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Abstract. Most lattice-based cryptographic schemes are built upon the assumed hardness of the
Short Integer Solution (SIS) and Learning With Errors (LWE) problems. Their efficiencies can be
drastically improved by switching the hardness assumptions to the more compact Ring-SIS and Ring-
LWE problems. However, this change of hardness assumptions comes along with a possible security
weakening: SIS and LWE are known to be at least as hard as standard (worst-case) problems on
euclidean lattices, whereas Ring-SIS and Ring-LWE are only known to be as hard as their restrictions
to special classes of ideal lattices, corresponding to ideals of some polynomial rings. In this work, we
define the Module-SIS and Module-LWE problems, which bridge SIS with Ring-SIS, and LWE with
Ring-LWE, respectively. We prove that these average-case problems are at least as hard as standard
lattice problems restricted to module lattices (which themselves generalize arbitrary and ideal lattices).
As these new problems enlarge the toolbox of the lattice-based cryptographer, they could prove useful
for designing new schemes. Importantly, the worst-case to average-case reductions for the module
problems are (qualitatively) sharp, in the sense that there exist converse reductions. This property
is not known to hold in the context of Ring-SIS/Ring-LWE: Ideal lattice problems could reveal easy
without impacting the hardness of Ring-SIS/Ring-LWE.

1 Introduction

A euclidean lattice is the set of all integer linear combinations of some n linearly independent vectors
belonging to a Euclidean space. There are many algorithmic problems related to lattices. In this work, we
will consider the Shortest Independent Vectors problems (SIVP): The goal is to find n linearly independent
vectors s1, . . . , sn in a given n-dimensional lattice, that minimize maxi ‖si‖. A standard relaxation of this
optimization problem, parametrized by γ(n) ≥ 1, consists in requesting that maxi ‖si‖ is within a factor γ
of the optimal value. This variant is referred to as SIVPγ and γ is called the approximation factor. SIVPγ
is known to be NP-hard for any approximation factor γ ≤ O(1) (see [3]). A standard and well accepted
conjecture is to assume that there is no polynomial time algorithm that achieves an approximation factor
that is polynomial in n, even using quantum computing [22].

Lattice-based cryptography is a branch of cryptography exploiting the presumed (worst-case) hardness
of lattice problems such as SIVPγ . Its main advantages are its simplicity, efficiency, and apparent security
against quantum computers. But perhaps the most appealing aspect is that lattice-based cryptographic
protocols often enjoy very strong security proofs based on the hardness of worst-case problems. Typically, an
average-case problem (solvers of which correspond to a protocol attacker) is shown to be at least as hard as
the arbitrary instances of another problem which is presumed difficult. We refer to [22] for a recent survey
on lattice-based cryptography.

Two main problems serve as the foundation of numerous lattice-based cryptographic protocols. The first
one, introduced by Ajtai in 1996 [1], is the Short Integer Solution problem (SIS): For parameters n, m and q
positive integers, the problem is to find a short non zero solution z ∈ Zm to the homogeneous linear system
Az = 0 mod q for uniformly random A ∈ Zn×mq (the notation Zq denotes the ring of integers modulo q).
The second one, introduced by Regev in 2005 [30], is the Learning With Errors problem (LWE). The search
version of LWE is as follows: For parameters n and q positive integers and χ a probability density function
on T = R/Z ' [0, 1), the problem is to find s, given arbitrarily many independent pairs (a, 1

q 〈a, s〉 + e)



for a vector a ∈ Znq chosen uniformly at random, and e ∈ T sampled from χ. It is possible to interpret
LWE in terms of linear algebra: If m independent samples (ai, 1

q 〈ai, s〉 + ei) are considered, the goal is to
find s from (A, 1

qAs + e), where the rows of A correspond to the ai’s and e = (e1, . . . , em)T . The decision
counterpart of LWE consists in distinguishing between arbitrarily many independent pairs (a, 1

q 〈a, s〉 + e)
sampled as in the search version and the same number of uniformly random and independent pairs.

Ajtai [1] proposed the first worst-case to average-case reduction for a lattice problem, by providing a
reduction from SIVPγ to SIS. Later, Regev [30,31] showed the hardness of the LWE problem by describing
a (quantum) reduction from SIVPγ to LWE. Cryptographic protocols relying on SIS or LWE therefore
enjoy the property of being provably as secure as a worst-case problem which is strongly suspected of being
extremely hard. However, on the other hand, the cryptographic applications of SIS and LWE are inherently
inefficient due to the size of the associated key (or public data), which typically consists of the matrix A.

To circumvent this inherent inefficiency, Micciancio [15,17] — inspired from the efficient NTRU encryption
scheme [11] that can be interpreted in terms of lattices — initiated an approach that consists in changing the
SIS and LWE problems to variants involving structured matrices. In these variants, the random matrix A
is replaced by one with a specific block-Toeplitz structure, thus allowing for more compact keys and more
efficient algorithms. The problem considered by Micciancio in [17] was later replaced by a more powerful
variant [13,26], now commonly referred to as Short Integer Solution problem over Rings, or R-SIS (it was
initially called Ideal-SIS). A similar adaptation for LWE, called R-LWE, was introduced by Lyubashevsky
et al [14] (see also [33]). Similarly to SIS and LWE, these problems admit reductions from worst-case lattice
problems [13,26,14], but, however, the corresponding worst-case problem is now SIVPγ restricted to ideal
lattices (which correspond to ideals of the ring of integers of a number field corresponding to the specific
matrix structure). The latter problem is called Id-SIVP.

Main results. In this paper, we bridge the reductions from SIVP to SIS and Id-SIVP to R-SIS on the first
hand, and from SIVP to LWE and Id-SIVP to R-LWE on the second hand. We consider two problems M-SIS
and M-LWE, where the letter M stands for module. A module is an algebraic structure generalizing rings and
vector spaces, whereas module lattices (corresponding to finitely generated modules over the ring of integers
of a number field) generalize both arbitrary lattices and ideal lattices. Note that M-LWE has recently been
introduced (although not studied) in [6], where it is called Generalized-LWE. We describe two new worst-case
to average-case reductions: A reduction from Mod-SIVP (i.e., SIVP restricted to module lattices) to M-SIS,
and a (quantum) reduction from Mod-SIVP to M-LWE in both its search and decision versions.

The Mod-SIVP to M-SIS and Mod-SIVP to M-LWE reductions are smooth generalizations of the existing
reductions: By setting the module dimension and the field degree appropriately, we recover the former
reductions. When doing so, the conditions on the approximation factor γ and the modulus q required for
the results to hold match with the conditions of the existing reductions, up to a factor that is logarithmic
in the lattice dimension. These parameters quantify the quality of the reductions: The hardness of the
SIVP problem is given by the approximation factor γ, whereas the bit-size of the average-case instances is
proportional to log q.

To achieve these results, we carefully combine and adapt the existing reductions and their proofs of
correctness ([9] and [13] for M-SIS, and [31] and [14] for M-LWE). At a high level, the module structure can
be seen as a "tensor" between the lattice and ideal algebraic structures, leading to reductions and proof that
can heuristically be seen as "tensors" of the former reductions and proofs.

A larger toolbox for the lattice cryptographer. The hardness results for M-SIS and M-LWE possibly enlarge
the tool box for devising lattice-based cryptosystems. Let us consider small examples. The following is an
instance of M-SIS for which we can prove hardness for specific values of the parameters n, q and β. Given ai,j ’s
sampled uniformly and independently from the uniform distribution over Zq[x]/(xn+1), the goal is to find zi’s
in Z[x]/(xn + 1) not all zero, with coefficients smaller than a prescribed bound β and such that:[

a11 a12 a13
a21 a22 a23

]
·

 z1
z2
z3

 = 0 mod q.
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Similarly, our results on M-LWE imply that for specific values of n, q and for a specific error distribution ψ
taking small values in Z[x]/(xn+1) (or, actually, a specific distribution over such distributions), the following
pair is computationally indistinguishable) from uniform over its range:a11 a12

a21 a22
a31 a32

 ,
a11 a12
a21 a22
a31 a32

 · [s1
s2

]
+

 e1
e2
e3

 mod q

 ,

where the aij ’s and si’s are sampled uniformly in Zq[x]/(xn + 1), and the ei’s are sampled from ψ.
Note that the existing results on R-LWE and R-SIS already imply that these problems are as hard as

some SIVP instances: For example, one can embed an R-SIS instance into the first row of an M-SIS instance,
and generate the other row(s) independently. However, with this approach, the hardness of the corresponding
worst-case instances is related to n-dimensional instances of SIVP. With our new approach, we can show
that the M-SIS instance above is as hard as solving SIVP for a (2n)-dimensional lattice (or, more generally,
a (dn)-dimensional lattice, if the number of rows of the M-SIS matrix is d). If SIVP is exponentially hard
to solve (with respect to the lattice dimension), the module approach provides a complexity lower bound
for solving this simple M-SIS instance that is the square (resp. dth power) of the lower bound provided by
relying on R-SIS.

Hedging against a possible non-hardness of Id-SIVP. The SIVP to SIS and SIVP to LWE reductions are
qualitatively sharp in the sense that they allow for converse reductions: Both LWE and SIS can be solved
using an SIVP solver. Such a result is not known to hold for Id-SIVP and R-SIS/R-LWE, possibly hinting
at a weakness of Id-SIVP. We show (in Section 5) that the Mod-SIVP to M-SIS/M-LWE do not suffer from
this drawback. Furthermore, Mod-SIVP can trivially be shown to be no easier than Id-SIVP (as any Id-SIVP
instance can be encoded into a Mod-SIVP instance of higher dimension). As a consequence, our results lead
to cryptographic primitives whose efficiencies are within a constant factor of those based on R-SIS/R-LWE,
but for which the worst-case to average-case reduction is sharp.

Id-SIVP has been much less studied than SIVP, and attacks on SIVP working only in the case of ideal
lattices cannot be fully ruled out. Such attacks could, for example, exploit the multiplicative structure of
the ideals. Such weaknesses due to the multiplicative structure actually exist in the case for the decisional
counterparts of SIVPγ : It becomes easy for ideal lattices (assuming γ is not too small), because good and
efficiently computable estimates are known for the successive minima of any given ideal lattice (see, e.g., [27,
Se. 6]). It is an important open problem to assess the hardness of Id-SIVP.

Related works. Most SIVP to SIS reductions (including ours) consider the euclidean norm. Peikert [24]
described an SIVP to SIS reduction that handles all `p norms. Independently, many variants of LWE have
been shown as hard as Regev’s original LWE: These variants may consist in sampling the secret vector s
from the same distribution as the errors [2], in sampling the error vectors from other distributions [25,10]
and in relaxing the conditions on the factorisation of the modulus [19, Se. 3] (see also the references therein).
In [25], Peikert partially dequantumized Regev’s proof of hardness of LWE [31], by proposing a reduction
from (several variants of) the decisional GapSVP problem to LWE. GapSVPγ consists in estimating the
minimum of the input lattice to within a multiplicative factor γ. Peikert’s classical reduction is restricted to
large LWE moduli q (that are additionally required to be products of many small primes in the case of the
decisional variant of LWE), unless one considers a variant of GapSVP that is somewhat unusual. Peikert’s
dequantumization carries over to the module case, by giving a reduction from GapSVP restricted to module
lattices to M-LWE (using Lemma 17 from Section 4). Note that it also carries over to ideal/R-LWE setting
but is meaningless in this situation as GapSVP is easy for ideal lattices and the involved approximation
factors γ (as a good approximation to the minimum known). Other cryptographically useful variants of SIS
and LWE proven as secure as SIVP include k-SIS [4], ISIS [9] and subspace-LWE [12,28].

Some computational aspects of module lattices have been investigated in [5,8] (see also [7, Ch. 1]). These
results show that the additional algebraic structure may be exploited to obtain compact representations of
modules (namely, pseudo-bases) similar to lattice bases in Hermite Normal Form and LLL-reduced lattice
bases. None hints that SIVP would be any easier when restricted to module lattices.
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Road-map. We first give reminders on euclidean lattices, elementary algebraic number theory and Gaussian
measures. In Section 3 we give a reduction from Mod-SIVP to M-SIS. Then, in Section 4, we describe
a (quantum) reduction from Mod-SIVP to both the computational and the decisional variants of M-LWE.
Finally, we give converse reductions in Section 5, i.e., reductions from both M-SIS and M-LWE to Mod-SIVP.

2 Preliminaries

Notation. Vectors will be denoted in bold, and if x is a vector, then its ith coordinate will be denoted by xi
and its euclidean norm will be denoted by ‖x‖. For a tuple of vectors X = (xi)i, we let ‖X‖ = maxi ‖xi‖.
The vector ei denotes the vector with 1 in its ith coordinate and 0 in all its other coordinates. Let B ∈ Rn
be a basis. We let B̃ be the Gram-Schmidt orthogonalisation of B.

We use standard Landau notations. Furthermore, we say that a function f(n) is poly(n) if it is bounded
by a polynomial in n. The notation ω(f(n)) refers to the set of functions (or an arbitrary function in that
set) growing faster than c ·f(n) for any constant c > 0. A function ε(n) is said negligible if it decreases faster
than the inverse of any polynomial function, i.e., if it is n−ω(1). Finally, a function is exponentially small
in n if it is at most 2−Ω(n).

The statistical distance between two distributions X and Y on a countable set D is defined as follows:
∆(X,Y ) = 1

2
∑
d∈D |X(d) − Y (d)|. We say that two sequences (Xn)n, (Yn)n of distributions indexed by

a variable n are negligibly close if ∆(Xn, Yn) is negligible in n. Finally, we let U(S) denote the uniform
distribution over the set S.

Remark on the reductions. The worst-case lattice problem SIVPγ is suspected to be exponentially hard
to solve with respect to the lattice dimension, even using quantum computations. This is one of its most
attractive features for using it as a hardness assumption for devising cryptographic primitives. For this
reason, we consider two types of worst-case to average-case reductions from SIVP (and its ideal and module
variants): Reductions that assume we have a polynomial time algorithm for solving the considered average-
case problem with non-negligible probability, and (somewhat more unusually), reductions that assume we
have a subexponential-time algorithm for solving the considered average-case problem with non-exponentially
small probability.

2.1 Some algebraic number theory

We briefly recall a few facts on elementary algebraic number theory. We refer the reader to [23] for a thorough
introduction.

Number fields. Every complex root of a polynomial g(X) ∈ Q[X] is an algebraic number. The minimal
polynomial of an algebraic number ξ is the unique irreducible monic polynomial f of minimal degree such
that ξ is one of its roots. An algebraic integer is an algebraic number whose minimal polynomial is in Z[X].
Let ξ be an algebraic number, the number field K = Q(ξ) is a finite extension of the rational number field
Q. It is also an n-dimensional vector space over Q with basis {1, ξ, . . . , ξn−1}, where n is the degree of f . We
call n the degree of K. An element x ∈ K can be represented by the coefficients of the associated rational
polynomial modulo f : σP (x) = (xi)i is such that x =

∑n−1
i=0 xi · ξi. The product between two elements

corresponds to the product between the two associated polynomials modulo f . Let R be the set of the
algebraic integers belonging to K. This is a ring, called the ring of integers (or maximal order) of K. If ξ is
an algebraic integer, then Z[ξ] =

∑n
i=1 Z · ξi ⊆ R, but in general this inclusion can be strict.

Complex embeddings. Let K = Q(ξ) be a degree n number field, and let f be the minimal polynomial
of ξ. The canonical embeddings are the n homomorphisms σi : K → C that fix every element of Q. We
let {σi}i∈[s1] denote the real embeddings (corresponding to the real roots of f), and {σi}s1<i≤s1+2s2 denote
the complex embeddings (corresponding to the complex roots). We have s1 + 2s2 = n and we can reorder
the complex embeddings so that σs1+s2+i = σs1+i for all i ∈ [s2]. We call canonical embedding the ring
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homomorphism σC : K → Rs1 × C2s2 defined as: σC(y) = (σ1(y), . . . , σn(y)). An element of K is fully
determined by its canonical embedding. For any x, y ∈ K, we have that σC(x · y) is the component wise
product of σC(x) and σC(y).

The trace Tr : K → Q and the norm N : K → Q are defined as follows: Tr(x) =
∑
i∈[n] σi(x) and

N(x) =
∏
i∈[n] σi(x). For any x, y ∈ K we have Tr(x · y) =

∑
i∈[n] σi(x) · σi(y) = 〈σC(x), σC(y)〉 where 〈·, ·〉

is the canonical Hermitian product on Cn.

Space H. As in [14], we will use the following subspace of Cn:

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : ∀j ∈ [s2], xs1+s2+j = xs1+j}.

The space H is isomorphic to KR = K ⊗Q R. Let hj = ej for j ∈ [s1] and hj = 1√
2 (ej + ej+s2) and

hj+s2 = i√
2 (ej − ej+s2) for s1 < j ≤ s1 + s2. The hj ’s form a basis of H as a real vector space. An element

x ∈ K can be represented according to the basis (hj)j : We define σH(x) by σH(x) = (xj)j ∈ Rn such that
σC(x) =

∑n
j=1 xj · hj .

Ideals. An (integral) ideal I of R is an additive subgroup of R that is closed under multiplication by every
element of R. The smallest ideal of R containing the set S is denoted by (S). The quotient R/I is the set
of the equivalence classes g + I of R modulo I. For any non-zero ideal, the norm N(I) of the ideal is the
number of elements of the quotient ring R/I. We have N((x)) = N(x), for all x ∈ K.

Let I and J be ideals of R. We define the product of two ideals by IJ = {
∑
i αiβi : αi ∈ I, βi ∈ J} and

their sum by I + J = {α+ β : α ∈ I, β ∈ J}. The ideals I and J are said coprime if I + J = R. As we have
(I + J)(I ∩ J) = IJ , if I and J are coprime, then I ∩ J = IJ . An ideal I ( R is prime if for any ab ∈ I
then a ∈ I or b ∈ I. In R, an ideal I is prime if and only if it is maximal, which implies that the quotient
ring R/I is the finite field of order N(I). Finally, every ideal of R can be represented as a unique product of
prime ideals.

A fractional ideal I ⊆ K is a set such that dI ⊆ R is an (integral) ideal for a non-zero d ∈ R. The inverse
of a fractional I is defined by I−1 = {α ∈ K : αI ⊆ R} and is itself a fractional ideal. We have II−1 = R.
The dual of an ideal is defined as I∗ = {x ∈ K : Tr(xI) ⊆ Z}. We have I∗ = I−1 ·R∗.

Isomorphisms of quotient rings. Lyubashevsky et al [14, Se. 2.3.7] made explicit an isomorphism between I/qI
and R/qR for an arbitrary positive integer q, which we recall now. Let Rq and R∗q respectively denote R/qR
and R∗/qR∗.

Let t ∈ I be such that (t)+qI = I (such a t exists and can be found efficiently given I and the prime ideal
factorization of (q), see [14, Le. 2.8]). The function θI : K → K defined as θI(x) = t·x induces an isomorphism
from Rq to I/qI. Moreover, this isomorphism may be efficiently inverted using θ−1

I : I/qI → Rq defined by
θ−1
I (y) = t−1 · y′ mod qR where y′ = y mod qI and y′ ∈ (t). The function θI also induces an isomorphism
from I∗/qI∗ to R∗q that may be efficiently inverted using θ−1

I : R∗q → I∗/qI∗ with θ−1
I (y) = t−1 · y′ mod qR

where y′ = y mod qI∗ and y′ ∈ (t).

Modules. A subset M ⊆ Kd is a module if it is closed under addition and multiplication by elements of R.
It is a finitely generated module if there exists a finite family (bi) such that M =

∑
iR · bi. In general, if the

ring R is arbitrary, an R-module may not have a basis. But here K is a number field, so R is a Dedekind
domain, and we have the existence of so-called pseudo-bases (see, e.g., [7, Ch. 1]): For every moduleM , there
exist Ii ideals of R and (bi)i linearly independent vectors of Kd such that M =

∑d
i=1 Ii · bi. We say that

[(Ii)i, (bi)i] is a pseudo-basis of M . The representation of the elements of M with respect to a pseudo-base is
unique. Two pseudo-bases can generate the same module and then, they have the same cardinal. The latter
is called rank of the module.

We define the dual of a module by M∗ = {y ∈ Kd,∀x ∈M : Tr(〈x,y〉) ∈ Z}, where 〈·, ·〉 is the canonical
inner product on Kd. We have the following property:

Lemma 1. If M =
∑d
i=1 Ii · bi, then M∗ =

∑d
i=1 I

∗
i · b∗i , where the b∗i ’s are defined by ∀i, j, 〈bi, b∗j 〉 = 1 if

i = j and 〈bi, b∗j 〉 = 0 otherwise.
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Proof. We first show that
∑d
i=1 I

∗
i · b∗i ⊆M∗. Let y ∈

∑d
i=1 I

∗
i · b∗i . Then for each i there exists yi ∈ I∗i such

that y =
∑d
i=1 yi · b∗i . Let x =

∑d
i=1 xi · bi ∈M . Then by linearity, we have Tr(〈x,y〉) =

∑d
i=1 Tr(xiyi). For

all i, we have xi ∈ Ii and yi ∈ I∗i , and thus Tr(xiyi) ∈ Z. Therefore, we have Tr(〈x,y〉) ∈ Z and y ∈M∗.
We now show that M∗ ⊆

∑d
i=1 I

∗
i · b∗i . Let y ∈ M∗ ⊂ Kd. We can write y =

∑d
i=1 yi · b∗i , for some yi’s

in K. It suffices to show that yi ∈ I∗i . By linearity, we have Tr(〈y, xibi〉) = Tr(xiyi). And we obtain
Tr(〈y, xibi〉) ∈ Z. This implies that yi ∈ I∗i . ut

We generalize the isomorphism θI defined above to modules. Let M =
∑d
i=1 Ii · bi, f : I1/qI1 × . . . ×

Id/qId → M/qM be such that f(x1, . . . , xn) =
∑d
i=1 xi · bi and g : M/qM → I1/qI1 × . . . × Id/qId

be such that g(
∑d
i=1 xi · bi) = (x1, . . . , xn). The functions f and g are ring isomorphisms and g = f−1.

Let θI1 , . . . , θId be as described above. We define the functions Θ and Θ−1 as follows: Θ = f ◦ (θI1× . . .×θId)
and Θ−1 = (θ−1

I1
× . . . × θ−1

Id
) ◦ g. The function Θ induces an isomorphism from (Rq)d to M/qM with

inverse Θ−1.

Cyclotomic fields. A cyclotomic field is a field K = Q(ξ) where ξ is a primitive root of unity. In this work,
we will only consider fields of the form Q(ξ) for ξ a primitive 2k-th root of unity.4 In this setup, there is an
isomorphism between K and Q[x]/〈xn + 1〉 with n = 2k−1. We have that s1 = 0 and s2 = n/2 because none
of the roots of f(x) = xn + 1 is real.

This choice of field K leads to several simplifying properties. First, we have R = Z[ξ]. The isomor-
phism K ' Q[x]/〈xn+1〉 induces an isomorphism between R and Z[x]/〈xn+1〉. Second, the representations
of the elements of K introduced above (σP , σC and σH) are equivalent up to a similarity. In particular,
the ratios σP (x)

σC(x) and σP (x)
σH(x) are constant with respect to x ∈ K \ {0}. Another simplifying property is

that R∗ = 1
nR.

If q is prime, the prime ideal factorization of (q) ⊆ R can be computed efficiently. In particular, if
q = 1 mod 2n, then (q) =

∏n
i=1 qi where each qi if a prime ideal with norm N(qi) = q. Finally, the field K

has ϕ(2n) = n automorphisms τk : K → K defined by τk(ξ) = ξk (for 1 ≤ k ≤ n). As noted in [14, Le. 2.10],
the automorphism group of the {τk} acts transitively on the set {qi}i≤n.

2.2 Lattices

We refer to [18,29] for introductions to lattices and their computational aspects. A euclidean lattice Λ ⊆ Rn
is the set of all integer linear combinations

∑p
i=1 βibi of some linearly independent vectors (bi)1≤i≤p ∈ Rn.

We write L(B) for the lattice spanned by the basis B = (bi)i≤p. We call p the dimension of the lattice. In
this work, we will restrict ourselves to full-rank lattices, i.e., with p = n.

The minimum λ1(Λ) of a lattice Λ is the norm of any of its shortest non-zero vectors. More generally, the
ith successive minimum λi(Λ) is the smallest radius r such that Λ contains i linearly independent vectors
of norm at most r. The dual lattice of Λ ⊆ Rn is Λ∗ = {x ∈ Rn : ∀y ∈ Λ, 〈x,y〉 ∈ Z}. If Λ = L(B) then
Λ∗ = L(B∗) with B∗ = B−T .

We consider the following generalization of SIVP. Let φ denote an arbitrary real-valued function of a
lattice (e.g., taking φ = λn allows one to recover SIVPγ). Let γ ≥ 1 be a function of the dimension n. The
Generalized Independent Vectors Problem GIVPφγ is as follows: Given a lattice basis B, find n = dim(L(B))
linearly independent vectors s1, . . . , sn ∈ L(B) such that maxi ‖si‖ ≤ γ · φ(L(B)).

For φ = λn, this problem is NP-hard for any approximation factor γ ≤ O(1) (see [3]). The best known
algorithms (even quantum) for an exact solution and an approximation to within any polynomial factor γ
all have exponential complexities [22]. This motivates the following conjecture: There is no polynomial
time (quantum) algorithm that approximates lattice problems to within a polynomial factor. The follow-
ing stronger conjecture also seems to hold: There is no sub-exponential time (quantum) algorithm that
approximates lattice problems to within a polynomial factor.
4 Our results can be generalized to all cyclotomic fields, but we restrict ourselves to these ones for the sake of
simplicity.
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Ideal and module lattices. Let φ be an embedding from K to Rn and I an ideal of R. Then φ(I) is a lattice.
We call it ideal lattice with respect to K and φ. We will only consider φ = σP of φ = σH . We will use the first
representation in context of M-SIS and the second one in context of M-LWE. In the case of φ = σP , notice
that ‖σP (ξx)‖ = ‖σP (x)‖ for any x ∈ K. As a consequence, we have λ1(Λ) = λn(Λ) for any n-dimensional
ideal lattice Λ. We let Id-GIVP denote the restriction of GIVP to ideal lattices.

We define module lattices similarly. Let φ be an embedding from Kd to Rnd and M ⊆ Kd a module
of R, then φ(M) is a module lattice. We will consider in particular φ = (σP , . . . , σP ) and φ = (σH , . . . , σH).
To ease the presentation we call them σP and σH respectively. Similarly to ideal lattices, we let Mod-GIVP
denote the restriction of GIVP to ideal lattices. Note that if M is a rank d module and if K has degree n,
then the corresponding module lattice has dimension nd. When a module is given as input of a problem, we
consider that we give a lattice basis of the corresponding module lattice. Note that it is equivalent to give
a basis of the module lattice and a pseudo-basis of the module because from the first representation, the
second representation is computable in polynomial time [5,7]. All asymptotic statements involving modules
(including hardness results) will be given for nd growing to infinity.

2.3 Gaussian measures
For a vector c ∈ Rn and a real s > 0, the Gaussian function is defined by ρs,c(x) = e−π‖

x−c
s ‖

2 , for all
x ∈ Rn. This function is extended to any countable set A ⊆ Rn in the usual way: ρs,c(A) =

∑
x∈A ρs,c(x).

By normalizing the Gaussian function, we obtain the continuous Gaussian probability distribution: νs(x) =
ρs(x)/sn. For r = (r1, . . . , rn) ∈ (R+)n, a sample from νr over KR is given by (νri)i. We define Ψ≤α for
α > 0, as the set of Gaussian distributions νr with ri < α, for all i. For all c ∈ Rn, s > 0 and lattice Λ, the
discrete Gaussian probability distribution is defined by:

∀x ∈ Λ, DΛ,s,c(x) = ρs,c(x)
ρs,c(Λ) .

The following theorem ensures that for s large enough, it is possible to efficiently sample according to a
discrete Gaussian distribution.
Theorem 1 ([9, Th. 4.1]). There is a probabilistic polynomial time algorithm that, given a basis B of an
n-dimensional lattice Λ = L(B), a standard deviation s ≥ ‖B̃‖ · ω(

√
logn) (resp. s ≥ ‖B̃‖ ·Ω(

√
n)), and a

center c ∈ Rn, outputs a sample that is negligibly (resp. exponentially) close to DΛ,s,c.
The smoothing parameter of a lattice was introduced by [21]. For an n-dimensional lattice Λ and a positive

real ε > 0, the smoothing parameter ηε(Λ) is the smallest s such that ρ1/s(Λ∗\{0}) ≤ ε. This parameter gives
a threshold above which many properties for continuous Gaussians also carry over to discrete Gaussians. We
recall a few standard properties on discrete Gaussians that we will need in our reductions.

Lemma 2 ([21, Le. 3.3]). Let Λ be an n-dimensional lattice and ε > 0. Then ηε(Λ) ≤
√

ln(2n(1+1/ε))
π ·λn(Λ).

The latter result implies a (trivial) reduction from SIVPγ to GIVPηεγ′ , with γ′ = γ/
√

ln(2n(1+1/ε))
π . We

will describe worst-case to average-case reductions involving GIVPηε instead of SIVP. In our reductions,
we will consider two choices for ε: For the polynomial time reductions, we will use ε = n−ω(1), and for the
sub-exponential time reductions we will take ε = 2−Ω(n).

Lemma 3 ([24, Le. 3.5]). Let Λ be an n-dimensional lattice and ε > 0. Then ηε(Λ) ≤
√

ln(2n(1+1/ε))
π /λ∞1 (Λ∗),

where λ∞1 refers to the minimum with respect to the infinity norm.
Lemma 4 ([9, Cor. 2.8]). Let Λ′ ⊆ Λ be n-dimensional lattices. Then for any ε ∈ (0, 1), any s ≥ ηε(Λ′),
and any c ∈ Rn, the distribution (DΛ,s,c mod Λ′) is within statistical distance at most 2ε of the uniform
distribution over Λ/Λ′.
Lemma 5 ([20, Le. 4.4]). Let Λ be an n-dimensional lattice, s > 2ηε(Λ) for ε ≤ 1/100, and c ∈ Rn.
Then for any (n − 1)-dimensional hyperplane H, the probability that x /∈ H where x is chosen from DΛ,s,c

is ≥ 1/100.
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2.4 Linear combinations of Gaussians

The sum of two continuous Gaussians with parameters s and r is a continuous Gaussian with parameter√
s2 + r2. We have the following lemma for the sum of a continuous Gaussian and a discrete one.

Lemma 6 ([31, Claim 3.9]). Let Λ be a lattice, u ∈ Rn, r, s > 0 and t =
√
r2 + s2. Assume that rs/t ≥

ηε(Λ) for some ε < 1/2. Consider the continuous distribution Y on Rn obtained by sampling from DΛ+u,r

and then adding a vector taken from νs. Then the statistical distance between Y and νt is at most 4ε.

We will also use the following result:

Lemma 7 (Adapted from [24, Cor. 5.3]). For any lattice Λ ⊆ Rn, c ∈ Rn, ε ∈ (0, 1), t ≥
√

2π, unit
vector u ∈ Rn and s ≥ ηε(Λ), we have:

Pr
b←↩DΛ,s,c

[|〈b− c,u〉| ≥ st] ≤ 1 + ε

1− εt
√

2πe · e−πt
2
.

We generalize [24, Cor. 5.3] and [32, Le. 2.9] to the case of module lattices.

Lemma 8. 5 Let ε ∈ (0, 1
2m+1 ) and (z1, . . . , zm) ∈ Rm. Let M ⊆ Kd be a rank d module on R, s ≥ ηε(M)

and (c1, . . . , cm) ∈ (Rd)m. If the yi’s are sampled from DM,s,ci , then for all t ≥ 0:

Pr
[∥∥∥∥∥

m∑
i=1

(yi − ci) · zi

∥∥∥∥∥
∞

≥ st‖z‖

]
≤ 1 + ε

1− εtnd
√

2πe · e−πt
2
.

In particular, for t = ω(
√

lognd) (resp. t = Ω(
√
nd)) the above probability is negligible (resp. exponentially

small) with respect to nd.

Proof. This proof builds upon that of [24, Cor. 5.3].
The principle is to interpret the m Gaussian samples from the nd-dimensional lattice M as one Gaussian

sample from the ndm-dimensional lattice L and then apply Lemma 7, where L = M × · · · ×M (i.e., the
Cartesian product of m copies of M). We also define c′ = (c1, . . . , cm) ∈ (Rd)m and y′ = (y1, . . . ,ym) ∈
(Rd)m. We have ρs,(c1,...,cm)(L) =

∏m
i=1 ρs,ci(M). Therefore, the vector y′ has distribution DL,s,c′ . We have:

m∑
i=1

zi · (yi − ci) =


∑m
i=1 zi · (y

(1)
i − c

(1)
i )

...∑m
i=1 zi · (y

(d)
i − c

(d)
i )

 .
The ((j − 1)n + k)-th coordinate of

∑m
i=1 zi · (yi − ci) is the k-th coordinate of

∑m
i=1 zi · (y

(j)
i − c

(j)
i ).

Each coefficient of zi · (y(j)
i − c

(j)
i ) is the inner product between the corresponding coefficients of y(j)

i − c
(j)
i

and a permutation of the coefficients of zi (with some of them multiplied by −1). It suffices to study∑m
i=1〈y

(j)
i − c

(j)
i , z′i〉, for some (z′i)’s with ‖z′i‖ = ‖zi‖. Let ej be the j-th element of the standard basis of Rd

(such that ej,j = (1, 0, . . . , 0) and ej,k = (0, . . . , 0) for k 6= j). We have:
m∑
i=1
〈y(j)
i − c

(j)
i , z′i〉 = 〈y′ − c′, (z′1ej , . . . , z

′
mej)〉 = ‖z′‖ · 〈y′ − c′,wj〉,

where wj ∈ Kdm is the unitary vector parallel to (z′1ej , . . . , z
′
mej) ∈ Kdm. By Lemma 7, we have, for

all j ∈ [d]:
Pr

y′←↩DL,s,c′
[|〈y′ − c′,wj〉| ≥ st] ≤

1 + ε

1− εt
√

2πe · e−πt
2
.

The claim follows by applying the union bound over all k ∈ [n] and all j ∈ [d]. ut
5 For the sake of simplicity, we identify elements x of K with their polynomial representations σP (x).
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The product of a continuous Gaussian on R with parameter s and a scalar x ∈ R is a continuous Gaussian
with parameter xs. This can be generalized to the ring and module settings. The following result is given
in [14], but without proof.

Lemma 9. Let s ∈ Rn, x ∈ K such that σH(x) is a sample from νs and e ∈ K fixed. Then σH(x · e) is
distributed from νs′ with, for all 1 ≤ j ≤ n/2:

s′j =
√

Re(σj(e))2s2
j + Im(σj(e))2s2

j+n/2 and s′j+n/2 =
√

Im(σj(e))2s2
j + Re(σj(e))2s2

j+n/2.

In particular, if sj = sj+n/2 for all 1 ≤ j ≤ n/2, then s′j = sj |σj(e)|.

Proof. Let us write σC(x) =
∑
j xj · hj where each xj is a sample of νsj . By definition of the hj ’s, we have

σj(x) = (xj + ixj+n/2) and σj+n/2(x) = (xj − ixj+n/2), for 1 ≤ j ≤ n/2. As a consequence:

σC(e · x) =(σ1(e)(x1 + ixn/2+1), . . . , σn/2(e)(xn/2 + ixn),
σn/2+1(e)(x1 − ixn/2+1), . . . , σn(e)(xn/2 − ixn)).

For 1 ≤ j ≤ n/2, we write σj(e) = αj + iβj . This gives σj(e · x) = (αjxj − βjxj+n/2) + i(βjxj + αjxj+n/2).
We want to compute the yj ’s such that σC(e · x) =

∑
j yj · hj . For 1 ≤ j ≤ n/2, we have:

yj = 1
2(σj(e · x) + σj+n/2(e · x)) and yj+n/2 = i

2(σj+n/2(e · x)− σj(e · x)).

Therefore: [
yj

yj+n/2

]
=
[
αj −βj
βj αj

] [
xj

xj+n/2

]
,

where xj is a sample from νsj . The vector (yj , yj+n/2) is a full rank transformation of the vector (xj , xj+n/2),
and thus yj and yj+n/2 are statically independent. Furthermore, the reals yj and yj+n/2 are samples of νs′

j

and νs′
j+n/2

respectively, with s′j =
√
α2
js

2
j + β2

j s
2
j+n/2 and s′j+n/2 =

√
β2
j s

2
j + α2

js
2
j+n/2. ut

Lemma 10. Let s ∈ Rn, x ∈ Kd such that σH(x) is chosen from νs,...,s and let e ∈ Kd. Then σH(〈x, e〉)
is distributed from νs′ with, for all 1 ≤ j ≤ n/2:

• s′j =
√∑d

k=1

[
Re(σj(ek))2s2

j + Im(σj(ek))2s2
j+n/2

]
,

• s′j+n/2 =
√∑d

k=1

[
Im(σj(ek))2s2

j + Re(σj(ek))2s2
j+n/2

]
.

In particular, if sj = sj+n/2 for all 1 ≤ j ≤ n/2, then s′j = sj ·
√∑d

k=1 |σj(ek)|2.

Proof. By Lemma 9, we have that σH(xk · ek) has distribution νs′
k
with for every 1 ≤ j ≤ n/2:

s′k,j =
√

Re(σj(ek))2s2
j + Im(σj(ek))2s2

j+n/2 and s′k,j+n/2 =
√

Im(σj(ek))2s2
j + Re(σj(ek))2s2

j+n/2.

The equality 〈x, e〉 =
∑d
k=1 xk · ek completes the proof. ut

3 The Short Integer Solution Problem

In this section, we describe a reduction from Mod-GIVP to M-SIS. To ease the presentation, we identify
elements of K with their polynomial representations.
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3.1 Variants of SIS

We first recall the SIS and R-SIS problems, and introduce M-SIS.

Definition 1. The Small Integer Solution problem SISq,m,β is as follows: Given A ∈ Zn×mq chosen from
the uniform distribution, find z ∈ Zm such that Az = 0 mod q and 0 < ‖z‖ ≤ β.

As observed in [21, Le. 5.2], for any q, A ∈ Zn×mq and β ≥
√
mqn/m, the SIS instance (q,A, β) admits a

solution. There are several reductions from GIVP to SIS (see, e.g., [1,20,9]). The strongest known result is
the following.

Theorem 2 (Adapted from [9, Th. 9.2]). For ε(n) = n−ω(1) (resp. ε(n) = 2−Ω(n)), there is a probabilistic
polynomial time reduction from solving GIVPηεγ in polynomial time with non-negligible probability (resp.
in sub-exponential time with non-exponentially small probability) to solving SISq,m,β in polynomial time
with non-negligible probability (resp. in sub-exponential time with non-exponentially small probability), for
any m(n), q(n), β(n) and γ(n) such that γ ≥ β

√
n · ω(

√
logn) (resp. γ ≥ βΩ(n)), q ≥ β

√
n · ω(logn) (resp.

q ≥ βΩ(n3/2)) and m, log q ≤ poly(n).

The R-SIS problem was introduced by [26] and [13].

Definition 2. The problem R-SISq,m,β is as follows: Given a1, . . . , am ∈ Rq chosen independently from
the uniform distribution, find z1, . . . , zm ∈ R such that

∑m
i=1 ai · zi = 0 mod q and 0 < ‖z‖ ≤ β, where

z = (z1| . . . |zm) ∈ Zmn.

This problem over polynomials can be interpreted in terms of matrices. It is a variant of SIS where A is
restricted to being block negacirculant: A = [Rot(a1)| . . . |Rot(am)], with:

Rot(b) :=


b0 −bn−1 · · · −b1
b1 b0 · · · −b2
...

...
. . .

...
bn−1 bn−2 · · · b0

 , for b =
n−1∑
i=0

bix
i ∈ R.

By using ideas from [14] (namely, the isomorphism between I/qI and Rq described in Subsection 2.1) into
the proof of [13], one obtains the following result.

Theorem 3. For ε(n) = n−ω(1) (resp. ε(n) = 2−Ω(n)), there is a probabilistic polynomial time reduction
from solving GIVPηεγ in polynomial time with non-negligible probability (resp. in sub-exponential time with
non-exponentially small probability) to solving R-SISq,m,β in polynomial time with non-negligible probability
(resp. in sub-exponential time with non-exponentially small probability), for any m(n), q(n), β(n) and γ(n)
such that γ ≥ β

√
n · ω(

√
logn) (resp. γ ≥ βΩ(n)), q ≥ β

√
n · ω(logn) (resp. q ≥ βΩ(n3/2)) and m, log q ≤

poly(n).

The problem M-SIS generalizes both SIS and R-SIS.

Definition 3. The problem M-SISq,m,β is as follows: Given a1, . . . ,am ∈ (Rq)d chosen independently from
the uniform distribution, find z1, . . . , zm ∈ R such that

∑m
i=1 ai · zi = 0 mod q and 0 < ‖z‖ ≤ β, where

z = (z1| . . . |zm) ∈ Zmn.

Like R-SIS, the M-SIS problems can be interpreted in terms of matrices. It consists in taking a SIS
matrix A of the form:
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•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Rot(a1,1) Rot(a1,m)

Rot(ad,1) Rot(ad,m)

Rot(a1,2) Rot(a1,m−1)

Rot(ad,2) Rot(ad,m−1)

d blocks

n

m blocks

In the rest of this section, we will prove the following result.

Theorem 4. For any d ≥ 1 and ε(nd) = (nd)−ω(1) (resp. ε(nd) = 2−Ω(nd)), there is a probabilistic poly-
nomial time reduction from solving Mod-GIVPηεγ in polynomial time with non-negligible probability (resp.
in sub-exponential time with non-exponentially small probability) to solving M-SISq,m,β in polynomial time
with non-negligible probability (resp. in sub-exponential time with non-exponentially small probability), for
any m(nd), q(nd), β(dn) and γ(nd) such that γ ≥ β

√
nd·ω(

√
lognd) (resp. γ ≥ βΩ(nd)), q ≥ β

√
nd·ω(lognd)

(resp. q ≥ βΩ((nd)3/2)) and m, log q ≤ poly(nd).

Taking d = 1 in Theorem 4 allows us to recover Theorem 3. Also, by taking d = n and n = 1 in Theorem 4,
we obtain a hardness result for SIS that is as good as that of Theorem 2.

3.2 A reduction from Mod-GIVP to M-SIS

In order to prove that the new problem M-SIS is as hard as GIVP restricted to module lattices, we use the
following intermediate problem, introduced in [20].

Definition 4 ([20, Def. 5.3]). The Incremental Independent Vectors Problem IncGIVPηεγ , is as follows:
Given a tuple (B,S,H) where B is a basis of an n-dimensional lattice, S ⊆ L(B) is a full-rank set of vectors
such that ‖S‖ ≥ γ · ηε(L(B)) and H is a hyperplane, find h ∈ L(B) \ H such that ‖h‖ ≤ ‖S‖/2.

Theorem 5 ([16, Th. 6.3]). For any function ε and γ, there is a probabilistic polynomial time reduction
from solving GIVPηεγ (in the worst case, with high probability) to solving IncGIVPηεγ (in the worst case, with
high probability).

As the latter reduction preserves the lattice, it induces a reduction from Mod-GIVPηεγ to Mod-IncGIVPηεγ ,
i.e., IncGIVPηεγ restricted to module lattices. To prove Theorem 4, we provide a reduction from Mod-
IncGIVPηεγ to M-SISq,m,β .

Suppose that an oracle O solves M-SISq,m,β with probability (nd)−O(1) (resp. 2−o(nd)). The algorithm
for Mod-IncGIVP proceeds as follows on input (B,S,H). We write M = L(B). Let s be such that

max
(

2q
γ
, ω(
√

lognd)
)
‖S‖ ≤ s ≤ q‖S‖

2β
√
nd · ω(

√
lognd)

(resp. max(2q
γ
,Ω(
√
nd))‖S‖ ≤ s ≤ q‖S‖

2βΩ(nd) ).

• For i ≤ m, let yi be sampled from DL(B),s,0 (using Theorem 1), and ai = Θ−1(yi) (see Section 2.1).
• Invoke oracle O on input (a1, . . . ,am). If O succeeds, it returns z = (z1| . . . |zm) ∈ Rm such that∑m

i=1 ai · zi = 0 mod q and 0 < ‖z‖ ≤ β.
• Output h = 1

q

∑m
i=1 zi · yi.

This algorithm runs in polynomial time (without considering the run-time of oracle O). Also, thanks
to the parameter constraints, the interval to which the standard deviation s must belong is non-empty.
Moreover, the standard deviation s is sufficiently large for the assumptions of Theorem 1 to hold. Indeed,
by [18, Le. 7.1] and given M and S, it is possible to compute (in polynomial time) a basis T of M such that
‖T̃‖ ≤ ‖S̃‖ ≤ ‖S‖. We use this basis and we have that s ≥ ‖T̃‖ · ω(

√
lognd) (resp. s ≥ ‖T̃‖ ·Ω(

√
nd)).
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Lemma 11. The statistical distance between the distribution of (a1, . . . ,am) and the uniform distribution
over (Rq)d is a most 2ε.

Proof. We have s ≥ 2q
γ · ‖S‖ and ‖S‖ ≥ γ · ηε(M). This implies that s ≥ q · ηε(M) = ηε(qM). By Lemma 4

applied to the lattices M and qM , the statistical distance between the distribution of (yi mod qM) and
the uniform distribution on M/qM is at most 2ε. As Θ−1 is an isomorphism from M/qM to (R/qR)d, the
statistical distance between the distribution of the ai = Θ−1(yi) and the uniform distribution on (R/qR)d
is also at most 2ε. ut

As a consequence, the oracle O succeeds with probability (nd)−O(1) (resp. 2−o(nd)). In the following, we
assume we are in that situation.

Lemma 12. For any hyperplane H, the probability that the output vector h does not belong to H is ≥ 1/100.

Proof. As O succeeded, the vector z is non-zero. By definition of h, for every y′1 we have:

h ∈ H ⇔
m∑
i=1

zi · yi ∈ H ⇔ z1 · y1 ∈ −
m∑
i=2

zi · yi +H

⇔ (y1 − y′1) ∈ −y′1 + 1
z1

(H−
m∑
i=2

zi · yi) = H′.

Assume that we fix y′1 = y1 mod qM , then y1 = y′1 + y′′1 , with y′1 fixed and the vector y′′1 statistically
independent of all the ai’s, zi’s and yi’s for i > 1. The conditional distribution of y′′1 = (y1 − y′1) is
DqM,s,−y′1

. Therefore:

Pr [(y1 − y′1) /∈ H′|y′1, (a1, . . . ,am), (z1, . . . , zm)] = Pr
y′′1∼DqM,s,−y′1

[y′′1 /∈ H′].

As s ≥ 2q · ηε(M) = 2ηε(qM), Lemma 5 gives that this probability is ≥ 1/100. ut

The following completes the proof of Theorem 4.

Lemma 13. We have h ∈M and, with probability close to 1, we have that ‖h‖ ≤ ‖S‖/2.

Proof. Let us first show that h ∈M . We have :

h = 1
q

m∑
i=1

zi · yi = 1
q

m∑
i=1

zi ·Θ(ai) = 1
q

m∑
i=1

zi ·

 d∑
j=1

(tjai,j + qsi,j) · bj

 ,

where si,j ∈ Ij and tj ∈ Ij . Therefore:

h = 1
q

d∑
j=1

tj

(
m∑
i=1

zi · ai,j

)
· bj +

d∑
j=1

(
m∑
i=1

zi · si,j

)
· bj .

As si,j ∈ Ij for all j, we have
∑d
j=1 (

∑m
i=1 zi · si,j) · bj ∈ M . We also have

∑m
i=1 zi · ai = 0 mod q and, as

tj ∈ Ij for all j, we have that tj · 1
q (
∑m
i=1 zi · ai,j) ∈ Ij . This shows that h ∈M .

We now show that ‖h‖ ≤ ‖S‖/2. Recall that h = 1
q

∑m
i=1 zi · yi, then we have ‖h‖ = 1

q‖
∑m
i=1 zi · yi‖.

As in the previous proof, we define y′i = yi mod qM . Then, we have yi = y′′i + y′i with y′′i statistically
independent from the zi’s and distributed as DqM,s,−y′

i
. By Lemma 8, for s ≥ ηε(qM) and t = ω(

√
lognd)

(resp. t = Ω(
√
nd)), we know that:

Pr
y′′
i
∼DqM,s,−y′

i

[∥∥∥∥∥
m∑
i=1

zi · (y′′i + y′i)

∥∥∥∥∥ ≥ st√nd · ‖z‖
]
≤ (nd)−ω(1) (resp. ≤ 2−o(nd)).
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So, with probability close to 1, we have ‖
∑m
i=1 zi · yi‖ ≤ st

√
nd · ‖z‖. As 0 < ‖z‖ ≤ β, we have:

‖h‖ = 1
q

∥∥∥∥∥
m∑
i=1

zi · yi

∥∥∥∥∥ ≤ stβ
√
nd

q
.

Finally, since s ≤ q·‖S‖
2βt
√
nd

, we obtain ‖h‖ ≤ ‖S‖2 . ut

4 Learning with errors over modules

In this section, we describe a reduction from Mod-GIVP to M-LWE (Learning With Errors over modules).
To ease the presentation, we now identify elements of K with their σH embeddings.

4.1 Learning With Errors

We let T = R/Z denote the segment [0, 1) with addition modulo 1.
Let us recall the following definitions from [31]. For a probability density function χ on T and a vector s ∈

Znq , we let As,χ denote the distribution on Znq ×T obtained by choosing a vector a ∈ Znq uniformly at random,
choosing e ∈ T according to χ, and returning (a, 1

q 〈a, s〉+ e).

Definition 5. The search version of the Learning With Error problem CLWEq,χ is as follows: Let s ∈ Znq
be secret; Given arbitrarily many samples from As,χ, the goal is to find s.

The decision version of the Learning With Error problem DLWEq,χ is as follows: Let s ∈ Znq uniformly
random; The goal is to distinguish between arbitrarily many independent samples from As,χ and the same
number of independent samples from U(Znq × T).

It is also possible to interpret LWE in terms of linear algebra: Suppose the number of requested samples
(ai, 1

q 〈ai, s〉 + ei) from As,χ is m, then we consider the matrix A ∈ Zm×nq whose rows are the ai’s, and we
create the vector e = (e1, . . . , em)T . Then CLWE is as follows:

1
q ·, find s

A A

s1

sn

+

e1

em

m

n

Theorem 6 ([31]). Let ε(n) = n−ω(1) (resp. ε(n) = 2−Ω(n)), α ∈ (0, 1) and q ≥ 2 such that αq > 2
√
n.

There exists a quantum reduction from solving GIVPηε√8n/α in polynomial time with non-negligible probability
(resp. in sub-exponential time with non-exponentially small probability) to solving CLWEq,να in polynomial
time with non-negligible probability (resp. in sub-exponential time with non-exponentially small probability).

Assume that q is prime, q ≤ poly(n), and that χ is a probability density function on T. There exists a
reduction from CLWEq,χ to DLWEq,χ.

The first main result of [31] is the reduction from GIVP to the computational version of LWE. It makes
use of the following intermediary problem, where φ denotes an arbitrary real-valued function on lattice, called
Discrete Gaussian Sampling problem (DGSφ): Given an n-dimensional lattice Λ and a number r > φ(Λ),
output a sample from DΛ,r. Regev’s reduction proceeds in two steps:

GIVP√8n
α

[31, Le. 3.17] DGS√2n
α

Lemma 14 CLWEq,να

13



The first reduction is lattice-preserving and also works for the structured versions of LWE to be considered
later. Oppositely, the second one will need to be modified. It comes from the following result:

Lemma 14 ([31, Le. 3.3]). Let ε(n) = n−ω(1) (resp. ε(n) = 2−Ω(n)), α ∈ (0, 1) and q ≥ 2. Assume that
we have access to an oracle that solves CLWEq,να in polynomial time with non-negligible probability (resp.
in sub-exponential time with non-exponentially small probability). Then there exists a polynomial time (resp.
sub-exponential time) quantum algorithm that, given an n-dimensional lattice Λ, a number r >

√
2q · ηε(Λ)

and poly(n) (resp. 2o(n)) samples from DΛ,r, produces a sample from D
Λ, r
√
n

αq

with non-negligible (resp.
non-exponentially small) probability.

The principle of the Regev’s reduction from DGS to CLWE is to use Lemma 14 several times to pro-
gressively decrease the value of r. Take r >

√
2q · ηε(Λ) and ri = r · (αq/

√
n)i. The first iteration starts

with r3n > 23n > 22nλn(Λ) (using a LLL-reduction algorithm beforehand). Then it obtains poly(n) (resp.
2o(n)) samples of DΛ,r3n by Theorem 1, and finishes with poly(n) (resp. 2o(n)) samples of DΛ,r3n−1 (the
reduction repeats poly(n) (resp. 2o(n)) times the same iteration with the same samples in input to ob-
tain sufficiently many different samples in output). It iterates until having poly(n) (resp. 2o(n)) samples
of DΛ,r1 with r1 = rαq/

√
n >

√
2q · ηε(Λ) then it iterates a last time to obtain samples of DΛ,r0 with

r0 = r >
√

2n · ηε(Λ)/α. These samples are solutions to DGS√2n·ηε(Λ)/α.
To prove Lemma 14, Regev uses the intermediary problems called q-BDDδ: Given a lattice Λ and any

point y ∈ Rn within distance δ < λ1(Λ)/2 of the lattice, output the coset of Λ/qΛ of the closest vector to y.
The proof of Lemma 14 consists also of a sequence of reductions:

DGS
Λ, r
√
n

αq

[31, Le. 3.14 & 3.5]
(quantum)

q-BDDΛ∗, αq√
2r

Lemma 15
CLWEq,να

+
samples from DΛ,r

The first reduction also works for the structured versions of LWE to be considered later. However, we
will modify the second reduction, by proving an adaptation of the following result.

Lemma 15 ([31, Le. 3.4]). Let ε(n) = n−ω(1) (resp. ε(n) = 2−Ω(n)), α ∈ (0, 1) and q ≥ 2. Let Λ be a n-
dimensional lattice and r ≥

√
2q ·ηε(Λ). Given access to an oracle sampling from the distribution DI,r, there

exists a probabilistic reduction from solving q-BDDΛ∗, αq√
2r

in polynomial time with non-negligible probability
(resp. in sub-exponential time with non-exponentially small probability) to solving CLWEq,να in polynomial
time with non-negligible probability (resp. in sub-exponential time with non-exponentially small probability).

Regev’s reduction from CLWE to DLWE. The second main result from [31] is a reduction from the com-
putational problem CLWE to its decisional counterpart DLWE. This reduction does not carry over to the
structured variants of LWE.

4.2 Learning With Errors over rings

The R-LWE problem was introduced by Lyubashevsky et al in [14]. Let ψ be a distribution on TR∗ = KR/R
∗

and s ∈ R∗q . (Recall that for our choice of K, we have R∗ = 1
nR.) We let A(R)

s,ψ denote the distribution on
Rq×TR∗ obtained by choosing a ∈ Rq uniformly at random and e ∈ TR∗ according to ψ, and returning (a, (a·
s)/q + e).

We also recall the distribution Υα used in [14]. The gamma distribution Γ (2, 1) with shape parameter 2
and scale parameter 1 has density x exp(−x) for x ≥ 0 and zero for x < 0. For α > 0, a distribution sampled
from Υα is an elliptical Gaussian distribution νr whose parameters are ri = ri+n/2 = α

√
1 +
√
nxi, where

x1, . . . , xn/2 are chosen independently from Γ (2, 1).

14



Definition 6. Let q ≥ 2 and Ψ be a family of distributions on TR∗ . The search version of the Ring Learning
With Error problem R-CLWEq,Ψ is as follows: Let s ∈ R∗q be secret and ψ ∈ Ψ ; Given arbitrarily many
samples from A

(R)
s,ψ , the goal is to find s.

Let Υ be a distribution over a family of noise distributions over KR. The decision version of the Ring
Learning With Error problem R-DLWEq,Υ is as follows: Let s ∈ R∗q uniformly random and ψ sampled
from Υ ; The goal is to distinguish between arbitrarily many independent samples from A

(R)
s,ψ and the same

number of independent samples from U(Rq,TR∗).

As for R-SIS, this problem can be interpreted in terms of linear algebra. It is a variant of LWE where
the matrix A is restricted to being block-negacirculant: A = [Rot(a1)| . . . |Rot(am)]T . The two main results
from [14] are a reduction from Id-GIVP to R-CLWE and a reduction from the search version R-CLWE to
the decision version R-DLWE.

Theorem 7 ([14, Th. 4.1 & Th. 5.2]). Let ε(n) = n−ω(1) (resp. ε(n) = 2−Ω(n)), α ∈ (0, 1) and q ≥ 2
of known factorization such that αq > ω(

√
logn) (resp. Ω(

√
n)). There exists a quantum reduction from

solving Id-GIVPηεγ in polynomial time with non-negligible probability (resp. in sub-exponential time with non-
exponentially small probability) to solving R-CLWEq,Ψ≤α in polynomial time with non-negligible probability
(resp. in sub-exponential time with non-exponentially small probability) with γ = 2

√
n · ω(

√
logn)/α (resp.

2Ω(n)/α).
Assume that q is prime, q ≤ poly(n), and that xn + 1 has n linear factors modulo q (i.e., we have q =

1 mod 2n). There exists a randomized reduction from R-CLWEq,Ψ≤α to R-DLWEq,Υα .

The Lyubashevsky et al reduction from Id-GIVP to R-CLWE relies on the same sequence of reductions as
Regev’s proof of hardness of CLWE, but with problems restricted to ideal lattices. The only step in Regev’s
reduction that fails to carry over to the ideal/ring setting is Lemma 15. Lyubashevsky et al circumvent it
by proving the following. In this Lemma, the problem q-Id-BDD is the restriction of q-BDD to ideal lattice
lattices and instead of using the Euclidean norm for bounding the distance to the lattice, they use the infinity
norm.

Lemma 16 ([14, Le. 4.4]). Let ε = n−ω(1) (resp. ε(n) = 2−Ω(n)), α ∈ (0, 1) and q ≥ 2 of known factoriza-
tion. Let I ⊆ R be an ideal and r ≥

√
2q ·ηε(I). Given access to an oracle sampling from the distribution DI,r,

there exists a probabilistic reduction from solving q-Id-BDDI∗, αq√
2r

in polynomial time with non-negligible prob-
ability (resp. in sub-exponential time with non-exponentially small probability) to solving R-CLWEq,Ψ≤α in
polynomial time with non-negligible probability (resp. in sub-exponential time with non-exponentially small
probability).

The reduction from R-CLWE to R-DLWE from [14, Th. 5.2] proceeds by several reductions between
intermediates problems, which we will also consider in our reduction for the module variant of LWE. Let
q = 1 mod 2n be prime, then (q) =

∏n
i=1 qi where any qi is a prime ideal with norm N(qi) = q. Lyubashevsky

et al define:

• qi-RLWEq,Ψ , with parameters Ψ a family of distributions over TR∗ and i ≤ n: Given access to an oracle
sampling from A

(R)
s,ψ for an arbitrary s ∈ R∗q and ψ ∈ Ψ , find s mod qiR

∗
q .

• Hybrid distribution A
(R,i)
s,ψ , with parameters ψ a distribution over TR∗ , s ∈ R∗q , and i ≤ n: The

distribution A
(R,i)
s,ψ over Rq × TR∗ is defined as follows: Choose (a, b) from A

(R)
s,ψ and return (a, b +

r/q) where r is uniformly random and independent in R∗q/qjR
∗ for all j ≤ i, and is 0 modulo the

remaining qjR
∗’s.

• DecRLWEiq,Ψ , with parameters Ψ a family of distributions on TR∗ and i ≤ n: Given access to an oracle
sampling from A

(R,j)
s,ψ for an arbitrary s ∈ R∗q , ψ ∈ Ψ and j ∈ {i−, i}, find j.

The sequence of reductions is as follows:
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R-CLWEq,Ψ
[14, Le. 5.5]

qi-RLWEq,Ψ
[14, Le. 5.8]

DecRLWEiq,Ψ
[14, Le. 5.11 & 5.13] R-DLWEq,Υ

In our adaptation to modules, we will keep the general structure of this reduction. The two first interme-
diates reductions will be modified, while the reduction from DecRLWE to R-DLWE will be kept as it also
works in the case of modules.

4.3 Learning With Errors over modules

The M-LWE problem generalizes both LWE and R-LWE, and was recently introduced in [6]. Let ψ be some
probability distribution on TR∗ and s ∈ (R∗q)d be a vector. We define A(M)

s,ψ as the distribution on (Rq)d×TR∗
obtained by choosing a vector a ∈ (Rq)d uniformly at random, and e ∈ TR∗ according to ψ, and returning
(a, 1

q 〈a, s〉+ e).

Definition 7. Let q ≥ 2 and Ψ be a family of distributions on TR∗ . The search version of the Module
Learning With Error problem M-CLWEq,Ψ is as follows: Let s ∈ (R∗q)d be secret and ψ ∈ Ψ ; Given arbitrarily
many samples from A

(M)
s,ψ , the goal is to find s.

For an integer q ≥ 2 and a distribution Υ over a family of distributions over KR. The decision version of
the Module Learning With Error problem M-DLWEq,Υ is as follows: Let s ∈ (R∗q)d uniformly random and
ψ sampled from Υ ; The goal is to distinguish between arbitrarily many independent samples from A

(M)
s,ψ and

the same number of independent samples from U((Rq)d,TR∗).

As for LWE and R-LWE, the problem M-LWE can be interpreted in terms of linear algebra. It consists
in taking the LWE matrix A of the form:

•

•

•

•

•

•

•

•

Rot(a1,d)

Rot(am,d)

Rot(a1,1)

Rot(am,1)

m blocks

d blocks

n

Theorem 8. Let ε(n) = n−ω(1) (resp. ε(n) = 2−Ω(n)), α ∈ (0, 1) and q ≥ 2 of known factorization
such that αq > 2

√
d · ω(

√
logn) (resp. αq > 2

√
d · Ω(

√
n)). There is a quantum reduction from solving

Mod-GIVPηεγ in polynomial time with non-negligible probability (resp. in sub-exponential time with non-
exponentially small probability) to solving M-CLWEq,Ψ≤α in polynomial time with non-negligible probability
(resp. in sub-exponential time with non-exponentially small probability) with γ =

√
8nd · ω(

√
logn)/α (resp.

d ·Ω(n)/α).
Assume that q is prime, q ≤ poly(n) and that xn + 1 has n linear factors modulo q (i.e., we have q =

1 mod 2n). There exists a probabilistic reduction from M-CLWEq,Ψ≤α to M-DLWEq,Υα .

Notice that by taking d = 1 in Theorem 8 we recover Theorem 7, and that by taking d = n and n = 1
we obtain a slighlty weaker variant of Theorem 6 (because of the use of Υα rather than να). The remaining
of this section is devoted to proving Theorem 8.

16



A reduction from Mod-GIVP to M-CLWE. The reduction from Mod-GIVP to M-CLWE follows the
same design principle as Regev’s reduction from GIVP to CLWE. The only component we modify is the
reduction from q-BDD to CLWE that is given access to samples from DL,r. More precisely, we replace
Lemma 15 by Lemma 17 below. This proves the first part of Theorem 8.

We define the problem q-Mod-BDD as the restriction of q-BDD to module lattices, with the following
variation. Instead of using the Euclidean norm for bounding the distance to the lattice, we use ‖ · ‖2,∞,
defined by ‖e‖2,∞ = maxi

√∑d
k=1 |σi(ek)|2 for e ∈ Kd.

Lemma 17. Let ε = n−ω(1) (resp. ε(n) = 2−Ω(n)), α ∈ (0, 1) and q ≥ 2. Let M ⊆ Rd be an R-module,
and r >

√
2q · ηε(M). Given access to an oracle sampling from the distribution DM,r, there exists a proba-

bilistic reduction from solving q-Mod-BDDM∗, αq√
2r

in polynomial time with non-negligible probability (resp. in
sub-exponential time with non-exponentially small probability) to solving M-CLWEq,Ψ≤α in polynomial time
with non-negligible probability (resp. in sub-exponential time with non-exponentially small probability).

The principle of the reduction is to construct from y, the input of q-Mod-BDD, and from some discrete
and continuous Gaussian samples, the pairs (a, b) distributed as A(M)

s,ψ , where s will directly depend on
the closest vector x to y. To produce such samples (a, b) with the desired distribution, we combine the
corresponding proofs for LWE and R-LWE (those of Lemmata 15 and 16). Then a call to the oracle of
M-CLWE returns s and let us recover information on x.
Proof of Lemma 17. Let O be the oracle which, given m ≤ poly(n) samples (a, b) from A

(M)
s,ψ for ψ ∈ Ψ≤α,

outputs s in polynomial time (respectively subexponential time) with probability (nd)−O(1) (resp. 2−o(nd)).
Given M =

∑d
i=1 Ii · bi, the input of the reduction is y = x + e such that x ∈ M∗ and ‖e‖2,∞ ≤ δ = αq√

2r .
The goal is to find x mod qM∗. The reduction is as follows:
– For all i, compute ti ∈ Ii such that ti · Ii and (q) are coprime, and let t = (ti)1≤i≤d.
– To create an M-LWE sample:
• Get a fresh z distributed as DM,r and a fresh e′ distributed as να/√2,
• Let a = Θ−1(z mod qM) and b = 1

q 〈z,y〉+ e′ mod R∗ (see the definition of Θ in Section 2.1).
– Invoke O on input m samples (a, b) of M-LWE. If O succeeds, then it outputs some s ∈ (R∗q)d.
– Return Θ−1(s) ∈M∗/qM∗.

We show that the oracle O is used properly, i.e., that what is given to it as input follows a valid distri-
bution A(M)

s,ψ .

Lemma 18. Let ε > 0 and s = Θ(x mod qM∗). There exists ψ ∈ Ψ≤α such that the statistical distance
between A(M)

s,ψ and the distribution of (a, b) is at most 4ε.

Proof. We first show that the statistical distance between a, the first component of each sample, and the
uniform distribution on (Rq)d is at most 2ε. By Lemma 4, the statistical distance between the distribution
of z and the uniform distribution onMq is at most 2ε, because r ≥ q ·ηε(M) = ηε(qM). Then, as Θ−1 induces
a bijection from Mq to (Rq)d, the statistical distance between the distribution of a = Θ−1(z mod qM) and
the uniform distribution on (Rq)d is at most 2ε.

Now, we show that b is of the shape b = 1
q 〈a, s〉+ f , where f distributed from Dr′ with r′i ≤ α for all i.

We have:
b = 1

q
〈z,y〉+ e′ = 1

q
〈z,x + e〉+ e′ = 1

q
〈z,x〉+ 〈1

q
z, e〉+ e′.

By definition, we have z = Θ(a) =
∑d
i=1(ti · ai) · bi mod qM with ti ∈ Ii and ai ∈ Rq. By Lemma 1, we

have M∗ =
∑d
i=1 I

∗
i · b∗i . Then, let x =

∑d
i=1 xi ·b

∗
i , it implies that xi ∈ I∗i = I−1

i ·R∗ for all i. We also have
〈bi, b∗j 〉 = 1 if i = j and 〈bi, b∗j 〉 = 0 otherwise. Then, modulo qR∗:

〈z,x〉 =
d∑

i,j=1
(ti · ai) · xj · 〈bi, b∗j 〉 =

d∑
i=1

(ti · ai) · xi =
d∑
i=1

ai · (ti · xi).
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Because s = Θ(x mod qM∗) = (t1 · x1 mod qR∗, . . . , td · xd mod qR∗), we have:

〈a, s〉 =
d∑
i=1

ai · (ti · xi) = 〈z,x〉 mod qR∗.

As a consequence, we obtain that 1
q 〈z,x〉 = 1

q 〈a, s〉 mod R∗.

We now show that, conditioned on a, the quantity 〈 1
qz/q, e〉 + e′ has distribution νr′ with r′i ≤ α for

all i. First, let us analyze the distribution of z′ = 1
qz knowing a. We know that z has distribution DM,r and

that a = Θ−1(z mod qM). Let u = Θ(a) mod qM , then the residual distribution of z′ = 1
qz knowing a is

DM+u/q,r/q (with r/q ≥
√

2ηε(M)).
We now show that e′ is following the same distribution as 〈e′′, e〉 with e′′ ∼ νs,...,s, s = (si)i and

si = si+n/2 = α/
√

2
∑d
k=1 |σi(ek)|2 for 1 ≤ i ≤ n/2. By Lemma 10, as the vector e′′ is distributed from νs,...,s

and e ∈ Kd is fixed, we have that 〈e′′, e〉 has distribution νs′ with s′i = s′i+n/2 = si

√∑d
k=1 |σi(ek)|2 = α√

2 .

We are now led to considering the distribution of 〈z′+e′′, e〉. We write e′′ = e′′1 +e′′2 with e′′1 ∼ να/(
√

2δ) and
e′′2 ∼ νs′′ with (s′′i )2 = s2

i −α2/(2δ2) (which is positive by assumption on ‖e‖2,∞). As we have α/(
√

2δ) = r/q
and r/q ≥

√
2ηε(M), Lemma 6 gives us that the statistical distance between the distribution of z′ + e′′1

and να/δ is at most 4ε. As a consequence, the statistical distance between the distribution of z′ + e′′1 + e′′2
and νr′′,...,r′′ is at most 4ε, with

(r′′i )2 = α2

δ2 + (s′′i )2 = α2

δ2 + s2
i −

α2

2δ2 = α2

2
∑d
k=1 |σi(ek)|2

+ α2

2δ2 .

By using Lemma 10 again with the fixed vector e, we obtain that the statistical distance between the
distribution of 〈z + e′′, e〉 and νr′ is at most 4ε, where

r′i =

√
α2

2 +
α2∑d

k=1 |σi(ek)|2
2δ2 .

Since δ ≥
√∑d

k=1 |σi(ek)|2, we have r′i ≤ α, as desired. ut

As the input of O is within statistical distance ≤ 4ε from A
(M)
s,ψ for a distribution ψ ∈ Ψ≤α and s =

Θ(x mod qM∗), oracle O succeeds with probability at least p− 4ε, where p is its success probability given a
valid input distribution. If it does succeed, then the output of our reduction is x mod qM∗, which completes
the proof of Lemma 17. ut

A reduction from M-CLWE to M-DLWE. Finally, we describe a reduction from the search version
M-CLWE to the decision version M-DLWE. We will use the line of proof of [14] for reducing R-CLWE to R-
DLWE. Let q = 1 mod 2n be prime. Then (q) =

∏n
i=1 qi where any qi is a prime ideal with norm N(qi) = q.

We define the following:

• qi-MLWEq,Ψ , with parameters Ψ a family of distributions over TR∗ and i ≤ n: Given access to an oracle
sampling from A

(M)
s,ψ for some arbitrary s ∈ (R∗q)d and ψ ∈ Ψ , find s mod qiR

∗
q .

• Hybrid distribution A
(M,i)
s,ψ , with parameters ψ a distribution over TR∗ , s ∈ (R∗q)d and i ≤ n: The

distribution A(M,i)
s,ψ over (Rq)d×TR∗ is defined as follows: Choose (a, b) from A

(M)
s,ψ and return (a, b+r/q)

where r ∈ R∗q is uniformly random and independent in R∗q/qjR
∗ for all j ≤ i, and is 0 modulo the

remaining qjR
∗’s.
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• DecMLWEiq,Ψ , with parameters Ψ a family of distributions on TR∗ and i ≤ n: Given access to an oracle
sampling from A

(M,j)
s,ψ for arbitrary s ∈ (R∗q)d, ψ ∈ Ψ and j ∈ {i−, i}, find j.

We consider the following sequence of reductions:

MLWEq,Ψ Lemma 19 qi-MLWEq,Ψ Lemma 20 DecMLWEiq,Ψ
[14, Le. 5.11 & 5.13] DMLWEq,Υ

We only explicit the first two reductions, as the last one carries over directly from the ring setting [14,
Le. 5.11 & 5.13] to the module setting (the proof randomizes the noise distribution Ψ , which is the same in
the ring an module settings). To show the two new lemmata, we adapt proofs from [14].

Lemma 19. For any i ∈ [n] and any family Ψ closed under all the automorphisms of K, there exists a
probabilistic polynomial time reduction from M-CLWEq,Ψ to qi-MLWEq,Ψ .

Proof. We aim at using an oracle solving qi-MLWE for finding the values of s mod qjR
∗ for every j ∈ [n].

Then, by the Chinese Reminder Theorem, this allows us to construct s mod R∗ and to solve M-CLWE.
We use the K-automorphisms, defined by τk(ξ) = ξk for all k ∈ [n]. We choose k ∈ [n] such that

tk(qj) = qi. The reduction is as follows:

– For every sample (a, b)← A
(M)
s,ψ , create the sample (a′, b′) with a′ = (τk(a1), . . . , τk(ad)) and b′ = τk(b).

– Use the oracle of qi-MLWE with these samples, and get t ∈ (R∗/qiR∗)d.
– Return (τ−1

k (t1), . . . , τ−1
k (td)) ∈ (R∗/qjR∗)d.

We show that τ−1
k (tl) = sl mod qjR

∗ for all l ∈ [d]. By definition, we have b = 1
q 〈a, s)〉+ e mod R∗ with

〈a, s〉 =
∑d
i=1 ai · si. As a consequence, we have:

b′ = τk(b) = 1
q

d∑
i=1

τk(ai) · τk(si) + τk(e) = 1
q
〈a′, s′〉+ τk(e) mod R∗,

with s′ = (τk(s1), . . . , τk(sd)). As τk is an automorphism, the vector a′ is uniformly distributed in (Rq)d.
Also, as Ψ is closed under the automorphisms of K, we have ψ′ := τk(ψ) ∈ Ψ . Overall, the pairs (a′, b′)
are distributed as A(M)

s′,ψ′ . If successful, the qi-MLWE oracle outputs t = s′ mod qiR
∗ = (τk(s1) mod

qiR
∗, . . . , τk(sd) mod qiR

∗). Then our reduction returns (τ−1
k (t1), . . . , τ−1

k (td)) ∈ (R∗/qjR∗)d, which is equal
to s mod qjR

∗. ut

Lemma 20. For any i ∈ [n], there exists a probabilistic polynomial time reduction from qi-MLWEq,Ψ to
DecMLWEiq,Ψ .

Proof. We want to find s mod qiR
∗ from samples from A

(M)
s,ψ , by using an oracle that solves the DecMLWEiq,Ψ

problem. The principle of the proof is to find, one by one, each one of the d coordinates of s mod qiR
∗ by

using the oracle of DecMLWEiq,Ψ . For each coordinate, there are N(qi) = q ≤ poly(n) possibilities. Therefore,
it is possible to try them all in order to find the correct one. To check that a guess is correct, we use the
same approach as in [31, Le. 4.2] and randomize a coordinate of a.

To find s1 mod qiR
∗, we proceed as follows. Let (a, b) be distributed as A(M)

s,ψ and let x ∈ R∗q ; we want
to know if x = s1 mod qiR

∗. We construct the following pair:

(a′, b′) :=
(

a + (y, 0, . . . , 0), b+ 1
q

(r + xy)
)
,

where y ∈ Rq is sampled uniformly modulo qi, and is 0 modulo all the remaining qj ’s, and where r ∈ R∗q is
uniformly random and independent modulo qjR

∗ for all j < i, and 0 modulo all the remaining qjR
∗’s.
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Now, we show that if x = s1 mod qiR
∗, then the pair (a′, b′) is distributed from A

(M,i−)
s,ψ and if x 6=

s1 mod qiR
∗, it is distributed from A

(M,i)
s,ψ . First, notice that the vector a′ is uniformly distributed in (Rq)d.

Now, we write b′ as follows:

b′ = b+ 1
q

(r + xy) = 1
q

(
d∑
i=1

ai · si + r + xy

)
+ e =

(
1
q
〈a′, s〉+ e

)
+ 1
q

(r + y(x− s1)) .

We have two cases:

• If x = s1 mod qiR
∗, then by the Chinese Reminder Theorem we have y(x− s1) = 0 ∈ R∗q . As r is chosen

uniformly random and independent modulo qjR
∗ for all j < i, and is 0 modulo all the remaining qjR

∗’s,
we obtain that the pair (a′, b′) has distribution A(M,i−)

s,ψ .
• If x 6= s1 mod qiR

∗, then y(x−s1) is uniformly distributed modulo qiR
∗, because R∗/qiR∗ is a field (the

ideal qi maximal). Also, the quantity y(x− s1) is 0 modulo the other qjR∗’s. As a consequence, we have
that (r + y(x− s1)) is uniformly random and independent modulo qjR

∗ for all j ≤ i and is 0 modulo all
the remaining qjR

∗’s. We obtain that the pair (a′, b′) is distributed as A(M,i)
s,ψ .

We repeat this process d times (once for each coordinate of s), to obtain s mod qiR
∗. ut

This completes the proof of the Theorem 8.

5 Converse reductions

In this section, we show that M-SIS and M-LWE both reduce to Mod-GIVP. This provides converse results
to Theorems 4 and 8.

Reducing M-SIS to Mod-GIVP. In this paragraph, we identify elements of the field K with their polynomial
representations. Let a1, . . . ,am be sampled uniformly and independently in Rdq . Finding z = (z1| . . . |zm) ∈
Rm \ 0 such that

∑
i ziai = 0 mod q and ‖z‖ ≤ β corresponds to finding a short vector in the lattice:

A⊥ =
{

y ∈ Rm : ATy = 0 mod q
}
,

where A ∈ Rd×mq is the matrix whose rows are the ai’s. As this lattice is a module lattice, if we solve
Mod-GIVPηεγ given as input an arbitrary basis of A⊥ (which can be computed efficiently given A), then we
obtain a solution to the M-SIS instance, for β = γ ·ηε(A⊥). To assess the effectiveness of this reduction from
M-SIS to Mod-GIVP, we are thus led to estimating ηε(A⊥) for A sampled uniformly in Rm×dq . For this task,

it is classical to study the dual lattice, as we have ηε(Λ) ≤
√

ln(2k(1+1/ε))
π /λ∞1 (Λ∗) for any k-dimensional

lattice Λ (see Lemma 3). By [32, Le. 7], the dual of the lattice A⊥ is 1
qLq(A

×) where A× is the matrix
obtained by replacing each entry ai,j(x) ∈ Rq of A by ai,j(x−1), and

Lq(B) =
{

y ∈ Rm : ∃s ∈ Rdq ,Bs = y mod q
}
, for any B ∈ Rm×dq .

Note that the map a(x) 7→ a(x−1) is an isomorphism. As a consequence, it suffices to obtain a probabilistic
lower bound on λ∞1 (Lq(A)), for A uniform in Rm×dq .

Similarly, for reducing M-SIS to M-SIVP, one is led to bounding λmn(A)⊥. As λk(Λ) ≤ k/λ1(Λ) ≤
k3/2/λ∞1 (Λ∗) for any k-dimensional Λ, it is also sufficient to obtain an lower bound for λ∞1 (Λ∗).

Lemma 21. Let n,m, d, q be positive integers with d ≤ m. We have:

Pr
A←↩U(Rm×dq )

[
λ∞1 (Lq(A)) ≥ 1

8
√
n
q1− d

m

]
≥ 1−

(
1

2
√
n

)nd
.
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Proof. We obtain this result by generalizing the proof of [32, Le. 8]. By the union bound, the probability
that Lq(A) contains a non-zero vector of infinity norm ≤ B := 1

8
√
n
q1− d

m is bounded from above by:∑
t ∈ Rmq

0 < ‖t‖∞ ≤ B

∑
s∈Rdq

Pr
A←↩U(Rm×dq )

[As = t] =
∑

t ∈ Rmq
0 < ‖t‖∞ ≤ B

∑
s∈Rdq

∏
i≤m

Pr
a←↩U(Rdq )

[〈a, s〉 = ti].

We now consider the probability (over the randomness of a) that 〈a, s〉 = ti. For this purpose, we consider
the decomposition of Rq as a Cartesian product of finite fields. If xn + 1 =

∏
k Φk mod q with irreducible

polynomials Φk, then these Φk’s have a common degree δ dividing n. Then we have Rq ' (Fqδ)
n
δ , where Fqδ

is the field with qδ elements. This ring isomorphism can be explicited: It is given by the Chinese Remainder
Theorem map x 7→ (x mod Φ1, . . . , x mod Φn/δ). Now, the equality 〈a, s〉 = ti holds if and only if it holds
over all CRT components. Wlog we consider Φ1. If ti and all the coordinates of s are zero modulo Φ1, then
the probability that 〈a, s〉 = ti mod Φ1 is 1. Otherwise, if ti or some coordinate of s is non-zero on that
component, then the probability is ≤ qδ. As a consequence, the probability under scope is bounded from
above by:∑

0≤k≤n/δ

∑
h =
∏

i∈S′
Φi

S′ ⊆ S
|S′| = k

∑
s ∈ Rdq
∀i, h|si

∑
t ∈ Rmq

0 < ‖t‖∞ ≤ B
∀i, h|ti

qm(kδ−n) ≤
∑

0≤k≤n/δ

∑
h =
∏

i∈S′
Φi

S′ ⊆ S
|S′| = k

∑
t ∈ Rmq
‖t‖∞ ≤ B
∀i, h|ti

q(m−d)(kδ−n).

The rest of the proof is as in [32]. ut

As a consequence of the result above and the preceding discussion, we obtain the following converse to
Theorem 4. Note that even for d = 1 (i.e., for an R-SIS instance), the resulting Mod-GIVP instance has
module rank m: This result does not provide a reduction from R-SIS to Id-GIVP.

Theorem 9. For any d ≥ 1 and ε(nd) = (nd)−ω(1), there is a probabilistic polynomial time reduction from
solving M-SISq,m,β to solving Mod-GIVPηεγ (with module rank m), for any m(nd), q(nd), β(dn) and γ(nd)
such that β ≥ γ

√
nω
(√

log(1/ε)
)
· q dm and m, log q ≤ poly(nd).

Reducing M-DLWE to Mod-GIVP. One of the classical ways for solving LWE consists in solving an associated
SIS instance [22]. We propose an adaptation of this approach to module lattices: We reduce M-DLWE to
M-SIS and then combine this reduction with Theorem 9 above.

Let us sample s uniformly in Rdq , and ψ from Υα. More precisely, we sample xi from Γ (2, 1) for i ≤ n/2,
define ri = ri+n/2 = α

√
1 +
√
nxi, and let ψ = νr. Assume that we have access to arbitrarily many

samples (ai, bi) ∈ Rdq × TR∗ with ai uniform in Rdq and all the bi’s uniform and independent in TR∗ , or all
the bi’s of the form bi = 1

q 〈ai, s〉+ ei with the ei’s sampled from ψ. Our goal is to determine with noticeable
advantage which situation we are in.

We consider m such samples (with m to be optimized later). Let A ∈ Rm×dq be the matrix whose rows
are the ai’s. By solving M-SISq,m,β for At, we obtain a non-zero vector z ∈ Rm such that ‖σP (z)‖ ≤ β
and zt ·A = 0 mod q. Now, we compute 〈z, b〉, where b ∈ TmR∗ is the vector made of the bi’s. If the bi’s are
uniform independent of the ai’s, then the inner product pszb is uniformly distributed in TR∗ . Otherwise, we
have 〈z, b〉 = 〈z, e〉 (modulo R∗), where e is the vector made of the ei’s. By Lemma 10, we have that 〈z, e〉
is distributed as νr′ with r′j = rj ·

√∑
k≤m |σj(zk)|2 for all j ≤ n. As a consequence, we have

‖σC(〈z, b〉)‖ = ‖σH(〈z, b〉)‖ ≤ t
√
n ·max

j
|r′j |

≤ t
√
n · σC(z) ·max

j
|rj | ≤ 2tn3/2αβ ·max

j
|xj |,
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with probability ≥ 1− 2−Ω(nt2) over the randomness of the ei’s. Furthermore, as we have than xj ≤ t with
probability ≥ 1− (2 + t)e−t for all j, we obtain that the bound above is itself smaller than 2t2n3/2αβ with
probability ≥ 1 − nt2−Ω(t). As R∗ = 1

nR, if the latter upper bound is smaller than 1
4n , then 〈z, b〉 will be

unexpectedly small.
Overall, we have proved that if β is such that n5/2ω(log(nd))·αβ < 1, then we can distinguish between the

two challenge distributions with non-negligible advantage. By Theorem 9, we thus obtain a reduction from
Mod-GIVPηεγ with module rank m to M-DLWEq,Υα , if γ is such that αγn3ω

(
log(nd)

√
log(1/ε)

)
q
d
m < 1.

Taking m = d log q leads to the following result.

Theorem 10. For any d ≥ 1 and ε(nd) = (nd)−ω(1), there is a probabilistic polynomial time reduction from
solving M-DLWEq,Υα to solving Mod-GIVPηεγ (with module rank d log q), for any α(dn) and γ(nd) such that
1
α ≥ γn

3ω
(

log(nd)
√

log(1/ε)
)
and log q ≤ poly(nd).
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