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Abstract. A traitor tracing scheme is a multi-receiver encryption scheme where malicious receiver
coalitions aiming at building pirate decryption devices are deterred by the existence of a tracing al-
gorithm: Using the pirate decryption device, the tracing algorithm can recover at least one member
of the malicious coalition. All existing traitor tracing schemes rely either on rather inefficient generic
constructions from arbitrary encryption schemes and collusion-secure fingerprinting codes, or on alge-
braic constructions exploiting the assumed hardness of variants of the Discrete Logarithm Problem.
In this work, we present the first algebraic construction of a traitor tracing encryption scheme whose
security relies on the assumed (quantum) worst-case hardness of standard lattice problems. The scheme
is public-key, provably resists Chosen Plaintext Attacks and allows for minimal access black-box tracing
(i.e., tracing works even if granted a very limited access to the pirate decryption device). It inherits the
standard features of lattice-based cryptography, such as provable security under mild computational
assumptions, conjectured resistance to quantum computers, and asymptotic efficiency. For proving the
security, we introduce a Learning With Errors variant of the k-SIS problem from Boneh and Freeman
[PKC’11], which we prove at least as hard as the standard LWE problem. We also describe a variant
of our scheme with security based on the assumed hardness of the Ring Learning With Errors problem
which achieves quasi-optimal asymptotic performance with respect to the security parameter.
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1 Introduction

A traitor tracing scheme is a multi-receiver encryption scheme with a special functionality aimed at deterring
malicious coalitions from building pirate decryption devices. Suppose some malicious users collude and create
an unauthorized decryption box. Then the tracing algorithm can use this device to find at least one of
the members of the malicious coalition. Such schemes are particularly well suited for fighting copyright
infringement in the context of commercial content distribution (e.g., Pay-TV, subscription news websites,
etc). Since their introduction by Chor et al. [14], much work has been devoted to devising efficient and secure
traitor tracing schemes. We refer to [21] for an introduction to this rich topic.

There are two main approaches for devising a traitor tracing encryption scheme. Many constructions are
combinatorial in nature (see [14, 51, 15, 48, 43, 9], among others): They typically combine an arbitrary en-
cryption scheme with a collusion-resistant fingerprinting code. The efficiency of these traitor tracing schemes
is curbed by the large parameters induced by even the best construction of such codes [53]: To resist coali-
tions of up to t malicious users among N users, the code length is O(t2 logN). Lower bounds with the same
dependence with respect to t have been given in [39, 53], leaving little hope of significant improvements.

An alternative approach was initiated by Kurosawa and Desmedt in [26] (whose construction was shown
insecure in [52]), and quickly improved by Boneh and Franklin [7]: The tracing functionality directly stems
from the algebraic properties of the encryption scheme. As opposed to the combinatorial approach, this
algebraic approach is not generic and requires designing ad hoc encryption schemes. Prior to this work, all
known algebraic traitor tracing schemes relied on variants of the Discrete Logarithm Problem: For instance,



the earlier constructions (including [26, 7, 25]) rely on the assumed hardness of the Decisional Diffie Hellman
problem, whereas others (including [12, 10, 1, 18]) rely on variants of DDH on groups admitting pairings.
The former provide strong security when instantiating with groups for which DDH is expected to be very
hard (such as generic elliptic curves over prime fields), whereas the latter achieve improved functionalities
while lowering the performance (as a function of the security level). The main drawback of the algebraic
approach compared to the combinatorial one lies in the limited tracing capacity: Most schemes only achieve
confirmation tracing (i.e., the tracing algorithm takes as input a bounded number of identities of suspect
users), and if the maximum allowed size of traitor coalitions gets large, then the ciphertext length becomes
impractical. The combinatorial and algebraic approaches have been combined in a number of works, allowing
for circumventing the tracing inefficiency and achieving good transmission rates [24, 18].

Since the pioneering work of Ajtai [4] about 15 years ago, there have been a number of proposals of
cryptographic schemes with security provably relying on the worst-case hardness of standard lattice problems,
such as the decisional Gap Shortest Vector Problem and the computational Shortest Independent Vectors
Problem SIVP with polynomial gap and approximation factors respectively (see the recent surveys [34, 46]).
These schemes enjoy unmatched security guarantees: Security relies on worst-case hardness assumptions for
problems expected to be exponentially hard to solve (with respect to the lattice dimension n), even with
quantum computers. At the same time, they often enjoy great asymptotic efficiency, as the basic operations
are matrix-vector multiplications in dimension Õ(n) over a ring of cardinality ≤ Poly(n). Recently, faster
schemes have been obtained by assuming that SIVP remains hard when restricted to the class of ideal
lattices (lattices that correspond to ideals in some polynomial rings): These schemes typically achieve quasi-
optimal efficiency with respect to the security parameter [32, 29, 38, 28, 50, 30]. One can obtain lattice-based
traitor tracing schemes by simply using lattice-based encryption within the combinatorial constructions. As
discussed above, the efficiency of the resulting schemes is limited.

Our contributions. We describe the first algebraic construction of a lattice-based traitor tracing encryp-
tion scheme. It is public-key (i.e., anyone can broadcast messages to the users), semantically secure, and
allows for minimal access black-box tracing, thus permitting the tracing algorithm to work successfully with
very little access to the pirate device. The security relies on the hardness of the decisional version of the
Learning With Errors (LWE) problem, which is known to be (quantumly) at least as hard as standard
worst-case lattice problems [45]. This scheme based on LWE is quite inefficient and serves mainly as a proof
of concept. To further improve the efficiency, we describe a variant based on the Ring Learning With Errors
(RLWE) problem, which was shown in [30] to be (quantumly) at least as hard as SIVP restricted to ideal
lattices. Moving from the LWE to the RLWE hardness assumption provides a double speed-up: Matrix-vector
multiplications can be replaced by polynomial multiplications, and the plaintext domain can be significantly
enlarged. Overall, this results in a traitor tracing scheme where the key-sizes are Õ(λ), and encryption and
decryption of Ω̃(λ) plaintext bits cost Õ(λ) bit operations, where λ is the security parameter (i.e., all known
algorithms against the underlying hardness assumption cost 2Ω̃(λ)). The traitor tracing scheme inherits the
traditional advantages of lattice-based cryptography. In particular, the low decryption cost could prove an
attractive asset for the distribution of copyrighted contents on mobile devices.

For proving the security of the scheme, we introduce the k-LWE problem, which we prove at least as
hard as LWE, for small values of k. Intuitively, k-LWE consists in distinguishing between a random vector t
close to a given lattice Λ and a random vector t close to the orthogonal of k given short vectors belonging
to the dual Λ∗ of that lattice. If given (b∗i )i≤k small in Λ∗, computing the inner products 〈b∗i , t〉 will not
help deciding. The k-LWE problem can be interpreted as a dual of the k-SIS problem introduced by Boneh
and Freeman [8], which intuitively consists in finding a short vector in Λ∗ that is linearly independent with
the k given short vectors of Λ∗. Our construction of a traitor tracing scheme from k-LWE can be seen as an
additive and noisy variant of the Boneh-Franklin traitor tracing scheme [7].

Related works. This work extends the existing analogies between the LWE and SIS problems on one
hand, and the DL and DDH problems on the other hand. SIS can be seen as an additive variant of DL,
or, more accurately of the representation problem (which consists in expressing a given group element as a
product of powers of other given group elements). For example, the Ajtai and SWIFFT hash functions [4, 29,
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38] can be seen as additive counterparts to [13]. In both setups, the hash function can be transformed into
a commitment scheme [36, 20]. Similarly, Lyubashevsky’s signature [28] is akin to Schnorr’s signature [47].
LWE can itself be interpreted as a noisy additive variant of DDH. For instance, the LWE-based encryption
schemes from [45, 19, 30] follow a design similar to that of the ElGamal encryption scheme [17].

Open problems. It would be interesting to further investigate the limits of the SIS/LWE–DL/DDH analogy.
A major difference is the presence of noise in the LWE problem. For instance, it seems to create a significant
obstacle towards designing an LWE adaptation of the Cramer-Shoup IND-CCA2 encryption scheme [16].

Similarly to the proof of hardness of the (k, σ)-SIS problem from [8], our reduction from LWE to (k, σ)-
LWE is very loose: The approximation factor for the corresponding worst-case lattice problems increases by
a factor ≥ (σk)k. If considering the state-of-the-art lattice algorithms, such an approximation factor increase
corresponds to taking the k-th root of the run-time. However, for even quite high values of k, it is not known
how to exploit the additional information provided in (k, σ)-LWE and (k, σ)-SIS instances to accelerate
known LWE and SIS algorithms. An even more surprising aspect of these reductions is that the quality of
the reduction (measured by the smallness of the resulting worst-case approximation factor) decreases with σ,
although the lower the values of σ, the harder it is to generate the extra input data. Overall, it seems there
is room for significantly improving the hardness results of (k, σ)-LWE and (k, σ)-SIS.

The proposed lattice-based traitor tracing encryption scheme resists Chosen Plaintext Attacks. There
exist traitor tracing encryption schemes that resist Chosen Ciphertext Attacks, such as [7, Sect. 8], but they
rely on more traditional hardness assumptions (such as DDH). It seems quite challenging to devise such
an IND-CCA-secure scheme under lattice hardness assumptions. Intuitively, in a traitor tracing scheme the
users own parts of a master secret (e.g., each user owns a short vector in a shared lattice, or a discrete log
representation with respect to a shared set of group elements), and we attempt to prevent traitors from
gaining knowledge of more than their share of the secret information. This requirement seems to be in
opposition with the underlying design of all known lattice-based IND-CCA2-secure encryption schemes [37,
40, 11, 2, 3], as the receiver uses the full secret information (a short basis of lattice, or a way to generate
it himself) to verify the well-formedness of the ciphertext it decrypts. It is an interesting open problem to
design an IND-CCA2-secure lattice-based encryption scheme where different independent secret keys could
be used for a common public key.

Our scheme naturally raises the question whether the additional properties and features that are enjoyed
by existing traitor tracing schemes can also be achieved using lattice hardness assumptions. For example,
our scheme assumes that the tracing authority is trusted, as it could otherwise incriminate an innocent user.
Several approaches have been proposed to tackle this issue [41, 42, 25, 12] and it would be interesting to
assess whether they can be adapted to our setting. Independently, our scheme looks as a good starting point
for building an ID-based traitor tracing scheme [1], as it seems compatible with the construction from [2].
Another popular functionality is the possibility of revoking malicious users [35]

2 Reminders

Notation. All vectors will be denoted in bold. By default, vectors will be column vectors. If A is an m× n
matrix over a ring R, then we let Im(A) denote the set {As : s ∈ Rn} ⊆ Rm. For S ⊆ Rm, we let Span(S)
denote the set of all linear combinations of elements of S. We let 〈·, ·〉 denote the canonical inner product
over Rm. If R is a field and S is a linear subspace of Rm, then we let S⊥ denote the linear subspace {b ∈
Rm : ∀c ∈ S, 〈b, c〉 = 0}. For an integer q, we let Zq denote the set of integers modulo q.

If D1 and D2 are distributions over a countable set X, their statistical distance 1
2

∑
x∈X |D1(x)−D2(x)|

will be denoted by ∆(D1, D2). If X is of finite weight, we let U(X) denote the uniform distribution over X.
We define the function ρσ,c(b) = exp(−π‖b − c‖/σ2) for any σ > 0 and c ∈ Rn. We let να denote the
one-dimensional Gaussian distribution with standard deviation α.

2.1 Public Key Traitor Tracing Encryption

A public-key traitor tracing scheme consists of four probabilistic algorithms Setup, Encrypt, Decrypt, Trace.
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• Algorithm Setup is run by a trusted authority. It takes as inputs a security parameter λ, a list of
users (Ui)i≤N and a bound t on the size of traitor coalitions. It computes a public key pk, descriptions
of the plaintext and ciphertext domains P and C, secret keys (ski)i≤N , and a tracing key tk (which may
contain the ski’s and additional data). It publishes pk,P and C, and sends ski to user Ui for all i ≤ N .

• Algorithm Encrypt can be run by any party. It takes as inputs a public key pk and a plaintext mes-
sage M ∈ P. It computes a ciphertext C ∈ C.
• Algorithm Decrypt can be run by any user. It takes as inputs a secret key ski and a ciphertext mes-

sage C ∈ C. It computes a plaintext P ∈ P.
• Algorithm Trace is explained below.

We require that Setup, Encrypt and Decrypt run in polynomial time, and that with overwhelming
probability over the randomness used by the algorithms, we have

∀M ∈ P,∀i ≤ N : Decrypt(ski, Encrypt(pk,M)) =M,

where pk and the ski’s are sampled from Setup. We also require the encryption scheme to be IND-CPA.
Algorithm Trace aims at deterring coalitions of malicious users (traitors) from building an unauthorized

decryption device. It is run by the trusted authority. It takes as input tk and has access to a decryption
device D. Trace aims at disclosing the identity of at least one user that participated in building D.

We consider the minimal black-box access model [7]. In this model, the tracing authority has access to an
oracleOD that itself internally usesD. OracleOD behaves as follows: It takes as input any pair (C,M) ∈ C×P
and returns 1 if D(C) = M and 0 otherwise; the oracle only tells whether the decoder decrypts C to M or
not. We assume that if M is sampled from U(P) and C is the output of algorithm Encrypt given pk and M
as inputs, then the decryption device decrypts correctly with probability significantly more than 1/|P|:

Pr
M ←↩ U(P)

C ←↩ Encrypt(M)

[
OD(C,M) = 1

]
≥ 1

|P|
+

1

λc
,

for some constant c > 0. This assumption is justified by the fact that otherwise the decryption device is not
very useful. Alternatively, we may force the correct decryption probability to be non-negligibly close to 1,
by using an all-but-one transform (see [24]). We also assume that the decoder D is stateless/resettable, i.e.,
it cannot see and adapt to it being tested and replies independently to successive queries. Handling stateful
pirate boxes has been investigated in [23, 22].

In our scheme, algorithm Trace will only be a confirmation algorithm. It takes as input a set of (suspect)
users (Uij )j of cardinality k ≤ t, and must satisfy the following two properties:

• (Confirmation) If the traitors are all in the set of suspects (Uij )j≤k, then it returns “User Uij0 is guilty”
for some j0 ≤ k;
• (Soundness) If it returns “User Uij0 is guilty” for some j0 ≤ k, then user Uij0 should indeed be a traitor.

The confirmation algorithm should run in polynomial-time. It may be converted into a (costly) full-fledge
tracing algorithm by calling it on all subsets of users of cardinality t.

2.2 Euclidean lattices

We will only consider full rank integer lattices, i.e., sets of the form {
∑
i≤n xibi : xi ∈ Z} where the bi’s are

linearly independent vectors in Zn. In this situation, the bi’s are said to form a basis of the lattice. The n-th
minimum λn(L) of an n-dimensional lattice L is defined as the smallest radius r such that the n-dimensional
closed hyperball centered in 0 contains n linearly independent vectors of L. We will extensively use the
following family of lattices. For A ∈ Zm×nq , we let:

Λ⊥(A) = {x ∈ Zm : xt ·A = 0 mod q}.

This is anm-dimensional lattice, and a basis can be computed efficiently given A. Ajtai, Alwen and Peikert [5,
6] showed how to sample a uniform A ∈ Zm×nq together with a short basis of Λ⊥(A).
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Theorem 1 (Adapted from [6, Th. 3.1]). There exists a polynomial-time algorithm that given n,m, q ≥ 2
as inputs generates two matrices A ∈ Zm×nq and T ∈ Zm×m such that: The distribution of A is within
statistical distance 2−Ω(n) from U(Zm×nq ); the rows of T form a basis of Λ⊥(A); each row of T has norm ≤
3mqn/m.

For a lattice L ⊆ Zn, a vector c ∈ Zn and a real σ > 0, we define the Gaussian distribution of support L,
center c and standard deviation σ by DL,σ,c(b) = ρσ,c(b)/ρσ,c(L). Gentry et al. [19] exhibited an algorithm
to sample from DL,σ,c.

Theorem 2 ([19, Th. 4.1]). There exists a probabilistic polynomial-time algorithm that, given a basis (bi)i
of an n-dimensional lattice L, σ ≥

√
n · maxi ‖bi‖, and c ∈ Zn as inputs, returns a vector b ∈ L with

distribution within statistical distance 2−Ω(n) to DL,σ,c.

For A ∈ Zm×nq , σ > 0 and u ∈ Z1×n
q , we define the distribution DΛ⊥u (A),σ as c+DΛ⊥(A),σ,−c, where c is

any vector of Zm such that ct · A = u mod q. A sample x from DΛ⊥u (A),σ can be obtained using Theorem 2
along with the short basis of Λ⊥(A) provided by Theorem 1. Boneh and Freeman [8] showed how to efficiently
obtain the residual distribution of (A,x) without relying on Theorem 1.

Theorem 3 (Adapted from [8, Th. 4.3]). Let n,m, q ≥ 2, k ≥ 0 and σ > 0 be such that n < m− k, q is
prime and σ = Ω(

√
nq

n
m−k ). Let u1, . . . ,uk ∈ Z1×n

q be arbitrary. Then the residual distributions of the tuple
(A,x1, . . . ,xk) obtained from the two following experiments are within statistical distance 2−Ω(n).

Exp0 : A←↩ U(Zm×nq ); x1 ←↩ DΛ⊥u1
(A),σ, . . . ,xk ←↩ DΛ⊥uk

(A),σ

Exp1 : x1, . . . ,xk ←↩ DZm,σ; A←↩ U
(
Zm×nq |∀i ≤ k : xti ·A = ui mod q

)
.

This statement generalizes [8, Th. 4.3] in two ways. First, the latter corresponds to the special case
corresponding to taking all the ui’s equal to 0. Generalizing to arbitrary ui’s does not add any extra
complication in the proof of [8, Th. 4.3], but is important for the encryption scheme from Section 4.1. Second,
the condition on m is weaker (the corresponding assumption in [8, Th. 4.3] is that m ≥ max(2n log q, 2k)).

We will also need the following basic result on lattice Gaussians.

Lemma 1 ([33, Le. 4.4]). For any lattice L ⊆ Zn, c ∈ Zn and σ ≥
√
n · λn(L), we have Prb←↩DL,σ,c [‖b‖ ≥

σ
√
n] ≤ 2−n+1.

2.3 Learning With Errors

Let s ∈ Znq and α > 0. We define the distribution As,α as follows: Take a ←↩ U(Znq ) and e ←↩ να, and
return (a, 1q 〈a, s〉 + e) ∈ Znq × T, where T is R with addition modulo 1. The (decisional) Learning With
Errors problem LWEα, introduced by Regev in [44, 45], consists in assessing whether an oracle produces
samples from U(Znq × T) or As,α for some constant s←↩ U(Znq ).

Regev [45] showed that for q ≤ Poly(n) prime and α in the interval (
√
n

2q , 1), this problem is (quantumly)
at least as hard to solve as standard worst-case lattice problems with approximation factors Poly(n)/α. In
all the following sections, we assume that q is prime.

In this work, we consider a variant LWE where the number of oracle samples that the distinguisher
requests is a priori bounded. Ifm denotes that bound, then we will refer to this restriction as LWEα,m. In this
situation, the hardness assumption can be restated in terms of linear algebra over Zq: Given A←↩ U(Zm×nq ),
the goal is to distinguish between the distributions (over Tm)

1

q
U (Im(A)) + νmα and

1

q
U
(
Zmq
)
+ νmα .

Under the assumption that αq ≥ Ω(
√
n), the right hand side distribution is indeed within statistical dis-

tance 2−Ω(n) to U(Tm) (see, e.g., [33, Le. 4.1]). The hardness assumption states that by adding to them
a small Gaussian noise, the linear spaces Im(A) and Zmq become computationally indistinguishable. This
rephrasing in terms of linear algebra will be most helpful in the security proof of the traitor tracing scheme.
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3 The k-LWE problem

We define a variant of LWE in which the distinguisher is given additional information. It can be seen as
the dual of the k-SIS problem from [8]. Let k ≤ m and σ > 0. The (k, σ)-LWEα,m problem is as follows:
Given A ←↩ U(Zm×nq ),u ←↩ U(Z1×n

q ) and x1, . . . ,xk ←↩ DΛ⊥u (A),σ, the goal is to distinguish between the
distributions (over Tm+1)

1

q
U

(
Im

([
A
u

]))
+ νm+1

α and
1

q
U
(
Span(x+

1 , . . . ,x
+
k )
⊥)+ νm+1

α ,

where x+
i ∈ Zm+1 is defined as the vector obtained from xi ∈ Zm, by extending it by one coordinate equal

to 1. Alternatively, we could have sampled the xi’s from Λ⊥(A) while requiring their last coordinate to be 1.
Imposing that the last coordinate is 1 helps ensuring decryption correctness in the traitor tracing scheme.

Note that if the right hand side distribution had been chosen as 1
qU(Zm+1

q ) + νm+1
α , then it would

have been possible to use the x+
i ’s to build a distinguisher. Indeed, as the vector x+

i is small, the inner
product 〈 1qx

+
i ,y〉 mod 1 is small when y is sampled from the left hand side distribution, but it is uniform

in T when y is sampled from 1
qU(Zm+1

q ) + νm+1
α . By using 1

qU(Spani≤k(x
+
i )
⊥) + νm+1

α instead, the inner
product 〈x+

i ,y〉 follows the same distribution in both cases.
The following result shows that this seemingly easier variant of LWE is in fact at least as hard as the

original LWE problem. In the proof, the hint vectors x1, . . . ,xk are built as in the SIS to k-SIS reduction
from [8]. The additional difficulty stems from the presence of the noise.

Theorem 4. Let k, n,m, q be positive integers such that n < m− k and q is prime. Then for any σ, α, α′ >
0 with σ = Ω(

√
nq

n
m−k ) and α > (m + 1)k!(

√
nσ)kα′, there exists a polynomial-time reduction from

LWEνα′ ,m−k+1 to (k, σ)-LWEνα,m.

Proof. Let A be sampled uniformly in Z(m−k+1)×n
q . Our aim is to distinguish between 1

qU(Im(A))+ νm−k+1
α′

and 1
qU(Zm−k+1

q ) + νm−k+1
α′ , using an oracle O that solves the (k, σ)-LWEνα,m problem.

To build the oracle input, we let u be the last row of A and we sample x1, . . . ,xk independently
from DZm,σ (using Theorem 2). We define X ∈ Zk×m as the matrix whose rows are the xti’s. By [3, Cor. 32]
and the union bound, the rows of X are Zq-linearly independent, with probability ≥ 1 − 2kσ−m+k. If
this is not the case, the reduction fails (this occurs with exponentially small probability). Wlog, we as-
sume that the last k columns of X are Zq-linearly independent (and therefore Q-linearly independent).
We let X1 ∈ Zk×(m−k) (resp. X2 ∈ Zk×k) denote the first m − k (resp. last k) columns of X. We then
compute X ′2 = −det(X2) ·X−12 ∈ Zk×k and

R =


Im−k 0

X ′2 ·X1 X
′
2 ·

1
...
1


 ∈ Zm×(m−k+1).

The first inputs to the (k, σ)-LWEνα,m oracle O are B,u,x1, . . . ,xk, with B = R · A. By Theorem 3, the
distribution of (B,x1, . . . ,xk) is within statistical distance 2−Ω(n) from the distribution obtained by first
sampling B uniformly in Zm×nq , and then the xi’s from DΛ⊥u (B),σ.

Now, consider a sample y ∈ Tm−k+1 from either 1
qU(Im(A)) + νm−k+1

α′ or 1
qU(Zm−k+1

q ) + νm−k+1
α′ .

We are to transform it into a sample z that is to be given to oracle O. For this purpose, we define the
following (m+ 1)× (m+ 1) symmetric matrix:

Σ := α2Im+1 − S · St,

where S ∈ Z(m+1)×(m−k+1) is obtained by adjoining the row vector (0, . . . , 0, 1) at the end of R. By Lemma 1,
each entry of X has magnitude ≤

√
nσ, with probability ≥ 1 − 2−Ω(n). By Cramer’s rule, the triangle
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inequality and the union bound, each entry of S has magnitude ≤ k!(
√
nσ)k with probability ≥ 1− 2−Ω(n).

As a consequence, each entry of SSt has magnitude ≤ (m+ 1)k!2(
√
nσ)2k. As α > (m+ 1)k!(

√
nσ)kα′, we

obtain that Σ is diagonally dominant and thus positive definite (with probability exponentially close to 1).
We can therefore compute a square-root of Σ, i.e., a matrix

√
Σ such that Σ =

√
Σ ·
√
Σ
t
(for example

by using the Cholesky factorization algorithm). Furthermore, the matrix Σ is specifically chosen so that we
have equality between the noise distributions

S · νm−k+1
α′ +

√
Σ · νm+1

1 and νm+1
α .

Now, we compute z = Sy +
√
Σ · e′, where e′ is sampled from νm+1

1 . If y is sampled from 1
qU(Im(A)) +

νm−k+1
α′ , then the distribution of z is

1

q
U

(
Im

([
B
u

]))
+ νm+1

α .

On the other hand, if y is sampled from 1
qU(Zm−k+1

q ) + νm−k+1
α′ , then the vector z has distribution

1
qU(Spani≤k(x

+
i )
⊥) + νm+1

α .
Let us now complete the reduction. When given (B,u,x1, . . . ,xk, z) as input, oracle O succeeds with

some noticeable probability ε, and we forward its reply as output of our LWE algorithm. The arguments
above imply that the LWE algorithm succeeds with probability ≥ ε− 2−Ω(n). ut

4 A lattice-based public-key traitor tracing scheme

We describe and analyze the traitor tracing scheme in several steps. First, we give the underlying multi-user
public-key encryption scheme. We then explain how to implement minimal access black-box confirmation
tracing, and finally prove the soundness and confirmation properties of the tracing algorithm.

4.1 A multi-user encryption scheme

Setup. The trusted authority generates a master key pair using algorithm from Theorem 1. Let (A, T ) ∈
Zm×nq × Zm×m be the output. We additionally sample u uniformly in Z1×m

q . Matrix T will be part of the
tracing key tk, whereas the public key is the pair pk = (A,u).

Each user Ui for i ≤ N obtains a secret key ski from the trusted authority, as follows. The authority
executes the algorithm from Theorem 2 using the basis of Λ⊥(A) consisting of the rows of T to obtain a
sample xi from a distribution whose statistical distance from DΛ⊥u (A),σ is exponentially small. The standard
deviation σ may be chosen as small as 3m3/2qn/m. The user secret key is x+

i ∈ Zm+1, i.e., vector xi
augmented by one coordinate equal to 1. By Lemma 1, we have ‖xi‖ ≤

√
mσ for all i ≤ N , with probability ≥

1−N2−m+1.
The tracing key tk consists of the matrix T and all pairs (Ui, ski).

Encrypt. The encryption algorithm is similar to the 1-bit encryption scheme from [19, Sect. 7.1], but embed-
ding the plaintext in the least significant bit of the last coordinate of the ciphertext vector. More precisely,
the plaintext and ciphertext domains are P = {0, 1} and C = Zm+1

q respectively, and the encryption function
is:

Enc :M 7→
[
A
u

]
· s+ 2e+

[
0
M

]
, where s←↩ U(Znq ) and e←↩ bναqem+1,

where α is chosen so that αq = Ω(
√
n). It is a standard observation that this scheme is semantically secure

under chosen plaintext attacks (IND-CPA), under the assumption that LWEm+1,α is hard to solve. First,
the hardness of LWEm+1,α is preserved when replacing να by the rounding of it to the nearest multiple
of 1

q , because the rounding can be performed on the LWE sample obliviously of any secret data. We can
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then multiply the sample by q and we obtain that given A and u, the distribution U
(
Im

(
A
u

))
+ bναqe

over Zm+1
q is computationally indistinguishable from uniform. As 2 is invertible modulo q, this distribution

remains computationally indistinguishable from uniform when multiplied by 2. Finally, if s is uniform in Znq ,
then so is 2s.

Decrypt. To decrypt a ciphertext c ∈ Zm+1
q , user Ui uses its secret key x+

i and evaluates the following
function from Zm+1

q to {0, 1}:
Dec : c 7→ (〈x+

i , c〉 mod q) mod 2.

If c is an honestly generated ciphertext of a plaintextM ∈ {0, 1}, we have 〈x+
i , c〉 = 2〈x+

i , e〉+M mod q,
where e ←↩ bναqem+1. It can be shown that the latter has magnitude ≤ 2

√
mαq‖x+

i ‖ with probability
exponentially close to 1 over the randomness of e. This quantity is itself ≤ 3mαqσ for all i, with probability ≥
1 − N2−n+1. To ensure that honestly generated ciphertexts decrypt correctly, it suffices to set q larger
than 4mαqσ.

Theorem 5. Let m,n, q,N be integers such that q is prime and N ≤ 2o(n). Let α, σ > 0 such that σ =

Ω(m3/2qn/m) and α ∈
(

2
√
n
q , 1

4mσ

)
. Then the scheme described above is IND-CPA under the assumption

that LWEm+1,α is hard. Furthermore, the decryption algorithm is correct:

∀M ∈ {0, 1},∀i ≤ N : Dec (Enc(M,mpk), ski) =M

with probability ≥ 1− 2−Ω(n) over the randomness used in the setup phase and the evaluation of Enc.

Note that other parameter constraints will be added to ensure that tracing is possible.

4.2 Tracing traitors

We now present a minimal access black-box confirmation algorithm Trace.3 It is given access to an oracle OD
that provides minimal black-box access to a decryption device D. It takes as inputs the tracing key tk =
(T, (Ui,xi)i≤N ) and a set of suspect users {Ui1 , . . . ,Uik} of cardinality k ≤ t, where t is the a priori bound
on any coalition size. Wlog, we may consider that k = t and ij = j for all j ≤ k.

The Trace algorithm attempts to gather information about which keys have been used to build the
decoder D, by feeding different carefully designed distributions to the oracle OD. We consider the following
t+ 1 distributions Tr0, . . . , T rt over C = Zm+1

q :

Tri = U
(
Span(x+

1 , . . . ,x
+
i )
⊥)+ bναqem+1.

The first distribution Tr0 is the uniform distribution, whereas the last distribution Trt is meant to be com-
putationally indistinguishable from the distribution Enc(0). We define the following acceptance probabilities
of OD, for i ∈ [0, t]:

pi = Pr
c←↩ Tri

M ←↩ U({0, 1})

[
OD

(
c+

[
0
M

]
,M

)
= 1

]
.

A gap between pi−1 and pi is meant to indicate that user Ui was part of the traitor coalition. We also define

p∞ = Pr
M ←↩ U({0, 1})
c←↩ Enc(M)

[
OD (c,M) = 1

]
.

Finally, we define the usefulness of the decoder as ε := p∞ − 1
|P| = p∞ − 1

2 . It can be estimated to within a
factor 2 with probability ≥ 2−Ω(n) via the Chernoff bound (and this costs O(ε−2n) calls to OD).

We can now formally describe algorithm Trace. It proceeds in three steps, as follows.
3 Note that in our context, minimal access is equivalent to standard access: since the plaintext domain size is ≤
Poly(n), the plaintext messages can be tested exhaustively. We however keep this formalism, as the RLWE variant
from Section 5 handles an exponentially large plaintext domain.
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1. It computes an estimate ε̃ of the usefulness ε of the decoder to within a multiplicative factor of 2, which
holds with probability ≥ 1− 2−n. This can be obtained via Chernoff’s bound, and costs O(ε−2n).

2. For i from 0 to t, Trace computes an approximation p̃i of pi to within an absolute error ≤ 1/(16ε̃t), which
holds with probability ≥ 1− 2−n. It is obtained via Chernoff’s bound by generating O(ε2n) independent
samples c from Tri.

3. If p̃i − p̃i−1 > ε̃
8t for some i ≤ t, then Trace returns “Ui is guilty”. Otherwise, it returns “⊥”.

Note that we are implicitly using the fact that D is stateless/resettable. Also, if ε is n−c for some
constant c, then Trace runs in polynomial time.

4.3 Proving the confirmation and soundness properties

We start by proving the confirmation property.

Theorem 6. Suppose that the setup parameters satisfy n < m − t and σ = Ω(
√
n · q

n
m−t ). Assume that

decoder D was built using ski1 , . . . , skik and that these skij ’s all belong to {sk1, . . . , skt}. If the problem (t, σ)-
LWEm+1,α is hard to solve, then algorithm Trace returns “User Ui is guilty”, for some i ≤ t.

Proof. Wlog we may assume that the traitors in the coalition know all the secret keys sk1, . . . , skt. The
hardness of (t, σ)-LWEm+1,q,α implies that the distributions Enc(0) and Trt are computationally indistin-
guishable. As a consequence, we have that pt is negligibly close to p∞ (the rounding to nearest of the samples
from ναq can be performed directly on the challenge samples, obliviously to any secret data).

On the other hand, the acceptance probability p0 is ≤ 1
2 . As pt − p0 >

ε
2 , we must have p̃t − p̃0 > ε

4 >
ε̃
8 ,

with probability exponentially close to 1. As a consequence, there must exist i ≤ t such that p̃i − p̃i−1 > ε̃
8t ,

and algorithm Trace returns “User Ui is guilty”. ut

Proving the soundness property is more involved. We use the hardness of (t, σ)-LWE and Theorem 3
several times.

Theorem 7. Suppose that the setup parameters satisfy n < m − 2t and σ = Ω(
√
n+ t · q

n+t+1
m−t−1 ). Assume

that decoder D was built using ski1 , . . . , skik . If the problem (t+ 1, σ)-LWEm+1,α is hard to solve, then i0 ∈
{i1, . . . , ik} for any i0 such that algorithm Trace returns “User Ui0 is guilty”.

Proof. Assume (by contradiction) that the traitors Ui1 , . . . ,Uik with k ≤ t succeed in having Trace incrimi-
nate an innocent user Ui0 (with i0 6∈ {i1, . . . , it}). We are to show that the algorithm T the traitors use to
build the pirate decoder may be exploited for solving (t+1, σ)-LWE. First, notice that algorithm T provides
an algorithm A that wins the following game.

Game0. The game consists of three steps, as follows:

• Initialize0: Sample
[
A
u

]
←↩ U(Z(m+1)×n

q ) and xi ←↩ DΛ⊥u (A),σ for i ≤ t+ 1.

• Input0: Send A,u and (xi)i≤t+1,i6=i0 to A.
• Challenge0: Sample b ←↩ U({0, 1}). Send to A arbitrarily many samples
from U

(
Spani≤i0−1+b(x

+
i )
⊥)+ bναqem+1.

We say that A wins Game0 if it finds the value of b with non-negligible advantage.

Algorithm A can be obtained from algorithm T by sampling M uniformly in {0, 1}, and giving (c +
(0|M)t,M) as input to OD, where c is any sample from Challenge0. We now introduce two variations of
Game0, which differ in the Initialize and Challenge steps.
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Game1. The game consists of three steps, as follows:

• Initialize1: Sample
[
A
u

]
←↩ U(Z(m+1)×n

q ), xi ←↩ DΛ⊥u (A),σ for i ≤ t + 1, and
[
bj
vj

]
←↩

U(Spani<i0(x
+
i )
⊥) for j ≤ t− i0 + 2.

• Input1: Send A,u and (xi)i≤t+1,i6=i0 to A.
• Challenge1: Sample b ←↩ U({0, 1}). If b = 0, then send to A arbitrarily many samples
from U

(
Spani≤i0(x

+
i )
⊥) + bναqem+1. If b = 1, then send to A arbitrarily many samples from the

distribution:
U

(
Im

[
A b1 . . . bt−i0+2

u v1 . . . vt−i0+2

])
+ bναqem+1.

As in Game0, algorithm A wins Game1 if it guesses b with non-negligible advantage.

Game′1 is as Game1, except that if b = 0 in the Challenge step, then the samples sent to A are from the
distribution U

(
Spani<i0(x

+
i )
⊥)+ bναqem+1.

Note that A’s inputs in Game0, Game1 and Game′1 are identical (only the distributions of the Challenge
steps vary). By the triangle inequality, if A wins Game0 with some non-negligible advantage, then it may be
used to win either Game1 or Game′1 with non-negligible advantage. In our use of A to solve (t + 1, σ)-LWE,
we may guess in which situation we are. We now consider the two situations separately.

First situation: AlgorithmA wins Game′1 with non-negligible advantage. Then it may be used to solve (t+1, σ)-
LWE. Indeed, assume we have a (t + 1, σ)-LWE input (A,u, (xi)i≤t+1), and that we aim at distinguishing
between the following distributions over Zm+1

q :

U

(
Im

([
A
u

]))
+ bναqem+1 and U

(
Spani≤t+1(x

+
i )
⊥)+ bναqem+1.

To solve this problem, we sample bj and vj for j ≤ t − i0 + 2, as in step Initialize1. Then we add a uni-

form Zq-linear combination of the
[
bj
vj

]
’s to the challenge samples. With probability exponentially close to 1

(with respect to n), these vectors are all linearly independent and none of them belongs to Spani≥i0(x
+
i ).

In that case, the transformation maps the distribution U
(
Spani≤t+1(x

+
i )
⊥)+ bναqem+1 to the distribution

U
(
Spani<i0(x

+
i )
⊥) + bναqem+1, and maps the distribution U

(
Im

([
A
u

]))
+ bναqem+1 to the distribu-

tion U
(
Im

[
A b1 . . . bt−i0+2

u v1 . . . vt−i0+2

])
+ bναqem+1. Algorithm A thus leads to a (t+ 1, σ)-LWE solver.

Second situation: Algorithm A wins Game1 with non-negligible advantage. Let us define Game2 as being the
same as Game1, but with the following new first step:

• Initialize2: Sample
[
A
u

]
←↩ U(Z(m+1)×n

q ),
[
bj
vj

]
←↩ U(Zm+1

q ) for j ≤ t − i0 + 2, xi ←↩ DΛ⊥u (A),σ

for i ≥ i0 and xi ←↩ DΛ⊥
u′ (A

′),σ for i < i0, with

A′ = [A|b1| . . . |bt−i0+2] and u′ = (u|v1| . . . |vt−i0+2).

By using Theorem 3 twice with (xi)i<i0 (once to swap the sampling of A and that of the xi’s and once
to swap the sampling of the xi’s and those of A and the bj ’s), we obtain that the residual distributions
of (A,u, (bj)j , (vj)j , (xi)i) at the end of Initialize1 and Initialize2 are within exponentially small statistical
distance. Therefore, algorithm A wins Game2 with non-negligible advantage.

Now, consider Game3, which differs from Game2 only in that xi0 is also sampled from DΛ⊥
u′ (A

′),σ (instead
of DΛ⊥u (A),σ).
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• Initialize3: Sample
[
A
u

]
←↩ U(Z(m+1)×n

q ),
[
bj
vj

]
←↩ U(Zm+1

q ) for j ≤ t − i0 + 2, xi ←↩ DΛ⊥u (A),σ

for i > i0 and xi ←↩ DΛ⊥
u′ (A

′),σ for i ≤ i0
As xi0 is not given to A at step Input3, this modification does not alter the winning probability of A,
so A wins Game3 with non-negligible advantage. Now, we again use Theorem 3 twice, but with (xi)i≤i0 : once
for swapping the sampling the xi’s with those of A and the bj ’s, and once for swapping the sampling of A
and that of the xi’s. This shows that algorithm A wins Game4 with non-negligible advantage, where Game4
differs from Game3 only in its first step.

• Initialize4: Sample
[
A
u

]
←↩ U(Z(m+1)×n

q ), xi ←↩ DΛ⊥u (A),σ for i ≤ t, and
[
bj
vj

]
←↩ U(Spani≤i0(x

+
i )
⊥)

for j ≤ t− i0 + 1.
The situation we are in now is very similar to that we were in the first situation, when A was supposed

to win Game′1. The arguments used in the first situation carry over here. ut

4.4 Example parameters

The following conditions imply that all the assumptions of Theorems 5, 6 and 7 hold:

N ≤ 2o(n), n+ 2t < m, σ = Ω
(
m3/2q

n+t+1
m−t−1

)
, α ∈

(
2
√
n

q
,

1

4mσ

)
and q prime.

The security then relies on the assumptions that LWEm+1,α and (t + 1, σ)-LWEm+1,α are hard. In order
to rely on the worst-case hardness of standard lattice problems with polynomial approximation factors via
Theorem 4, one can for example set:

N ≤ 2o(n), t ≤ O(1), m = cn, q = Ω
(
n

3(c−1)
c−3

)
, σ = Θ

(
n3/2q

2
c−1

)
and α = Θ

(√
n

q

)
,

for any constant c > 3. The restriction t ≤ O(1) may be an artifact of the looseness of the reduction from
LWE to (t, σ)-LWE. If instead the parameters are set to thwart the best known attack against (t, σ)-LWE, the
bound t may be set arbitrarily large and m should then increase as Ω(n+ t). With the choice of parameters
above, the public key has bit-size Õ(n2) and each user key has bit-size Õ(n). Encryption and decryption of 1
bit respectively cost Õ(n2) and Õ(n) bit operations.

5 A more efficient scheme based on RLWE

The problem Learning With Errors over Rings introduced in [30] allows for designing more efficient variants
of cryptographic protocols based on LWE. The adaptation of our traitor tracing scheme to RLWE is non-
trivial and requires some recent results on RLWE. As we will see, the variant of RLWE we use differs from
that of [30] in several respects.

The RLWE problem. Let n, q ≥ 2 with n a power of 2. We define the rings R = Z[x]/(xn + 1) and Rq =

Zq[x]/(xn + 1). We let TR denote R[x]/(xn + 1) modulo 1. Furthermore, for α > 0, we let ν(R)
α denote the

distribution obtained by taking n independent samples from να and interpreting them as the coefficients of a
real-valued polynomial modulo xn+1. For s ∈ Rq and α > 0, we consider the distribution A(R)

s,α as the output
distribution of the following procedure: Sample a←↩ U(Rq) and e←↩ ν(R)

α , and return (a, 1qa·s+e) ∈ Rq×TR.
The (decisional) RLWEα problem consists in secretly sampling s ←↩ U(Rq) and asking for distinguishing
between the distributions A(R)

s,α and U(Rq × TR) given arbitrarily many samples. In [30], Lyubashevsky et
al. showed that under some assumptions (see below), RLWEα is (quantumly) at least as hard to solve as
the Id-SIVP problem with approximation factor nO(1)/α, where Id-SIVP is SIVP restricted to lattices that
correspond to ideals of R (via the polynomial coefficients to vector coordinates mapping). The result in
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fact holds when the distribution ν
(R)
α is replaced by a randomly chosen elliptical Gaussian, with standard

deviations within a small polynomial factor to α. The assumptions are that q belongs to (Ω(n3/2)
α ,Poly(n))

and that (xn + 1) mod q has n distinct linear factors (i.e., q = 1 mod 2n).

A modified RLWE problem. Here we consider RLWE only with a bounded number of samples from A
(R)
s,α .

For m ≥ 2, we define the RLWEm,α hardness assumption as follows: Given a ←↩ U(Rmq ), the goal is to
distinguish between the distributions (over TmR )

1

q
(a · U(Rq)) + ν(R)

α and
1

q
U
(
Rmq
)
+ ν(R)

α .

Lyubashevsky et al. recently showed in [31] that if the numberm of RLWE samples is bounded by a constant,
then the result still holds with the noise distribution ν(R)

α . We place ourselves in that situation.
We also modify the choice of the modulus q. Assume that xn+1 mod q factors as xn+1 =

∏
i≤k Φi mod q,

where the Φi’s are irreducible. Then, by the Chinese Remainder Theorem, the map reducing an element
of Rq modulo each one of the Φi’s is a ring homomorphism between Rq and the Cartesian product of finite
field FqdegΦi×. . .×FqdegΦk . As the proof techniques we use in the case of LWE strongly rely on the fact that Zq
is a field (ensuring that Zmq is a vector space), in our adaptation to RLWE it would be most convenient to
choose a q such that xn+1 is irreducible modulo q. Unfortunately, such a q does not exist, and the closest we
can achieve is to take q so that xn +1 mod q has exactly two irreducible factors, both of degree n/2. This is
obtained by choosing q = 3 mod 4 prime. Then Rq ' (Fn/2q )2. By a recent result of Langlois and Stehlé [27],
RLWE with such a q is still as hard as Id-SIVP with approximation factor nO(1)/α.

Main modifications with the LWE-based approach. The proofs of Theorems 3, 4 and 7 strongly rely upon Zmq
being a vector space over a finite field. It is possible to adapt them to Rq ' (Fn/2q )2, which in our situation
“behaves” as a field. A typical property that we require is that k < m vectors sampled independently
from U(Rmq ) generate a subset of Rmq of cardinality qnk of Rmq , with probability ≥ 1− 2−Ω(n). To show such
a property, it suffices to use the Chinese Remainder Theorem and argue that for both copies of Fqn/2 , the
random vectors are linearly independent with probability ≥ 1− 2−Ω(n).

The other main ingredient in the proof of Theorem 3 is a probabilistic bound on the m-th minimum (or,
more precisely, its smoothing parameter) of the lattice Λ⊥(A), for A ←↩ U(Zm×nq ) (see [8, Le. 4.4]). In our
RLWE setting, we instead sample A from U(Rm×kq ), for some k < m (the maximum value of k that we use
it t+ 1, where t is the a priori bound on the traitor coalition size). The lattice Λ⊥(A) = {x ∈ Rm : xt ·A =
0 mod q} has dimension mn. It is possible to obtain a bound on its mn-th minimum by adapting the proof
of [49, Le. 8] (which only considers the case where k = 1).

Lemma 2. Let n,m, k, q be positive integers with k ≤ m. We have:

Pr
A←↩U(Rm×kq )

[
λmn(Λ

⊥(A)) ≥ 8mn
3
2 q

k
m

]
≥ 1−

(
1

2
√
n

)nk
.

A proof of Lemma 2 is given in appendix. Overall, this allows us to obtain the following equivalent to
Theorem 3. A proof will be given in the full version.

Theorem 8. Let n, d,m, q ≥ 2, k ≥ 0 and σ > 0 be such that n is a power of 2, q = 3 mod 4 is prime,
k+d < m, q and σ = Ω(

√
nq

n
2(m−k) ). Let u1, . . . , uk ∈ Rq be arbitrary. Then the residual distributions of the

tuple (A,x1, . . . ,xk) obtained from the two following experiments are within statistical distance 2−Ω(n).

Exp0 : A←↩ U(Rm×dq ); x1 ←↩ DΛ⊥u1
(A),σ, . . . ,xk ←↩ DΛ⊥uk

(A),σ

Exp1 : x1, . . . ,xk ←↩ DRm,σ; A←↩ U
(
Rm×dq |∀i ≤ k : xti ·A = ui mod q

)
.
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Thanks to the choice of the noise distribution ν(R)
α , the proof of Theorem 4 carries over directly to the

RLWE setting, providing a reduction from RLWEα′ to (k, σ)-RLWEα for α > k!(Poly(mn)σ)kα′.
The RLWE-based traitor tracing scheme. The above adaptations of the LWE-based approach allow us to
prove the security, soundness and confirmation of the following RLWE-based traitor tracing scheme. In the
Setup phase, we use the Stehlé et al. [50, Th. 2] adaptation of the Ajtai-Alwen-Peikert algorithm to the ring
setting. The public key consists of a matrix A ∈ Rm×1q and a ring element u ∈ Rq. A user secret key is a
short vector x ∈ Rm such that xt · A = u mod q, sampled using Theorem 2. The plaintext domain is P =
Z2[x]/(x

n + 1) and the ciphertext domain is C = Rm+1
q . Encryption is as in the LWE case, and decryption

of a ciphertext c ∈ C with secret key x is performed by computing (〈x+, c〉 mod q) mod 2 where x+ ∈ Rm+1

is x augmented with one coordinate equal to 1. Tracing is as in the LWE setting. This scheme achieves quasi-
optimal efficiency: For t,m = O(1), the keys have bit-sizes Õ(n) and encryption/decryption of n plaintext
bits costs Õ(n); and on the other hand the best known attacks against the underlying worst-case hardness
assumption costs 2−Ω̃(n). Finally, note that constant transmission rate |C|/|P| can be achieved for t = O(1),
by replacing the modulus 2 by an integer p of bit-length proportional to q (e.g., taking p = Θ(

√
q)).
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Proof of Lemma 2

Proof. We use the transferance bound λmn(Λ⊥(A))λ1(L) ≤ mn, where L is the dual lattice of Λ⊥(A). By
adapting [49, Le. 7], it can be seen that L = 1

qLq(A
×) where A× is the matrix obtained by replacing each

entry ai,j(x) ∈ Rq of A by ai,j(x−1), and

Lq(B) =
{
y ∈ Rm : ∃s ∈ Rdq ,Bs = y mod q

}
, for any B ∈ Rm×dq .

As the map a(x) 7→ a(x−1) is a bijection, it suffices to prove that:

Pr
A←↩U(Rm×kq )

[
λ∞1 (L) ≥ 1

8
√
n
q1−

k
m

]
≥ 1−

(
1

2
√
n

)nk
.

We obtain this result by generalizing the proof of [49, Le. 8]. By the union bound, the probability
that Lq(A) contains a non-zero vector of infinity norm ≤ B := 1

8
√
n
q1−

k
m is bounded from above by:∑

t ∈ Rmq
0 < ‖t‖∞ ≤ B

∑
s∈Rkq

Pr
A←↩U(Rm×kq )

[As = t] =
∑

t ∈ Rmq
0 < ‖t‖∞ ≤ B

∑
s∈Rkq

∏
i≤m

Pr
a←↩U(Rkq )

[〈a, s〉 = ti].

We now consider the probability (over the randomness of a) that 〈a, s〉 = ti. For this purpose, we consider
the decomposition of Rq as a Cartesian product of finite fields. If xn + 1 =

∏
j Φj mod q with irreducible

polynomials Φj , then these Φj ’s have a common degree δ dividing n. Then we have Rq ' (Fqδ)
n
δ , where Fqδ is

the field with qδ elements. This ring isomorphism can be made explicit: It is given by the Chinese Remainder
Theorem map x 7→ (x mod Φ1, . . . , x mod Φn/δ). Now, the equality 〈a, s〉 = ti holds if and only if it holds
over all CRT components. Wlog we consider Φ1. If ti and all the coordinates of s are zero modulo Φ1, then
the probability that 〈a, s〉 = ti mod Φ1 is 1. Otherwise, if ti or some coordinate of s is non-zero on that
component, then the probability is ≤ qδ. As a consequence, the probability under scope is bounded from
above by:∑

0≤j≤n/δ

∑
h =

∏
i∈S′ Φi

S′ ⊆ S
|S′| = j

∑
s ∈ Rkq
∀i, h|si

∑
t ∈ Rmq

0 < ‖t‖∞ ≤ B
∀i, h|ti

qm(jδ−n) ≤
∑

0≤j≤n/δ

∑
h =

∏
i∈S′ Φi

S′ ⊆ S
|S′| = j

∑
t ∈ Rmq
‖t‖∞ ≤ B
∀i, h|ti

q(m−k)(jδ−n).

The rest of the proof is as in [49]. ut
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