Public Key Cryptosystems Constructed Based on Reed-Solomon Codes, K(XV)SE(2)PKC, Realizing Coding Rate of Exactly 1.0

Masao KASAHARA
Faculty of Informatics, Osaka Gakuin University, Suita-shi, 564-8511 Japan.
kasahara@ogu.ac.jp

Abstract

In this paper, we present a new class of public-key cryptosystems, $\mathrm{K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ realizing the coding rate of exactly 1.0, based on Reed-Solomon codes(RS codes). We show that $\mathrm{K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ is secure against the various attacks including the attacks based on the Gröbner basis calculation (Gröbner basis attack, GB attack) and a linear transformation attack.

Keyword

Public key cryptosystem, PQC, Reed-Solomon code, Code based PKC, Multivariate PKC, Gröbner basis.

1 Introduction

Most of the multivariate PKC are constructed by the simultaneous equations of degree larger than or equal to $2[1] \sim[14]$.

All these proposed schemes are very interesting and important. However unfortunately, some of these schemes have been proved not necessarily secure against the conventional attacks such as Patarin's attack[3], the attack based on the Gröbner basis calculation (GB Attack)[11-13] and Braeken-Wolf-Preneel(BWP) attack[14].

The author recently proposed several classes of multivariate PKC's that are constructed by many sets of linear equations[15-20]. It should be noted that McEliece PKC[21] presented in 1978 can be regarded as a member of the class of linear multivariate PKC.

In 2011 the author presented a multivariate PKC, K(XIV)RSE(g)PKC, based on message-dependent transformation[22]. The K(XIV)RSE(g)PKC would be secure against the various conventional attacks[11-13], as the transformation is performed depending on the given message sequence.

In this paper we present a new class of public key cryptosystem, $\mathrm{K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ based on error-correcting codes, realizing the coding rate of exactly 1.0 . $\mathrm{K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ is constructed on the basis of $\mathrm{K}(\mathrm{X}) \mathrm{SE}(1) \mathrm{PKC}[23]$ which is not secure against a linear transformation attack[24]. We show
that $\mathrm{K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ is secure against the attacks based on a linear transformation attack and the GB Attack[11-13].

Throughout this paper, when the variable v_{i} takes on a value \tilde{v}_{i}, we shall denote the corresponding vector $\boldsymbol{v}=$ $\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ as

$$
\begin{equation*}
\tilde{\boldsymbol{v}}=\left(\tilde{v}_{1}, \tilde{v}_{2}, \cdots, \tilde{v}_{n}\right) . \tag{1}
\end{equation*}
$$

The vector $\boldsymbol{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ will be represented by the polynomial as

$$
\begin{equation*}
v(x)=v_{1}+v_{2} x+\cdots+v_{n} x^{n-1} . \tag{2}
\end{equation*}
$$

The $\tilde{u}, \tilde{u}(x)$ et al. will be similarly defined.

$2 \mathrm{k}(\mathrm{XV}) \mathrm{SE}(1) \mathrm{PKC}$

In this section we present a simple version of $\mathrm{K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ referred to as $k(X V) \mathrm{SE}(2) \mathrm{PKC}$. Generalization of $\mathrm{k}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ to $\mathrm{K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ is straightforward.

2.1 Preliminaries

Let us define several symbols:

$g_{i}(x)$	Generator polynomial of RS code of degree 2 over $\mathbb{F}_{2^{m}} ; i=1,2$.
L_{i}	Location, $L_{i} \geq 2, i=1,2, L_{1} \neq L_{2}$.
$x^{L_{i}}$	Single error whose error value is 1 that occurred at the location $L_{i} ; i=1,2$.
m_{i}	Message symbol over $\mathbb{F}_{2^{m}} ; i=1,2,3,4$.
$P_{C}\left[\widehat{g}_{i}(x)\right]$	Probability that $g_{i}(x)$ is estimated correctly, $i=1,2$.
$P_{C}\left[\widehat{L}_{i}\right]$	Probability that L_{i} is estimated correctly, $i=1,2$.

Figure 1: Schematic diagram of principle of $k(X V) \mathrm{SE}(2) \mathrm{PKC}$
$P_{C}\left[\widehat{g}_{i}(x) \cap \widehat{L}_{i}\right]: \quad$ Probability that both $g_{i}(x)$ and $L_{i}(x)$ are estimated correctly, $i=1,2$.
$H_{i} \quad: \quad$ Random matrix whose component takes on 0 or 1 equally likely, $i=1,2$.
$g_{F}(x) \quad:$ Random primitive polynomial of degree $2 m$ whose coefficients except those of x^{0} and $x^{2 m}$ take on 0 or 1 equally likely.
$G_{i}(x) \quad: \quad$ Generator polynomial of RS code of degree g over $\mathbb{F}_{2^{m}} ; i=1,2, \cdots, E$.

2.2 Construction

Let the message vector \boldsymbol{A} over \mathbb{F}_{2} be represented by

$$
\begin{equation*}
\boldsymbol{A}=\left(A_{1}, A_{2}, \cdots, A_{N}\right) \tag{3}
\end{equation*}
$$

Throughout this paper we assume that the messages $A_{1}, A_{2}, \cdots, A_{N}$ are mutually independent and equally likely. Let \boldsymbol{A} be transformed into

$$
\begin{align*}
\boldsymbol{A} \cdot H_{1} & =\boldsymbol{a} \\
& =\left(a_{1}, a_{2}, \cdots, a_{N}\right) \tag{4}
\end{align*}
$$

where H_{1} is an $N \times N$ non-singular random matrix over \mathbb{F}_{2}.
Let \boldsymbol{a} be partitioned into

$$
\begin{equation*}
\boldsymbol{a}=\left(m_{1}, m_{2}, m_{3}, m_{4}\right) \tag{5}
\end{equation*}
$$

where m_{i} 's are m-tuples over \mathbb{F}_{2}.
Let us regard m_{i} as an element of $\mathbb{F}_{2^{m}}$.
Let m_{1} and m_{2} be represented by

$$
\begin{equation*}
m_{1}=\left(a_{11}, \cdots, a_{1 m}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{2}=\left(a_{21}, \cdots, a_{2 m}\right) \tag{7}
\end{equation*}
$$

respectively.
Let $r_{1}(x)$ be obtained by

$$
\begin{equation*}
m_{2} x^{L_{1}} \equiv r_{1}(x)=m_{2} r_{2} x+m_{2} r_{1} \bmod g_{1}(x) \tag{8}
\end{equation*}
$$

yielding a code word, $F_{1}(x)$:

$$
\begin{equation*}
F_{1}(x)=m_{2} x^{L_{1}}+m_{2} r_{2} x+m_{2} r_{1} \equiv 0 \bmod g_{1}(x) \tag{9}
\end{equation*}
$$

Let m_{3} and m_{4} be represented by

$$
\begin{equation*}
m_{3}=\left(a_{31}, \cdots, a_{3 m}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{4}=\left(a_{41}, \cdots, a_{4 m}\right) \tag{11}
\end{equation*}
$$

respectively.
Let $r_{2}(x)$ be given by

$$
\begin{equation*}
m_{4} x^{L_{2}} \equiv r_{2}(x)=m_{4} r_{4} x+m_{4} r_{3} \bmod g_{2}(x) \tag{12}
\end{equation*}
$$

yielding a code word, $F_{2}(x)$:

$$
\begin{equation*}
F_{2}(x)=m_{4} x^{L_{2}}+m_{4} r_{4} x+m_{4} r_{3} \equiv 0 \bmod g_{2}(x) \tag{13}
\end{equation*}
$$

Regarding $\left(m_{2} r_{2}, m_{4} r_{4}\right)$ as a $2 m$-tuple over \mathbb{F}_{2}, it is transformed into

$$
\begin{align*}
\left(m_{2} r_{2}, m_{4} r_{4}\right) H_{2} & =s \\
& =\left(s_{1}, s_{2}, \cdots, s_{2 m}\right) \tag{14}
\end{align*}
$$

where H_{2} is a $2 m \times 2 m$ non-singular random matrix over \mathbb{F}_{2}.

Remark 1 : The component $s_{i} ; i=1,2, \cdots, 2 m$, is a linear equation in the variables $A_{1}, A_{2}, \cdots, A_{N}$ over \mathbb{F}_{2}.

Regarding $\left(m_{2} r_{1}, m_{4} r_{3}\right)$ as a $2 m$-tuple over \mathbb{F}_{2}, it is transformed into

$$
\begin{align*}
\left(m_{2} r_{1}, m_{4} r_{3}\right) P_{1} & =\boldsymbol{t} \\
& =\left(t_{1}, t_{2}, \cdots, t_{2 m}\right) \tag{15}
\end{align*}
$$

where P_{1} is a $2 m \times 2 m$ random permutation matrix.
Letting $t(x)$ be represented by $t_{1}+t_{2} x+\cdots+t_{2 m} x^{2 m-1}$, it is transformed into

$$
\begin{align*}
\{t(x)\}^{3} & \equiv \gamma(x) \\
& \equiv \gamma_{1}+\gamma_{2} x+\cdots+\gamma_{2 m} x^{2 m-1} \bmod g_{F}(x) \tag{16}
\end{align*}
$$

where $g_{F}(x)$ is a random primitive polynomial of degree $2 m$ over \mathbb{F}_{2}.

Let $\boldsymbol{\gamma}=\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{2 m}\right)$ be transformed into

$$
\begin{align*}
\gamma H_{3} & =\boldsymbol{\delta} \tag{17}\\
& =\left(\delta_{1}, \delta_{2}, \cdots, \delta_{2 m}\right),
\end{align*}
$$

where H_{3} is a $2 m \times 2 m$ matrix over \mathbb{F}_{2} which is not necessarily non-singular.

Let $\boldsymbol{\delta}$ be represented by

$$
\begin{equation*}
\boldsymbol{\delta}=\left(\boldsymbol{\delta}_{\lambda}, \boldsymbol{\delta}_{\mu}\right) \tag{18}
\end{equation*}
$$

where $\boldsymbol{\delta}_{\lambda}$ and $\boldsymbol{\delta}_{\mu}$ over \mathbb{F}_{2} are defined by

$$
\begin{equation*}
\boldsymbol{\delta}_{\lambda}=\left(\delta_{1}, \delta_{2}, \cdots, \delta_{m}\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{\delta}_{\mu}=\left(\delta_{m+1}, \delta_{m+2}, \cdots, \delta_{2 m}\right) \tag{20}
\end{equation*}
$$

respectively.
It should be noted that the component of $\delta_{i} ; i=1,2, \cdots$, $2 m$, is a quadratic equation in the variables $A_{1}, A_{2}, \cdots, A_{N}$ over \mathbb{F}_{2}.

Let $\boldsymbol{\delta}_{\lambda}^{\prime}$ and $\boldsymbol{\delta}_{\mu}^{\prime}$ be defined by

$$
\begin{equation*}
\boldsymbol{\delta} P_{1}^{-1}=\left(\boldsymbol{\delta}_{\lambda}^{\prime}, \boldsymbol{\delta}_{\mu}^{\prime}\right) \tag{21}
\end{equation*}
$$

Regarding $\left(m_{1}, m_{3}\right)$ over $\mathbb{F}_{2^{m}}$ as an element of $\mathbb{F}_{2^{2 m}}$, (m_{1}, m_{3}) is transformed into

$$
\begin{align*}
\left(m_{1}, m_{3}\right)^{\theta} & =\boldsymbol{\omega} \\
& =\left(\omega_{1}, \omega_{2}, \cdots, \omega_{2 m}\right) \in \mathbb{F}_{2^{2 m}} \tag{22}
\end{align*}
$$

where θ is given by

$$
\begin{equation*}
\theta=2^{0}+2^{1}+\cdots+2^{\eta}<2^{2 m}-1 \tag{23}
\end{equation*}
$$

Let $\boldsymbol{\omega}_{\lambda}$ and $\boldsymbol{\omega}_{\mu}$, be defined by

$$
\begin{equation*}
\boldsymbol{\omega}_{\lambda}=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{m}\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{\omega}_{\mu}=\left(\omega_{m+1}, \omega_{m+2}, \cdots, \omega_{2 m}\right) \tag{25}
\end{equation*}
$$

Let $\omega_{\lambda}^{\prime}$ and ω_{μ}^{\prime} be defined by

$$
\begin{equation*}
\boldsymbol{\omega} P_{1}^{-1}=\left(\boldsymbol{\omega}_{\lambda}^{\prime}, \boldsymbol{\omega}_{\mu}^{\prime}\right) \tag{26}
\end{equation*}
$$

At the sending end, after calculating $\boldsymbol{\omega}$ by Eq.(22), $\boldsymbol{t}+\boldsymbol{\delta}+\boldsymbol{\omega}$ is obtained. The ciphertext C is given by

$$
\begin{equation*}
C=(\boldsymbol{s}, \boldsymbol{t}+\boldsymbol{\delta}+\boldsymbol{\omega}) \tag{27}
\end{equation*}
$$

We have the following set of keys.

$$
\begin{aligned}
\text { Public key } & : \\
\text { Secret key } & m_{1}, m_{3},\left\{s_{i}\right\},\left\{t_{i}+\delta_{i}\right\}, \theta, \mathbb{F}_{2^{m}}, \mathbb{F}_{2^{2 m}} . \\
& H_{1}, H_{2}, H_{3}, P_{1}, L_{1}, L_{2}, \\
& r_{1}, r_{2}, r_{3}, r_{4}, g_{1}(x), g_{2}(x), g_{F}(x)
\end{aligned}
$$

2.3 Encryption and decryption

Encryption:

Step1 :The \tilde{s} is calculated from the public keys whose component is represented by the variables A_{1}, A_{2}, \cdots, A_{N}.
Step2 :The $\tilde{\boldsymbol{t}}+\tilde{\boldsymbol{\delta}}$ is calculated from the public key $\boldsymbol{t}+\boldsymbol{\delta}$ whose component is represented by the variables $A_{1}, A_{2}, \cdots, A_{N}$.
Step3:The $\tilde{\boldsymbol{\omega}}$ is calculated from \tilde{m}_{1} and \tilde{m}_{3} by Eq.(22).
Step4 :The ciphertext \tilde{C} is given by

$$
\begin{equation*}
\widetilde{C}=(\tilde{\boldsymbol{s}}, \tilde{\boldsymbol{t}}+\tilde{\boldsymbol{\delta}}+\tilde{\boldsymbol{\omega}}) \tag{28}
\end{equation*}
$$

Decryption:

Step1 :The $\left(\tilde{m}_{2} r_{2}, \tilde{m}_{4} r_{4}\right)$ is decoded by $\left(\tilde{s}_{1}, \tilde{s}_{2}, \cdots, \tilde{s}_{2 m}\right) H_{2}^{-1}$.
Step2 :The $\left(\tilde{m}_{2} r_{1}+\tilde{\boldsymbol{\delta}}_{\lambda}^{\prime}+\tilde{\boldsymbol{\omega}}_{\lambda}^{\prime}, \tilde{m}_{4} r_{3}+\tilde{\boldsymbol{\delta}}_{\mu}^{\prime}+\tilde{\boldsymbol{\omega}}_{\mu}^{\prime}\right)$ is decoded by $(\tilde{\boldsymbol{t}}+\tilde{\boldsymbol{\delta}}+\tilde{\boldsymbol{\omega}}) P_{1}^{-1}$.
Step3 :From $\left(\tilde{m}_{2} r_{2}, \tilde{m}_{2} r_{1}+\tilde{\boldsymbol{\delta}}_{\lambda}^{\prime}+\tilde{\boldsymbol{\omega}}_{\lambda}^{\prime}\right)$ and $\left(\tilde{m}_{4} r_{4}, \tilde{m}_{4} r_{3}+\tilde{\boldsymbol{\delta}}_{\mu}^{\prime}+\right.$ $\left.\tilde{\boldsymbol{\omega}}_{\mu}^{\prime}\right)$, the sets of double erasure errors, $\left(\tilde{m}_{2} x^{L_{1}}, \tilde{\boldsymbol{\delta}}_{\lambda}^{\prime}+\right.$ $\left.\tilde{\boldsymbol{\omega}}_{\lambda}^{\prime}\right)$ and $\left(\tilde{m}_{4} x^{L_{2}}, \tilde{\boldsymbol{\delta}}_{\mu}^{\prime}+\tilde{\boldsymbol{\omega}}_{\mu}^{\prime}\right)$ are decoded, for example, by Euclidean decoding[25], yielding ($\left.\tilde{m}_{2}, \tilde{\boldsymbol{\delta}}_{\lambda}^{\prime}+\tilde{\boldsymbol{\omega}}_{\lambda}^{\prime}\right)$ and $\left(\tilde{m}_{4}, \tilde{\boldsymbol{\delta}}_{\mu}^{\prime}+\tilde{\boldsymbol{\omega}}_{\mu}^{\prime}\right)$.
Step4 :From \tilde{m}_{2} and \tilde{m}_{4}, the ($\left.\tilde{\boldsymbol{\delta}}_{\lambda}^{\prime}, \tilde{\boldsymbol{\delta}}_{\mu}^{\prime}\right)$ is decoded by Eqs.(15) $\sim(21)$, yielding $\tilde{\omega}_{\lambda}^{\prime}$ and $\tilde{\omega}_{\mu}^{\prime}$.
Step5 :The $\tilde{\boldsymbol{\omega}}$ is decoded by $\left(\tilde{\boldsymbol{\omega}}_{\lambda}^{\prime}, \tilde{\boldsymbol{\omega}}_{\mu}^{\prime}\right) P_{1}$.
Step6 :The $\left(\tilde{m}_{1}, \tilde{m}_{3}\right)$, an element of $\mathbb{F}_{2^{2 m}}$, is decoded by $\tilde{\boldsymbol{\omega}}^{1 / \theta}$.
Step7 :The original message $\tilde{\boldsymbol{A}}$ is decoded by $\left(\tilde{m}_{1}, \tilde{m}_{2}, \tilde{m}_{3}, \tilde{m}_{4}\right) H_{1}^{-1}=\boldsymbol{A}=\left(\tilde{A}_{1}, \tilde{A}_{2}, \cdots, \tilde{A}_{N}\right)$.

Table 1: Example of $\mathrm{k}(\mathrm{XV}) \operatorname{SE}(2) \operatorname{PKC}(\rho=1.0)$.

Example	$\|A\|$ $N(\mathrm{bit})$	$\left\|m_{i}\right\|$ $m($ bit $)$	$\eta+1=2 m-1$	$P_{C}\left[\widehat{g}_{1}(x) \cap \widehat{L}_{1}\right]$ $* P_{C}\left[\widehat{g}_{2}(x) \cap \widehat{L}_{2}\right]$	S_{PK} (KB)	ρ
I	128	32	63	2.94×10^{-39}	68.1	1.0
II	160	40	79	6.84×10^{-49}	132	1.0
III	192	48	95	1.59×10^{-58}	227	1.0

2.4 Parameters

Let us define several symbols:
$N_{V} \quad: \quad$ Total number of message variables, $N=4 m$.
$N_{E S l} \quad: \quad$ Total number of $2 m$ linear equations repre-
$N_{E S q} \quad: \quad$ Total number of $2 m$ quadratic equations representing the components of $\boldsymbol{t}+\boldsymbol{\delta}$.
$\mathrm{SE}(\boldsymbol{s}) \quad: \quad$ Set of linear equations related to \boldsymbol{s} in the variables $A_{1}, A_{2}, \cdots, A_{N}$.
$\mathrm{SE}(\boldsymbol{t}+\boldsymbol{\delta}) \quad: \quad$ Set of quadratic equations related to $\boldsymbol{t}+\boldsymbol{\delta}$ in the variables $A_{1}, A_{2}, \cdots, A_{N}$.
$\mathrm{SE}\left(m_{i}\right) \quad: \quad$ Set of linear equations related to m_{1} or m_{3} in the variables $A_{1}, A_{2}, \cdots, A_{N}$.
The sizes of $\mathrm{SE}(\boldsymbol{s}), \mathrm{SE}(\boldsymbol{t}+\boldsymbol{\delta}), \mathrm{SE}\left(m_{1}\right)$ and $\mathrm{SE}\left(m_{3}\right)$ are given by

$$
\begin{align*}
& |\mathrm{SE}(\boldsymbol{s})|=N_{V} * N_{E S l}, \tag{29}\\
& |\mathrm{SE}(\boldsymbol{t}+\boldsymbol{\delta})|=N_{V} H_{2} \cdot N_{E S q}, \tag{30}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\mathrm{SE}\left(m_{1}\right)\right|=\left|\mathrm{SE}\left(m_{3}\right)\right|=N_{V} * m \tag{31}
\end{equation*}
$$

respectively.
The size of the public key for $m_{1}, m_{3},\{\boldsymbol{s}\}$ and $\{\boldsymbol{t}+\boldsymbol{\delta}\}$, $S_{P K}$ is given by

$$
\begin{equation*}
S_{P K}={ }_{N_{V}} H_{2} \cdot 2 m+4 N_{V} * m . \tag{32}
\end{equation*}
$$

The coding rate ρ is given by

$$
\begin{align*}
\rho & =\frac{|\boldsymbol{M}|}{|C|} \\
& =\frac{\left|m_{1}\right|+\left|m_{2}\right|+\left|m_{3}\right|+\left|m_{4}\right|}{\left|m_{2} r_{2}\right|+\left|m_{4} r_{4}\right|+\left|m_{2} r_{1}+\boldsymbol{\omega}_{\lambda}+\boldsymbol{\delta}_{\lambda}\right|+\left|m_{4} r_{3}+\boldsymbol{\omega}_{\mu}+\boldsymbol{\delta}_{\mu}\right|} \\
& =1.0 . \tag{33}
\end{align*}
$$

We see that the coding rate is given by exactly 1.0 .
The probability that the location is estimated correctly, $P_{C}\left[\hat{L}_{i}\right]$, is given by

$$
\begin{equation*}
P_{C}\left[\hat{L}_{i}\right]=\left(2^{m}-3\right)^{-1} \cong 2^{-m} ; i=1,2 . \tag{34}
\end{equation*}
$$

The probability that $g_{i}(x)$ is estimated correctly, $P_{C}\left[\hat{g}_{i}(x)\right]$, is given by
$P_{C}\left[\hat{g}_{i}(x)\right]=\left\{2^{m(g-2)} *\left(2^{m}-1\right)\right\}^{-1} \cong 2^{-m(g-1)} ; i=1,2 .(35)$

2.5 Examples

In Table 1, we show three examples of $k(X V) S E(2) P K C$.

2.6 Security consideration

Attack 1 : Attack on L_{i} and $g_{i}(x) ; \mathbf{i}=\mathbf{1 , 2}$.
The probability that $g_{i}(x)$'s and L_{i} 's are estimated correctly is given by

$$
\begin{equation*}
\left\{P_{c}\left[\widehat{g}_{i}(x) \cap \widehat{L}_{i}\right]\right\}^{2}=\left\{\left[P_{C}\left[\widehat{g}_{i}(x)\right] \cdot P_{C}\left[\widehat{L}_{i}\right]\right\}^{2} ; i=1,2\right. \tag{36}
\end{equation*}
$$

sufficiently small value for $m \gtrsim 20$. We conclude that $\mathrm{k}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ is secure against Attack 1.

Attack 2: GB Attack on ciphertext

The components of $\boldsymbol{\omega}$ over $\mathbb{F}_{2^{2 m}}$ can be represented by the set of equations over \mathbb{F}_{2} of very high degree. Sets of the components of $(s, \boldsymbol{t}+\boldsymbol{\delta}+\boldsymbol{\omega})$ yield a set of $2 m$ equations of degree $\eta+1$ in the variables $A_{1}, A_{2}, \cdots, A_{N}$ and a set of $2 m$ linear equations in the variables $A_{1}, A_{2}, \cdots, A_{N}$. The degrees take on a very high value of at least 63 as we see in the examples in Table 1. We thus conclude that our proposed scheme, $\mathrm{k}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$, can be secure against GB Attack, the attack based on Gröbner basis calculation.

Attack 3: Exhaustive attack on ($\left.\tilde{m}_{1}, \tilde{m}_{3}\right)$.
We see that when $\left(\tilde{m}_{1}, \tilde{m}_{3}\right)$ is estimated correctly by an exhaustive manner, the ciphertext can be disclosed by the GB attack on the set of $2 m$ quadratic equations and $2 m$ linear equations. It is easy to see that the average number of times required for estimating $\left(\tilde{m}_{1}, \tilde{m}_{3}\right)$ in an exhaustive manner is given by $2^{2 m-1}$.

In order to be secure against this attack, $2 m$, the size of $\left(\tilde{m}_{1}, \tilde{m}_{3}\right)$ is recommended to be sufficiently large $(m \gtrsim 30)$.

Attack 4: Attack on $\left(m_{2} r_{1}, m_{4} r_{3}\right)$ from s.
It is apparent that $\left(m_{2} r_{1}, m_{4} r_{3}\right)$ can be disclosed from ($m_{2} r_{2}, m_{4} r_{4}$) by a linear transformation[24].

However in $\mathrm{k}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC},\left(m_{2} r_{1}, m_{4} r_{3}\right)$ is transformed into a set of quadratic equations through a series of transformations given by Eqs.(15),(16) and (17).

We conclude that $\left(m_{2} r_{1}, m_{4} r_{3}\right)$ cannot be disclosed from s by a linear transformation.

3 K(XV)SE(2)PKC

In this section we present a generalized version of $\mathrm{k}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$, referred to as K(XV)SE(2)PKC. As $\mathrm{K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ is a straightforward generalization of $\mathrm{k}(\mathrm{XV}) \mathrm{SE}(2)$, we shall only present an outline of the construction of $\mathrm{K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$.

3.1 Construction

Let m_{i} be

$$
\begin{equation*}
m_{i}=\left(m_{i 1}, \cdots, m_{i m}\right) \quad ; i=1,2, \cdots, E \tag{37}
\end{equation*}
$$

In the followings let us regard m_{i} 's as the elements of $\mathbb{F}_{2^{m}}$. Let

$$
\begin{align*}
m_{1} x^{L_{1}} & \equiv r_{1}(x) \\
& =m_{1} r_{11}+m_{1} r_{12} x+\cdots+m_{1} r_{1 g} x^{g-1} \bmod G_{1}(X), \\
m_{2} x^{L_{2}} & \equiv r_{2}(x) \\
& =m_{2} r_{21}+m_{2} r_{22} x+\cdots+m_{2} r_{2 g} x^{g-1} \bmod G_{2}(X), \\
& \vdots \tag{38}\\
m_{E} x^{L_{E}} & \equiv r_{E}(x) \\
& =m_{E} r_{E 1}+m_{E} r_{E 2} x+\cdots \\
& \cdots+m_{E} r_{E g} x^{g-1} \bmod G_{E}(X),
\end{align*}
$$

where all the locations L_{i} 's are distinct and satisfy

$$
\begin{equation*}
g \leq L_{i} \leq 2^{m}-2 \quad ; i=1,2, \cdots, E \tag{39}
\end{equation*}
$$

We also assume that the degree of $G_{i}(x) ; i=1,2, \cdots, E$, is given by g.

Let the remainder $r_{i}(x)=m_{i} r_{i 1}+m_{i} r_{i 2} x+\cdots+m_{i} r_{i g} x^{g-1}$ given by Eq.(38) be partitioned into

$$
\begin{equation*}
r_{i}(x)=r_{i E}(x)+r_{i H}(x), \quad ; i=1,2, \cdots, E, \tag{40}
\end{equation*}
$$

where $r_{i E}(x)$ and $r_{i H}(x)$ are given by

$$
\begin{array}{r}
r_{i E}(x)=m_{i} r_{i, H+1} x^{H}+m_{i} r_{i, H+2} x^{H+1}+\cdots \\
\cdots+m_{i} r_{i g} x^{g-1} \tag{41}
\end{array}
$$

and

$$
\begin{equation*}
r_{i H}(x)=m_{i} r_{i, 1}+m_{i} r_{i, 2} x+\cdots+m_{i} r_{i H} x^{H-1} \tag{42}
\end{equation*}
$$

Let the positive integers E and H satisfy

$$
\begin{equation*}
E+H=g \tag{43}
\end{equation*}
$$

respectively.
Given $m_{1}, m_{2}, \cdots, m_{E}$, we construct

$$
\begin{align*}
\sum_{i=1}^{E} m_{i} x^{L_{i}}=\sum_{i=1}^{E} m_{i} r_{i H+1} & +\sum_{i=1}^{E} m_{i} r_{i H+2} x+ \\
\cdots & +\sum_{i=1}^{E} m_{i} r_{g} x^{g-1} \tag{44}
\end{align*}
$$

The vector $\boldsymbol{V}_{E}=\left(\sum_{i=1}^{E} m_{i} r_{i, H+1}, \cdots, \sum_{i=1}^{E} m_{i} r_{i g}\right)$ is transformed into

$$
\begin{align*}
\boldsymbol{V}_{E} \cdot H_{4} & =s \\
& =\left(V_{H+1}, V_{H+2}, \cdots, V_{g}\right) \tag{45}
\end{align*}
$$

where H_{4} is a random $E \times E$ non-singular matrix over $\mathbb{F}_{2^{m}}$.
The vector $\boldsymbol{V}_{H}=\left(\sum_{i=1}^{E} m_{i} r_{i 1}, \cdots, \sum_{i=1}^{E} m_{i} r_{i H}\right)$ is transformed into

$$
\begin{align*}
\boldsymbol{V}_{H} \cdot P_{2} & =\boldsymbol{T} \\
& =\left(V_{1}, V_{2}, \cdots, V_{H}\right), \tag{46}
\end{align*}
$$

where P_{2} is a $H \times H$ random permutation matrix over $\mathbb{F}_{2^{m}}$.
The T is transformed into

$$
\begin{equation*}
\boldsymbol{T}^{3}=\boldsymbol{\Gamma} \tag{47}
\end{equation*}
$$

in a similar manner as Eq.(16).
Messages $m_{E+1}, m_{E+2}, \cdots, m_{N}$, are publicized as

$$
\begin{equation*}
\boldsymbol{V}_{P}=\left(m_{E+1}, m_{E+2}, \cdots, m_{N}\right) \tag{48}
\end{equation*}
$$

In a simlar manner as Eq.(22), $\boldsymbol{\Omega}$ is given by

$$
\begin{equation*}
V_{P}^{\Theta}=\boldsymbol{\Omega} \tag{49}
\end{equation*}
$$

The correspondence among the parameters for $\mathrm{k}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ and $\mathrm{K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ is shown below:

$$
\begin{array}{clc}
\mathrm{k}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC} & & \mathrm{~K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC} \\
\left(m_{2} r_{2}, m_{4} r_{4}\right) & \rightarrow & \boldsymbol{V}_{E} \\
\left(m_{2} r_{1}, m_{4} r_{3}\right) & \rightarrow & \boldsymbol{V}_{H} \\
\left(m_{1}, m_{3}\right)^{\theta}=\boldsymbol{\omega} & \rightarrow & \boldsymbol{V}_{P}^{\Theta}=\boldsymbol{\Omega} \\
\left(m_{2} r_{2}, m_{4} r_{4}\right) H_{2}=\boldsymbol{s} & \rightarrow & \boldsymbol{V}_{E} H_{4}=\boldsymbol{S} \\
\left(m_{2} r_{1}, m_{4} r_{3}\right) P_{1}=\boldsymbol{t} & \rightarrow & \boldsymbol{V}_{H} P_{2}=\boldsymbol{T} \\
\boldsymbol{t}^{3}=\boldsymbol{\gamma} & \rightarrow & \boldsymbol{T}^{3}=\boldsymbol{\Gamma} \\
\boldsymbol{\gamma} H_{3}=\boldsymbol{\delta} & \rightarrow & \boldsymbol{\Gamma} H_{5}=\boldsymbol{\Delta} \\
C_{I}=(\boldsymbol{s}, \boldsymbol{t}+\boldsymbol{\delta}+\boldsymbol{\omega}) & \rightarrow & C_{I I}=(\boldsymbol{S}, \boldsymbol{T}+\boldsymbol{\Delta}+\boldsymbol{\Omega})
\end{array}
$$

4 Conclusion

In this paper we have presented $k(X V) \mathrm{SE}(2) \mathrm{PKC}$. We have briefly described $\mathrm{K}(\mathrm{XV}) \mathrm{SE}(2) \mathrm{PKC}$ because it can be constructed by a straightforward generalization of k(XV)SE(2)PKC.

We have shown that $k(X V) \mathrm{SE}(2) \mathrm{PKC}$ would be secure against the various attacks including GB Attack, the attack based on Gröbner basis calculation.

References

[1] T.Mastumoto and H.Imai: "Public Quadratic Polynomial-Tuples for Efficient Signature - Verification and Message-Encryption", Advances in Cryptology, Eurocrypt'88, Springer-Verlag, pp.419-453, (1988).
[2] S.Tsujii, A.Fujioka and Y. Hirayama: "Generalization of the public-key cryptosystem based on the difficulty of solving a system of non-linear equations", IEICE Trans. Vol. 1 J-72-A, 2, pp.390-397, (1989-02).
[3] J. Patarin: "Hidden fields equations(HFE) and isomorphisms of polynomials(IP): two new families of asymmetric algorithm", Proc.EUROCRYPT'96, Lecture Notes in Computer Science, Vol.1070, pp.33-48, Springer, (199605).
[4] M.Kasahara and R.Sakai: "A Construction of Public Key Cryptosystem for Realizing Ciphertext of size 100 bit and Digital Signature Scheme", IEICE Trans. Vol. E87-A, 1, pp.102-109, (2004-01).
[5] S. Tsujii, R. Fujita and K. Tadaki: "Proposal of MOCHIGOMA(piece in hand) concept for multivariate type public key cryptosystem", Technical Report of IEICE, ISEC 2004-74, (2004-09).
[6] J. Ding: "A New Variant of the Matsumoto-Imai Cryptosystem through Perturbation", PKC 2004, LNCS 2947, pp.305-318, 2004.
[7] M.Kasahara and R.Sakai: "A Construction of Public Key Cryptosystem Based on Singular Simultaneous Equations", IEICE Trans. Vol. E88-A, 1, pp.74-79, (2005-01).
[8] J. Ding, D. Schmidt and J. Gower: "Multivariate Public key Cryptography", Springer-Verlag(2006).
[9] M.Kasahara: "New Classes of Public Key Cryptosystem Constructed on the Basis of Multivariate Polynomials and Random Coding - Generalization of K(III)RSE (g) PKC -", Technical Report of IEICE, ISEC 2007-118, pp.41-47, (2007-12).
[10] M. Kasahara: "Public Key Cryptosystems Constructed Based on Cyclic Codes, Realizing Coding Rate of Exactly 1.0, K(XI)SE(g)PKC and K(XII)SE(g)PKC", Technical Report of IEICE, ISEC 2011-23(2011-07).
[11] A. Kipnis and A. Shamir: "Cryptoanalysis of the HFE Public Key Cryptosystem by Relinearization", Advances in Cryptography-Crypto'99, LNCS 1666, pp.1930, (1999).
[12] M. Bardet, J. C. Faugére and B. Salvy: "Complexity of Gröbner basis computation for semi-regular overdetermined sequence over \mathbb{F}_{2} with solutions in $\mathbb{F}_{2} "$, Technical Report RR-5049, INRIA, (2003-12).
[13] J-C Faugére: "Algebraic cryptanalysis of HFE using Gröbner basis", INRIA (2003).
[14] C. Wolf: "Multivariate Quadratic Polynomials in Public Key Cryptography", Dr. Thesis, Katholieke Universiteit Leuven, (2005-11).
[15] M.Kasahara: "Construction of New class of Linear Multivariate Public Key Cryptosystem - Along With a Note on the Number 9999990 and its Application", Technical Report of IEICE, ISEC 2009-44 (2009-09).
[16] M.Kasahara: "Linear Multivariate Cryptosystem Constructed on the Basis of Probabilistic Structure", 2009 JSIAM Annual Meesing, Osaka, (2009-09).
[17] M. Kasahara: "New Classes of Public Key Cryptosystems Constructed Based on Error-Correcting Codes and Probabilistic Structure", Technical Report of IEICE , ISEC 2009-134 (2010-03).
[18] M. Kasahara: "A New Class of Public Key Cryptosystem Constructed Based on Error-Correcting Codes Realizing Coding Rate of Exactly 1.0", Cryptology ePrint Archive, 2010/139 (2010).
[19] M. Kasahara: "A New Class of Public Key Cryptosystems Constructed Based on Error-Correcting Codes, Using K(III) Scheme", Cryptology ePrint Archive, 2010/341 (2010).
[20] M. Kasahara: "Public Key Cryptosystems Constructed Based on Random Pseudo Cyclic Codes, K(IX)SE(1)PKC, Realizing Coding Rate of Exactly 1.0", Cryptology ePrint Archive 2011 / 545(2011).
[21] R. J. McEliece: "A public key cryptosystem based on algebraic coding theory", DSN Prog. Re., pp.114-116, (1978).
[22] M. Kasahara: "A New Class of Multivariate Public Key Cryptosystem Constructed on the Basis of MessageDependent Transformation", Cryptology ePrint Archive, 2011/690 (2011).
[23] M. Kasahara: "Public Key Cryptosystems Constructed Based on Reed-Solomon Codes and Pseudo Cyclic Codes, K(IX)SE(1)PKC and K(X)SE(1)PKC, Realizing Coding Rate of Exactly 1.0", Technical Report of IEICE, ISEC 2011-31, (2011-9).
[24] M. Kasahara: "K(X)SE(1)PKC is not secure", Memorandom for File at Kasahara Lab., Osaka Gakuin University, (2011-11).
[25] Y. Sugiyama, M. Kasahara, S. Hirasawa and T. Namekawa: "An erasures-and-errors decoding algorithm for Goppa codes", IEEE Trans. Info. Theory, 22 (1976).

