (2001).

37. RFC 2994 — a description of the MISTY1 encryption algorithm. The Internet Engineering Task Force
(IETF), 2000. http://tools.ietf.org/html/rfc2994

38. Sun, X., Lai, X.: Improved integral attacks on MISTY1. In: Jacobson Jr., M.J., Rijmen, V., Safavi-
Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 266–280. Springer, Heidelberg (2009)

39. Tanaka, H., Hatano, Yasuo., Sugio, N., Kaneko, T.: Security analysis of MISTY1. In: Kim, S., Yung,
M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 215–226. Springer, Heidelberg (2007)

40. Tsunoo, Y., Saito, T., Nakashima, H., Shigeri, M.: Higher order differential attack on 6-round MISTY1.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 92-A(1),
3–10 (2009)

41. Tsunoo, Y., Saito, T., Shigeri, M., Kawabata, T.: Higher order differential attacks on reduced-round
MISTY1. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 415–431. Springer, Hei-
delberg (2009)

42. Tsunoo, Y., Saito, T., Shigeri, M., Kawabata, T.: Security analysis of 7-round MISTY1 against higher
order differential attacks. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences 93-A(1), 144–152 (2010)

43. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170.
Springer, Heidelberg (1999)

Appendix A



22

⊕ ⊕

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI412

KI411

K4

⊕ ⊕

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI422 = (02||a)

∆KI421 = a

∆K6 = c

⊕ ⊕

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI432

KI431

K3

⊕

K8 ⊕

⊕

⊕
∩

∪

K2

K′
8

⊕ ⊕

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI312

KI311

K3
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⊕
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KI322

KI321

K5

⊕ ⊕
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⊕

⊕ S9 ⊕

∆KI332 = 0

∆KI331 = a

K2

⊕

K7 ⊕

⊕ ⊕

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI612

KI611

∆K6 = c

⊕ ⊕

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI622

KI621

K8

⊕ ⊕

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI632

KI631

K5

⊕

K2
⊕

⊕

⊕
∩

∪

K3

K′
1

⊕ ⊕
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Fig. 5. Chen and Dai’s related-key differential characteristic for Rounds 2–8
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(a): The related-key differential for Rounds 1–2

(b): The related-key differential for Rounds 3–7
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Fig. 6. The two related-key differentials used in Chen and Dai’s 7-round distinguisher


