
Improved Algebraic Side-Channel Attack on
AES

Mohamed Saied Emam Mohamed 1, Stanislav Bulygin 2, Michael Zohner 2,
Annelie Heuser 2 and Michael Walter 1

1: Technische Universität Darmstadt, Integrated Circuits and Systems Lab,
Hochschulstraße 10, 64289 Darmstadt, Germany

e-mail: mohamed@cdc.informatik.tu-darmstadt.de, michael.walter@swel.com
2: Center for Advanced Security Research Darmstadt (CASED),

Mornewegstraße 32, 64289 Darmstadt, Germany
e-mail: {stanislav.bulygin,michael.zohner,annelie.heuser}@cased.de

Abstract. In this paper we present improvements of the algebraic side-
channel analysis of the Advanced Encryption Standard (AES) proposed
in [9]. In particular, we optimize the algebraic representation of AES and
the algebraic representation of the obtained side-channel information in
order to speed up the attack and increase the success rate. We study the
performance of our improvements in both known and unknown plain-
text/ciphertext attack scenarios. Our experiments indicate that in both
cases the amount of required side-channel information is less than the
one required in the attacks introduced in [9]. Furthermore, we introduce
a method for error handling, which allows our improved algebraic side-
channel attack to escape the assumption of an error-free measurement
and thus become applicable in practice. We demonstrate the practical
use of our improved algebraic side-channel attack by inserting predictions
from a single-trace template attack.

Keywords: Algebraic Side-Channel Attack, AES, Error Tolerance, SAT solv-
ing, template attack

1 Introduction

When implementing a cryptographic algorithm, such as a block cipher, it is not
only important to verify that the algorithm itself is secure against cryptanaly-
sis, but also that an implementation of an algorithm does not leak information
about the processed data. Attacks that exploit such leaked information in or-
der to recover a cryptographic secret, are called side-channel attacks. A recently
introduced type of side-channel attack, the so-called algebraic side-channel at-
tack (ASCA) [9, 10], combines side-channel attacks with algebraic techniques,
i.e. algebraic system solving.

Adding information from a side-channel attack, into an algebraic system
allows an attacker to recover the secret key even if the number of traces is
too low for a statistical attack like the template attack or the DPA. Since the



algebraic representation is adaptable and descriptive, information about any
processed intermediate value can be inserted into the algebraic system in order
to enhance the key recovery process. Accordingly, the ASCA is a very strong
side-channel attack, when a profiling based attacker is assumed. However, the
applicability of ASCA suffers from the necessity of correct information [9]. If
erroneous information is inserted into the algebraic system, it is not correctly
solvable. This strongly limits the practical use of ASCA, since errors in the field
of side-channel analysis are common, especially if an attacker is assumed that
is provided with only one trace in the attack phase. Recently, there has been a
contribution, which is able to deal with erroneous information [6]. However, the
approach still restricts errors to a certain degree and amount and requires an
immense computation time, which limits its practical use.

In this work we propose a more practical algebraic side-channel attack, the
so called improved algebraic side-channel attack (IASCA). The contribution of
IASCA is twofold. First, we reduce the information, which is required for solv-
ing the algebraic system by finding a more efficient algebraic representation.
Secondly, we introduce a method for dealing with erroneous information, thus in-
creasing the resistance of IASCA towards errors. Both improvements contribute
to the error tolerance of IASCA by decreasing potential points of failure on the
one hand, and increasing the error resistance without assuming a bounded error
as in [6] on the other hand. Finally, we demonstrate the practical applicability
of IASCA on the block cipher AES-128.

The paper is organized as follows. In Section 2 we give some preliminaries and
related work. We describe our improved algebraic representation and give exper-
imental results in Section 3. Section 4 outlines our approach for error tolerance
in the improved side-channel attack and studies the performance of our attack
in case of erroneous measurements. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Algebraic Cryptanalysis

In algebraic cryptanalysis the inputs, outputs, and a secret of a cryptographic
primitive like, as in our case, AES [5] are related by a system of (non-linear)
equations, usually over GF (2), the field of the two elements 0 and 1. After set-
ting the corresponding variables to the values of a known plain-/ciphertext pair,
the system is attempted to be solved and the secret key is determined by the
solution. However, finding a solution for such a system is non-trivial and there
are several techniques available to be employed. The one we mainly focus on
is SAT solving. The area of SAT solving has received a lot of research in the
past decades and is one of the most efficient techniques available for algebraic
cryptanalysis. In this setting, the system of equations is translated into a set of
clauses constituting an equivalent satisfiability (SAT) problem instance, which
is then fed into a SAT solver, e.g. CryptoMiniSat [11] (see e.g. chapter 13 of [1]).
A clause is a set of literals, which are either positive, i.e. a variable, or negative,
i.e. a negated variable, and related by disjunctions. The clauses are related by

2



conjunctions. A SAT instance taking on this form is said to be in Conjunctive
Normal Form (CNF). The conversion of a solution of the SAT problem into a
solution for the algebraic problem is straightforward. Another approach to solve
the system of equations is the Gröbner bases technique as described in [1]. How-
ever, so far this has not been as efficient as SAT solving for attacking symmetric
cryptosystems. In contrast, computing Gröbner bases provides a compact de-
scription of all the possible solutions to a system of equations. So, we apply
Gröbner bases techniques over subsets of equations to improve SAT solving in
this context as explained in the next section.

So far, attacking the full AES with algebraic techniques was not success-
ful, the reason being that the resulting algebraic system (and its equivalent
SAT problem) does not have enough information to be solved efficiently. On
the other hand, we are able to enhance our algebraic system by additional, e.g.
side-channel, information, by representing this information algebraically. In [9]
Renauld et al. presented an implementation of ASCA employing the Hamming
weight based leakage model, and analyzed the amount of side-channel infor-
mation necessary to make the attack practically feasible. We build upon their
work by reducing the amount of necessary information and introducing error
tolerance.

When working with side-channel information one has to be careful in specify-
ing the implementation under attack as the leakage model depends heavily on it.
The focus of our study is on AES-128. AES-128 is a widely used block cipher [5],
it processes 128 bit blocks with 128 bit keys. AES is a substitution permutation
network having 10 rounds. The round function of AES consists of the key addi-
tion (where for each round a different key is used according to the key scheduling
algorithm), substitution layer composed of 16 8-bit S-boxes, and the linear dif-
fusion layer that is a composition of ShiftRows and MixColumns operations. See
[5] for a detailed description of the algorithm. Since we are building on previous
work we target AES-128 implemented as Renauld et al. did in [9]. We do want
to point out, however, that our approach is applicable to other implementations
as well. Since Renauld et al. elaborate sufficiently on the target operations and
their potential leakages, we constraint ourselves to a brief summary (and refer
to [9] for further details): we assume potential leakages at each byte of the state
before and after the substitution layer and 52 additional potential leakages dur-
ing the MixColumn operation, resulting in 2 · 16 + 52 = 84 leakages per round
and 84 · 9 + 32 = 788 leakages over all (since the last round does not contain
the MixColumn operation). Note that we do not target operations in the key
scheduling algorithm.

2.2 Side-Channel Analysis

In algebraic side-channel analysis we assume the attacker is provided with a suf-
ficient number of traces for profiling, whereas he is limited to a small number of
traces (e.g., only one trace) in the attack phase [3, 7]. Note that in this scenario
the attacker is not able to gain a secret key only with side-channel analysis.

3



However, the acquired side-channel information is sufficient to provide the alge-
braic system with information about Hamming weights of several internal values
(e.g. Hamming weight of S-box input/output) in order to recover the secret key.
In the following, we briefly sketch the idea of template attacks [3], which is one
of the most common profiled side-channel attacks. In the profiling phase of a
template attack the adversary is provided with power trace vectors {lic,v}

N1
i=1 for

each class c of each attackable operation v. For example, if the adversary is in-
terested in the Hamming weights (c ∈ {0, . . . , 8}) of one S-box input and output
for the first three rounds (|v| = 6), he requires 6 ·9 different leakage vectors each
with N1 power traces. Template attacks rely on a multivariate Gaussian noise
model, accordingly the power trace vectors are considered to be drawn from a
multivariate normal distribution. More precisely,

N (lc,v|µc,v, Σc,v) =

1

(2π)Nt |Σc|1/2
e−

1
2 (lc,v−µc,v)

TΣ−1
c,v(lc,v−µc,v),

where Nt is the number of interesting points within the measured trace for
each operation. Accordingly, the construction of these templates is based on the
estimation of the expected values µ̂c,v as well as the covariance matrix Σ̂c,v.

In the attack phase the attacker measures a trace vector {lic,v}
N2
i=1 (with

unknown c) and uses the maximum–likelihood estimator [3], given by

Lc∗,v =

N2∏
i=1

P (lic,v|C) =

N2∏
i=1

N (lic,v|µc∗,v, Σc∗,v), (1)

for each possible c∗ regarding the operation v. The adversary then chooses the
c∗ which maximizes Lc∗,v for each operation v. Note that, in case N2 = 1 he
only gains the probability according to N (lc,v|µc∗,v, Σc∗,v) for each class c∗ and
v, which may not be decisive for only one c∗.

3 IASCA: Improved Algebraic Representation of ASCA

3.1 Approach

While Renauld et al. successfully demonstrated the feasibility of ASCA, its po-
tential was not fully explored. We demonstrate in this section that it is possible
to reduce solving times and the amount of necessary information, thus increasing
the practicability of the attack, simply by tweaking the algebraic representation.

In order to improve the work [9] we optimize the representation of the SAT
problem to reduce solving times. At first glance it is not immediately clear what
characteristics a “good” representation should have. An important characteristic
of a SAT instance appears to be the size of the problem, not only in the number
of variables, but also the number of clauses. However, considering the way SAT
solvers work - building a search tree, exploring it while learning conflict clauses
and trying to cut branches efficiently ([1]) - the average length of clauses is also

4



a suitable heuristic measure, since short clauses may produce conflicts sooner
than long clauses. It follows that introducing short clauses might improve the
representation, even though increasing the size of the instance, thus yielding a
trade-off to the first characteristic.

First, we targeted the representation of the S-box operation. Renauld et
al. use a set of clauses which enumerates all possible input and output values
resulting in 2048 clauses, each of length 9. We followed a different approach
using Gröbner basis techniques to derive 8 high-degree equations (degree 7) of
the form yi = f(x) for i ∈ {1, · · · , 8}, where x = (x1, . . . , x8) denotes the input
of an S-box, and yi the i-th output bit of an S-box. We say that these equations
provide an explicit representation, since they explicitly describe the dependence
of the output on the input. Converting these equations to a set of clauses using
PolyBoRi’s CNF converter [2] resulted in 946 clauses with average length of
7.22. Table 1 lists the numbers of clauses occurrences of certain lengths in both
representation.

Length 6 7 8 9

Renauld et al. 0 0 0 2048
Explicit representation 77 590 270 9

Table 1. Comparison of S-box clause lengths of Renauld et al. and ours deducted from
the explicit representation

Furthermore, we tried to exploit the restrictions the S-box operation has on
the Hamming weight of its input and output. Specifically, we included short
clauses for the case that the input and output of a certain S-box are known.

First note that for all possible input/output pairs of the S-box there are
47 possible corresponding Hamming weight pairs (e.g. the input/output pair
x = (1, 0, 0, 0, 0, 1, 1, 0) and y = (1, 1, 1, 1, 0, 1, 1, 1) corresponds to the Hamming
weight pair (3, 7)). For each Hamming weight pair we denote its weight as the
number of input/output pairs that correspond to that pair. Table 2 shows all
Hamming weight pairs and their weights. Also note that the Hamming weight
of a byte x can be represented as a set of equations over GF(2) in the variables
denoting the bits of x. To see this, let HW (x) = w, where HW (·) denotes the
Hamming weight function. It holds that HW (x) = w iff every w+1 sized subset
of the bits of x contains at least one 0 and every 8−w+1 sized subset contains at
least one 1. These two conditions can be enforced using the following equations
for all such subsets: ∏

xi∈Xw+1

xi = 0 (2)

∏
xi∈X9−w

(xi + 1)= 0 (3)

5



where Xa is a subset of the variables representing the bits of x with |Xa| = a.

For each of the possibly occurring Hamming weight pair (i.e. with weight
> 0) we consider the set of equations defining the S-box operation and includ
the equations specifying the corresponding Hamming weights of the input and
output. From this set we derive a set of short equations, again using Gröbner
bases techniques, and converted them to clauses using the PolyBoRi’s CNF
converter. While this worked very well for low weight Hamming weight pairs, it
resulted in rather long clauses for pairs with a weight larger than 7. To avoid long
clauses we used a different approach for these Hamming weight pairs. Instead of
computing Gröbner bases, we considered all possible clauses of length n with n
being reasonably small (i.e. n ≤ 3) and checked, which ones are satisfied by all
input/output pairs that correspond to a certain (high weight) Hamming weight
pair. Note, that there are exactly

(
16
n

)
·2n distinct clauses of length n, since every

clause can contain n out of the 16 variables (8 input and 8 output bits) and every
variable can appear as positive or negative literal. So this exhaustive search is
computationally feasible for small n. Table 3 shows the number of clauses of
length 1, 2, and 3 included for each high weight Hamming weight pair. Finally,
this yields a set of very short clauses for each Hamming weight pair, which is
added to the SAT instance in case the Hamming weights of an input/output pair
of an S-box is known due to side-channel information.

HHH
HHin
out

0 1 2 3 4 5 6 7 8

0 0 0 0 0 1 0 0 0 0
1 0 0 2 0 1 3 2 0 0
2 0 2 3 8 5 4 4 2 0
3 1 1 4 17 16 10 5 2 0
4 0 3 9 11 21 16 9 1 0
5 0 1 7 10 19 14 3 2 0
6 0 0 3 7 5 8 4 0 1
7 0 1 0 2 2 1 1 1 0
8 0 0 0 1 0 0 0 0 0

Table 2. Weights of Hamming weight pairs

Next, let us consider leakage of Hamming weights in the MixColumn opera-
tion. The implementation that we study employs the so-called xtime operation
on a byte, as defined in [5], as a subroutine of the MixColumn operation. Re-
nauld et al. represent this operation by 8 linear equations – one for each output
bit depending on the 8 input bits. The equations have a length of 3 or 5 (includ-
ing the output variables). From section 4.2.1 in [5] we obtained the following –
significantly shorter – representation with input x and output y:

yi = xi−1 + ki · x7

6



PPPPPPPWeight
Length

1 2 3

(2, 3) 2 98 0
(3, 3) 0 20 788
(3, 4) 0 7 604
(3, 5) 0 36 1270
(4, 2) 0 57 0
(4, 3) 0 24 1114
(4, 4) 0 0 212

PPPPPPPWeight
Length

1 2 3

(4, 5) 0 12 673
(4, 6) 2 100 0
(5, 2) 1 99 0
(5, 3) 0 23 1157
(5, 4) 0 4 499
(5, 5) 0 12 838
(6, 3) 1 107 0
(6, 5) 1 100 0

Table 3. Number of clauses of length 1, 2, and 3 included for each high weight Ham-
ming weight pair

where ki = 1 for i ∈ {1, 3, 4}, ki = 0 for all other i, and indices are computed
modulo 8. In a similar fashion as described above for the S-box operation, we
considered all possible pairs of Hamming weights of the input and output of
the xtime operation, added the Hamming weight specifying equations to the
representation above and computed Gröbner bases to obtain short equations.
These were again translated to clauses to add to the SAT instance in case the
Hamming weight of the input and the output of the operation are known. Note
that for the xtime operation no exhaustive search for short clauses was necessary.

3.2 Experimental Results

In this subsection, we present experimental results which demonstrate the per-
formance of our improved algebraic side channel attack. We used the same as-
sumptions as in [9]. For the experiments presented here, we assume that all
Hamming weights are correct. For these experiments we used both the Java
implementation of ASCA by Renauld [8] and our modified implementation of
IASCA. We used the SAT solver CryptoMiniSat [11] to solve CNF systems pro-
duced by ASCA and IASCA. For each attack scenario each result is obtained as
an average over 100 runs. Furthermore, for all experiments presented here we set
100 seconds as a time limit. We run all the experiments on a Sun X4440 server,
with four “Quad-Core AMD OpteronTM Processor 8356” CPUs and 128 GB of
main memory. Each CPU is running at 2.3 GHz.

Tables 4 and 5 report our experiments for several attack scenarios where a
plaintext/ciphertext is known and where plaintext/ciphertext is unknown, re-
spectively. In these experiments we compared the results obtained by using Re-
nauld’s ASCA and our IASCA with the results reported in [9]. Our comparison
is based on the required Hamming weights to recover the secret key with a rate
of success higher than 90% in less than 100 seconds.

Table 4 shows that in case of consecutive Hamming weights, IASCA needs at
most Hamming weights of two consecutive internal rounds (R2−R8) in order to
find the secret key. In this scenario it can be infered that the SAT solver uses the

7



system constructed by IASCA to recover a value of the round key between the
selected two consecutive rounds. Afterwards, it uses the key schedule relations
and the known plaintext/ciphertext to retrieve the correct value of the secret
key. In the scenario of randomly distributed known Hamming weights over all
rounds, IASCA requires 394 HW. Moreover, IASCA can recover the secret key
using only 68 random Hamming weights from the first round with rate of success
greater than 95%.

PPPPPPPAttack
Model

Renauld et al. ASCA IASCA

Consecutive HW 3 rounds 3 rounds 2 rounds
(256 HW) (256 HW) (168 HW)

Random HW > 756 551 (70%) 394 (50%)

Table 4. Results of known plaintext/ciphertext attack Scenarios.

Table 5 shows that for IASCA only 184 consecutive Hamming weights are
sufficient to recover the secret key in an unknown plain-/ciphertext scenario.
More precisely, as mentioned above, we need all the Hamming weights of two
consecutive rounds Ri and Ri+1 (168 HW) to recover the value of the round
key ki and the Hamming weights of the input state of round Ri+2 (16 HW) to
determine the correct value of ki in case we have multiple values. However, given
only 2 consecutive rounds yield a 70% rate of success using IASCA. In case of a
random positions for Hamming weights, where the known Hamming weights are
distributed randomly over all potential states, IASCA needs only 472 Hamming
weights distributed randomly over all rounds (60%) with rate of success ≥ 80%.

PPPPPPPAttack
Model

Renauld et al. ASCA IASCA

Consecutive HW 3 rounds 3 rounds < 3 rounds
(256 HW) (256 HW) (184 HW)

Random HW > 756 HW 551 HW (70%) 472 HW (60%)

Table 5. Results of unknown plaintext/ciphertext attack Scenarios.

8



4 Error Tolerance

4.1 Error Tolerance Classes

Most contributions on algebraic side-channel attacks, for instance [9], assume an
error free set of Hamming weights. However, due to several kinds of noise (e.g.,
electronic noise, quantization noise, switching noise) the emitted side-channel
leakage may lead to erroneous Hamming weight predictions [4]. If such an erro-
neous Hamming weight prediction is inserted into the algebraic system, the SAT
solver will not be able to determine a correct solution.

Until now only one contribution [6] deals with erroneous predictions by using
pseudo-Boolean optimization instead of SAT solvers. In order to verify their
approach, the authors built a system for the Keeloq block cipher, for which they
were able to solve the system in 3.8 hours supporting an error rate of 18.8%.
Also, an evaluation on AES was planned, but until now only the system’s size
was given. The main drawbacks of the approach are the required time, which
grows super-linearly with the error rate, and the assumption that the distance
of an erroneous Hamming weight to the correct Hamming weight is only ±1.
The assumption on the error restricts the practical use, since in profiling based
side-channel attacks errors of ±2 and higher are possible and, in case of a device
with a higher noise level, rather common (cf. Table 6).

In the following, we extend the IASCA with the capability of dealing with
errors. The idea behind our approach is to extend the algebraic representation of
AES until it describes a range of Hamming weights, which includes the correct
Hamming weight with high certainty. So far, we have built the clauses by as-
suming the equation HW (x) = a holds. This equation can also be expressed as
two inequalities, where one represents HW (x) ≤ a and the other HW (x) ≥ a.
Both inequations can be described by a set of clauses (cf. equations (2) and (3)).
We can represent the equation by combining these clauses and thus obtain more
information. However, we can also change the boundary a of each inequality in
order to describe a wider range of Hamming weights. Thus, we are not restricted
in the severity of the error and can assume arbitrary errors, which is a more
practical assumption with regard to side-channel analysis than the one used in
[6].

For our experiments we define notation to describe the severity of an error, i.e.
the range of Hamming weights we assume. We define five error classes ez, for z ∈
[0, 4], where z denotes the number of additional consecutive Hamming weights.
For instance, e0 assumes only one Hamming weight h is possible, e1 considers two
consecutive Hamming weights [h, h+1], e2 considers three consecutive Hamming
weights [h, h+ 2], and so on.

In general it holds that the more Hamming weights we assume to be possible,
the less information is added to the system. However, by choosing a larger error,
we can be more certain that the inserted clauses describe the correct Hamming
weight. Thus, a trade-off has to be found, which on the one hand minimizes
the likelihood of erroneous information and on the other hand maximizes the
information gain from an insertion into the algebraic system. To determine the

9



likelihood of erroneous information we use the certainty vector of the template
attack (c.f. Subsect. 2.2) in our experiments. We decrease the probability of
adding false information to the system by adding Hamming weights to the range
until the certainty of covering the correct Hamming weight rises above a specified
threshold.

Note that we require assumed Hamming weights to be consecutive in order
to find a maximal informative set of polynomial equations that describe the
Hamming weights. If the assumed Hamming weights were not consecutive, a
bigger error class would have to be chosen such that all Hamming weights are
included. However, if the Hamming weight leakage model correctly describes the
power consumption of a device, the most likely HW will form an interval when
grouped by their probability.

However, this approach has an impact on the improvement we proposed in
Section 3. Since the Hamming weights of the input and the output of the S-boxes
might be incorrect, the additional short clauses have to be adjusted accordingly.
Say, the Hamming weight predictions of the input/output pair (x, y) is (wx, wy)
and both are assumed to be in the error class ez1 and ez2 where 0 ≤ z1, z2 ≤ 4,
i.e. the correct Hamming weight of x (wx) is in [h1, h1 + z1] and the one of
y (wy) is in [h2, · · · , h2 + z2]. In this case, instead of adding the short clauses
for the pair (wx, wy), we added the intersection of the sets for all Hamming
weight pairs in {h1, · · · , h1 + z1} × {h2, · · · , h2 + z2}, thus making sure that all
potential Hamming weight pairs satisfy the clauses. Naturally, the number of
clauses decreases with increasing error.

4.2 Experiments and Results

In the following, we evaluate the performance of our error tolerant IASCA by
conducting a template attack on a microcontroller and using the recovered Ham-
ming weights in order to recover the key of an AES-128 encryption. We use an
ATMega 2561 microcontroller with an 8-bit register as a target device,since the
Hamming weight leakage model adequately describes its power consumption. For
our measurement setup we connected the microcontroller to an external power
supply and an external frequency generator and measured its power consump-
tion with a PicoScope 6000. We implemented AES, whose start we marked by a
rising trigger on an external pin, and performed a template attack using a tem-
plate base of 5000 measurements. The templates were created for the S-box input
and output of each round as well as the intermediate values of MixColumns, as
described in Section 3. We utilized a single-trace template attack (i.e. N2 = 1),
and, in order to achieve a decisive result about the precision, repeated the attack
2000 times with varying plaintext/key pairs. We gained the likelihood Lc∗,v (cf.
Eq. 1) according to each possible Hamming weight class c∗ and each operation
v (e.g. v = S-box input of the first round for byte 1).

The accuracy of the template attack, computed for each S-box input, S-box
output, and MixColumns intermediate value of all 2000 attack traces is depicted
in Table 6. The template attack predicted the correct Hamming weight in 28% of
all corresponding values. Moreover, one can see that the error is not restricted to

10



only ±1 as considered in [6]. However, when we obtain the results of the template

error class e0 e1 e2 e3 e4

Occurence 28% 44% 24% 4% 0%

Table 6. Occurences of the error classes in the prediction of our template attack.

attack we do not know the dedicated error class of the prediction. Therefore, we
have to estimate the error class of the prediction in order to generalize the clauses
such that the correct Hamming weight is described. Since we have a likelihood
Lc∗,v for all Hamming weight predictions c∗ ∈ {0, . . . , 8}, we can introduce a
certainty threshold T . More precisely, we determine C ⊆ {0, 1, ..., 8} =: HW
such that

min
C
{|C| :

∑
c∗∈C

Lc∗,v ≥ T

∧ ∀c∗ ∈ C, c∗
′
∈ (HW\C) : Lc∗,v ≥ Lc∗′ ,v} . (4)

Note that the error class for a set of assumed Hamming weights C is e(|C|−1).
Roughly speaking, we increase the error class, i.e. the size of the interval, until the
certainty that the correct Hamming weight is contained in the interval exceeds
T .

We computed the occuring error classes for T = {80, 85, 90, 95, 98, 99} for
each S-box input, S-box output, and MixColumns intermediate value of all 2000
attack traces for the single-trace template attack. The results are depicted in
the side-channel attack part of Table 7. We computed the accuracy for the
thresholds by verifying whether c ∈ C, i.e., whether the correct Hamming weight
is contained in the error class, determined by T .

As expected, the higher the threshold, the less certain the predictions, i.e., the
higher the assumed error classes. However, we only obtain an accuracy of 100%
with T ≥ 95. Thus, if we use a threshold T ≤ 90 it is possible that c 6∈ C, i.e.
that the information we include in our algebraic system might be false. Finally,
we inserted the predictions of the template attack into the error tolerant IASCA.
Note that the threshold acts as a trade-off between the certainty of the template
attack on the one hand and the complexity of the algebraic attack on the other.
In order to provide the algebraic system only with correct information, we chose
a threshold at least 95. The IASCA solved the system for T = 95 within 84s and
required the Hamming weight information for the first three rounds as well as
the plain-/ciphertext pair. For T = 98 we were only able to solve the algebraic
system in half of the cases while requiring 100s in average given the Hamming
weight information of all rounds and the plain-/ciphertext pair. When we used
the error classes for T = 99, we were not able to solve the system, even though
we added all information.

11



Side-channel attack results Algebraic results

T e0 e1 e2 e3 e4 acc Rounds Time (s)

80 35% 47% 18% 0% 0% 82% R1 2s
85 23% 64% 13% 1% 0% 94% R1 3s
90 14% 45% 36% 5% 0% 99% R1, R2 3s
95 9% 29% 44% 18% 0% 100% R1-R3 84s
98 4% 18% 31% 43% 4% 100% all 100s (50%)
99 0% 10% 23% 47% 20% 100% all -

Table 7. Percentage of error classes given certainty threshold T of template attack

Moreover, we are also interested in the performance of IASCA for the given
error classes for T = {80, 85, 90}. Thus, we eliminated the errors in the predic-
tions, such that the distribution of the error classes was maintained, and inserted
them into the algebraic system. As depicted in Table 7, the IASCA was able to
recover the correct key while only requiring the information of the first round
for the error classes of T = {80, 85}. For T = 90 we could solve the system in 3
seconds using only the Hamming weight information of round 1 and round 2.

Note that even though we were not able to solve the algebraic system for
all thresholds, the results still seem promising. In case of T = 80, we correctly
describe only 35% of all Hamming weights and were still able to solve the al-
gebraic system in only two seconds using less information than [9] and [6]. For
T = 90, the IASCA successfully solved the algebraic system using only the first
two rounds within three seconds, even in the presence of e3, which has not been
solvable up to now. For T = 95, IASCA needs 84 seconds, but we assume an
error rate of 91% with a presence of 18% of e3. The limits of our approach are
demonstrated by T ≥ 98, where IASCA is not always able to solve the system in
a reasonable time. However, for T ≥ 98 we assume hardly any Hamming weights
to be correct and also deal with ≥ 40% of e3 and even e4.

5 Conclusions and Future Work

In this contribution we presented a practical algebraic side-channel attack, IASCA.
The enhancements have been derived in two ways:

First, we reduced the information required for solving the algebraic system.
Compared to [9] we could solve the algebraic system by only requiring 2 consec-
utive rounds or random 394 Hamming weights for known plain- and ciphertext.
Furthermore, if the plain- and ciphertext are unknown we achieved a reduction
of two rounds of required Hamming weights.

Secondly, we considered the application of IASCA under the assumption of
erroneous side-channel information. We therefore conducted a single-trace tem-
plate attack and analyzed the error distribution in detail, in order to obtain a
more practical view on the error rate. We then conducted IASCA on the erro-
neous predictions of the template attack. IASCA was able to solve the algebraic

12



system in a few seconds, even though we provided the system with 91% erro-
neous predictions. Also, we were able to cope with predictions that differ from
the correct Hamming weight by an arbitrary distance. Thus, we outperformed
[6] in the number of errors, the restrictions on errors, and required information.

In future work, we will try to decrease the size of clauses and increase the error
handling in order to further enhance the error tolerance of IASCA. Also, we will
evaluate a new approach, which allows us to solve hard instances by guessing
the Hamming weight at certain intermediate values. Preliminary experiments
indicate that we might be able to solve the algebraic system for threshold T = 98
in 100% of the cases by guessing the Hamming weights of only seven intermediate
values. Thus, we would be less dependent on accurate side-channel information,
which would further extend the applicability of IASCA.

Acknowledgments

This work is supported by the BMBF project RESIST. We would like to thank
Mathieu Renauld for his useful comments on this paper and for his valuable
suggestions.

References

1. Bard, G.: Algebraic Cryptanalysis. Springer (2009)
2. Brickenstein, M.: Polybori’s cnf converter.

https://bitbucket.org/brickenstein/polybori/overview
3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: CHES. pp. 13–28 (2002)
4. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets

of smart cards. Springer (2007)
5. NIST: Advanced Encryption Standard (AES) (FIPS PUB 197). National Institute

of Standards and Technology (Nov 2001)
6. Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis

in the presence of errors. In: Mangard, S., Standaert, F.X. (eds.) CHES. Lecture
Notes in Computer Science, vol. 6225, pp. 428–442. Springer (2010)

7. Rao, J.R., Sunar, B. (eds.): Cryptographic Hardware and Embedded Systems -
CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 - Septem-
ber 1, 2005, Proceedings, Lecture Notes in Computer Science, vol. 3659. Springer
(2005)

8. Renauld, M.: Simulating algebraic side channel attacks ascatocnf converter.
http://www.ecrypt.eu.org/tools/ascatocnf

9. Renauld, M., Standaert, F.X., Charvillon, N.V.: Algebraic side-channel attacks on
the AES: Why time also matters in DPA. In: CHES. pp. 97–111 (2009)

10. Renauld, M., Standaert, F.X.: Algebraic side-channel attacks. In: Inscrypt. pp.
393–410 (2009)

11. Soos, M.: Cryptominisat 2.5.0. In: SAT Race competitive event booklet (July 2010)

13


