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Abstract

We give the first proof of security for an identity-based encryption scheme in the quantum
random oracle model. This is the first unconditional proof of security for any scheme in this
model. Our techniques are quite general and we use them to obtain (unconditional) security
proofs for two random oracle hierarchical identity-based encryption schemes and a random oracle
signature scheme, all of which have previously resisted (even conditional) quantum security
proofs. We also explain how to make prior quantum random oracle security proofs unconditional.
We accomplish these results by developing new tools for arguing that quantum algorithms cannot
distinguish between two oracle distributions. Using a particular class of oracle distributions, so
called semi-constant distributions, we argue that the aforementioned cryptosystems are secure
against quantum adversaries.
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1 Introduction

While quantum computation is not yet viable, Shor [Sho97] showed that when fully realized, quantum
computers will break most of the cryptosystems used today, namely those based on factoring and
discrete log. This has sparked the field of post-quantum cryptography, namely the search for systems
secure against quantum adversaries. To be secure in this setting, a system must have an underlying
difficult problem for quantum computers, as well as a security reduction showing how to solve this
problem using an adversary that breaks the system. Problems based on lattices have so far resisted
quantum attacks, and there is a considerable amount of literature on lattice-based cryptosystems.
However, random oracle security proofs for these constructions typically only consider classical
adversaries, thus failing to show security in the quantum world.

The random oracle model [BR93] is one area where many classical proofs lack quantum equivalents.
This model is of interest because random oracle schemes tend to be more efficient than their standard
model counterparts. Consequently, the most efficient lattice-based schemes are often constructed in
the random oracle model. For example, Gentry, Peikert, and Vaikuntanathan [GPV08] show how to
construct signatures and identity-based encryption (IBE). Cash et al. [CHKP10] and Agrawal, Boneh,
and Boyen [ABB10] give hierarchical IBE schemes both in the standard model and the random
oracle model, with the random oracle constructions being more efficient than the corresponding
standard model schemes. Gordon, Katz, and Vaikuntanathan [GKV10] give a group signature
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scheme, while Boneh and Freeman [BF11] demonstrate a homomorphic signature scheme, all in the
random oracle model.

All of these papers prove security against adversaries with classical access to the random oracle.
However, when the scheme is instantiated, the random oracle is replaced with a hash function H,
which a quantum adversary may evaluate on a quantum superposition of inputs. To model this
ability, it is necessary to allow a quantum adversary to make quantum queries to the random oracle.
We call this model the quantum random oracle model.

Proving security in the quantum random oracle model presents many challenges. Among them is
the difficulty of efficiently simulating the random oracle. In the classical case, the random oracle is
simulated on the fly, only generating randomness as needed. In the quantum setting, the adversary
can query the oracle on an exponential superposition of inputs. Therefore, to make even the first
query look random to the adversary, it would seem that we would need exponential randomness.

In addition to this difficulty, there are classical random oracle techniques that do not make
sense if the adversary has quantum access to the random oracle. One such technique is that of
Bellare and Rogaway [BR93] for proving the security of the Full Domain Hash signature scheme.
In this technique, the reduction algorithm is given a challenge c to solve, and randomly guesses
which oracle query the adversary will use to break the scheme. The algorithm embeds c into the
response for this query, and if both the guess is correct and the adversary breaks the scheme, then
the algorithm will be able to solve c.

In the quantum setting, this argument no longer applies because each oracle query might be over
a superposition of exponentially many inputs. We could choose a random query and plug c into all
outputs for that query, but this will not look like a random oracle to the adversary. Alternatively,
we could choose one oracle input and plug c into the corresponding output for all queries. However,
our chance of guessing correctly will then be exponentially small.

1.1 Our Contributions

We resolve some of the issues outlined above by giving a quantum analog of the technique of Bellare
and Rogaway [BR93] and demonstrating how to simulate a random oracle without any additional
computational assumptions. Specifically, we:

• Describe a new way to argue that quantum algorithms cannot distinguish between two
distributions of oracles.
• Apply this approach to a new type of distribution of oracles, which we call semi-constant

distributions, showing that they cannot be distinguished from random oracles.
• Use our results on semi-constant distributions to prove that the random oracle IBE scheme

of Gentry et al. [GPV08] is secure against quantum adversaries. The basic idea is to plug
the challenge c into a small fraction of inputs, making the oracle seen by the adversary a
semi-constant distribution. The adversary thus behaves as though the oracle is random. If
the adversary happens to use any of the inputs in this fraction, we are able to solve c.
• Show that this technique is general by applying it to the random oracle hierarchical IBE

schemes of Cash et al. [CHKP10] and Agrawal et al. [ABB10].
• Prove that the generic Full Domain Hash signature scheme [BR93] is secure against quantum

adversaries, though this remains a theoretical result until a trapdoor permutation is found
that is secure against quantum adversaries.
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• Use our techniques and k-wise independent functions to solve the problem of simulating
quantum random oracles, thus making the above results unconditional.

1.2 Related Work

Quantum random oracles have been used in several prior works. For example, Bennett et
al. [BBBV97] prove several quantum complexity results, including a proof that quantum com-
puters cannot solve all of NP, relative to a random oracle. In a cryptographic setting, quantum
random oracles have been used by Aaronson [Aar09] to construct quantum money and by Brassard
and Salvail [BS08] and Brassard et al. [BHK+11] to construct quantum analogs of Merkle’s Puzzles.

Boneh et al. [BDF+11] give a random oracle scheme that is secure against quantum adversaries
with classical access to the oracle, but is insecure once the adversary has quantum access to the
oracle. Despite this result, they show that there are circumstances in which a classical random
oracle security reduction can also be used in the quantum setting. However, their proof simulates
the random oracle using a pseudorandom function (PRF) that is secure against quantum adversaries,
hence making their results conditional on the existence of such a PRF. Additionally, their techniques
do not apply to the schemes analyzed in this paper.

There has also been progress toward converting classical security proofs into quantum proofs
outside of the random oracle model. For instance, Unruh[Unr10] shows that classical statistical
security in Canetti’s universal composabitily (UC) model implies quantum statistical security.
Hallgren, Smith, and Song [HSS11] extend this result to computational security in the UC.

2 Preliminaries

A function ε(n) is negligible if it is non-negative and smaller than any inverse polynomial. That is,
for any polynomial p(n), ε(n) < 1/p(n) for all sufficiently large n.

A probabilistic polynomial time (PPT) algorithm is a classical randomized algorithm that runs
in time polynomial in the size of its input. We also call such algorithms efficient.

2.1 Weight Assignments

A weight assignment on a set X is a function D : X → R such that
∑
x∈X D(x) = 1. We sometimes

write PrD[event] to represent the sum of the weights of all outcomes consistent with that event. A
distribution on X is a weight-assignment D such that D(x) ≥ 0 for all x ∈ X . If D is a distribution,
way that x occurs with probability D(x). Let UX denote the uniform distribution over X . That is,
UX (x) = 1/|X |. When the set X is clear, we may omit the subscript.

We define the distance between two weight assignments D1 and D2 over a set X as

|D1 −D2| =
∑
x∈X
|D1(x)−D2(x)|

If |D1 −D2| ≤ ε, we say that D1 and D2 are ε-close.
Given a set of weight assignments Dy over X , indexed by y ∈ Y, and a weight assignment D

over Y, we can define a weight assignment D′ over X where

D′(x) =
∑
y∈Y

D(y)Dy(x)
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We write D′ =
∑
y∈Y D(y)Dy. Say each of the Dys are actually distributions. Given two weight

assignments D1 and D2 over Y, define D′1 =
∑
y∈Y D1(y)Dy and D′2 =

∑
y∈Y D2(y)Dy. It is not

difficult to show that the distance between D′1 and D′2 is at most the distance between D1 and D2.
Consider the set of functions H : X → Y for sets X and Y , denoted by HX ,Y . Consider a weight

assignment D on HX ,Y . Let W ⊆ X . We define the marginal weight assignment DW of D on HW,Y
where the weight of a function HW : W → Y is equal to the sum of the weights of all H ∈ HX ,Y
that agree with HW on W. In other words,

DW(HW) = Pr
D

[H(w) = HW(w)∀w ∈ W]

We call two weight assignments D1 and D2 on HX ,Y k-wise equivalent if for all W ⊆ X of size
k, the marginal weight assignments D1,W and D2,W (of D1 and D2) over HW,Y are identical.

2.2 Quantum Computation

Most of the background in quantum computation needed to understand this paper is for the proof
of Theorem 3.1. Since this proof appears in Appendix B, we present the necessary background there.
In the meantime, we recall a couple basic facts about quantum computation, and refer the reader to
[NC00] for a more thorough discussion.

Fact 1. Any classical computation can be implemented on a quantum computer.

Fact 2. Any function that has a classical algorithm computing it can be implemented efficiently as
a quantum-accessible oracle.

Fact 3. Given a quantum algorithm A with oracle access to an oracle O, each oracle O defines
a probability distribution of the outputs of A. Hence, any weight assignment of oracles leads to a
weight assignment of outputs of A, and if two weight assignments D1 and D2 are a distance ε apart,
the weight assignment of the outputs of A under these distributions are a distance at most ε apart.

2.3 Cryptographic Primitives

Here we give a brief sketch of a few cryptographic primitives, and refer to Appendix A for more
details. All primitives depend on a security parameter n.

An encryption scheme E is a triple of PPT algorithms (E.Gen,E.Enc,E.Dec), where E.Gen(1n)
generates secret/public keys (sk, pk), E.Encpk encrypts a message, and E.Decsk decrypts a ciphertext.
We use the indistinguishability under chosen plaintext attack (IND-CPA) notion of security [GM84].

An identity-based encryption (IBE) scheme IBE = (IBE.Gen, IBE.Extract, IBE.Enc, IBE.Dec) is a
quadruple of PPT algorithms where IBE.Gen(1n) generates master secret/public keys (msk,mpk),
IBE.Extractmsk generates secret keys for given identities, IBE.Encmpk encrypts a message to an identity,
and IBE.Dec decrypts a ciphertext sent to an identity by using the corresponding secret key. We
use the indistinguishability under chosen plaintext attack (IND-ID-CPA) notion of security [BF01].

A signature scheme S = (S.Gen,S.Sign,S.Ver) is a triple of PPT algorithms where S.Gen(1n)
generates secret/public keys (sk, pk), S.Signsk signs a message, and S.Verpk verifies a signature. We use
the existential unforgeablility under chosen message attack (UF-CMA) notion of security [GMR88].

A pre-image sampleable function (PSF) is a quadruple of algorithms F = (F.Gen,F.Sample, f, f−1)
where F.Gen generates private/public keys (sk, pk), fpk is a function, F.Sample samples x from a
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distribution D such that fpk(x) is uniform, and f−1
sk (y) samples from D conditioned on fpk(x) = y.

For security, we use the notion of one-wayness.
A trapdoor permutation (TDP) is a special case of a PSF where f is bijective and F.Sample

simply returns a random element in the domain of fpk. Since F.Sample is already defined, we omit
it from the specification.

2.4 Random Oracle Model

In the Random Oracle Model, we assume the existence of a random function H, and give all parties
oracle access to this function. If A makes queries to an oracle H, we denote this as AH . If a system
S uses a random oracle in its specification, we denote this as SH . The algorithms comprising any
cryptographic protocol can use H, as can the adversary. Thus we modify the security games for all
cryptographic systems to allow the adversary to make random oracle queries.

When a random oracle scheme is implemented, some suitable hash function H is included in
the specification. Any algorithm (adversary included) now replaces oracle queries with evaluations
of this hash function. In the quantum setting, because a quantum algorithm can evaluate H on
an arbitrary superposition, we must allow the quantum adversary to make quantum queries to the
random oracle. We call this the quantum random oracle model.

3 Distinguishing Oracles With Quantum Queries

In this section, we give some tools for arguing that quantum algorithms cannot distinguish between
two distributions of oracles.

Meyer and Pommersheim [MP11] show an impossibility result for classifying oracles drawn
from a distribution using quantum queries. Using similar techniques, we argue the impossibility of
distinguishing between two oracle distributions with quantum queries:

Theorem 3.1. If D1 and D2 are 2q-wise equivalent weight assignments on oracles, then the output
weight assignment of any algorithm A making q quantum queries is the same under both distributions.

This is proved in Appendix B. We now provide a new pseudometric for distributions on oracles:

Definition 3.2. Let D1 and D3 be two weight assignments on oracles. Then |D1 −D3|(k) is the
minimum of |D2 −D1| over all weight assignments D2 that are k-wise equivalent D1.

We argue that the minimum exists: Setting D2 = D1 shows that |D1 −D3|(k) ≤ |D1 −D3|. Thus
to find D2, we are minimizing |D2 −D3| (a continuous function in D2) over the set of assignments
D2 that are k-wise similar to D1 (a closed set) and at most |D1 −D3| away from D2 (a compact
set). Thus we are minimizing over a compact set, so the minimum is actually obtained.

We also state without proof that |D1 −D3|(k) is a pseudometric. Namely, |D −D|(k) = 0 for all
D, |D1 −D2|(k) = |D2 −D1|(k), and the triangle inequality is satisfied.

We now show that this metric is useful for quantum algorithms:

Corollary 3.3. Let D1 and D3 be oracle distributions. Then the output weight assignment of any
q-query quantum algorithm A under D1 and D3 are |D1 −D3|(2q)-close.
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Proof. By definition, there is an assignment D2 which is 2q-wise equivalent to D1 such that
|D2 −D3| = |D1 −D3|(2q). By Theorem 3.1, the behaviors of A under D1 and D2 are identical. The
behavior of A under D3 is |D2 −D3| = |D1 −D3|(2q)-close to that under D2, and hence D1.

4 Semi-Constant Distributions

In this section, we define a class of distributions on oracles in HX ,Y called semi-constant distributions.
Our motivation for these distributions is to support quantum Full Domain Hash-type arguments,
where a random value is inserted into a small but significant fraction of oracle inputs. The following
definition captures the essence of the this idea:

Definition 4.1. Define SCnλ, the order n semi-constant distribution, as the distribution over HX ,Y
resulting from the following process:

• First, for each i ∈ {1, ..., n}, pick a random element yi from Y.
• For each x ∈ X , do one of the following:

– With probability λ, pick a random i ∈ {1, ..., n} and set H(x) = yi. Call this input a
distinguish input to H.

– Otherwise, set H(x) to be a random element in Y.

We now follow the ideas of Section 3 and show that |SCnλ − U |(2q) is small, where U is the
uniform distribution. Then, by Corollary 3.3, a quantum adversary cannot distinguish SCnλ from U .
We start with a general theorem:

Theorem 4.2. Fix k. Suppose we have a family of distributions Dλ over HX ,Y parametrized by
λ ∈ [0, 1]. Let P be the collection of probabilities for the marginal distributions over all sets of k
inputs. Suppose there are integers d and ∆ such that for each p ∈ P:

• p is a polynomial in λ of degree at most d.
• The λj coefficient of p is 0 for each j ∈ {1, ...,∆}.

Then |Dλ −D0|(k) < 4ζ(2∆ + 2)λ∆+1(d−∆)2∆+2 where ζ denotes the Riemann Zeta function.

Before proving this theorem, we show how to apply it to SCnλ:

Lemma 4.3. Fix k. The probabilities in each of the marginal distributions of SCnλ over k inputs
are polynomials in lambda of degree k such that the λ1 coefficient is 0.

This, proved in Appendix D, shows that for any k, we can set d = k and ∆ = 1. Let k = 2qH ,
and recall that PCn0 is the uniform distribution. Given that ζ(4) = π4/90, we get:

Corollary 4.4. The distribution of outputs of a quantum algorithm making qH queries to an oracle
drawn from SCnλ is at most a distance `(qH)λ2 away from the case when the oracle is drawn from
the uniform distribution, where `(qH) = 4π4(2qH − 1)4/90 ≈ 69q4

H

We note that using standard quantum query results, it is possible to prove this corollary for a
distance of akbλ1. However, as we will explain in Section 5, λ1 is not sufficient for our purposes.
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We do not know if this bound is tight. In Appendx D, we adapt the collision search algorithm
of Brassard et al. [BHT97] to SC1

λ, and demonstrate that `(qH) = Ω(q3
H).

It now remains to prove Theorem 4.2:

Proof of Theorem 4.2.
Suppose we have a family of distributions Dλ for λ ∈ [0, 1] over HX ,Y meeting the criteria of

Theorem 4.2. That is, let P be the collection of probabilities for the marginal distributions over all
sets of k inputs. There are integers d and ∆ such that for each p ∈ P, p is a polynomial in λ of
degree at most d and the λj coefficient is 0 for j ∈ {1, ...,∆}.

Our goal is to find a D′λ such that |D′λ −D0| < ε = 4ζ(2∆ + 2)λ∆+1(d −∆)2∆+2 and that is
k-wise equivalent to Dλ. This will show that |Dλ −D0|(k) < ε.

Let p(λ) ∈ P. Let s(λ) = p(λ)−p(0)
λ∆+1 . s(λ) is then a d −∆ − 1 degree polynomial. Fix d −∆

different values λi ∈ (0, 1] for i ∈ {1, ..., d−∆}, and let si = s(λi). Then s(λ) is the unique d−∆−1
degree polynomial satisfying s(λi) = si. Therefore, we can interpolate the pairs (λi, si) using
Lagrange polynomials:

s(λ) =
d−∆∑
i=1

si`i(λ) =
d−∆∑
i=1

s(λi)`i(λ)

Where `i(λ) is the Lagrange polynomial

`i(λ) =
d−∆∏

j=1,j 6=i

(
λ− λj
λi − λj

)

Then we get

p(λ) = p(0) + λ∆+1
d−∆∑
i=1

p(λi)− p(0)
λ∆+1
i

`i(λ) =

1−
d−∆∑
i=1

ai(λ)

p(0) +
d−∆∑
i=1

ai(λ)p(λi)

Where

ai(λ) =
(
λ

λi

)∆+1
`i(λ) =

(
λ

λi

)∆+1 d−∆∏
j=1,j 6=i

(
λ− λj
λi − λj

)

Notice that ai(λ) does not depend in any way on p, so we can choose the same λi and ai(λ) for
each probability in each marginal distribution of k variables. Thus, we can define

D′λ =

1−
d−∆∑
i=1

ai(λ)

D0 +
d−∆∑
i=1

ai(λ)Dλi

The sum of the weights for D0 and Dλi
add up to 1, so this is a valid weight assignment.

Moreover, by construction, all of the polynomials for the marginals of k inputs are identical to those
of Dλ. Thus D′λ is k-wise similar to Dλ. Therefore,

|Dλ −D0|(k) ≤
∣∣D′λ −D0

∣∣ ≤ d−∆∑
i=1
|ai(λ)|+

∣∣∣∣∣∣
d−∆∑
i=1

ai(λ)

∣∣∣∣∣∣ ≤ 2
d−∆∑
i=1
|ai(λ)|

Thus to prove the theorem, we find λi to make this quantity small:
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Claim 1. If we set λi =
(

i
d−∆

)2
for i ∈ {1, ..., d−∆}, then as long as λ ≤ λ1 = 1/(d−∆)2, we

have that
∑
i |ai(λ)| < 2ζ(2∆ + 2)(d−∆)2∆+2λ∆+1

This is proved in Appendix C and proves the theorem for the case λ ≤
(

1
d−∆

)2
. If λ >

(
1

d−∆

)2
,

then we are looking for a D′λ such that |D′λ −D0| is less than

4ζ(2∆ + 2)λ∆+1(d−∆)2∆+2 > 4ζ(2∆ + 2) > 4

Since two distributions can have a statistical distance at most 2, Dλ itself satisfies the conditions
for D′λ in this case. This complete the proof.

5 Quantum Security Arguments

In this section, we explore the random oracle proof technique of Bellare and Rogaway [BR93]. In this
technique, we plug a challenge c into a randomly chosen hash query, and hope that the adversary
uses c to break the system. If so, we can use the adversary to solve the underlying problem.

In the quantum setting, the straight-forward application of this technique breaks down. The
adversary can now query the hash function on a superposition of exponentially many inputs. If we
plug c to one of those inputs, the probability that the adversary uses c is exponentially small.

We instead plug c into some small but significant fraction of the inputs, so that the oracle is
distributed according to SC1

λ. As we have shown, a quantum algorithm cannot detect that this
oracle is not random, but now the adversary uses c with significant probability.

5.1 Identity-Based Encryption from Lattices

Here we prove the security of the IBE scheme from Gentry et al. [GPV08]. Their scheme is
constructed a from standard encryption scheme E = (E.Gen,E.Enc,E.Dec), for which there exists a
trapdoor allowing the computation of secret keys from public keys.

More specifically, let F = (F.Gen,F.Sample, f, f−1) be a pre-image sampleable function (PSF).
Suppose E.Gen(1n) works as follows: generate (msk,mpk) ← F.Gen(1n). Then, sample sk ←
F.Sample(1n), and compute pk = fmpk(sk). Output (sk, (pk,mpk)).

Gentry et al. give such an encryption scheme based on the hardness of lattice problems. They
then prove the security of the IBE scheme IBE = (IBE.Gen = F.Gen, IBE.ExtractH , IBE.EncH , IBE.Dec)
where H maps identities to public keys of E and:

• IBE.Extractmsk(id)H = f−1
msk(H(id))

• IBE.Encmpk(id,m)H = E.EncH(id)(m)
• IBE.Decskid(c) = E.Decskid(c)

Theorem 5.1. Let E and F be as above, and suppose that E is quantum IND-CPA-secure. If we
model H as a random oracle, then IBE is quantum IND-ID-CPA-secure.

Proof. Let A be a quantum adversary making qH hash queries, qE extract queries queries, that
breaks IBE with advantage ε.
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Let Game0 be the standard attack game for IBE: the challenger generates (msk,mpk) from
IBE.Gen, and sends mpk to the adversary. The adversary can make (classical) extraction queries
on identities idi, to which the challenger responds with IBE.ExtractHmsk(idi), and (quantum) hash
queries to the random oracle H. A then produces an identity id, along with messages m0 and m1.
The challenger chooses a random bit b, and responds with IBE.Encmpk(id,mb). A is allowed to make
more extraction and hash queries, and produces a bit b′. A wins if b′ = b and for all i, idi 6= id. By
definition, this happens with probability 1

2 + ε.
Let λ ∈ (0, 1) to be chosen later. Let M be the identity space. Let Game1 be Game0, except

that we choose a subset X of M as follows: for each id ∈ M, we put id in X with probability λ.
If the identity generated by A is in X , then A wins according to the same criteria as in Game0.
Otherwise, we flip a coin to decide if A wins. A thus wins with probability 1

2 + λε.
Let Game2 be Game1, except that we choose a random pk in the public key space of E , and

set H(x) = pk for all x in X . H is now distributed according to SC1
λ, so by Corollary 4.4, the

probability A wins in Game2 is at least 1
2 + λε− `(qH)λ2.

Now we describe an adversary B that breaks E. Assume B has quantum access to two random
oracles O1 and O2. O1 maps identities to randomness used by Sample. O2 maps identities to bits,
outputting 1 with probability is λ. In Section 6, we will show how to simulate these oracles. On
input (mpk, pk), B works as follows:

• Send mpk to A and simulate A, playing the role of challenger to A.

• Construct a (quantum) oracle H such that H(id) =
{

pk if O2(id) = 1
fmpk(Sample(;O1(id))) otherwise

where Sample(; r) means run Sample with randomness r.
• When A asks for the secret key for idi, compute O2(idi). If the result is 1, output a random

bit and abort. Otherwise, respond with ski = Sample(;O1(idi)).
• When A produces the challenge query (id,m0,m1), check if O2(id) = 1. If so, send (m0,m1)

to B’s challenger. Otherwise, output a random bit and abort.
• When the challenger responds with a ciphertext c, send c to A.
• When A outputs a bit b′, output the same bit.

Suppose all extract queries succeed (O2(idi) = 0 for all i). Then

fmsk(ski) = fmsk(Sample(;O1(idi))) = H(idi)

Thus ski is a correct secret key for idi, and it is distributed correctly (since it is a random pre-image
of H(idi)). Also, H is distributed according to SC1

λ, so the view of A as a subroutine of B is the
same as in Game2. Moreover, if A would win in Game2, it means O2(id) = 1 (so H(id) = pk) and
that b′ = b, which means that B wins. Therefore, B wins with probability at least 1

2 + λε− `(qH)λ2.
An extract query on idi fails exactly when idi is a distinguished input to H. Thus, the probability

that at least one query fails is λqE in the random oracle case. When we choose H from SC1
λ, this

happens with probability at most λqE + `(qH)λ2.
Thus, with probability at most λqE + `(qH)λ2, the success probability is 1/2. Otherwise, the

success probability is at least 1
2 + λε− `(qH)λ2. Thus the total success probability is at least

1
2 + (λε− `(qH)λ2)(1− λqE − `(qH)λ2)
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The advantage of B is then at least

AdvB ≥ (λε− `(qH)λ2)(1− λqE − `(qH)λ2) ≥ λε− (`(qH) + εqE)λ2

We can now choose λ. The maximum occurs when λ = ε/2(`(qH) + qEε), which gives

AdvB ≥
ε2

4(`(qH) + εqE) ≥
ε2

4(`(qH) + qE)

The proof of Theorem 5.1 demonstrates why a bound of aqbHλ for the probability of distinguishing
SCnλ from a truly random oracle is insufficient. In this case, in Game2, the success probability will
be at least 1

2 + λε− aqbHλ = 1
2 + λ(ε− aqbH). For ε < aqbH (which is guaranteed for large enough qH

since ε < 1), this bound is below 1
2 and thus useless for trying to prove security.

5.2 Hierarchical IBE from Lattices

In this section, we show the general idea behind adapting the techniques above to proving the
security of the hierarchical identity-based encryption (HIBE) scheme of Agrawal et al. [ABB10] and
Cash et al. [CHKP10].

In a HIBE scheme, identities are structured as a tree, with the identity of any node containing
the identity of its parent as a proper prefix. Any node on the tree can produce pprivate keys for
any nodes in the subtree rooted at that node. We allow an adversary to adaptively take control of
an arbitrary number of nodes in the tree (and thus the subtrees rooted there). An HIBE scheme
is secure if the adversary cannot decrypt messages encrypted to an identity id∗ of the adversaries
choice but not under its control.

In [ABB10], the random oracle scheme has an oracle H that maps identities to some random
quantities. The reduction has the following high-level structure:

• Guess which level w of the tree contains the identity id∗

• For each level i, generate some random quantities Ri.
• For each level i, simulate a separate random oracle for identities at that level. For i, guess

which query number qi will contain the hash of the level-i parent of id∗.
• Answer the jth random oracle query at level i on idi,j as follows: if j = qi, output Ri.

Otherwise, output a random value.
• Answer secret key queries on id in some special way, but fail if for all prefixes idi of id,

idi = idi,qi . That is, fail if H(idi) = Ri.
• When the adversary generates the identity id∗, we succeed if both the adversary succeeds and

if id∗ is at level w and all prefixes id∗i of id∗ satisfy id∗i = idi,qi .

We now show how to prove security by repeatedly applying the arguments of Theorem 5.1.
Basically, we iterate over levels i, and insert Ri into a λi fraction of identities at that level. In
iteration i, we say the adversary wins if it won in the previous iteration, the level-i prefix of the
chosen identity id∗ is in the λi fraction of distinguished identities (that is, H(id∗i ) = Ri), and no

10



signature query is. If the iteration i advantage is εi, then using the same techniques as in Theorem
5.1, we can set λi so that

εi ≥
ε2i−1

4`(qH) + qE

We will say that in iteration 0, the adversary wins if it normally would win and we guessed
which level id∗ belonged to correctly. That is, ε0 = ε/d, where ε is the adversaries advantage in the
standard game. This gives us a total advantage after iteration d of at least

(ε/d)2d

4(`(qH) + qE)(2d−1) = 4(`(qH) + qE)
(

ε

4d(`(qH) + qE)

)2d

Notice that the dependence on d in doubly-exponential, whereas in the original scheme it was
singly exponential. Thus, for the same security parameters, this proof only works for much smaller
depth than the classical proof.

These techniques apply as well to the random oracle HIBE of Cash et al. [CHKP10], though
their reduction is a bit more complicated, as there is a second random oracle G which needs to be
handled in a similar way.

5.3 Signatures from Trapdoor Permutations

Here we discuss the security of the Full Domain Hash (FDH) signature scheme:

Definition 5.2 (FDH Signatures). Given a trapdoor permutation F = (F.Gen, f, f−1) and a hash
function H that maps messages to images of f , let SH = (S.Gen = F.Gen,S.SignH , S.VerH) where:

• S.SignHsk(m) = f−1
sk (H(m))

• S.VerHpk(m,σ) =
{

accept if fpk(σ) = H(m)
reject ortherwise

We now state the main theorem of this section:

Theorem 5.3. Let F be a quantum one-way trapdoor permutation. If we model H as a random
oracle, then S is quantum UF-CMA-secure

The proof of this theorem is very similar to that of Theorem 5.1, and appears in Appendix E.

6 Simulating Random Oracles

In this last section, we explain how to efficiently simulate random oracles. All quantum random
oracle proofs to date require the reduction algorithm to have quantum access to a random oracle,
but a truly random oracle requires exponentially many bits of randomness to construct. We show
that this is not a problem:

Theorem 6.1. Any quantum algorithm A making quantum queries to random oracles Oi can be
efficiently simulated by a quantum algorithm B, which has the same output distribution, but makes
no queries.

11



Proof. We construct an algorithm B which simulates A, and answers queries to oracle Oi with
evaluations of efficient functions fi. Boneh et al. [BDF+11] use pseudorandom functions (PRF) for
the fi. At first glance, this seems like the only option, as we need a function fi that cannot be
distinguished from random.

Notice, however, that fi need not be secure against all adversaries, just the adversary we are
simulating. We know that our adversary makes qi queries to oracle Oi, so it suffices to have fi be
PRFs secure for up to qi quantum queries. In the classical setting, qi-wise independent functions
(functions that are qi-wise equivalent to a random function) serve as perfectly secure PRFs for up
to qi classical queries. We could hope that something similar holds in the quantum world: indeed,
according to Theorem 3.1, if fi is 2qi-wise equivalent to a random function, then the behavior of
our adversary is the same when the oracle is random and when it is fi. Thus if the fi are 2qi-wise
independent, algorithm A, as a subroutine of B, behaves identically to the case where A is given
truly random oracles. Hence, the output distribution of B is identical to that of A.

k-wise independent constructions have been around for some time [Jof74, KM94], and they
have been used extensively in the derandomization literature [Lub85, ABI86, KM93]. One common
approach to construct a k-wise independent function f from X to Y is to assume that N = |Y| is a
prime power and interpret Y as the field FN . Then define a matrix C with the following properties:

• The entries are elements in FN .
• There are |X | rows and some small number r of columns.
• Each subset of k rows is linearly independent.

One such example is the Vandermonde matrix, which is used by Alon et al.[ABI86]. To define the
function f , we then pick a random vector v in FrN . f(x) is then the xth element of of the vector Cv.
Since any k rows of C are linearly independent, any k elements of Cv are independent, and hence f
is k-wise independent. The key to making this efficient is that to compute f(x), we only need the
xth row of C, which we can compute on the fly.

Hence, we can simulate O1 from Theorem 5.1. To simulate O2, which outputs a bit such that
O2(x) = 1 with probability λ, approximate λ by some rational number a/b where b is a prime power,
and construct a k-wise independent function f ′ with range Y = {1, ..., b}. Then set

f(x) =
{

1 if f ′(x) ≤ a
0 otherwise

7 Conclusion

We have shown how to adapt certain classical random oracle arguments to the quantum random oracle
model. Specifically, we gave quantum security proofs for the IBE scheme of Gentry et al. [GPV08]
and the Full Domain Hash signature scheme. We achieved this by defining a distribution of oracles,
called semi-constant distributions, and showing that such oracles cannot be distinguished from a
random oracle by a quantum adversary. We also show how these techniques can be applied to the
random oracle HIBE schemes of Cash et al. [CHKP10] and Agrawal et al. [ABB10]. Lastly, we have
shown how to remove the need for quantum-secure pseudorandom functions from prior work.
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Although we have made progress toward converting classical random oracle proofs into quantum
proofs, there is still much work to be done. For example, the construction of signatures from
identification protocols by Fiat and Shamir [FS87], though similar to the proofs in this paper, still
needs a quantum proof. The difficulty in the Fiat-Shamir reduction is that the plugging step initiates
the underlying identification protocol, and there is no obvious quantum analog for this strategy.
Also, different types of security arguments, such as Fujisaki and Okamoto’s generic conversion of
weakly secure encryption schemes into a CCA-secure encryption scheme [FO99], still lack a quantum
proof of security. Lastly, while quantum-secure PRF’s are no longer necessary for proving security
in the quantum random oracle model, their construction from other primitives still remains an
interesting open problem.
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A Cryptographic Primitives

Definition A.1 (Encryption Scheme). A public key encryption scheme E is a triple of PPT
algorithms (E.Gen,E.Enc,E.Dec) where

• E.Gen(1n) generates a secret/public key pair (sk, pk).
• E.Encpk(m) computes a ciphertext c.
• E.Decsk(c) computes the plaintext m, such that E.Decsk(E.Encpk(m)) = m.

We use the standard chosen plaintest attack (CPA) game [GM84] to model security:

• The challenger generates (sk, pk)← E.Gen(1n), and sends pk to the adversary A.
• A generates the challenge plaintext (m0,m1).
• The challenger chooses a bit b, and responds with the challenge ciphertext c = E.Encpk(mb).
• A makes a guess b′ for b.

The advantage of A is ε, where 1
2 + ε is the probability that b = b′. We say that E is (quantum)

IND-CPA-secure if all efficient (quantum) algorithms have only negligible advantage (in n).
An identity-based encryption (IBE) scheme IBE is an encryption scheme where identities serve

as public keys, and a trusted authority hands out the corresponding secret keys. In particular:

Definition A.2 (IBE Scheme). An identity-based encryption (IBE) scheme IBE is a quadruple of
PPT algorithms (IBE.Gen, IBE.Extract, IBE.Enc, IBE.Dec) where

• IBE.Gen(1n) generates a master secret/public key pair (msk,mpk).
• The trusted authority uses IBE.Extractmsk(id) to compute a secret key skid corresponding to the

identity id.
• IBE.Encmpk(id,m) encrypts m to identity id.
• IBE.Decskid(c) decrypts c, such that IBE.DecIBE.Extractmsk(id)(IBE.Encmpk(id,m)) = m.

We use the standard CPA attack game for IBE schemes, where the adversary can choose the
identity id for which it will attempt to decrypt, and can get the secret keys corresponding to any
other identities [BF01]. Specifically,

• The challenger generates (msk,mpk)← IBE.Gen(1n), and sends mpk to the adversary A.
• The adversary can make extraction queries on identities idi, to which the challenger responds

with IBE.Extractmsk(idi).
• The adversary generates an identity id, and two messages (m0,m1).
• The challenger chooses a random bit b, and responds with IBE.Encid(mb).
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• A makes a guess b′ for b.

The advantage of A is ε, where 1
2 + ε is the probability that id 6= idi for any i and b = b′. We say

that IBE is (quantum) IND-ID-CPA-secure if all efficient (quantum) algorithms have only negligible
advantage (in n).

Definition A.3 (Signature Scheme). A signature scheme S is a triple of PPT algorithms
(S.Gen,S.Sign,S.Ver) where

• S.Gen(1n) generates a secret/public key pair (sk, pk).
• S.Signsk(m) computes a signature σ on the message m.
• S.Verpk(m,σ) outputs accept or reject, such that S.Verpk(m, S.Signsk(m)) = accept.

We will use the standard chosen message attack (CMA) game to define security [GMR88]:

• The challenger generates (sk, pk)← S.Gen(1n), and sends pk to the adversary A.
• A can make signature queries on messages mi, to which the challenger responds with

S.Signsk(mi).
• A produces a forgery candidate (m,σ).

The advantage of A is the probability that m 6= mi for any i and Verpk(m,σ) = accept. We say
that S is (quantum) UF-CMA-secure if all efficient (quantum) adversaries have negligible advantage
(in n).

Definition A.4 (PSF). A pre-image sampleable function (PSF) is a quadruple of algorithms
F = (F.Gen,F.Sample, f, f−1) where:

• F.Gen(1n) generates a secret/public key pair (sk, pk).
• fpk is a function.
• F.Sample samples x from a distribution D such that fpk(x) is uniform.
• f−1

sk (y) samples from D conditioned on fpk(x) = y.

We model security with the following game:

• The challenger generates (sk, pk)← F.Gen(1n), and sends pk to the adversary A. It also sends
y = fpk(F.Sample()) to A.
• A makes a guess x.

The advantage of A is the probability that fpk(x) = y. We say that F is (quantum) one-way if
all efficient (quantum) algorithms have negligible advantage.

A trapdoor permutation (TDP) is a special case of a PSF where f is bijective and F.Sample
simply returns a random element in the domain of fpk. Since F.Sample is already defined, we omit
it from the specification.
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B Quantum Computation

We give some background on quantum computation. For a more thorough discussion, please see
[NC00]. We also prove Theorem 3.1, which states that the output distribution of a quantum
algorithm making qH queries to a quantum oracle drawn from some distribution D depends only on
the marginal distributions of D on all subsets of 2q inputs.

Let H be a Hilbert space with an inner product 〈·|·〉, and let B = {|x〉} be an orthonormal basis
for H, index by a parameter x ∈ X . The state of a quantum system on H is specified by a vector
|φ〉 ∈ H of norm 1.

Quantum Measurement Given a state |φ〉, we can measure |φ〉 in the basis B, obtaining the
value x ∈ X with probability |〈x|φ〉|2. Thus, to each |φ〉, we associate a distribution Dφ where
Dφ(x) = |〈x|φ〉|2. The normalization constant and the fact that B is an orthonormal basis ensure
that this is in fact a valid distribution. After measurement, the system is in state |x〉.

If B = {|x, y〉} for x ∈ X and y ∈ Y, then we can also perform a partial measurement over X .
The distribution over X is the marginal distribution of Dφ when restricted to X . That is, we obtain
the value x with probability

∑
y∈Y |〈x, y|φ〉|

2. The resulting state is the result of projecting |φ〉 to
the space spanned by {|x, y〉} for y ∈ Y, and renormalizing so that the norm is 1.

Quantum Algorithms A quantum algorithm A over a Hilbert space H with an orthonormal
basis B is specified by unitary transformation U . The input to A is an element x0 ∈ X. The
system is initialized to the basis state |x0〉, and U is applied to the system, obtaining the final state
|φ〉 = U |x0〉. Then the state is sampled according to the distribution Dφ.

Let X and Y be sets such that Y is a commutative group with addition operation ⊕. For
notational convenience, we assume that every element has order at most 2 (y ⊕ y is the identity
for all y ∈ Y). Given a function H : X → Y and third set Z, define the orthonormal basis B as
the set {|x, y, z〉} for x ∈ X , y ∈ Y, and z ∈ Z. Define the unitary transformation Htrans over the
Hilbert space spanned by B as the transformation that takes |x, y, z〉 into |x, y ⊕H(x), z〉. Htrans
is unitary, it’s own inverse, and Hermitian. As an abuse of notation, we will frequently use Htrans
and H interchangeably.

A quantum algorithm A making q quantum queries to H is then specified by a sequence of
unitary transformations U0, ..., Uq. The evaluation of A then consists of alternately applying Ui and
H to the initial state |x〉. We call

Ui−1H...U1HU0|x〉

the state of A before the ith query, and

HUi−1H...U1HU0|x〉

the state after the ith query. The final state of the algorithm is

UqH...U1HU0|x〉

We say that a quantum algorithm is efficient if q is a polynomial, and all the Ui are composed of
a polynomial number of universal basis gates (the Hadamard, CNOT, and phase shift gates are
commonly used).

Classical queries to an oracle are made by partial sampling over X before performing the query.
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Density Matrix Suppose we have quantum states |φw〉 for w ∈ W, and we have a weight
assignment D on W. Then we define the density matrix

ρ =
∑
w∈W

D(x)|φw〉〈φw|

The weight of an outcome y from measurement is given by 〈y|ρ|y〉. If D is a distribution, then
this weight assignment is also a distribution, and the weight corresponds to the probability of
obtaining y if we first pick w with probability D(w), and then sample |φw〉. In this case, the density
matrix ρ summarizes the statistical behavior of the quantum system.

Suppose we have two weight assignments D1 and D2 onW . Let D′1 and D′2 be the corresponding
weight assignments of outcomes of measurement. Since the weight assignment induced by each |φw〉
is in fact a distribution, |D′1 −D′2| ≤ |D1 −D2|.

For this paper, we will focus on the case where W is the set of oracles H from X → Y , and |φH〉
is the final state of some quantum algorithm A that makes q queries to the oracle H.

B.1 Proof of Theorem 3.1

Proof of Theorem 3.1.
Let A be some quantum oracle algorithm. Suppose right before the first query, the state of

the system is |φ0〉 =
∑
xyz αxyz|xyz〉 (which is independent of the oracle). Assume for notational

convenience that all the transition matrices Ui are identical and equal to U (the proof in the general
case is essentially identical). Let |φq,H〉 be the state of A after q queries to oracle H. That is,

|φq,H〉 = UHU....UH|φ0〉

Let ρq be the density matrix for A after q queries when the oracle H is drawn from a distribution
D:

ρq =
∑
H

Pr
D

[H]|φq,H〉〈φq,H | =
∑
H

Pr
D

[H]UHU...UH|φ0〉〈φ0|HU∗...U∗HU∗

Observe that

(UH)xyzx′y′z′ = 〈xyz|UH
∣∣x′y′z′〉

= 〈xyz|U
∣∣x′y′ ⊕H(x′)z′

〉
= Uxyz,x′y′⊕H(x′)z′

We can now evaluate ρq component-wise:
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(ρq)xyz,x′y′z′ =
∑
H

Pr
D

[H](UHU...UH|φ0〉〈φ0|HU∗...U∗HU∗)xyz,x′y′z′

=
∑
H

Pr
D

[H]((UH)(UH)...(UH)|φ0〉〈φ0|(UH)∗...(UH)∗(UH)∗)xyz,x′y′z′

=
∑
H

Pr
D

[H]
∑
xqyqzq

∑
x′qy
′
qz
′
q

Uxyzxqyq⊕H(xq)zq
((UH)...(UH)|φ0〉〈φ0|(UH)∗...(UH)∗)U∗x′y′z′x′qy′q⊕H(x′q)z′q

...
=

∑
H

Pr
D

[H]
∑
xqyqzq

∑
x′qy
′
qz
′
q

· · ·
∑
x1y1z1

∑
x′1y
′
1z
′
1

Uxyzxqyq⊕H(xq)zq
Uxqyqzqxq−1yq−1⊕H(xq−1)zq−1 ...Ux2y2z2,x1y1⊕H(x1)z1αx1y1z1

α∗x′1y′1z′1
U∗x′2y′2z′2,x′1y′1⊕H(x′1)z′1

...U∗x′qy′qz′qx′q−1y
′
q−1⊕H(x′q−1)z′q−1

U∗x′y′z′x′qy′q⊕H(x′q)z′q

Now we can rearrange the order of summation as∑
xqyqzq

∑
x′qy
′
qz
′
q

· · ·
∑
x1y1z1

∑
x′1y
′
1z
′
1

∑
H

Pr
D

[H]

Next, notice that the summand only depends on H(xi), H(x′i) for i ∈ {1, ..., q}. This means, in the
H sum, we can sum out all the inputs x for which x 6= xi, x

′
i. Letting ri = H(xi), r′i = H(x′i), we

have that the summation over H simplifies to∑
r1...rq ,r′1...r

′
q

Pr
D

[H(xi) = ri, H(x′i) = r′i ∀i ∈ {1, ..., q}]

Putting it back together,

(ρq)xyz,x′y′z′ =
∑
xqyqzq

∑
x′qy
′
qz
′
q

· · ·
∑
x1y1z1

∑
x′1y
′
1z
′
1

∑
r1...rq ,r′1...r

′
q

Pr
D

[H(xi) = ri, H(x′i) = r′i ∀i ∈ {1, ..., q}]

Uxyzxqyq⊕rqzqUxqyqzqxq−1yq−1⊕rq−1zq−1 ...Ux2y2z2,x1y1⊕r1z1αx1y1z1

α∗x′1y′1z′1
U∗x′2y′2z′2,x′1y′1⊕r′1z′1

...U∗x′qy′qz′qx′q−1y
′
q−1⊕r

′
q−1z

′
q−1
U∗x′y′z′x′qy′q⊕r′qz′q

Thus, the density matrix ρq, which contains all the statistical information about the algorithm
A, only depends on the marginal distributions on the subsets of 2q inputs.

C Proof of Theorem 4.2

We complete the proof of Theorem 4.2 by giving a proof of Claim 1.

Proof of Claim 1. Recall that Claim 1 states that if we set λi =
(

i
d−∆

)2
for i ∈ {1, ..., d−∆}, as

long as λ ≤ λ1 = 1/(d−∆)2,
∑
i |ai(λ)| ≤ 2ζ(2∆ + 2)(d−∆)2∆+2λ∆+1
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Consider the quantity ∣∣∣∣ai(λ)
λ∆+1

∣∣∣∣ = 1
λ∆+1
i

d−∆∏
j=1,j 6=i

|λ− λj |
|λi − λj |

As long as λ ≤ λi for all i (which is equivalent to λ ≤ λ1), then |λ− λi| ≤ λi, so

∣∣∣∣ai(λ)
λ∆+1

∣∣∣∣ ≤ 1
λ∆+1
i

d−∆∏
j=1,j 6=i

λj

d−∆∏
j=1,j 6=i

|λi − λj |
≤
(
d−∆
i

)2(∆+1)

d−∆∏
j=1,j 6=i

j2

d−∆∏
j=1,j 6=i

∣∣∣i2 − j2
∣∣∣

Notice that
∏d−∆
j=1,j 6=i j

2 =
(

(d−∆)!
i

)2
and that

d−∆∏
j=1,j 6=i

∣∣∣i2 − j2
∣∣∣ =

d−∆∏
j=1,j 6=i

|i− j|(i+ j)

=

i−1∏
j=1

(i− j)

 d−∆∏
j=i+1

(j − i)

d−∆∏
j=1

(i+ j)

/2i
= (i− 1)!(d−∆− i)!d−∆ + i)!

2i(i!)

= (d−∆ + i)!(d−∆− i)!
2i2

Combining these together,

|ai(λ)| ≤ λ∆+1
((d−∆)

i

)2(∆+1) 2((d−∆)!)2

(d−∆ + i)!(d−∆− i)!

Write this quantity as(
2λ∆+1(d−∆)2(∆+1)((d−∆)!)2

)( 1
(d−∆) + i)!(d−∆− i)!

)( 1
i2∆+2

)
The first term is constant in i. The second term is strictly decreasing in i, since to go from i to

i+ 1, we multiply by d−∆−i
d−∆+i+1 < 1.

For i = 1, the product of the first two terms is

2λ∆+1(d−∆)2(∆+1) d−∆
d−∆ + 1 < 2λ∆+1(d−∆)2(∆+1)

Thus, for i ≥ 1, the product of the first two terms is less than this quantity, hence

|ai(λ)| < 2λ∆+1(d−∆)2∆+2 1
i2∆+2

Summing over all i gives us:
d−∆∑
i=1
|ai(λ)| < 2(d−∆)2∆+2λ∆+1

d−∆∑
i=1

1
i2∆+2
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This last summation is the truncation of the p-series with p = 2∆ + 2, and is strictly less than
the limit of the series - the Riemann Zeta function ζ evaluated at p. Thus,

d−∆∑
i=1
|ai(λ)| < 2ζ(2∆ + 2)λ∆+1(d−∆)2∆+2

D More on Semi-Constant Distributions

In this section, we prove Lemma 4.3, which states that, for any n, the marginal distributions for any
k inputs of oracles drawn from SCnλ specified by polynomials of degree k for which the λ1 coefficient
is 0. We also describe a quantum algorithm for finding collisions in SC1

λ using O(λ−2/3) oracle
queries.

D.1 Proof of Lemma 4.3

Proof of Lemma 4.3. Recall that SCnλ is defined as follows:

• For each i ∈ {1, ..., n}, pick yi at random from Y.
• For each x ∈ X , with probability 1 − λ, set H(x) to be a random element of Y. With

probability λ, set H(x) = yi for a random i.

Suppose Y contains N elements. Now, consider the quantity Pr[H(xj) = rj∀i ∈ {1, ..., k}].
Suppose there are ` distinct rj , denoted tm, and let km be the number of rj equal to tm (note that∑`
m=1 km = k). Let F be the set of functions f : {1, ..., n} → {1, ..., `,⊥}. Each f is associated to

the event that yi = tf(i) if f(i) 6=⊥, and yi 6= tm for any m if f(i) =⊥.
Given an f , let numf,m be the number of i such that f(i) = m. The probability that O(xj) = tm

is 1/N if we are choosing the output at random, and otherwise, it is the fraction of i ∈ {1, ..., n}
such that f(i) = m. In other words, this probability is

1− λ
N

+ λ
numf,m
n

= 1
N

+ λ

(
numf,m
n

− 1
N

)
Since there are km copies of each tm among the rj ,

Pr[H(xi) = rj∀i ∈ {1, ..., k}|f ] =
∏̀
i=m

( 1
N

+ λ

(
numf,m
n

− 1
N

))km

Summing over all f gives

Pr[H(xi) = rj∀i ∈ {1, ..., k}] =
∑
f

Pr[f ]
∏̀
i=m

( 1
N

+ λ

(
numf,m
n

− 1
N

))km

This is a polynomial in λ. It is a sum of products of
∑`
m=1 km = k monomials in λ, so its total

degree is at most k. Now, we shall approximate this to first order in λ:
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Pr[H(xi) = rj∀i ∈ {1, ..., k}] =
∑
f

Pr[f ]
∏̀
m=1

( 1
N

+ λ

(
numf,m
n

− 1
N

))km

=
∑
f

Pr[f ]
∏̀
m=1

( 1
Nkm

+ km
1

Nkm−1λ

(
numf,m
n

− 1
N

))
+O(λ2)

= 1
N
∑

m
km

∑
f

Pr[f ]
∏̀
m=1

(
1 + kmNλ

(
numf,m
n

− 1
N

))
+O(λ2)

= 1
Nk

∑
f

Pr[f ]
(

1 +Nλ
∑̀
m=1

km

(
numf,m
n

− 1
N

))
+O(λ2)

= 1
Nk

+ λ

Nk−1

 1
n

∑̀
m=1

km
∑
f

Pr[f ]numf,m −
k

N

+O(λ2)

Notice that
∑
f Pr[f ]numf,m is the expected number of i such that f(i) = m. This is equivalent

to the expected number of i such that yi = tm. Since each yi = tm with probability 1/N , and there
are n such yi, this expected value is n/N . Thus,

Pr[H(xi) = rj∀i ∈ {1, ..., k}] = 1
Nk

+ λ

Nk−1

(
1
n

∑̀
m=1

km
n

N
− k

N

)
+O(λ2) = 1

Nk
+O(λ2)

Hence, the λ1 coefficient is 0. This completes the lemma.

D.2 Finding Collisions in Semi-Constant Distributions

Here we explore the problem of finding a collision in an oracle drawn from a semi-constant distribution
SC1

λ over HX ,Y . Our motivation for studying the collision problem is as follows: we state without
proof that a classical algorithm making qH queries can only distinguish SC1

λ from random with
probability O(λ2q2

H). Further, querying random points, and outputting 1 if a collision is found
achieves this bound. Thus, a collision search is the best way to distinguish SC1

λ from random in the
classical setting, and the same may also be true in the quantum setting

Let N = |Y| be the number of elements in Y , and assume that λ >> 1
N so that finding a collision

requires (with high probability) finding a collision in the distinguished inputs.
Let c be the minimum constant such that Corollary 4.4 is true for `(q) = O(qc). Specifically, c is

the constant such that no quantum algorithm can distinguish SCnλ from random with probability
ω(qcHλ2), but some quantum algorithm can with probability O(qcHλ2). We know that c ≤ 4. We
will now show that c ≥ 3, using the following algorithm. The algorithm is basically the algorithm of
Brassard et al. [BHT97], but modified for our purposes. It operates as follows:

• Select a subset W ⊆ X of size λ−1/2. For each x ∈ W, store the pair (x,H(x)) in a table,
sorted by the second coordinate. Check if there is a collision in W . If so, output this collision.

• Construct the oracle O(x) which is 1 if and only if x /∈ W and H(x) = H(x0) for some x0 ∈ W .
Since the entries to W are sorted by the second coordinate, this test can be performed
efficiently.
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• Run Grover’s algorithm on this oracle to find an x /∈ W such that H(x) = H(x0) for some
x0 ∈ W.

• Output (x, x0).

The probability that we found a distinguished input in the first step is

1− (1− λ)|W| = 1− (1− λ)λ−1/2 = λ1/2 +O(λ)

Grover’s algorithm finds an x such that O(x) = 1 in using O(f−1/2) queries, where f is the
fraction of inputs to O that map to 1. Thus, f is the fraction of x such that x /∈ W (which is most
of them) and H(x) = H(x0) for some x0 ∈ W. If we found an distinguished input, this fraction is
(in expectation) at least λ.

If we found a distinguished input in the first step, Grover’s algorithm will thus find an x such
that O(x) = 1 with high probability using O(λ−1/2) queries. The total number of oracle queries is
then at most O(λ−1/2) to find a collision with expected probability O(λ1/2).

Using this algorithm, we can distinguish SC1
λ from uniform by simply testing if the output is

indeed a collision. Thus we use O(λ−1/2) queries to distinguish with probability O(λ−1/2). This
probability is at most O(λ2qc) = O(λ2−c/2). Hence, c ≥ 3.

E Proof of Theorem 5.3

We prove Theorem 5.3, which states that the FDH signature scheme is secure in the quantum
random oracle model if the underlying trapdoor permutation is secure against quantum adversaries.

Proof of Theorem 5.3. Suppose towards contradiction that there is a quantum adversary A
making qH hash queries, qS signature queries, that breaks S with probability ε.

Let Game0 be the standard attack game for S: the challenger generates (sk, pk) from S.Gen, and
sends pk to the adversary. The adversary can make (classical) signature queries on messages mi, to
which the challenger responds with S.SignHsk(mi), and (quantum) hash queries to the random oracle
H. A wins if it can produce a pair (m,σ) such that m 6= mi for any i, and S.VerHpk(m,σ) = accept.
The success probability in Game0 is ε.

Let λ ∈ (0, 1) to be chosen later. Let M be the message space. Let Game1 be Game0, except
that we choose a subset X of M as follows: for each m ∈ M, we put m in X with probability λ.
If the message generated by A is in X , then A wins according to the same criteria as in Game0.
Otherwise, A loses. A thus wins with probability λε.

Let Game2 be Game1, except that we choose a random y in the public key space of S, and set
H(x) = y for all x in X . H is now distributed according to SC1

λ, so by Corollary 4.4, the probability
A wins is at least Game2 is at least λε− `(qH)λ2.

Now we are ready to define an algorithm B what inverts f . Give B access to two random oracles
O1 and O2. O1 maps messages to inputs to f . O2 maps messages to bits, where the probability of
outputting 1 is λ. On input (pk, y), B works as follows:

• Send pk to A, and simulate A, playing the role of challenger to A.

• Construct the (quantum) oracle H such that H(m) =
{
y if O2(m) = 1
fpk(O1(m)) otherwise
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• When A makes a signature query on a message mi, compute O2(mi). If the result is 1, abort.
Otherwise, return σi = O1(mi).
• When A returns a forgery candidate (m,σ), test if O2(m) = 1 and fpk(σ) = y. If so, output σ.

Otherwise, abort.

Using an analysis similar to that of Theorem 5.1, we get that the advantage of B is at least

(λε− `(qH)λ2)(1− qSλ− `(qH)λ2) ≥ ε2

4(`(qH) + qS)

When we set λ = ε/2(`(qH) + qSε).
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