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Abstract

In this paper, we present a new class of public-key cryptosys-
tems, K(XV)SE(2)PKC realizing the coding rate of exactly
1.0, based on Reed-Solomon codes(RS codes). We show that
K(XV)SE(2)PKC is secure against the various attacks in-
cluding the attacks based on the Gröbner basis calculation
(Gröbner basis attack, GB attack) and a linear transforma-
tion attack.
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1 Introduction

Most of the multivariate PKC are constructed by the simul-
taneous equations of degree larger than or equal to 2 [1]∼[14].

All these proposed schemes are very interesting and im-
portant. However unfortunately, some of these schemes have
been proved not necessarily secure against the conventional
attacks such as Patarin’s attack[3], the attack based on the
Gröbner basis calculation (GB Attack)[11-13] and Braeken-
Wolf-Preneel(BWP) attack[14].

The author recently proposed several classes of multi-
variate PKC’s that are constructed by many sets of linear
equations[15-20]. It should be noted that McEliece PKC[21]
presented in 1978 can be regarded as a member of the class
of linear multivariate PKC.

In 2011 the author presented a multivariate PKC,
K(XIV)RSE(g)PKC, based on message-dependent transfor-
mation[22]. The K(XIV)RSE(g)PKC would be secure against
the various conventional attacks[11-13], as the transformation
is performed depending on the given message sequence.

In this paper we present a new class of public key cryp-
tosystem, K(XV)SE(2)PKC based on error-correcting codes,
realizing the coding rate of exactly 1.0. K(XV)SE(2)PKC is
constructed on the basis of K(X)SE(1)PKC[23] which is not
secure against a linear transformation attack[24]. We show

that K(XV)SE(2)PKC is secure against the attacks based on
a linear transformation attack and the GB Attack[11-13].

Throughout this paper, when the variable vi takes on
a value ṽi, we shall denote the corresponding vector v =
(v1, v2, · · · , vn) as

ṽ = (ṽ1, ṽ2, · · · , ṽn). (1)

The vector v = (v1, v2, · · · , vn) will be represented by the
polynomial as

v(x) = v1 + v2x + · · · + vnxn−1. (2)

The ũ, ũ(x) et al. will be similarly defined.

2 k(XV)SE(1)PKC

In this section we present a simple version of K(XV)SE(2)PKC
referred to as k(XV)SE(2)PKC. Generalization of
k(XV)SE(2)PKC to K(XV)SE(2)PKC is straightforward.

2.1 Preliminaries

Let us define several symbols:
gi(x) : Generator polynomial of RS code

of degree 2 over F2m ; i = 1, 2.
Li : Location, Li ≥ 2, i = 1, 2, L1 ̸= L2.
xLi : Single error whose error value is 1 that

occurred at the location Li; i = 1, 2.
mi : Message symbol over F2m ; i = 1, 2, 3, 4.
PC [ĝi(x)] : Probability that gi(x) is estimated

correctly, i = 1, 2.
PC [L̂i] : Probability that Li is estimated

correctly, i = 1, 2.
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Figure 1: Schematic diagram of principle of k(XV)SE(2)PKC

PC [ĝi(x) ∩ L̂i] : Probability that both gi(x) and Li(x)
are estimated correctly, i = 1, 2.

Hi : Random matrix whose component
takes on 0 or 1 equally likely, i = 1, 2.

gF (x) : Random primitive polynomial of
degree 2m whose coefficients except
those of x0 and x2m take on 0 or 1
equally likely.

Gi(x) : Generator polynomial of RS code of
degree g over F2m ; i = 1, 2, · · · , E.

2.2 Construction

Let the message vector A over F2 be represented by

A = (A1, A2, · · · , AN ). (3)

Throughout this paper we assume that the messages
A1, A2, · · · , AN are mutually independent and equally likely.
Let A be transformed into

A · H1 = a

= (a1, a2, · · · , aN ),
(4)

where H1 is an N × N non-singular random matrix over F2.
Let a be partitioned into

a = (m1,m2,m3, m4), (5)

where mi’s are m-tuples over F2.
Let us regard mi as an element of F2m .
Let m1 and m2 be represented by

m1 = (a11, · · · , a1m) (6)

and

m2 = (a21, · · · , a2m). (7)

respectively.
Let r1(x) be obtained by

m2x
L1 ≡ r1(x) = m2r2x + m2r1 mod g1(x), (8)

yielding a code word, F1(x) :

F1(x) = m2x
L1 + m2r2x + m2r1 ≡ 0 mod g1(x). (9)

Let m3 and m4 be represented by

m3 = (a31, · · · , a3m) (10)

and

m4 = (a41, · · · , a4m) (11)

respectively.
Let r2(x) be given by

m4x
L2 ≡ r2(x) = m4r4x + m4r3 mod g2(x), (12)

yielding a code word, F2(x) :

F2(x) = m4x
L2 + m4r4x + m4r3 ≡ 0 mod g2(x). (13)

Regarding (m2r2,m4r4) as a 2m-tuple over F2, it is trans-
formed into

(m2r2,m4r4)H2 = s

= (s1, s2, · · · , s2m),
(14)

where H2 is a 2m× 2m non-singular random matrix over F2.

Remark 1 : The component si; i = 1, 2, · · · , 2m, is a linear
equation in the variables A1, A2, · · · , AN over F2. 2
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Regarding (m2r1,m4r3) as a 2m-tuple over F2, it is trans-
formed into

(m2r1,m4r3)P1 = t

= (t1, t2, · · · , t2m),
(15)

where P1 is a 2m × 2m random permutation matrix.
Letting t(x) be represented by t1 + t2x + · · · + t2mx2m−1,

it is transformed into

{t(x)}3 ≡ γ(x)

≡ γ1 + γ2x + · · · + γ2mx2m−1 mod gF (x),
(16)

where gF (x) is a random primitive polynomial of degree 2m
over F2.

Let γ = (γ1, γ2, · · · , γ2m) be transformed into

γH3 = δ

= (δ1, δ2, · · · , δ2m),
(17)

where H3 is a 2m×2m matrix over F2 which is not necessarily
non-singular.

Let δ be represented by

δ = (δλ, δµ), (18)

where δλ and δµ over F2 are defined by

δλ = (δ1, δ2, · · · , δm) (19)

and

δµ = (δm+1, δm+2, · · · , δ2m) (20)

respectively.
It should be noted that the component of δi ; i = 1, 2, · · · ,

2m, is a quadratic equation in the variables A1, A2, · · · , AN

over F2.
Let δ′

λ and δ′
µ be defined by

δP−1
1 = (δ′

λ, δ′
µ). (21)

Regarding (m1,m3) over F2m as an element of F22m ,
(m1,m3) is transformed into

(m1,m3)θ = ω

= (ω1, ω2, · · · , ω2m) ∈ F22m ,
(22)

where θ is given by

θ = 20 + 21 + · · · + 2η < 22m − 1. (23)

Let ωλ and ωµ, be defined by

ωλ = (ω1, ω2, · · · , ωm) (24)

and

ωµ = (ωm+1, ωm+2, · · · , ω2m). (25)

Let ω′
λ and ω′

µ be defined by

ωP−1
1 = (ω′

λ,ω′
µ). (26)

At the sending end, after calculating ω by Eq.(22), t+δ+ω
is obtained. The ciphertext C is given by

C = (s, t + δ + ω). (27)

We have the following set of keys.

Public key : m1, m3, {si}, {ti + δi}, θ, F2m , F22m .
Secret key : H1, H2, H3, P1, L1, L2,

r1, r2, r3, r4, g1(x), g2(x), gF (x)

2.3 Encryption and decryption

Encryption:

Step1 :The s̃ is calculated from the public keys whose com-
ponent is represented by the variables A1, A2, · · · ,
AN .

Step2 :The t̃ + δ̃ is calculated from the public key t + δ
whose component is represented by the variables
A1, A2, · · · , AN .

Step3 :The ω̃ is calculated from m̃1 and m̃3 by Eq.(22).

Step4 :The ciphertext C̃ is given by

C̃ = (s̃, t̃ + δ̃ + ω̃). (28)

Decryption:

Step1 :The (m̃2r2, m̃4r4) is decoded by (̃s1,s̃2,· · · ,s̃2m)H−1
2 .

Step2 :The (m̃2r1 + δ̃′
λ + ω̃′

λ, m̃4r3 + δ̃′
µ + ω̃′

µ) is decoded by
(t̃ + δ̃ + ω̃)P−1

1 .

Step3 :From (m̃2r2, m̃2r1 + δ̃′
λ + ω̃′

λ) and (m̃4r4, m̃4r3 + δ̃′
µ +

ω̃′
µ), the sets of double erasure errors, (m̃2x

L1 , δ̃′
λ +

ω̃′
λ) and (m̃4x

L2 , δ̃′
µ + ω̃′

µ) are decoded, for example,
by Euclidean decoding[25], yielding (m̃2, δ̃

′
λ+ω̃′

λ) and
(m̃4, δ̃

′
µ + ω̃′

µ).

Step4 :From m̃2 and m̃4, the (δ̃′
λ, δ̃′

µ) is decoded by Eqs.(15)
∼ (21), yielding ω̃′

λ and ω̃′
µ.

Step5 :The ω̃ is decoded by (ω̃′
λ, ω̃′

µ)P1.

Step6 :The (m̃1, m̃3), an element of F22m , is decoded by ω̃1/θ.

Step7 :The original message Ã is decoded by
(m̃1, m̃2, m̃3, m̃4)H−1

1 = A = (Ã1, Ã2, · · · , ÃN ).
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Table 1: Example of k(XV)SE(2)PKC(ρ = 1.0).

Example
|A|

N(bit)
|mi|

m(bit) η + 1 = 2m − 1
PC [ĝ1(x) ∩ L̂1]

∗PC [ĝ2(x) ∩ L̂2]
SPK

(KB) ρ

I 128 32 63 2.94 × 10−39 68.1 1.0
II 160 40 79 6.84 × 10−49 132 1.0
III 192 48 95 1.59 × 10−58 227 1.0

2.4 Parameters

Let us define several symbols:

NV : Total number of message variables, N = 4m.
NESl : Total number of 2m linear equations repre-

senting the components of s, s1, s2, · · · , s2m.
NESq : Total number of 2m quadratic equations

representing the components of t + δ.
SE(s) : Set of linear equations related to s in the

variables A1, A2, · · · , AN .
SE(t + δ) : Set of quadratic equations related to t + δ

in the variables A1, A2, · · · , AN .
SE(mi) : Set of linear equations related to m1 or m3

in the variables A1, A2, · · · , AN .
The sizes of SE(s),SE(t+δ), SE(m1) and SE(m3) are given

by

|SE(s)| = NV ∗ NESl, (29)

|SE(t + δ)| = NV
H2 · NESq, (30)

and

|SE(m1)| = |SE(m3)| = NV ∗ m, (31)

respectively.
The size of the public key for m1, m3, {s} and {t + δ},

SPK is given by

SPK = NV H2 · 2m + 4NV ∗ m. (32)

The coding rate ρ is given by

ρ =
|M |
|C|

=
|m1|+|m2|+|m3|+|m4|

|m2r2|+|m4r4|+|m2r1+ωλ+δλ|+|m4r3+ωµ + δµ|
= 1.0.

(33)

We see that the coding rate is given by exactly 1.0.
The probability that the location is estimated correctly,

PC

[
L̂i

]
, is given by

PC

[
L̂i

]
= (2m − 3)−1 ∼= 2−m; i = 1, 2. (34)

The probability that gi(x) is estimated correctly, PC [ĝi(x)],
is given by

PC [ĝi(x)] =
{

2m(g−2) ∗ (2m − 1)
}−1 ∼= 2−m(g−1); i = 1, 2. (35)

2.5 Examples

In Table 1, we show three examples of k(XV)SE(2)PKC.

2.6 Security consideration

Attack 1 : Attack on Li and gi(x) ; i = 1,2.
The probability that gi(x)’s and Li’s are estimated cor-

rectly is given by{
Pc[ĝi(x) ∩ L̂i]

}2

=
{

[PC [ĝi(x)] · PC [L̂i]
}2

; i = 1, 2, (36)

sufficiently small value for m >∼ 20. We conclude that
k(XV)SE(2)PKC is secure against Attack 1. 2

Attack 2 : GB Attack on ciphertext
The components of ω over F22m can be represented by the

set of equations over F2 of very high degree. Sets of the com-
ponents of (s, t+ δ +ω) yield a set of 2m equations of degree
η + 1 in the variables A1, A2, · · · , AN and a set of 2m linear
equations in the variables A1, A2, · · · , AN . The degrees take
on a very high value of at least 63 as we see in the exam-
ples in Table 1. We thus conclude that our proposed scheme,
k(XV)SE(2)PKC, can be secure against GB Attack, the at-
tack based on Gröbner basis calculation. 2

Attack 3 : Exhaustive attack on (m̃1, m̃3).
We see that when (m̃1, m̃3) is estimated correctly by an

exhaustive manner, the ciphertext can be disclosed by the
GB attack on the set of 2m quadratic equations and 2m linear
equations. It is easy to see that the average number of times
required for estimating (m̃1, m̃3) in an exhaustive manner is
given by 22m−1.

In order to be secure against this attack, 2m, the size of
(m̃1, m̃3) is recommended to be sufficiently large(m >∼ 30). 2

Attack 4 : Attack on (m2r1,m4r3) from s.
It is apparent that (m2r1,m4r3) can be disclosed from

(m2r2,m4r4) by a linear transformation[24].
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However in k(XV)SE(2)PKC, (m2r1, m4r3) is transformed
into a set of quadratic equations through a series of transfor-
mations given by Eqs.(15),(16) and (17).

We conclude that (m2r1,m4r3) cannot be disclosed from s
by a linear transformation.

3 K(XV)SE(2)PKC

In this section we present a generalized version of
k(XV)SE(2)PKC, referred to as K(XV)SE(2)PKC. As
K(XV)SE(2)PKC is a straightforward generalization of
k(XV)SE(2), we shall only present an outline of the construc-
tion of K(XV)SE(2)PKC.

3.1 Construction

Let mi be

mi = (mi1, · · · ,mim) ; i = 1, 2, · · · , E. (37)

In the followings let us regard mi’s as the elements of F2m .
Let

m1x
L1 ≡ r1(x)

=m1r11 + m1r12x + · · · + m1r1gx
g−1 mod G1(X),

m2x
L2 ≡ r2(x)

=m2r21 + m2r22x + · · · + m2r2gx
g−1 mod G2(X),

... (38)
mExLE ≡ rE(x)

=mErE1 + mErE2x + · · ·
· · · + mErEgx

g−1 mod GE(X),

where all the locations Li’s are distinct and satisfy

g ≤ Li ≤ 2m − 2 ; i = 1, 2, · · · , E. (39)

We also assume that the degree of Gi(x); i = 1, 2, · · · , E, is
given by g.

Let the remainder ri(x) = miri1 +miri2x+ · · ·+mirigx
g−1

given by Eq.(38) be partitioned into

ri(x) = riE(x) + riH(x), ; i = 1, 2, · · · , E, (40)

where riE(x) and riH(x) are given by

riE(x) = miri,H+1x
H + miri,H+2x

H+1 + · · ·
· · · + mirigx

g−1 (41)

and

riH(x) = miri,1 + miri,2x + · · · + miriHxH−1

(42)

Let the positive integers E and H satisfy

E + H = g. (43)

respectively.
Given m1,m2, · · · ,mE , we construct

E∑
i=1

mix
Li =

E∑
i=1

miriH+1 +
E∑

i=1

miriH+2x+

· · · +
E∑

i=1

mirgx
g−1.

(44)

The vector V E =
(∑E

i=1 miri,H+1, · · · ,
∑E

i=1 mirig

)
is tra-

nsformed into

V E · H4 = s

= (VH+1, VH+2, · · · , Vg),
(45)

where H4 is a random E × E non-singular matrix over F2m .
The vector V H = (

∑E
i=1 miri1, · · · ,

∑E
i=1 miriH) is trans-

formed into

V H · P2 = T

= (V1, V2, · · · , VH),
(46)

where P2 is a H × H random permutation matrix over F2m .
The T is transformed into

T 3 = Γ (47)

in a similar manner as Eq.(16).
Messages mE+1,mE+2, · · · , mN , are publicized as

V P = (mE+1,mE+2, · · · ,mN ), (48)

In a simlar manner as Eq.(22), Ω is given by

V Θ
P = Ω. (49)

The correspondence among the parameters for
k(XV)SE(2)PKC and K(XV)SE(2)PKC is shown below:

k(XV)SE(2)PKC K(XV)SE(2)PKC
(m2r2,m4r4) → V E

(m2r1,m4r3) → V H

(m1,m3)
θ = ω → V Θ

P = Ω
(m2r2,m4r4)H2 = s → V EH4 = S
(m2r1,m4r3)P1 = t → V HP2 = T

t3 = γ → T 3 = Γ
γH3 = δ → ΓH5 = ∆

CI = (s, t + δ + ω) → CII = (S, T + ∆ + Ω)
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4 Conclusion

In this paper we have presented k(XV)SE(2)PKC. We
have briefly described K(XV)SE(2)PKC because it can
be constructed by a straightforward generalization of
k(XV)SE(2)PKC.

We have shown that k(XV)SE(2)PKC would be secure
against the various attacks including GB Attack, the attack
based on Gröbner basis calculation.
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