ANOTHER LOOK AT HMAC

NEAL KOBLITZ AND ALFRED MENEZES

Abstract

HMAC is the most widely-deployed cryptographic-hash-function-based message authentication code. First, we describe a security issue that arises because of inconsistencies in the standards and the published literature regarding keylength. We prove a separation result between two versions of HMAC, which we denote HMAC ${ }^{\text {std }}$ and HMAC ${ }^{\mathrm{Bel}}$, the former being the real-world version standardized by Bellare et al. in 1997 and the latter being the version described in Bellare's proof of security in his Crypto 2006 paper. Second, we describe how HMAC ${ }^{\text {NIST }}$ (the FIPS version standardized by NIST), while provably secure, succumbs to a practical attack in the multi-user setting. Third, we describe a fundamental flaw in Bellare's 2006 security proof for HMAC, and show that with the flaw removed the proof gives a security guarantee that is of little value in practice. We give a new proof of NMAC security that gives a stronger result for NMAC and HMAC - and solves an "interesting open problem" from Bellare's Crypto 2006 paper - and discuss its limitations.

1. Introduction

In the first two sections our aim is to convey the general ideas using informal language, a minimum of notation and terminology, and no abbreviations or acronyms. ${ }^{1}$ Details and formal statements can be found in later sections.

Suppose that Alice and Bob have a shared secret key K for use during a session in which they are exchanging messages M. A message authentication code is a function $t=H(K, M)$, where t is called the "tag" of the message M (under the key K); Alice sends t along with the message M in order to provide Bob with some assurance that the message he receives was truly sent by Alice and was not altered before he got it.

By a compression function we mean a function $z=f(x, y)$, where $y \in\{0,1\}^{b}$ and $x, z \in\{0,1\}^{c}$. We suppose that $b \geq c$, so the compression function reduces size by at least a factor of 2 ; typically $b=512, c=160$. Given a compression function f, the most common way to create an iterated hash function h is as follows [10, 20]. Let IV (called the initializing vector) be a publicly known bitstring of length c that is fixed once and for all. Suppose that $M=\left(M_{1}, \ldots, M_{m}\right)$ is a message consisting of $m \leq n$ b-bit blocks (where $n b$ is some bound on message length; for simplicity in this paper we shall suppose that all message lengths are multiples of b). Then we set $x_{0}=\mathrm{IV}$, and for $i=1, \ldots, m$ we recursively set $x_{i}=f\left(x_{i-1}, M_{i}\right)$; finally, we set $h_{\mathrm{IV}}(M)=x_{m}$. The function h_{IV} takes a message that can be very long and outputs its c-bit hash value. ${ }^{2}$

[^0]One of the earliest ideas for converting an iterated hash function $h_{\text {IV }}$ into a message authentication code $H(K, M)$ was simply to prepend the secret key K for the session. In other words, one can define $H(K, M)=h_{\mathrm{IV}}(K \| M)$. (If the length k of the key is less than b, as it usually is, then the key can be padded with zero bits or with a fixed string of $b-k$ bits.)

However, it was soon realized that this construction has a security flaw: without knowing K, anyone who knows the tag of a message $M=\left(M_{1}, \ldots, M_{m}\right)$ can easily compute the tag of any longer message whose first m blocks coincide with M (see Example 9.64 in [19]).

A message authentication code $H(K, M)$ that does not have this flaw can be defined by setting $H\left(K_{1}, K_{2}, M\right)=h_{K_{2}}\left(h_{K_{1}}(M)^{0}\right)$, where K_{1} and K_{2} are c-bit keys that serve as two different IV's for the hash function h. (Because $h_{K_{1}}(M)$ is shorter than a message block, it is padded by a sequence of 0 -bits or some other fixed $(b-c)$-bit sequence; this is denoted by the superscript 0.) This construction - which is called a "Nested Message Authentication Code" [3] - has no obvious security flaws.

Nevertheless, computer engineers were dissatisfied for two reasons. In the first place, the construction needed two keys rather than one - or, equivalently, a single key of $2 c$ bits - and they didn't like having to double the bitlength of the key. More importantly, the construction required that the IV be changed. The engineers wanted to use an off-the-shelf iterated hash function that already had a fixed IV built into it. The message authentication code HMAC was developed in response to these two objections.

First, to deal with the objection to two keys, a single k-bit key K is used, and two keys K_{1} and K_{2} are obtained from it by XORing with two fixed bitstrings P_{1} and P_{2} : $K_{1}=K \oplus P_{1}, K_{2}=K \oplus P_{2}$. Next, in order to use a fixed hash function with given initializing vector IV, the definition of $H(K, M)$ was changed to the following: $H(K, M)=h_{\mathrm{IV}}\left(K_{2}^{0} \| h_{\mathrm{IV}}\left(K_{1}^{0} \| M\right)^{0}\right)$, where the zero superscript means that zero bits (or any fixed and publicly known sequences of bits) are appended to fill out the block of b bits.

In [3] Bellare, Canetti, and Krawczyk gave a security proof for the Nested Message Authentication Code. They made two assumptions about the hash function. First, they assumed that the underlying compression function $z=f(x, y)$ is itself a secure message authentication code. This means that an adversary, given access to an oracle that chooses a random key $K \in\{0,1\}^{c}$ and responds to any query $M \in\{0,1\}^{b}$ with the value $f(K, M)$, cannot in a reasonable length of time with non-negligible probability produce a forgery $f\left(K, M^{*}\right)$ of some message M^{*} that it didn't query.

The second condition was that the hash function $h_{\text {IV }}$ is collision-resistant, that is, one cannot in a reasonable length of time find two different messages with the same hash value. But in subsequent years the most commonly-used hash functions were shown not to have this property $[27,28] .^{3}$ This did not mean that any attack on HMAC had been found, but only that the proof-based guarantee did not apply to HMAC with the hash functions used in practice. The first objective of Bellare's paper [2] was to restore the proof-based guarantee by giving a new proof based on assumptions that had not been invalidated by the work in $[27,28]$ for the hash functions that are currently in use. A

[^1]second purpose of [2] was to remove the two-key gap, that is, give a formal proof in the case when the keys K_{1} and K_{2} are not independent, but rather K_{2} is the XOR-shift of K_{1} by a fixed and known bitstring.

The first assumption in [2] is that the underlying compression function $z=f(x, y)$ is a pseudorandom function in the following sense. Suppose you choose a random $x \in\{0,1\}^{c}$ and flip a coin. Your adversary is allowed to query values of $y \in\{0,1\}^{b}$; if the coin was heads, you must always answer the query with the correct value of $f(x, y)$, whereas if the coin was tails, you always reply to the query with a random value of $z \in\{0,1\}^{c}$ (subject only to the condition that if the same query is repeated, the same random value of z must be given). Then $f(x, y)$ is said to be a pseudorandom function if the adversary, based on your answers to her queries, is unable in a reasonable length of time to determine whether the coin was heads or tails with significantly greater than 50% chance of success.

The second assumption in [2] deals with the fact that K_{1} and K_{2} are not independent of one another, but rather are connected by the relationship $K_{2}=K_{1} \oplus P_{1} \oplus P_{2}$, where P_{1} and P_{2} are fixed and publicly known. In order to rule out the possibility that this relationship weakens HMAC, Bellare assumes that $f(x, y)$ satisfies a weak form of pseudorandomness with respect to its other argument. Namely, fix $x=$ IV, which is the value of x in the first iteration of $f(x, y)$ in the hash function h_{IV}. If $f(\mathrm{IV}, y)$ is evaluated with y set equal to one of the two related keys, that should not give an adversary any significant information about the value of $f(\mathrm{IV}, y)$ with y set equal to the other key. Here the adversary does not know either key, but does know the relationship between them.

More precisely, following [5], Bellare has the related-key adversary attempt to distinguish with success probability significantly greater than 50% between random answers to queries and answers coming from the related keys. That is, suppose you choose a random $K \in\{0,1\}^{b}$ and flip a coin. The adversary makes two queries: it asks for $f\left(\mathrm{IV}, K \oplus P_{1}\right)$ and for $f\left(\mathrm{IV}, K \oplus P_{2}\right)$. If your coin was heads, you answer correctly, whereas if it was tails, then you give random replies. If the adversary is unable to guess heads or tails with significantly greater than 50% chance of success, then the compression function $f(x, y)$ (with the fixed IV) is said to be secure against the appropriate type of related-key attack.

2. Overview of results

2.1. Separation between HMAC ${ }^{\text {std }}$ and HMAC ${ }^{\text {Bel }}$. In cryptography often "the devil is in the details." The keylength specifications for HMAC are different in the standards [4] than in the definition of HMAC used in the security proof in [2]. We shall refer to the former variant as $\mathrm{HMAC}^{\text {std }}$ and the latter one as $\mathrm{HMAC}^{\mathrm{Bel}}$.

Theorem 1. Let f be any compression function that compresses by a factor of at least 3 and satisfies the conditions in [2] that are needed for the proof of security for $H M A C^{\mathrm{Bel}}$, and let f^{*} be the slightly modified function defined in §3 below. Then f^{*} satisfies the same conditions, and so $H M A C^{\mathrm{Bel}}$ with f replaced by f^{*} still has the security level established by the proof. But if f is replaced by f^{*} in the version $H M A C^{\text {std }}$ that is in the standards [4], then HMAC ${ }^{\text {std }}$ has no security at all, because the message tags do not depend on the keys and can be computed by anyone.

It should be noted that we do not claim that there is any difference in the real-world security of the two versions of HMAC. Rather, this theorem is a theoretical result that points to the need for a stronger related-key attack assumption than the one in [2] if one wants the proof to apply to HMAC as defined in the standards.
2.2. Attack on HMAC as standardized in [22]. Although the keylength k in the standard [4] is the same as the taglength c, in the security proof in [3] that supports [4] there is nothing that requires that they be the same. In fact, as far as the security proof is concerned, there is no reason to choose k greater than $c / 2$. So it is not surprising that the HMAC standardization in [22] with $c=160$ allows 80 -bit keys. The security definitions assume the single-user setting, where there is no known reason to insist on longer keys. However, in $\S 4$ we describe a practical attack in the multi-user setting (see also [8]). Thus, even though HMAC as standardized in [22] is "provably secure," it is insecure when there are a large number of users. In fact, if there are 2^{a} users, then it has at most $80-a$ bits of security.

In $\S \S 3-4$ we show how security issues arise because of inconsistences in the standards and security proofs in $[3,4,22,2]$ concerning whether the keylength is $c, c / 2$, or b. This discrepancy is quite surprising, given the widespread use of HMAC and the insistence by cryptographers who work in provable security that a careful match between specifications and formal security proofs is crucial in both the design and analysis of protocols.
2.3. Flaw in [2]. In reducing a problem P^{\prime} to a problem P, one often uses such phraseology as "there exists an efficient algorithm for P^{\prime} with an oracle for P." However, the words "there exists" really mean that one has an explicitly described algorithm; they do not have the much weaker meaning that such words have in existence theorems in mathematics. (See [24] for a discussion of this distinction.) This observation is especially important when a property is being proved for a specific object that is fixed in the real world.

An example of the misuse of the words "there exists an efficient algorithm" would be to say that there exists an efficient algorithm for finding a collision in the most recent improved version of the Secure Hash Algorithm (or any other hash function). Trivially, any function from an extremely large set to a much smaller set has a vast number of collisions. Therefore, a collision exists, and one particular collision can be hardwired into an algorithm that simply outputs the collision. But to say that "an extremely efficient algorithm exists to break the Secure Hash Algorithm" is useless and misleading.

An analogous misuse of the notion of an algorithm existing occurs several times in [2]. In $\S 6$ we identify the places where this flaw occurs and describe the loss of tightness that follows if this flaw is removed from the proof in [2]. It turns out that the resulting concrete security guarantees are quite weak.
2.4. New proof. In $\S 7$ we give a new, self-contained proof of security without collisionresistance. Although this proof is based on very similar ideas to the proof in [2], it gives a result that is significantly tighter than what comes from [2] after the flaw is removed. In particular, it solves the "interesting open problem" mentioned in $\S 3.2$ of [2]. But even this improved result by itself is probably not good enough to serve as a convincing real-world guarantee of security of HMAC, as we discuss in $\S 8$.

Stylistically, our proof resembles the 1996 security proof with collision-resistance in [3] much more than it resembles the proof without collision-resistance in [2]. That is, it is written in a style that was popular in the 1990s before the introduction of turgid notation and "game-hopping" caused many security proofs to become virtually unreadable. Like the proof in [3], our proof is straightforward and is intended to be accessible to anyone with math or computer science background.

3. Keylength

The main difference between the Nested Message Authentication Code (NMAC) and the modified version HMAC that was introduced for reasons of real-world efficiency is that in HMAC the keys are inserted in a way that is less natural, at least from a theoretical point of view. In the first place, the keys enter in the second argument of the compression function $f(x, y),(x, y) \in\{0,1\}^{c} \times\{0,1\}^{b}$, which typically consists of 512 bits. No one wants to use such long keys, so in [4], where the recommended bitlength of the keys is 128 or 160 , they are padded with 384 or 352 zero bits. ${ }^{4}$ In the second place, the two keys one needs for NMAC are formed by XORing a single key with two fixed (and publicly known) padding vectors, called ipad and opad.

One of the main goals of [2] is to extend security results from NMAC to HMAC. However, the definition of HMAC used in [2] specifies a random key of bitlength b, and so the security results apply only to this HMAC, not to the version that is implemented in practice, for example in [4]. We next prove Theorem 1, a separation result that shows that the security assumption used for HMAC as defined in [2] is insufficient for the security of HMAC as defined in [4].

For any compression function $f(x, y)$ from $\{0,1\}^{c} \times\{0,1\}^{b}$ to $\{0,1\}^{c}$, define the corresponding function $f^{*}(x, y)$ as follows: $f^{*}(x, y)=0$ if both
(i) $x=$ IV (the initializing vector for the hash function being used) and
(ii) the last $b-c$ bits of y coincide with the last $b-c$ bits of either of the
two padding vectors ipad or opad; for all other (x, y) we set $f^{*}(x, y)=f(x, y)$.

Proof of Theorem 1. If $f(x, y)$ satisfies the two assumptions in [2] - namely, pseudorandomness as a function of y for a fixed hidden random x, and immunity from the appropriate related-key attack for fixed known $x=$ IV and y equal to two related keys - then we claim that $f^{*}(x, y)$ also satisfies these assumptions. The first property still holds because there is negligible probability 2^{-c} that $x=\mathrm{IV}$, and the second property holds because there is negligible probability at most 2^{1-c} that for a random b-bit K one has $b-c$ zero bits at the end of either $K \oplus$ ipad or $K \oplus$ opad. Here we are using the assumption that $f(x, y)$ compresses by a factor of at least 3 , that is, $b \geq 2 c$. Thus, the assumptions in the proof of security hold for $\operatorname{HMAC}^{\text {Bel }}$ with $f(x, y)$ replaced by $f^{*}(x, y)$. However, if $f(x, y)$ is replaced by $f^{*}(x, y)$ in the standardized version HMAC ${ }^{\text {std }}$, where the last $b-c$ bits of the keys agree with those in either ipad or opad,

[^2]then the first iteration of the compression function outputs zero in both the inner and outer $h_{\text {IV }}$ computations. The tag hence does not depend on the key.

Thus, in order for the security proof to apply to the version of HMAC that has been standardized in [4] the following stronger related-key assumption is needed. Suppose you choose a random $K \in\{0,1\}^{c}$ and flip a coin. Let $K^{0} \in\{0,1\}^{b}$ denote the key padded by $b-c$ zero bits. The adversary makes two queries: it asks for $f\left(\mathrm{IV}, K^{0} \oplus \mathrm{ipad}\right)$ and for $f\left(\mathrm{IV}, K^{0} \oplus\right.$ opad). If your coin was heads, you answer correctly, whereas if it was tails, then you give random replies. If the adversary is unable to guess heads or tails with significantly greater than 50% chance of success, then the compression function $f(x, y)$ (with the fixed IV) satisfies the desired related-key condition.

4. A practical attack on HMAC ${ }^{\text {Nist }}$

The attack in this section is a special case of a type of attack described in [8] that applies to a wide range of protocols in the multi-user setting.

Suppose that HMAC is being implemented with keys of 80 bits and tags of c bits, and there are 2^{a} users (that is, 2^{a} sessions from which the adversary can make queries). The attacker chooses an arbitrary fixed message M and queries each user for the tag of M under the user's key. The attacker then chooses random keys and for each key computes the corresponding tag of M and looks for a match with a user's tag. Once the attacker finds a match, she hopes (see below) that the collision occurred because the randomly chosen key happens to coincide with the user's secret key, in which case she has broken HMAC (in the sense of existential key recovery, see $\S 5$ of [17]). The expected number of keys she has to run through before one of them collides with a user's key is 2^{80-a}.

Often c is greater than 80 - in many applications the recommended value is $c=160$; for example, see [4]. Then a collision of tags most often comes from a collision of keys, so the attacker really finds a user's key in time roughly 2^{80-a}. However, small taglengths might be allowed in settings when users are not worried about tag-guessing attacks. If $c<80$ the above attack fails because a collision that's found is most likely just a collision of tags corresponding to different keys. In that case a slight modification of the above attack removes this difficulty. Namely, the attacker queries s different fixed messages, where s is chosen so that $s c>80$. This in effect lengthens the tags and allows the adversary to be confident that a simultaneous collision of all s tags was caused by a key-collision. The attacker's running time is increased only by a factor of $s \approx 80 / c$. For example, the attack on an application with 80 -bit keys and 32 -bit tags would take just 3 times as long as an attack when the taglength is 160.

5. A REMARK ON A VERY WEAK FORM OF COLLISION-RESISTANCE

As mentioned in the Introduction, the primary objective of Bellare's paper [2] was to restore the proof-based guarantee for HMAC that had been undermined by the work [27, 28] that found collisions in MD5 and SHA-1. However, after proving the theorem with weak collision-resistance, the authors of [3] had commented:

Remark 4.5. The weak-collision-freeness assumption made in the theorem can be replaced by the significantly weaker assumption that the inner hash function is collision-resistant to adversaries that see the hash value only after it was hashed again with a different secret key.

It is interesting to note that the work of $[27,28]$ does not compromise this weaker property. Namely, an oracle for weak collision-resistance means one that responds to a message query M by giving $h\left(K_{1}, M\right)$, where K_{1} is a hidden random key; whereas an oracle for the "significantly weaker" property in the remark means one that responds by giving $f\left(K_{2}, h\left(K_{1}, M\right)^{0}\right)$, where K_{1} and K_{2} are hidden random keys. Given the first type of oracle, the attackers in [27, 28] can simply query an arbitrary initial message block M_{1} and then set IV $=h\left(K_{1}, M_{1}\right)$. Then the collision they find for h_{IV} will immediately lead to a collision for the original $h\left(K_{1},.\right)$. However, given the second type of oracle the attackers in $[27,28]$ are apparently stymied.

This leads us to ask: if the theorem in [3] can be proved with a weaker assumption that still (so far as we know) holds for MD5 and SHA-1, then why was it necessary to write [2] in order to recover the proof-based guarantee? We cannot be sure, but the reason might have been (although this was not mentioned anywhere in [3] or [2]) a loss of tightness in the theorem in [3] that occurs if one passes to the weaker assumption. If one makes the obvious modifications in the proof in [3] needed to accommodate the weaker assumption, one finds a tightness gap of q (the bound on the number of queries). Whether or not this is important in practice depends on how large q is likely to be.

It should also be recalled that another objective of Bellare in [2] was to establish a property of NMAC and HMAC that is stronger than just being a secure message authentication code - namely, being a pseudorandom function.

6. Flaw in NMAC proof

By far the lengthiest argument in [2] is the proof of the main security result for NMAC (see Theorem 3.3); the extension from NMAC to HMAC is a relatively short proof. In $\S \S 6-7$ we are concerned with the security result for NMAC and not its extension to HMAC.

We quote a passage from [2] that contains a flaw in the NMAC proof. In the excerpt A_{6} denotes an adversary that takes two messages as input and is attacking the pseudorandomness of a function h (which is the compression function, that is, f in our notation), B^{+}is the space of messages, $\|M\|_{b}$ denotes the number of b-bit blocks in M, and $\operatorname{Adv}_{h}^{\text {prf }}\left(A_{6}\left(M_{1}, M_{2}\right)\right)$ is a measure of the success probability of A_{6}. The passage is from the last long paragraph in §3.3:

Let $M_{1}^{*}, M_{2}^{*} \in B^{+}$be distinct messages such that $\left\|M_{1}^{*}\right\|_{b} \leq\left\|M_{2}^{*}\right\|_{b} \leq n$ and

$$
\operatorname{Adv}_{h}^{\operatorname{prf}}\left(A_{6}\left(M_{1}, M_{2}\right)\right) \leq \operatorname{Adv}_{h}^{\operatorname{prf}}\left(A_{6}\left(M_{1}^{*}, M_{2}^{*}\right)\right)
$$

for all distinct $M_{1}, M_{2} \in B^{+}$with $\left\|M_{1}\right\|_{b} \leq\left\|M_{2}\right\|_{b} \leq n$, where n is as in the Lemma statement. Now let A be the adversary that has M_{1}^{*}, M_{2}^{*} hardwired in its code and, given oracle g, returns $A_{6}^{g}\left(M_{1}^{*}, M_{2}^{*}\right)$. The adversary A has time-complexity as claimed in the Lemma statement.
In other words, M_{1}^{*}, M_{2}^{*} are defined to be a message-pair for which the adversary A_{6} is maximally successful. Such a pair obviously exists. But how in the world could one find such M_{1}^{*}, M_{2}^{*} algorithmically? It's a tremendous leap to let A be an efficient algorithm that somehow has the pair of optimal messages for A_{6} hardwired into its code.

To put it another way, let's ask what sort of security theorem can come out of this type of non-constructive adversary? Such a theorem essentially says that if NMAC has
an adversary with a non-negligible advantage, then an algorithm A exists that solves a certain hard problem. However, A exists only in the sense of a mathematical existence theorem, and there is no known way to derive a concrete security bound - that is, one cannot conclude anything about the actual security of NMAC.

We find that this type of flaw also occurs in three other arguments in [2]: in the proof of Lemma 3.2 relating the pseudorandomness of NMAC to the almost-universal property and the pseudorandomness of the compression function (see the last paragraph of $\S 3.4$); in the proof of the generalization of the main theorem, Theorem 3.4 (see the sentence in parentheses following (21) in §3.5); and in the proof of Lemma 4.2, which is used to prove security under an assumption on the compression function that is weaker than pseudorandomness (see the last sentence of $\S 4$). The author justifies these steps by citing "a standard 'coin-fixing' argument" (p. 22), but in fact the steps invalidate any attempt to use the theorems to derive concrete security bounds.

It should be stressed that the general argument in [2] does not depend on the coinfixing, and so the qualitative result remains valid. However, the tightness of the reduction is greatly affected. Recall that in a reduction from a problem P^{\prime} to a problem P the tightness gap is defined as $t^{\prime} \epsilon / t \epsilon^{\prime}$, where (ϵ, t) and $\left(\epsilon^{\prime}, t^{\prime}\right)$ are the success probability (or "advantage") and running time of algorithms for P and P^{\prime}, respectively. In the main NMAC security result of [2] (see inequality (4) of Theorem 3.3) the tightness gap comes from a term that in our notation would be written $\binom{q}{2}\left(2 n \epsilon^{\prime}\right)$, where q denotes the number of queries allowed and ϵ^{\prime} is the advantage of a certain adversary A that attacks the pseudorandomness of $f .{ }^{5}$ The other side of inequality (4) of [2] is the advantage ϵ of an adversary (denoted $A_{f h}$ in $\S 7$) that attacks the pseudorandomness of the NMAC function. That is, (4) gives $q^{2} n \epsilon^{\prime} \geq \epsilon$, so there is a tightness gap of $q^{2} n$ for the advantages. However, because of the coin-fixing, Theorem 3.3 claims a running time t^{\prime} for the adversary A of order only $n T$ (that is, the time for an evaluation of the iterated hash function). Neglecting T (that is, replacing it by 1), this reduces the overall tightness gap to $\frac{\epsilon}{\epsilon^{\prime}} \cdot \frac{t^{\prime}}{t} \approx\left(q^{2} n\right) \cdot \frac{n}{t}=\frac{q^{2} n^{2}}{t}$. This is the computation used in $\S 3.2$ of [2] in order to conclude that "the bound justifies NMAC up to roughly $2^{c / 2} / n$ queries."

More precisely, Bellare's argument can be summarized as follows. Assuming that there is no f-adversary that's faster than exhaustive search, we can say that the adversary A with running time of order n must have advantage $\epsilon^{\prime} \leq n / 2^{c}$. Then $\epsilon \leq q^{2} n \epsilon^{\prime} \leq q^{2} n^{2} / 2^{c}$, and the result claimed in his theorem has content provided that this is less than 1 , i.e., $q<2^{c / 2} / n$.

Without the fallacious coin-fixing argument, the running time of A is roughly t, which can be taken to have order of magnitude $q n$. Hence there's another q term in the inequalities for ϵ^{\prime} and ϵ; that is, $\epsilon \leq q^{2} n \epsilon^{\prime} \leq q^{2} n\left(q n / 2^{c}\right)=q^{3} n^{2} / 2^{c}$. This means that the bound justifies NMAC only up to roughly $2^{c / 3} n^{-2 / 3}$ queries. Unfortunately, for $c=160$ and, say, $n=2^{20}$, Bellare's theorem in [2] now gives just 40 bits of security.

It turns out that a more efficient proof of NMAC security can be given that leads to a significantly tighter result. We do this in the next section. But even our tighter result needs to be interpreted with caution and by itself probably does not give a very

[^3]convincing security guarantee. In $\S 8$ we'll comment on possible interpretations and reasons for skepticism.

7. Proof without game-hopping of NMAC SECurity without COLLISION-RESISTANCE

A compression function f that maps from $\{0,1\}^{c} \times\{0,1\}^{b}$ to $\{0,1\}^{c}$ is said to be an (ϵ, t, q)-secure pseudorandom function if no adversary can distinguish between f with a hidden key and a random function with advantage $\geq \epsilon$ in time $\leq t$ with $\leq q$ queries. Suppose that NMAC is constructed from f. Then NMAC is said to be an (ϵ, t, q, n) secure pseudorandom function if no adversary can distinguish between NMAC with hidden keys and a random function with advantage $\geq \epsilon$ in time $\leq t$ with $\leq q$ queries of block length $\leq n$.

Theorem 2. Suppose that f is an (ϵ, t, q)-secure pseudorandom function. Then NMAC is a $\left(3 n\left(3 n \epsilon+\binom{q}{2} 2^{-c}\right), t-(2 q n T+C q \log q), q, n\right)$-secure pseudorandom function. Here C is an absolute constant and T denotes the time for one evaluation of f.

Proof. We will prove the following equivalent statement: if the compression function f is a $\left(\frac{1}{3 n}\left(\frac{\epsilon}{3 n}-\binom{q}{2} 2^{-c}\right), t+(2 q n T+C q \log q), q\right)$-secure pseudorandom function, then NMAC is an (ϵ, t, q, n)-secure pseudorandom function. The proof starts by supposing that we have an adversary that defeats the pseudorandomness test for NMAC with advantage $\geq \epsilon$ in time $\leq t$ with at most q queries of block-length at most n, and then proceeds to construct an adversary for f that satisfies the specified parameters.

Let h be the corresponding iterated function, and let $f h$ be the NMAC function, which for a key $K=\left(K_{1}, K_{2}\right)$ is defined as $f h(M)=f\left(K_{2}, h\left(K_{1}, M\right)\right)$, where $M=$ (M_{1}, \ldots, M_{m}) is an m-block message, $m \leq n$. For simplicity of notation in what follows we'll disregard the padding; for example, the second argument in f in the definition of $f h$ needs to be padded by $b-c$ bits (denoted by overlining in [3]). Let $g(M)$ denote a random function of messages, and let $g^{\prime}\left(M_{1}\right)$ denote a random function of 1-block messages. In response to an input of suitable length, g^{\prime} or g outputs a random c-bit string, subject only to the condition that if the same input is given a second time (in the same run of the algorithm) the output will be the same. In the test for pseudorandomness the oracle is either a random function or the function being tested, as determined by a random bit (coin toss).

The theorem says: If f is a pseudorandom function (prf), then so is $f h$. To prove this we suppose that we have an adversary $A_{f h}$ that, interacting with its oracle $O_{f h}$, defeats the prf-test for $f h$, and we then use $A_{f h}$ to construct a set of adversaries, at least one of which, interacting with the oracle O_{f}, defeats the prf-test for f. Each adversary makes at most the same number of queries as $A_{f h}$ and has a comparable running time. More precisely, the bound $t+(2 q n T+C q \log q)$ on the running time of one of the adversaries comes from the time required to run $A_{f h}$, make at most $2 q$ computations of h-values, and store at most $2 q$ values (coming from oracle responses and h-computations) in lexicographical order and sort them looking for collisions.

For an oracle O we let $O(M)$ denote the response of O to the query M. The adversary A_{f} is given an oracle O_{f} and, using $A_{f h}$ as a subroutine, has to decide whether O_{f} is $f\left(K_{2},.\right)$ or $g^{\prime}($.$) . She chooses a random K_{1}$ and presents the adversary $A_{f h}$ with an oracle that is either $f\left(K_{2}, h\left(K_{1},.\right)\right)$ or else $g($.$) - that is, she simulates O_{f h}$ (see below).

In time $\leq t$ with $\leq q$ queries $A_{f h}$ is able with probability $\frac{1+\epsilon}{2}$ to guess correctly whether $O_{f h}$ is $f h$ with hidden keys or a random function g. Here is how A_{f} simulates $O_{f h}$: in response to a query M^{i} from $A_{f h}$, she computes $h\left(K_{1}, M^{i}\right)$, which she queries to O_{f}, and then gives $A_{f h}$ the value $O_{f}\left(h\left(K_{1}, M^{i}\right)\right)$. Eventually $A_{f h}$ states whether it believes that its oracle $O_{f h}$ is $f h$ or g, at which point A_{f} states the same thing for the oracle O_{f} - that is, if $A_{f h}$ said $f h$, then she says that O_{f} must have been f, whereas if $A_{f h}$ said that $O_{f h}$ is g, then she says that O_{f} is g^{\prime}. Notice that if the oracle O_{f} is $f\left(K_{2},.\right)$, then the oracle $O_{f h}$ that A_{f} simulates for $A_{f h}$ is $f h$ (with random key $K=\left(K_{1}, K_{2}\right)$); if the oracle O_{f} is $g^{\prime}($.$) , then the oracle that A_{f}$ simulates for $A_{f h}$ acts as g with the important difference that if $h\left(K_{1}, M^{i}\right)$ coincides with an earlier $h\left(K_{1}, M^{j}\right)$ the oracle outputs the same value (even though $M^{i} \neq M^{j}$) rather than a second random value. ${ }^{6}$ If the latter happens with negligible probability, then this algorithm A_{f} is as successful in distinguishing f from a random function as $A_{f h}$ is in distinguishing $f h$ from a random function. Otherwise, three sequences of adversaries $A_{f}^{(m)}, B_{f}^{(m)}$, and $C_{f}^{(m)}$ come into the picture, as described below.

The general idea of these adversaries is that they each test the oracle O_{f} by looking for collisions between h-values of two different messages M^{i}, M^{j} queried by $A_{f h}$. More precisely, the m-th adversary in a sequence works not with all of a queried message, but rather with the message with its first $m-1$ (or m) blocks deleted. If a collision is produced, then with a certain probability O_{f} must be $f\left(K_{2},.\right)$; however, there is also a possibility that O_{f} is $g^{\prime}($.$) and a collision occurs for the same messages with one$ further message block deleted, and this brings in the ($m+1$)-st adversary in one of the sequences.

First we make a remark about probabilities, which are taken over all possible coin tosses of the adversary, all possible keys, the oracle's "choice bit" (which determines whether it is the function being tested or a random function), and the coin tosses of the oracle in the case when it outputs a random function. ${ }^{7}$ If the adversary's oracle is f or $f h$ with hidden keys, then the adversary's queries in general depend on the keys (upon which the oracle's responses depend) as well as the adversary's coin tosses. However, if the adversary's oracle is a random function - which is the situation when A_{f} fails and the sequences of adversaries $A_{f}^{(m)}, B_{f}^{(m)}, C_{f}^{(m)}$ are needed - then the oracle responses can be regarded simply as additional coin tosses, and the adversary's queries then depend only on the coin tosses and are independent of the keys. This is an important observation for understanding the success probabilities of the adversaries.

For the i-th message query M^{i} we use the notation M_{ℓ}^{i} to denote its ℓ-th block, we let $M^{i,[m]}=\left(M_{1}^{i}, \ldots, M_{m}^{i}\right)$ be the truncation after the m-th block, and we set $M^{i,(m)}=\left(M_{m}^{i}, M_{m+1}^{i}, \ldots\right)$, that is, $M^{i,(m)}$ is the message with the first $m-1$ blocks deleted. We say that a message is "non-empty" if its block length is at least 1 .

[^4]For $m \geq 1$ we define α_{m} to be the probability, taken over all coin tosses of $A_{f h}$ (including those coming from random oracle responses) and all keys K_{1}, that the sequence of $A_{f h}$-queries M^{i} satisfies the following property:
$\left(1_{m}\right)$ there exist i and $j, j<i$, such that $M^{i,(m+1)}$ and $M^{j,(m+1)}$ are non-empty,

$$
M^{i,[m]}=M^{j,[m]}, \quad \text { and } \quad h\left(K_{1}, M^{i,(m+1)}\right)=h\left(K_{1}, M^{j,(m+1)}\right) .
$$

For $m=0$ we similarly define α_{0} as the probability that $h\left(K_{1}, M^{i}\right)=h\left(K_{1}, M^{j}\right)$ for some i and $j, j<i$.

For $m \geq 1$ we define β_{m} to be the probability, taken over all coin tosses of $A_{f h}$ and all pairs of keys (K_{1}, K_{1}^{\prime}), that the sequence of $A_{f h}$-queries satisfies the following property: $\left(2_{m}\right)$ there exist i and $j, j<i$, such that $M^{i,(m+1)}$ and $M^{j,(m+1)}$ are non-empty,

$$
M^{i,[m]} \neq M^{j,[m]}, \quad \text { and } \quad h\left(K_{1}, M^{i,(m+1)}\right)=h\left(K_{1}^{\prime}, M^{j,(m+1)}\right) .
$$

For $m \geq 2$ we further write $\beta_{m}=\beta_{m}^{\prime}+\beta_{m}^{\prime \prime}$, where β_{m}^{\prime} denotes the probability of collisions with $M^{i,[m-1]} \neq M^{j,[m-1]}$ and $\beta_{m}^{\prime \prime}$ denotes the complementary probability, that is, the probability of collisions with $M^{i,[m]}$ and $M^{j,[m]}$ differing only in their m-th block.

Finally, for $m \geq 1$ we define γ_{m} to be the probability, taken over all coin tosses of $A_{f h}$ and all pairs of keys $\left(K_{1}, K_{1}^{\prime \prime}\right)$, that the sequence of $A_{f h}$-queries satisfies the following property:
$\left(3_{m}\right)$ there exist i and $j, j<i$, such that $M^{i,(m+1)}$ and $M^{j,(m+2)}$ are non-empty,

$$
M^{i,[m]} \neq M^{j,[m]}, \quad \text { and } \quad h\left(K_{1}, M^{i,(m+1)}\right)=h\left(K_{1}^{\prime \prime}, M^{j,(m+2)}\right) .
$$

We now return to the situation where with non-negligible probability α_{0} the queries made by $A_{f h}$ lead to at least one collision $h\left(K_{1}, M^{i}\right)=h\left(K_{1}, M^{j}\right)$. Note that the advantage of the adversary A_{f} is at least $\epsilon-\alpha_{0}$.

The first adversary in the sequence $A_{f}^{(m)}$ is A_{f}^{\prime}, which is given the oracle O_{f} that is either $f\left(K_{1},.\right)$ with a hidden random key K_{1} or else $g^{\prime}($.$) . As A_{f}^{\prime}$ runs $A_{f h}$, giving random responses to its queries, he ${ }^{8}$ queries O_{f} with the first block M_{1}^{i} of each $A_{f h^{-}}$ query M^{i}. If $M^{i,(2)}$ is non-empty, he then computes $y_{i}=h\left(O_{f}\left(M_{1}^{i}\right), M^{i,(2)}\right)$; if $M^{i,(2)}$ is empty, he just takes $y_{i}=O_{f}\left(M_{1}^{i}\right)$. If O_{f} is $f\left(K_{1},.\right)$, then y_{i} will be $h\left(K_{1}, M^{i}\right)$, whereas if O_{f} is $g^{\prime}($.$) , then y_{i}$ will be $h\left(L_{i}, M^{i,(2)}\right)$ for a random key $L_{i}=O_{f}\left(M_{1}^{i}\right)$ if $M^{i,(2)}$ is non-empty and will be a random value L_{i} if $M^{i,(2)}$ is empty. As the adversary A_{f}^{\prime} gets these values, he looks for a collision with the y_{j}-values obtained from earlier queries M^{j}. If a collision occurs, he guesses that O_{f} is $f\left(K_{1},.\right)$; if not, he randomly chooses between the two alternatives.

It is, of course, conceivable that even when O_{f} is $g^{\prime}($.$) there is a collision h\left(L_{i}, M^{i,(2)}\right)=$ $h\left(L_{j}, M^{j,(2)}\right)$. Note that $L_{i}=L_{j}$ if $M_{1}^{i}=M_{1}^{j}$, but L_{i} and L_{j} are independent random values if $M_{1}^{i} \neq M_{1}^{j}$. In other words, we have $\left(1_{1}\right)$ or $\left(2_{1}\right)$ with $K_{1}=L_{i}, K_{1}^{\prime}=L_{j}$. Recall that the probability that this occurs is $\leq \alpha_{1}+\beta_{1}$.

It is also possible that even when O_{f} is $g^{\prime}($.$) there is a collision involving one or both$ of the random values L_{i} or L_{j} that is produced when $M^{i,(2)}$ or $M^{j,(2)}$ is empty. The

[^5]probability of this is $\leq\binom{ q}{2} 2^{-c}$. Bringing these considerations together, we see that the advantage of A_{f}^{\prime} is $\geq \alpha_{0}-\alpha_{1}-\beta_{1}-\binom{q}{2} 2^{-c}$.

We are now ready to define the three sequences of adversaries $A_{f}^{(m)}, B_{f}^{(m)}, C_{f}^{(m)}$, $2 \leq m \leq n$, that come into play when the oracle $O_{f h}$ that A_{f} simulates for $A_{f h}$ fails to perform like a random g even when O_{f} is g^{\prime}.

We first describe $A_{f}^{(m)}$. Like A_{f}^{\prime}, she runs $A_{f h}$ once and gives random responses to its queries. Let O_{f} again denote the prf-test oracle for f that $A_{f}^{(m)}$ can query. As $A_{f h}$ runs, for every query M^{i} for which $M^{i,(m)}$ is non-empty the adversary $A_{f}^{(m)}$ queries M_{m}^{i} to O_{f} and computes $y_{i}=h\left(O_{f}\left(M_{m}^{i}\right), M^{i,(m+1)}\right)$ if $M^{i,(m+1)}$ is non-empty and otherwise takes $y_{i}=O_{f}\left(M_{m}^{i}\right)$. Then she looks for $j<i$ such that $M^{j,(m)}$ is non-empty, $M^{j,[m-1]}=M^{i,[m-1]}$, and $y_{i}=y_{j}$. If she finds such a collision, she guesses that O_{f} is $f\left(K_{1},.\right)$; otherwise, she randomly guesses whether O_{f} is $f\left(K_{1},.\right)$ or $g^{\prime}($.$) .$

The adversary $B_{f}^{(m)}$ acts as follows. He starts by choosing a random key K_{1}^{\prime}. Like $A_{f}^{(m)}$, for every query M^{i} for which $M^{i,(m)}$ is non-empty he queries M_{m}^{i} to O_{f} and computes $y_{i}=h\left(O_{f}\left(M_{m}^{i}\right), M^{i,(m+1)}\right)$ if $M^{i,(m+1)}$ is non-empty and otherwise takes $y_{i}=O_{f}\left(M_{m}^{i}\right)$. But unlike $A_{f}^{(m)}$, he also computes $z_{i}=h\left(K_{1}^{\prime}, M^{i,(m)}\right)$ whenever $M^{i,(m)}$ is non-empty. He looks for $j<i$ such that $M^{j,(m)}$ is non-empty, $M^{j,[m-1]} \neq M^{i,[m-1]}$, and z_{j} coincides with y_{i}. If he finds such a collision, he guesses that O_{f} is $f\left(K_{1},.\right)$; otherwise he makes a random guess about whether O_{f} is $f\left(K_{1},.\right)$ or $g^{\prime}($.$) .$

Finally, the adversary $C_{f}^{(m)}$ acts similarly to $B_{f}^{(m)}$. She also starts by choosing a random key $K_{1}^{\prime \prime}$. Whenever $M^{i,(m)}$ is non-empty she queries M_{m}^{i} to O_{f} and computes $y_{i}=h\left(O_{f}\left(M_{m}^{i}\right), M^{i,(m+1)}\right)$ if $M^{i,(m+1)}$ is non-empty and otherwise takes $y_{i}=O_{f}\left(M_{m}^{i}\right)$. In addition, whenever $M^{i,(m+1)}$ is non-empty she computes $z_{i}=h\left(K_{1}^{\prime \prime}, M^{i,(m+1)}\right)$. She looks for $j<i$ such that $M^{j,(m)}$ is non-empty, $M^{j,[m-1]} \neq M^{i,[m-1]}$, and y_{j} coincides with z_{i}. (This is the reverse of what $B_{f}^{(m)}$ looks for.) If she finds such a collision, she guesses that O_{f} is $f\left(K_{1},.\right)$, and otherwise makes a random guess about O_{f}.

We claim that we have the following lower bounds for the advantages of the adversaries, where we set $\delta=\delta(q, c)=\binom{q}{2} 2^{-c}$:

$$
\begin{aligned}
& A_{f}: \epsilon-\alpha_{0} ; \\
& A_{f}^{\prime}: \alpha_{0}-\alpha_{1}-\beta_{1}-\delta ; \\
& A_{f}^{(m)}, m \geq 2: \alpha_{m-1}-\alpha_{m}-\beta_{m}^{\prime \prime}-\delta ; \\
& B_{f}^{(m)}, m \geq 2: \beta_{m-1}-\gamma_{m-1}-\delta ; \\
& C_{f}^{(m)}, m \geq 2: \gamma_{m-1}-\beta_{m}^{\prime}-\delta .
\end{aligned}
$$

The adversary $A_{f}^{(m)}$ takes advantage of the α_{m-1} probability of a collision of the form $\left(1_{m-1}\right)$, and if such a collision occurs she guesses that O_{f} is $f\left(K_{1},.\right)$. The possibility that O_{f} is really $g^{\prime}($.$) is due to three conceivable circumstances - a collision of the$ form (1_{m}) (with $K_{1}=O_{f}\left(M_{m}^{i}\right)$), a collision of the form (2_{m}) (with $K_{1}=O_{f}\left(M_{m}^{i}\right)$ and $K_{1}^{\prime}=O_{f}\left(M_{m}^{j}\right)$), or a collision among random values (of which the probability is bounded by δ). The arguments for $B_{f}^{(m)}$ and $C_{f}^{(m)}$ are similar. Notice that the purpose
of having $C_{f}^{(m)}$ look for $y_{j}=z_{i}$ - as opposed to $z_{j}=y_{i}$ as in the case of $B_{f}^{(m)}$ - is to "level out the messages." That is, whenever the guess by $B_{f}^{(m)}$ that O_{f} is $f\left(K_{1},.\right)$ is wrong because of a collision of the form $\left(3_{m-1}\right)$ with i and j reversed and with $K_{1}^{\prime \prime}=O_{f}\left(M_{m}^{i}\right)$ we want a wrong guess by $C_{f}^{(m)}$ to lead back to a situation where M^{i} and M^{j} have been truncated by the same amount.

Trivially we have $\alpha_{n}=\beta_{n}=\gamma_{n-1}=0$, and so the adversaries stop at the latest with $A_{f}^{(n)}, B_{f}^{(n)}, C_{f}^{(n-1)}$. The sum of all the advantages of the $3 n-2$ adversaries telescopes and is equal to $\epsilon-(3 n-3) \delta$. Thus, one of the $3 n-2$ summands must be $\geq \frac{\epsilon}{3 n-2}-\frac{3 n-3}{3 n-2} \delta>\frac{\epsilon}{3 n}-\delta$; the corresponding adversary has advantage $>\frac{\epsilon}{3 n}-\delta$.

Unfortunately, we have no way of knowing in advance which adversary is the "good" one with this non-negligible advantage. So we need to make a random selection that results in a further loss of tightness of the reduction. That is, the algorithm to attack the pseudorandomness of f consists of randomly choosing one of the $3 n-2$ adversaries $A_{f}, A_{f}^{\prime}, A_{f}^{(m)}(2 \leq m \leq n), B_{f}^{(m)}(2 \leq m \leq n), C_{f}^{(m)}(2 \leq m \leq n-1)$, and running it. With probability $1 /(3 n-2)>1 /(3 n)$ you get the "good" adversary. Thus, the advantage of this algorithm is at least $\frac{1}{3 n}\left(\frac{\epsilon}{3 n}-\delta\right)$, as claimed.

8. Interpretations

How useful is the bound in Theorem 2 as a guarantee of real-world security? That depends on how one chooses to approach the question. We first show that the bound is in some sense optimal. We then discuss its limitations.
8.1. Optimality of bound. In $\S 3.2$ of [2], Bellare explains that, because of the birthday attack of Preneel and van Oorschot [23], the most one can hope for from a security bound for NMAC is that it justifies NMAC up to roughly $2^{c / 2} / \sqrt{n}$ queries. Namely, he argues that a better bound would imply a better generic attack on f than exhaustive key search, and such an attack is not believed to exist. Bellare shows that the bound claimed in his theorem
justifies NMAC up to roughly $2^{c / 2} / n$ queries, off from the number in the above-mentioned attack by a factor of \sqrt{n}. It is an interesting open problem to improve our analysis and fill the gap.
(We've changed the notation in the quotation to agree with ours.) Following the method in $\S 3.2$ of [2], let's examine our bound in Theorem 2. We want Theorem 2 to give a non-trivial conclusion under the assumption that the best attack on f is exhaustive key search. With that assumption, the advantage of any prf-adversary of f which runs in time at most t and makes at most q queries is $\epsilon \leq t / 2^{c}$. Theorem 2 has content provided that $3 n\left(3 n \epsilon+\binom{q}{2} 2^{-c}\right)<1$. Supposing that $t \ll q^{2} / 3 n$, we then have $3 n \epsilon \ll q^{2} 2^{-c}$, and so the condition becomes $3 n\binom{q}{2} 2^{-c}<1$. Ignoring a $3 / 2$ factor, this gives us $q^{2}<2^{c} / n$, and we can say that Theorem 2 justifies NMAC up to roughly $2^{c / 2} / \sqrt{n}$ queries. Thus, we could argue that our theorem gives a best possible security bound.
8.2. Limitations of Theorem 2. So does that mean that we've proved a nice ironclad security guarantee for NMAC? Hardly. If we were to claim that Theorem 2 is a great improvement over the result in [2] and provides the proof of security that NMAC needs,
we would be indulging in boastful hype. We would be ignoring the wise advice given in Ch. 13, v. 8-12 of [1], where it is written that to achieve knowledge the first trait one needs is humility.

And indeed, in interpreting Theorem 2 a huge dollop of humility is called for. Suppose we want to know that NMAC is an (ϵ, t, q, n)-secure pseudorandom function. In order for Theorem 2 to give us the desired assurance, we need f to be roughly an $\left(\epsilon /\left(9 n^{2}\right), t, q\right)-$ secure pseudorandom function. In other words, we have a tightness gap of about $9 n^{2}$. Since values such as 2^{20} and 2^{30} are quite reasonable for the block-length bound, the tightness gap can be gigantic.

Moreover, Theorem 2 has a very strong hypothesis - pseudorandomness of the compression function. This property is extremely difficult to evaluate for the compression functions used in practice, for example in SHA-1 and MD5. And one really has to question the value of a theorem if one has no good reason to believe the hypothesis.

We would not want to go out on a limb and say that our Theorem 2 is totally worthless. However, its value as a source of assurance about the real-world security of HMAC is questionable at best.

In our opinion none of the provable security theorems for HMAC with MD5 or SHA-1 (including the proof in [12]) by themselves provide a useful guarantee of security. At most they offer partial evidence of security that must be supplemented by hundreds of person-years of cryptanalysis of the versions of HMAC that are in use.

It is also important to note that the level of security that one needs depends on the particular application. If HMAC is being used only as a message authentication code, and a given session is fairly short-lived, then a bound of 2^{63} or even 2^{50} queries might be reasonable. Moreover, as pointed out in [4], in general only short-term security is needed, because, unlike in the case of encryption, no harm is done if an adversary determines the shared secret key after the session is over.

On the other hand, HMAC can also be used as a pseudorandom function in applications such as key-derivation [11, 14, 18] and one-time passwords [21]. In those settings one often needs a much greater level of assurance than anything that's provided by such theoretical results as our Theorem 2 or the theorems in [2].

9. Conclusions

1. A security proof using standard definitions based on the single-user setting does not necessarily give any useful guarantee of the security of the protocol in a multi-user setting.
2. HMAC with 80 -bit keys - such as the version standardized in [22] - should probably not be used in the multi-user setting, because it has at most $80-a$ bits of security when there are 2^{a} users.
3. When HMAC is used with a hash function that is not collision-resistant, confidence in its security cannot come from the proof in [2] - or even from our proof in $\S 7$ but rather must be based upon the large number of person-years that engineers and cryptanalysts have devoted to testing it. This is especially the case in an application where one needs pseudorandomness and where short-term security is not enough.
4. The coin-fixing technique, which was described in one form in $\S 7.3$ of [6] and appeared in a somewhat different form in [2], should be used with caution. In general it cannot be employed as a magic bullet to convert a non-tight bound into a tight one.

In addition to the proofs in [2], other proofs that make an invalid coin-fixing argument can be found in [29] (see Lemma 1) and [30] (proof of Theorem 1).
5. A flaw in a proof - particularly when it's in a paper that appears in the proceedings of a prestigious conference - is likely to propagate to other papers as different authors use the erroneous theorem to prove their own results. For example, Theorem 2 of [13] contains an erroneous bound as a result of the authors' reliance on a bound in [2] which, in turn, was derived using a fallacious coin-fixing argument.

6 . Game-hopping proofs [6,25] are often especially prone to error because they are much lengthier than proofs written in a conventional mathematical style. In conferences such as Crypto, program committee members are instructed that they are not responsible for reading anything that is not contained in the main body of a paper, and a strict page limit is imposed on the main body of submissions. Long proofs, such as proofs with sequences of games, are omitted or relegated to appendices that are rarely read by referees. Another reason why game-hopping proofs often receive even less peer review than other proofs is that many people find them especially hard to read. See [15, 16] for further discussion of the drawbacks of game-hopping proofs.
7. In [26] Stern, Pointcheval, Malone-Lee, and Smart comment (in connection with the error in the original security proof for OAEP [7]) that proofs "need time to be validated through public discussion" and that "flaws in security proofs themselves might have a devastating effect on the trustworthiness of cryptography." In view of the extensive history of major flaws in proofs of security for important protocols, one can only hope that the research culture in cryptography changes in such a way that proofs start to get the detailed peer review they need.

Acknowledgments

We would like to thank Palash Sarkar and Greg Zaverucha for helpful technical corrections and comments, and Ann Hibner Koblitz for valuable editorial corrections and suggestions.

References

[1] Anonymous, The Bhagavad Gita, translated by L. L. Patton, Penguin Classics, 2008.
[2] M. Bellare, New proofs for NMAC and HMAC: Security without collision-resistance, Advances in Cryptology - Crypto '06, LNCS 4117, Springer-Verlag, 2006, pp. 602-619; extended version available at http://cseweb.ucsd.edu/mihir/papers/hmac-new.pdf
[3] M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message authentication, Advances in Cryptology - Crypto '96, LNCS 1109, Springer-Verlag, 1996, pp. 1-15; extended version available at http://cseweb.ucsd.edu/mihir/papers/kmd5.pdf
[4] M. Bellare, R. Canetti, and H. Krawczyk, HMAC: Keyed-hashing for message authentication, Internet RFC 2104, 1997.
[5] M. Bellare and T. Kohno, A theoretical treatment of related-key attacks: RKA-PRPs, RKAPRFs, and applications, Advances in Cryptology - Eurocrypt '03, LNCS 2656, Springer-Verlag, 2003, pp. 491-506.
[6] M. Bellare and P. Rogaway, The game-playing technique and its application to triple encryption, available at http://eprint.iacr.org/2004/331.pdf
[7] M. Bellare and P. Rogaway, Optimal asymmetric encryption - how to encrypt with RSA, Advances in Cryptology - Eurocrypt '94, LNCS 950, Springer-Verlag, 1994, pp. 92-111.
[8] S. Chatterjee, A. Menezes and P. Sarkar, Another look at tightness, Selected Areas in Cryptography - SAC 2011, to appear.
[9] M. Cochran, Notes on the Wang et al. 2^{63} SHA-1 differential path, available at http://eprint.iacr. org/2007/474.pdf
[10] I. Damgård, A design principle for hash functions, Advances in Cryptology - Crypto '89, LNCS 435, Springer-Verlag, 1989, pp. 416-427.
[11] T. Dierks and C. Allen, The TLS protocol, Internet RFC 2246, 1999.
[12] M. Fischlin, Security of NMAC and HMAC based on non-malleability, Topics in Cryptology -CT-RSA 2008, LNCS 4964, Springer-Verlag, 2008, pp. 138-154.
[13] P. Fouque, D. Pointcheval, and S. Zimmer, HMAC is a randomness extractor and applications to TLS, Symposium on Information, Computer and Communications Security - AsiaCCS 2008, ACM Press, 2008, pp. 21-32.
[14] D. Harkins and D. Carrel, The Internet Key Exchange (IKE), Internet RFC 2409, 1998.
[15] N. Koblitz, Another look at automated theorem-proving, J. Mathematical Cryptology 1 (2007), pp. 385-403.
[16] N. Koblitz, Another look at automated theorem-proving. II, to appear in J. Mathematical Cryptology.
[17] N. Koblitz and A. Menezes, Another look at "provable security." II, Progress in Cryptology Indocrypt 2006, LNCS 4329, Springer-Verlag, 2006, pp. 148-175.
[18] H. Krawczyk, Cryptographic extraction and key derivation: The HKDF scheme, Advances in Cryptology - Crypto 2010, LNCS 6223, Springer-Verlag, 2010, pp. 631-648.
[19] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.
[20] R. Merkle, One-way hash functions and DES, Advances in Cryptology - Crypto '89, LNCS 435, Springer-Verlag, 1989, pp. 428-446.
[21] D. M'Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen, HOTP: An HMAC-based one time password algorithm, Internet RFC 4226, 2005.
[22] National Institute of Standards and Technology, The keyed-hash message authentication code (HMAC), FIPS Publication 198, 2002.
[23] B. Preneel and P. van Oorschot, On the security of iterated message authentication codes, IEEE Transactions on Information Theory, 45, 1999, pp. 188-199.
[24] P. Rogaway, Formalizing human ignorance: Collision-resistant hashing without the keys, Vietcrypt 2006, LNCS 4341, Springer-Verlag, 2006, pp. 211-228.
[25] V. Shoup, Sequences of games: a tool for taming complexity in security proofs, available at http: //eprint.iacr.org/2004/332.pdf
[26] J. Stern, D. Pointcheval, J. Malone-Lee, and N. Smart, Flaws in applying proof methodologies to signature schemes, Advances in Cryptology - Crypto '02, LNCS 2442, Springer-Verlag, 2002, pp. 93-110.
[27] X. Wang, Y. L. Yin, and H. Yu, Finding collisions in the full SHA-1, Advances in Cryptology Crypto '05, LNCS 3621, Springer-Verlag, 2005, pp. 17-36.
[28] X. Wang and H. Yu, How to break MD5 and other hash functions, Advances in Cryptology Eurocrypt '05, LNCS 3494, Springer-Verlag, 2005, pp. 561-576.
[29] K. Yasuda, "Sandwich" is indeed secure: How to authenticate a message with just one hashing, Information Security and Privacy - ACISP 2007, LNCS 4586, Springer-Verlag, 2007, pp. 355-369.
[30] K. Yasuda, Boosting Merkle-Damgård hashing for message authentication, Advances in Cryptology - Asiacrypt 2007, LNCS 4833, Springer-Verlag, 2007, pp. 216-231.

Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195 U.S.A.

E-mail address: koblitz@uw.edu
Department of Combinatorics \& Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada

E-mail address: ajmeneze@uwaterloo.ca

[^0]: Date: February 19, 2012.
 ${ }^{1}$ Except for the one in the title of the paper, which stands for "hash-based message authentication code."
 ${ }^{2}$ Before applying an iterated hash function, generally one appends a message block that gives the block-length of the message; with this modification it is possible to give a simple proof that collisionresistance of f implies collision-resistance of h.

[^1]: ${ }^{3}$ It was actually a slightly weaker assumption, called weak collision-resistance, that was needed in [3]. However, the collision-finding techniques in [27, 28] show that even this weaker property fails for the commonly-used hash functions.

[^2]: ${ }^{4}$ The two most widely-used hash functions, MD5 and SHA-1, have tags of 128 and 160 bits, respectively. In both cases $b=512$. Wang et al. showed in [28] that collisions can be found for MD5 in roughly 2^{39} operations and in [27] that collisions can be found for SHA-1 in roughly 2^{63} operations (see also [9]). However, no attack faster than a generic birthday attack has yet been found against HMAC with either MD5 or SHA-1.

[^3]: ${ }^{5}$ In a setting where the adversary is trying to guess a bit with a greater than 50% chance of success, an "advantage" ϵ means that the adversary has at least $(1+\epsilon) / 2$ probability of success and at most $(1-\epsilon) / 2$ probability of failure, the difference being at least ϵ.

[^4]: ${ }^{6}$ If this happens, then A_{f} has to make a random guess about whether O_{f} is $f\left(K_{2},.\right)$ or $g^{\prime}($.$) , since$ she knows that she might have failed to simulate $O_{f h}$ and so cannot rely on anything useful coming from $A_{f h}$.
 ${ }^{7}$ The term "over all possible coin tosses" means over all possible runs of the algorithm with each weighted by 2^{-s}, where s is the number of random bits in a given run.

[^5]: ${ }^{8}$ We'll alternate the adversaries' genders, not so much for reasons of gender equity, but rather for the purpose of avoiding confusion between two successive adversaries in a discussion.

