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Abstract. The decision Learning With Errors problem has proven an extremely flexible foundation
for devising provably secure cryptographic primitives. LWE can be expressed in terms of linear algebra
over Z/qZ. This modulus q is the subject of study of the present work. When q is prime and small,
or when it is exponential and composite with small factors, LWE is known to be at least as hard as
standard worst-case problems over euclidean lattices (sometimes using quantum reductions). The Ring
Learning With Errors problem is a structured variant of LWE allowing for more compact keys and
more efficient primitives. It is known to be at least as hard as standard worst-case problems restricted
to so-called ideal lattices, but under even more restrictive arithmetic conditions on q.
In this work, we prove that the arithmetic form of the modulus q is irrelevant to the computational
hardness of LWE and RLWE. More precisely, we show that these problems are at least as hard as
standard worst-case problems on lattices, under the unique condition that q is of polynomial bit-size.
This result is most useful for adapting LWE-based cryptographic constructions to the RLWE setting.
Among others, this allows us to derive the first Identity-Based Encryption scheme of quasi-optimal
performance proven secure under standard worst-case lattice assumptions, in the standard model.
Other applications include authentication, functional encryption and traitor tracing.
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1 Introduction

The decision Learning With Errors problem, introduced by Regev in [39,40] (see also the survey [41]),
has proven an invaluable tool for designing provably secure cryptographic protocols. These cryptographic
functionalities include, among others, IND-CPA public-key encryption [39,40,20], IND-CCA public-key en-
cryption [32,35,37], (hierarchical) identity-based encryption [20,14,1,2], functional encryption [4,3], traitor
tracing [27], group signature [21], identification [25], lossy trapdoor function [37] and homomorphic encryp-
tion [19,12]. LWE consists in distinguishing from uniform arbitrarily many samples of the form (ai, 〈ai, s〉+
ei) ∈ Zn+1

q , where the vectors ai are sampled independently and uniformly in Znq , the vector s is sampled
uniformly but common to all pairs, and the errors ei are sampled independently from a variant of the Gaus-
sian distribution with standard deviation αq that is small relative to q (as otherwise the problem becomes
vacuously hard). The parameters α and q are functions of n, where n grows to infinity when studying the
hardness of LWE. An extremely attractive feature of LWE is that under some conditions on α and q, it is
proven at least as hard as standard worst-case problems over euclidean lattices. For instance, Regev [39,40]
gave a (quantum) reduction from the approximate Shortest Independent Vectors Problem (SIVP) to LWE:
It proceeds in two steps, by first reducing SIVP to the computational variant of LWE and second from the
computational variant to decision LWE; Although the first reduction works for any sufficiently large q, the
second one is restricted to q polynomial in n and prime (with some other technical conditions). Peikert [35]
gave a reduction from the computational variant to decision LWE for q exponential in n and product of
many distinct prime factors. The conditions on q for these reductions have been relaxed further in [7,32], to
handle composite moduli involving only small prime factors.

The decision Ring Learning With Errors problem, introduced by Lyubashevsky et al in [29], allows
for more compact and more efficient cryptographic constructions than LWE. It consists in distinguishing
from uniform arbitrarily many samples of the form (ai, ai · s + ei) ∈ R2

q , where Rq is for example the



ring Zq[x]/(xn + 1) with n a power of 2, the ring elements ai are sampled independently and uniformly,
the element s is sampled uniformly but common to all pairs, and the ei’s are sampled independently from
a variant of the n-dimensional Gaussian distribution and interpreted as ring elements, with a standard
deviation αq that is small relative to q. The efficiency improvement stems from the fact that an RLWE
sample encodes n (non-independent) LWE samples at once. Cryptographic applications of RLWE include
fast encryption [29,43], fast lossy trapdoor functions [45], and fast homomorphic encryption [13,11,18]. RLWE
is known [29] to be at least as hard as approximate SIVP restricted to the class of so-called ideal lattices,
when q is polynomial in n, prime, and such that xn + 1 has n distinct linear factors modulo q. As for LWE,
the reduction proceeds in two steps, from worst-case problems on ideal lattices to the computational variant
of RLWE, and then from the latter to decision RLWE: The arithmetic conditions on the modulus q come
into play only for the second step. Note that these arithmetic conditions are significantly more restrictive
than their LWE counterparts.

The strong restrictiveness of the modulus conditions of RLWE relative to those of LWE prevents one from
extending in a straightforward manner a number of LWE-based cryptographic constructions to the RLWE
setting. For example, in the (hierarchical) identity-based encryption ((H)IBE) scheme from [1], the identities
are encoded into full rank difference matrices (i.e., any difference of two distinct matrices in the set is required
full-rank). These are typically implemented by encoding in matrix format a polynomial ring Zq[x]/Φ(x) such
that Φ is irreducible modulo q. Note that in this case, the ring Zq[x]/Φ(x) is isomorphic to the finite field Fqn .
This algebraic structure seems incompatible with that imposed by the RLWE restrictive modulus conditions,
which force the ring Rq to be isomorphic to the ring (Fq)n containing plentiful divisors of zero (extending
the proof from [1] fails because the simulator does not seem able to handle these non-divisors of zero). In a
number of other LWE-based constructions (such as [38,25,27]), LWE is interpreted as a problem of (noisy)
linear algebra over Zq. When q is prime, the ring Zq is a field, and one can exploit properties that hold on
vector spaces. The restrictive RLWE conditions force Rq to be very far from a field, and the vector spaces
degenerate to modules over the non-field ring Rq. For instance, the property that is central to the proof
of [38] and fails to hold for such a module is that if the columns of a matrix M are linearly independent,
then the map x 7→M · x is onto.

All known hardness proofs for decision (R)LWE [40,35,31,29,32] proceed by reducing the computational
variant of (R)LWE, which is proven hard under much milder modulus conditions, to the decisional variant.
These computational to decisional reductions rely on guessing the secret s common to all samples. As the
range of s is of size qn, the guess is broken into smaller guesses, based on the decomposition of the range
of s into a Cartesian product of small finite fields. For example, Regev [40] set q prime and polynomial in n
so that each component of Znq is a small field. Peikert [35] handled a larger q by taking it very composite, in
order to split Zq into smaller pieces via the Chinese Remainder Theorem. Lyubashevsky et al [29] chose q
small such that xn + 1 has n distinct linear factors modulo q, in order to break Rq into a Cartesian product
of n copies of Fq. These approaches seem bound to fail for moduli q such that Zq and Rq contain large
subrings that are fields.

Our main result. We describe a modulus-switching self-reduction for (R)LWE: For precise choices of the
noise distributions, LWEq,α (resp. RLWEq,α) can be reduced to LWEp,β (resp. RLWEp,β) if:4

β ≥ α ·max
(

1, q
p

)
· Ω̃
(
n1/2

)
and αq = Ω̃(1),

resp. β ≥ α ·max
(

1, q
p

)
· Ω̃
(
n3/4

)
and αq = Ω̃(n1/2).

Combined with any existing worst-case to average-case reduction for (R)LWE with a specific modulus [40,35,29],
this shows that (decision) LWE and RLWE are at least as hard as standard worst-case problems over lattices
(restricted to ideal lattices in the case of RLWE), without any condition on the arithmetic form of q.5 This
4 The Ω̃ notation absorbs some factor that is polynomial in logn.
5 Note that the conditions on αq are typically much weaker than requirements on αq for the worst-case to average-case
reductions to hold.
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provides the first hardness results for LWE with a modulus q that is prime and large, for RLWE with a
modulus q that is a power of 2, and for RLWE with a modulus q such that xn + 1 has few factors modulo q.

Cryptographic applications. Setting q as a power of 2 leads to practical improvements. This gives
further confidence in the security of the NTRU cryptosystem [23], where the modulus was chosen as a power
of 2 for efficiency purposes: Combined with [43], ths choice of modulus provides to a provably secure variant
of NTRU that is even closer to the original design. Also, such a q may be used to simplify and improve the
bootstrapping step in (R)LWE-based fully homomorphic encryption schemes [12,13,16].

Our other cryptographic applications all derive from the hardness of RLWE with q prime such that xn+1
(with n a power of 2) has exactly two irreducible factors modulo q. Note that ideally, we would like only
one factor, but such a modulus q does not exist. The closest that can be achieved is to take q prime
with q = 3 mod 8, since in that case the polynomial xn + 1 has exactly two distinct irreducible factors of
degrees n/2. This provides a ring isomorphism Rq ' (Fqn/2)2, thus illustrating that zero divisors of such
an Rq are extremely uncommon. For this reason, the ring Rq “behaves almost like a finite field,” and modules
over Rq “behave almost like vector spaces over a finite field.”

As a first application, we can encode the identities of the (H)IBE scheme from [1] into the diagonal
of Rq (the set of elements of Rq with equal Fqn/2-components), leading to a family of full-rank difference
matrices that both supports an exponential number of identities and has an algebraic structure compatible
with Rq. In algebraic terms, the security proof requires an additive subgroup of matrices over Rq where any
non-zero element is invertible (i.e., a division algebra over Rq), whereas the efficiency of the resulting scheme
is polynomial in the dimension of those matrices: The CRT diagonal of Rq provides such a one-dimensional
division algebra. This adaptation of [1] to the RLWE setting leads to the first asymptotically quasi-optimal
IBE (key sizes quasi-linear in the security parameter λ, and encryption/decryption of λ bits costing Õ(λ)
bit operations) that is provably secure under a standard lattice assumption, in the standard model. This
efficiency improvement also applies to the revocable IBE scheme from [15] and to the completely non-
malleable encryption scheme from [42], which both build upon [1]. By relying on the construction from [9], this
also provides an asymptotically quasi-optimal IND-CCA encryption scheme (proven secure in the standard
model). Note that this was already possible via lossy trapdoor functions [37,45]. Finally, our work also leads
to a RLWE-based variant of the functional encryption scheme for inner product predicates from [4], which
also builds upon [1]. This is most useful for its applications, such as hidden vector encryption [10] or predicate
encryption for CNF/DNF formulæ [24], that require a scalar domain of exponential size (so that a uniformly
chosen scalar is zero with exponentially small probability). In this context, moving from LWE to RLWE
allows one to decrease the sizes of the public parameters ciphertexts from Õ(`λ5) and Õ(`λ4) to Õ(`λ) and
Õ(`λ) respectively, where ` is the length of the predicate inner products. Finally, the largeness of the CRT
diagonal of Rq also leads to a RLWE variant of the authentication scheme from [22].

Another generic application of our result is to extend to the RLWE setting the LWE-based constructions
that were exploiting results holding for vector spaces. By choosing q such that Rq is isomorphic to (Fqn/2)2,
the modules over Rq behave almost like vector spaces. For example, if the columns of the matrix M over Rq
are uniform conditioned on being linearly independent, then the map x 7→ M · x is onto with probability
exponentially close to 1. This provides a RLWE variant of the Subspace LWE problem from [38]. This also
leads to an asymptotically efficient RLWE variant of the traitor tracing scheme from [27].

Overview of the technique. The modulus-switching self-reduction of (R)LWE proceeds in several steps.
To fix the ideas, assume we aim at reducing LWEq,α to LWEp,β .

• Discretizing the noise. We start from a variant of LWEq,α where the noise distribution is a discrete
Gaussian with support Z. From [21], this variant is no easier than the original LWE problem from [40].
Discretizing the noise distribution allows us to use the HNF variant of LWE (see just below), and using
a discrete Gaussian rather than a rounded continuous Gaussian facilitates the noise handling of the
LWEp,β samples (see ‘handling the RHS’ below).

• Replacing LWE by HNF-LWE. Our next observation is that we can use LWEq,α samples where the
coordinates of the secret s ∈ Znq are chosen from the noise distribution instead of the uniform distribution
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on Znq . This HNF-ization, introduced in [7], is crucial here for limiting the amplification of the noise in
the Right Hand Size (RHS) of the LWE samples, in the modulus-switching step.
• Switching the modulus. So far, we have either samples from the uniform distribution over Zn+1

q or LWEq,α
samples (ai, 〈ai, s〉+ ei) with s small and the ei’s sampled from a discrete Gaussian distribution of stan-
dard deviation αq. We aim at mapping these samples to either uniform samples over Zn+1

p or LWEp,β
samples. We proceed by refining the modulus-switching technique from [12,13], introduced in the context
of fully homomorphic encryption. We multiply the components by p/q and “round” them to integers. To
ensure the resulting Left Hand Sides (LHS) are uniformly distributed over Znp , we rely on Peikert’s con-
volution technique [36]. More precisely, we replace ai by a discrete Gaussian sample ri with support Zn,
small standard deviation and center p

qai.
• Handling the RHS. The randomized rounding of the previous step induces an additional error term 〈ri, s〉
in the RHS. The smallness of both ri and s ensures that this new error term is small. By combining
the former error term, this new error term and a continuous Gaussian error term, we obtain a resulting
noise distribution for the LWEq,α samples that is a continuous Gaussian with standard deviation chosen
arbitrarily in a specific interval related to β.
• Re-randomizing the noise distribution. To allow for a fully average-case variant of LWEp,β , we finally
randomize the noise distribution, using the same technique as in [29, Se. 5].

Once a reduction from LWEq,α to LWEp,β is obtained, we only have to use the existing results on the
hardness of (R)LWEq,α and chose a q close to p satisfying the conditions required for these existing reductions:
More precisely, it suffices to take q ≈ p prime for LWE [40] (such a q exists by the Chebytshev’s theorem),
and q prime with q = 1 mod 2n for RLWE [29] and MLWE [26] (such a q also exists by Dirichlet’s theorem
on arithmetic progression and the smallest of them is in O(n5.2) [46]).

Related works. Thanks to its cryptographic attractiveness, the hardness of (R)LWE has been investigated
in a number of works. Different Gaussian-type noise distributions have been shown to allow for hardness
based on standard lattice assumptions [40,35,21,29,8]. (R)LWE was shown to remain hard even for a secret s
that is derived from the noise distribution [7]. The sample complexity of the hardness proof of decision LWE
was considered in [31] (note that all the steps of our modulus-switching self-reduction preserve the number of
LWE samples, except the HNF-ization step). An extension of (R)LWE to a module setting generalizing both
LWE and RLWE was proposed in [11] and proven to admit a reduction from lattice problems in [26]. The
hardness of (R)LWE with respect to the modulus q was considered in [40,35,7,32,29]. Our technique allows
one to handle much more moduli, at the expense of increasing the approximation factors of the worst-case
lattice problems by factors Ω̃(n1/2) and Ω̃(n3/4) for LWE and RLWE respectively.

Open problems. An original motivation for this work was to fully dequantumize Regev’s reduction from
standard lattice problems to LWE [40]. This was achieved by Peikert [35], but only for moduli that are
exponentially large and products of many small primes. By using Peikert’s result for such a special modulus q,
and then switching to another modulus p, one obtains a classical reduction from standard lattice problems
to LWE with that new modulus p. This would be most interesting for a modulus p that is as small as those
handled by Regev’s quantum reduction. However, applying our reduction with these parameters leads to a
standard deviation β that is exponentially larger than α. As the problem becomes vacuous for β = Ω̃(1),
this means that α should be chosen exponentially small, but then LWEq,α can be solved in polynomial-time.

Another natural open problem would be to remove the increase of the standard deviation by fac-
tors Ω̃(n1/2) and Ω̃(n3/4), when switching moduli. This increase limits the range of moduli p for which we
obtain non-vacuous hardness results based on standard lattice problems. To fix the ideas, consider LWEp,β .
As it is vacuously hard for β = Ω̃(1) and Regev’s hardness proof for LWEq,α assumes that αq = Ω̃(n1/2), the
standard deviation increase implies that the LWE self-reduction provides non-vacuous results only for p ≥ n.

Road-map. In Section 2, we introduce the necessary background for the exposition of our results. In partic-
ular, we recall the module variant of LWE, to place ourselves in an algebraic setup that allows us to handle
both LWE and RLWE at once (and thus avoid cumbersome duplications of the proofs). Section 3 contains
the modulus-switching self-reduction. Finally, we discuss cryptographic applications in Section 4.
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2 Preliminaries

Notations. We use standard Landau notations. A function f(n) is said negligible (resp. exponentially small)
if f(n) = n−ω(1) (resp. f(n) = 2−Ω(n)). The statistical distance between two distributions X and Y on a
countable set D is defined as follows: ∆(X,Y ) = 1

2
∑
d∈D |X(d) − Y (d)|. For a set A with finite measure,

we let U(A) denote the uniform distribution on A. All vectors will be denoted in bold. The hermitian norm
of a vector x ∈ Cn will be denoted by ‖x‖. Similarly, its infinity norm maxi |xi| will be denoted by ‖x‖∞.
If two vectors x and y over the same ring share the same number of coordinates, their inner product will
be denoted by 〈x,y〉. For any vectors c, r ∈ Rn with ri > 0 for all i, we define the function ρr,c(x) =
exp(−π

∑
i≤n

(xi−ci)2

r2
i

), for x ∈ Rn. We extend this to any countable set A ⊆ Rn in the usual way: ρr,c(A) =∑
x∈A ρr,c(x). If the vector r is constant equal to σ > 0, we write ρσ,c instead.

2.1 Algebraic setup

A cyclotomic number field. Let n ≥ 1 be a power of 2 andK = Q(ξ) with ξ = exp(iπ/n) denote the (2n)-
th cyclotomic number field.6 The fieldK is a degree n extension of Q, and we let (σj)j≤n denote the canonical
embeddings, ordered so that σj+n/2 = σj for all j ≤ n/2. For y ∈ K, the notation σC(y) will refer to the
vector (σj(y))j ∈ Cn. As in [29], we will consider the subspace H = {(x1, . . . , xn) ∈ Cn : ∀j ≤ n/2, xn/2+j =
xj}, which is isomorphic to KR = K ⊗Q R. Let hj = 1√

2 (ej + ej+n/2) and hj+n/2 = i√
2 (ej − ej+n/2) for

j ≤ n/2, where ej denotes the j-th canonical basis vector of Cn. Then the hj ’s form an orthonormal basis
of H as a real vector space. For any y ∈ K, there exists a unique (yj)j ∈ Rn, which we denote by σH(y),
such that σC(y) =

∑
j yjhj .

A ring and its ideals. We let R = Z[ξ] denote the ring of integers of K. It is isomorphic to the polynomial
ring Z[x]/(xn + 1), and an explicit isomorphism can be derived by deleting rows and columns from the (2n)-
dimensional complex Fourier transform (we refer to [43] for more details). We let R∗ = {x ∈ K : ∀y ∈
R, 〈σC(x), σC(y)〉 ∈ Z} denote the dual of R. For our particular choice of K, we have R∗ = 1

nR. Any
additive subgroup I of R that is closed under multiplication by every element of R is called an ideal of R.
The set of the equivalence classes g + I of R modulo I is denoted by R/I. If x is a ring element, we let (x)
denote the ideal generated by x. For q > 2 prime, the ring Rq = R/(q) is isomorphic to the Cartesian product
of finite fields (Fqk)nk where k < n is the power of 2 that is the common degree of all irreducible factors
of xn + 1 modulo q. For q = 1 mod 2n, we have k = 1, and for q = 3 mod 8, we have k = n/2.

Modules. Let d ≥ 1. A subset M ⊆ Kd is called an R-module if it closed under addition and multiplication
by elements of R. It is a finitely generated module if there exists a finite family (bi)i ∈ Kd such that M =∑
iR · bi. We say that a module M ⊆ Kd is full-rank if its K-span has K-dimension d. For the sake of

simplicity, we will restrict ourselves to full-rank modules. We extend σH to modules, by considering the
concatenation of the embeddings of the successive coordinates. We define the euclidean (resp. infinity) norm
of a vector x ∈ Kd by ‖x‖ = ‖σH(x)‖ = ‖σC(x)‖ (resp. ‖x‖∞ = ‖σH(x)‖∞). We will also use the mixed
norm ‖x‖2,∞ = maxj≤n

√∑
k≤d |σj(xk)|2. We have ‖x‖2,∞ ≤

√
d‖x‖∞ for all x ∈ Kd.

Lattices. A euclidean lattice Λ is a discrete additive subgroup of Rn. It can be written Λ =
∑
i Zbi for

some linearly independent vectors (bi)i≤k ∈ Rn, which we call a basis of Λ. For the sake of simplicity, we
will restrict ourselves to full rank lattices, i.e., with k = n. For an n-dimensional lattice Λ and for any i ≤ n,
we define the i-th minimum λi(Λ) as the smallest r such that Λ contains ≥ i linearly independent vectors of
(euclidean) norm ≤ r. The dual lattice of Λ ⊆ Rn is defined as Λ∗ = {x ∈ Rn : ∀y ∈ Λ, 〈x,y〉 ∈ Z}. If I is
a non-zero ideal of R, then σH(I) is an n-dimensional lattice. We call such lattices ideal lattices. Similarly,
if M ⊆ Kd is a full-rank module, then σH(M) is an nd-dimensional lattice. We call such lattices (n, d)-
module lattices. Note that (n, 1)-module lattices are exactly ideal lattices, and that (1, n)-module lattices
are arbitrary n-dimensional rational lattices.
6 Our techniques should apply to all cyclotomic fields, but we restrict ourselves to this setting, for simplicity.
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2.2 Gaussian measures

For σ > 0, we let νσ denote the n-dimensional continuous Gaussian distribution of standard deviation σ: we
have νσ(x) = ρσ(x)/σn for any x ∈ Rn. We extend it to elliptical Gaussian distributions: For r = (ri)i≤n
with ri > 0 for all i, the distribution νr is defined as νr = (νri)i≤n. We define Ψ[α,α′] for 0 ≤ α < α′, as the
set of Gaussian distributions νr with α < ri ≤ α′, for all i. We write Ψ≤α′ when α = 0. We will also use
the distribution Υα introduced in [30]. The gamma distribution Γ (2, 1) has density x exp(−x) for x ≥ 0 and
zero for x < 0. For α > 0, a distribution sampled from Υα is an elliptical Gaussian distribution νr whose
parameters are ri = ri+n/2 = α

√
(1 +

√
nxi) for i ≤ n/2, where the xi’s are sampled independently from

the distribution Γ (2, 1). We will use the following result from [30].

Lemma 1 ([30, Claim 5.10]). Let P be the distribution Γ (2, 1)n and Q be the distribution (Γ (2, 1) −
z1) × . . . × (Γ (2, 1) − zn) for some 0 ≤ z1, . . . , zn ≤ 1/

√
n. Then for any measurable set A ⊆ Rn, we have∫

A
Q ≥ 1

poly(n) · (
∫
A
P )2.

For any c, r ∈ Rn with ri > 0 for all i and for any n-dimensional countable set S ⊆ Rn, the discrete
Gaussian distribution of support S, standard deviation r and center c is defined by DS,r,c(x) = ρr,c(x)

ρr,c(S) . If r

is constant equal to σ > 0, we write DS,σ,c instead. Also, if c = 0, we omit it in the subscript. We finally
define DS,[α,α′] for 0 ≤ α < α′, as the set of discrete Gaussian distributions DS,r with α < ri ≤ α′ for all i.
The following states that if S is a n-dimensional lattice Λ, then it is possible to efficiently sample from DΛ,σ,c

when σ is sufficiently large.

Lemma 2 (Adapted from [20, Th. 4.1]). There exists a probabilistic polynomial-time algorithm that,
given a basis (bi)i of an n-dimensional lattice Λ, a standard deviation σ ≥ maxi ‖bi‖ · ω(

√
logn) (resp.

σ ≥ maxi ‖bi‖ ·Ω(
√
n)), and a center c ∈ Rn, outputs a sample from a distribution that is within negligible

(resp. exponentially small) distance to DΛ,σ,c.

For a lattice Λ and a real ε > 0, the smoothing parameter ηε(Λ) is the smallest σ > 0 such that
ρ1/σ(Λ∗ \ {0}) ≤ ε. By [33, Le. 3.3], we have that ηε(Λ) ≤ O(

√
log(n/ε)) · λn(Λ), for any n-dimensional

lattice Λ. This gives that smoothing parameter of the module lattice Rd is ηε(Rd) ≤
√
n log(nd/ε). As

R∗ = 1
nR, we also have that ηε((R∗)d) ≤

√
log(nd/ε)/n.

We now recall some useful properties on discrete Gaussians.

Lemma 3 (Adapted from [34, Cor. 5.3]). Let Λ be a n-dimensional lattice, ε ∈ (0, 1) and r ∈ Rn
with ri ≥ ηε(Λ) for all i ≤ n. Then we have Prx←↩DΛ,r [‖x‖∞ ≥ (maxi ri) · t] ≤ 2en · exp(−πt2) for all t > 0.
In particular, for t = ω(

√
logn) (resp. t = Ω(

√
n)) the above probability is at most n−ω(1) (resp. 2−Ω(n)).

Lemma 4 ([20, Cor. 2.8]). Let Λ′ ⊆ Λ be n-dimensional lattices. Then for any ε ∈ (0, 1), any σ ≥ ηε(Λ′),
and any c ∈ Rn, we have ∆(DΛ,σ,c mod Λ′, U(Λ/Λ′)) ≤ 2ε.

Lemma 5 (Adapted from [40, Claim 3.9]). Let Λ be an n-dimensional lattice, u ∈ Rn, r ∈ Rn with ri >
0 for all i, σ > 0 and ti = ti+n/2 =

√
r2
i + σ2, for all i ≤ n/2. Assume that riσ/ti ≥ ηε(Λ) for all i and

some ε ∈ (0, 1/2). Consider the continuous distribution Y on Rn obtained by sampling from DΛ+u,r and
then adding a vector taken from νσ. Then we have ∆(Y, νt) ≤ 4ε.

The proof of lemma 5 follows the same principle as the one of [40, Claim 3.9]. It is given in appendix.

Lemma 6 (Adapted from [36, Th. 3.1]). Let σ1, σ2 > 0 be positive. Let σ and σ3 be defined by σ2 = σ2
1 +

σ2
2 and σ−2

3 = σ−2
1 +σ−2

2 . Let Λ1, Λ2 be lattices such that σ1 ≥ ηε(Λ1) and σ3 ≥ ηε(Λ2) for some ε ∈ (0, 1/2].
Consider the following experiment:

Sample x2 ←↩ DΛ2,σ2 , then sample x1 ←↩ x2 +DΛ1−x2,σ1 .

Then the marginal distribution of x1 is within statistical distance 8ε of DΛ1,σ.

Lemma 7 ([26, Le. 10]). Let r ∈ Rn with ri = ri+n/2 for all i ≤ n/2, x ∈ Kd sampled from σ−1
H (νr,...,r),

and s ∈ Kd. Then σH(〈x, s〉) has distribution νr′ with r′i = r′i+n/2 = ri ·
√∑d

k=1 |σi(sk)|2, for all i ≤ n/2.
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2.3 Computational problems

Let γ ≥ 1 be a function of the dimension n. The approximate Shortest Independent Vectors Problem SIVPγ
is as follows: Given a basis (bi)i of an n-dimensional lattice Λ, find n linearly independent vectors (si)i in Λ
such that maxi ‖si‖ ≤ γ · λn(Λ). We let Id-SIVP (resp. Mod-SIVP(n,d)) denote the restriction of SIVP to
ideal (resp. (n, d)-module) lattices.

The MLWE problem generalizes both LWE and RLWE. It was introduced in [11] and a reduction from
approximate Mod-SIVP was given in [26]. Let Rq and R∗q respectively denote R/qR and R∗/qR∗. Let ψ
be some distribution on TR∗ := KR/R

∗ and s ∈ (R∗q)d be an arbitrary vector. We define A(q)
s,ψ as the

distribution on Rdq×TR∗ obtained by sampling a vector a uniformly in Rdq , and e ∈ TR∗ from distribution ψ,
and returning (a, 1

q 〈a, s〉+ e).

Definition 1. Let n, d ≥ 1 and q ≥ 2 be integers, and Υ be a distribution over a family of distributions
over KR. The decision version of the Module Learning With Error problem MLWE(n,d)

q,Υ is as follows: Let
s ∈ (R∗q)d be sampled uniformly and ψ be sampled from Υ ; The goal is to distinguish between arbitrarily
many independent samples from A

(q)
s,ψ and the same number of independent samples from U(Rdq × TR∗).

By abuse of notation, we also call this problem MLWEq,Υ if Υ is only a set of distributions and ψ is
arbitrarily chosen in Υ . When n = 1, we recover the LWE problem, whereas RLWE corresponds to setting d =
1. Note that the noise distribution is itself chosen randomly (from distribution Υ ). This randomization of
the noise distribution was introduced in [29], to obtain a reduction from a worst-case lattice problem to a
fully average-case variant of RLWE (without it, the reduction from [29] would be to a variant of RLWE with
noise distribution arbitrarily chosen in a set of distributions). In the case of LWE, the sampling of the noise
can be avoided using [40, Le. 3.7], and in the case of RLWE with a bounded number of samples (which is
the case in most applications), it can be avoided using [30, Se. 5.2].

The following result from [26] generalizes both that of [40] on LWE, and that of [29] on RLWE.

Theorem 1 (Adapted from [26, Th. 9]). Let d, n ≥ 1, ε = (nd)−ω(1) (resp. ε = 2−Ω(nd)), α ∈ (0, 1) and
q prime such that q = 1 mod 2n and αq > ω(

√
d logn) (resp. αq > Ω(

√
dn)). There exists a polynomial-time

quantum reduction from solving Mod-SIVP(n,d)
γ in polynomial-time with non-negligible probability (resp. sub-

exponential time with non-exponentially small probability) to solving MLWE(n,d)
q,Υα

in polynomial-time with
non-negligible probability (resp. sub-exponential time with non-exponentially small probability), with γ =√
nd
α

√
log(nd) · ω(

√
logn) (resp. 1

α ·Ω((nd)3/2)).

In [35], Peikert proposed a dequantumized variant of Theorem 1, from standard lattice problems such as
GapSVP to decision LWE (i.e., MLWE(1,n)), when q = 2Ω(n log logn

logn ) is a product of distinct primes that are
polynomial in n. This was later improved in [32] to handle for powers of small primes.

Assume that α ≥
√

log(nd/ε)/n3/4. Then by [33, Le. 4.1] and the bound on ηε((R∗)d) from Subsec-
tion 2.2, we have that ∆(A(q)

s,ψ, U(Rdq × TR∗)) ≤ ε/2 with overwhelming probability with respect to ψ ←↩ Υα
and s ←↩ U(Rdq). This implies that for α ≥ ω(

√
log(nd))/n3/4 (resp. α ≥ Ω(d1/2/n1/4), solving MLWE(n,d)

q,Υα
in polynomial time (resp. sub-exponential time) in nd is vacuously hard.

3 A modulus-switching self-reduction for MLWE

The aim of the present section is to prove the following result: for any p, q ≥ 2, and under some conditions
on α and β, MLWEp,Υβ is no easier than MLWEq,Υα .

Theorem 2. Let d, n ≥ 1, p, q ∈ [2, 2(nd)O(1) ] and α, β ∈ (0, 1) such that β ≥ α·max(1, qp )·n3/4d1/2·ω(log2 nd)
(resp. β ≥ α ·max(1, qp ) ·Ω(n11/4d5/2)) and αq ≥ ω(

√
log(nd)/n) (resp. Ω(

√
d)). There exists a probabilistic

polynomial-time reduction from solving MLWE(n,d)
q,Υα

in polynomial time with non-negligible probability (resp.
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sub-exponential time with non-exponentially small probability) to solving MLWE(n,d)
p,Υβ

in polynomial time with
non-negligible probability (resp. sub-exponential time with non-exponentially small probability).

Note that the condition on αq from Theorem 2 is always much weaker than the one from Theorem 1.
Combined with Theorem 1 by using a q prime close to p with q = 1 mod 2n, Theorem 2 provides a polynomial-
time quantum reduction from (worst-case) Mod-SIVP to MLWE with a modulus p of arbitrary arithmetic
form. As MLWE is a generalization of both LWE and RLWE, we recall that this theorem also provides
a reduction from SIVPγ (resp. Id-SIVPγ) to LWEp,Υβ (resp. RLWEp,Υβ ), for a modulus p of arbitrary
arithmetic shape. For instance, SIVPγ reduces to LWEp,Υβ as soon as βp = Ω̃(n) and γ = Ω̃(n3/2/β) (by
choosing q ≈ n/β prime and α ≈ β/n1/2).

Note that in the case of LWE, Regev [40] showed a hardness result for a fixed error distribution να (as
opposed to a randomly chosen error distribution). Therefore, we may start the modulus-switching reduction
from instances of LWEq,να , and allows one to save a log d factor in the requirement on β/α from Theorem 2.

The rest of the section gives the proof of Theorem 2, it proceeds by a sequence of reductions:

MLWEq,Υα
Section 3.1 HNF-MLWEq,D 1

q
R∗,[α,α′]

Section 3.2 MLWEp,Ψ≤β
Lemma 13 MLWEp,Υβ

We first reduce MLWEq,Υα to the HNF version of MLWEq,D(1/q)R∗,[α,α′] (i.e., with a small secret s),
where α′ ≈ αn1/4. Then we reduce HNF-MLWEq,D(1/q)R∗,[α,α′] to MLWEp,Ψ≤β , by switching the modulus
and handling the Right Hand Sides of the MLWE samples so that the error term comes from some distribution
in the set Ψ≤β . Finally, we re-randomize the noise distribution, thus providing a reduction from MLWEp,Ψ≤β
to MLWEp,Υβ .

3.1 Reducing MLWEq,Υα to HNF-MLWEq,D 1
q
R∗,[α,α′]

In this section we first propose a reduction from MLWEq,Υα to MLWEq,Ψ[α,α′] . We consider a sample φ
from distribution Υα. Recall that if φ is sampled from Υα, then φ = νr with ri = ri+n/2 = α

√
1 +
√
nxi

and xi sampled from Γ (2, 1), for all i ≤ n/2. By definition of Γ (2, 1), we have that, Prx←↩Γ (2,1)[x ≤ y] =
1−(1+y)e−y. We derive that x ≤ ω(lognd) (resp. x ≤ Ω(nd)) with probability negligibly (resp. exponentially)
close to 1. As a consequence, with the same probability we have that α < ri ≤ α′ = α · n1/4ω(lognd) (resp.
α′ = α ·Ω(n5/4d)) for all i. Therefore, MLWEq,Ψ[α,α′] is no easier than MLWEq,Υα .

Now, for any distribution νr arbitrarily chosen in Ψ[α,α′], we discretize the noise distribution by proving
that MLWEq,D(1/q)R∗,

√
2r

is no easier than MLWEq,νr . Here, by abuse of notation, MLWEq,D(1/q)R∗,
√

2r
denotes

the MLWE problem where the distribution ψ = D(1/q)R∗,
√

2r is a discrete distribution on (1/q)R∗ and where
the goal is to distinguish between arbitrarily many independent samples from A

(q)
s,ψ and the same number of

independent samples from U(Rdq × Tq,R∗), with Tq,R∗ = ((1/q)R∗)/R∗.

Lemma 8 (Adapted from [21, Le. 2]). For any n, d, q, ε ∈ (0, 1), r ∈ Rn and α satisfying ri > α for
all i and αq ≥ ηε(R∗), then there exists a polynomial time reduction from MLWEq,νr to MLWEq,D(1/q)R∗,

√
2r
.

The proof is following the same principle as the proof of [21, Le. 2]. It is given in appendix.
Finally, Lemma 9 allows us to reduce the MLWEq,D(1/q)R∗,

√
2r

problem to a variant in which the secret is
chosen from D(R∗)d,

√
2qr. We call this new problem the Hermite Normal Form (HNF) of MLWE.

Definition 2. Let n, d ≥ 1 and q ≥ 2 be integers, and Υ be a set of distributions over (1/q)R∗. The Hermite
Normal Form of the decision version of the Module Learning With Error problem HNF-MLWE(n,d)

q,Υ is as
follows: Let ψ be arbitrarily chosen from Υ and s ∈ (R∗q)d be sampled from (q ·ψ)d. The goal is to distinguish
between arbitrarily many independent samples from A

(q)
s,ψ and the same number of independent samples from

U(Rdq × Tq,R∗).
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We have the following result:

Lemma 9 (Adapted from [7, Le. 2]). There exists a deterministic polynomial time transformation that,
for arbitrary s ∈ (R∗q)d and error distribution D(1/q)R∗,r, maps A(q)

s,D(1/q)R∗,r
to A

(q)
x,D(1/q)R∗,r

where x ←↩
D(R∗)d,qr, and maps U((Rq)d × Tq,R∗) to itself.

The proof is following the same principle as the proof of [7, Le. 2]. It is given in appendix.
This completes the reduction from MLWEq,Υα to the HNF-MLWEq,D(1/q)R∗,[α,α′] .

3.2 Reducing HNF-MLWEq,D 1
q
R∗,[α,α′]

to MLWEp,Ψ≤β

This is the main component of the proof of Theorem 2. We show how to transform a sample fromA
(q)
s,D(1/q)R∗,[α,α′]

to a sample of A(p)
s,Ψ≤β

. We first explain how to deal with the two components of the MLWE sample and then
we give the main reduction.

Handling the first component of the MLWE sample. By definition, the element a is chosen uniformly
in (Rq)d. The following randomized mapping allows us to transform the uniform distribution in (Rq)d (the
first part of the MLWE sample) to the uniform distribution in (Rp)d. Note that simply multiplying by p/q
cannot work as the sets (Rq)d and (Rp)d do not have the same cardinality.

Lemma 10. Let n, d ≥ 1, p, q ≥ 2 be integers, ε ∈ (0, 1) and σ ≥ max
(

1,
√

p2

q2−1

)
· ηε(Rd). We define the

following randomized function f : (Rq)d → (Rp)d:

f(a) = p

q
a +DRd− pqa,σ (mod p).

Then, if a is sampled uniformly in (Rq)d then the distribution of f(a) is within statistical distance 12ε to
the uniform distribution in (Rp)d.

Proof. We take a parameter σ′2 = ηε(qRd), and apply Lemma 4 with Λ = Rd and Λ′ = qRd. We obtain that
the statistical distance between the uniform distribution on (Rq)d and the distribution (DRd,σ′2

mod qRd) is
at most 2ε.

As a consequence, for any integer p ≥ 2, the distribution p
qU((Rq)d) is within statistical distance 2ε to the

distribution p
q (DRd,σ′2

mod qRd). The latter is the same distribution as (pqDRd,σ′2
mod pRd). We also have

that p
qDRd,σ′2

= D p
qR

d,σ2 , with σ2 = p
qσ
′
2.

Let a be uniformly distributed in (Rq)d, so far we have shown that p
qa is within statistical distance at

most 2ε from (D p
qR

d,σ2 mod pRd). Now, we use Lemma 6, and write:

Λ1 = Rd, Λ2 = p

q
Rd, σ2 = p · ηε(Rd), and σ1 = σ ≥ max

(
1,

√
p2

q2 − 1

)
· ηε(Rd).

We have:

• σ′2 := σ2
1 + σ2

2 ≥ max
(
p2 + 1, p

2q2

q2−1

)
· η2
ε(Rd),

• σ−2
3 := σ−2

1 + σ−2
2 and σ1 ≥

√
p2

q2−1 · ηε(R
d), thus σ3 ≥ p

q · ηε(R
d).

Overall, we have σ1 ≥ ηε(Rd) and σ3 ≥ p
q ·ηε(R

d), and therefore the assumptions of Lemma 6 hold. Applying
the lemma gives that the residual distribution of x1 after the following experiment is within statistical
distance 8ε of DRd,σ′ :

Sample x2 ←↩ D p
qR

d,σ2 , then sample x1 ←↩ x2 +DRd−x2,σ.
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As a consequence, the vector f(a) is within statistical distance 10ε of (DRd,σ′ mod pRd).
Finally, as σ′ ≥ p ·ηε(Rd) = ηε(pRd), Lemma 4 implies that the statistical distance between (DRd,σ′ mod

pRd) and the distribution U((Rp)d) is at most 2ε. By combining this with the above analysis of the distribu-
tion of f(a), we obtain the statistical distance between the distribution of f(a) and the uniform distribution
on (Rp)d is at most 12ε. ut

For the following, we set σ =
√

2 max
(

1,
√

p2

q2−1

)
· ηε(Rd).

Handling the second component of the MLWE sample. We showed how to transform the first
component of the MLWE sample, we now study the second one and show that only the error term is
modified.

Let b = 1
q 〈a, s〉 + e, with a sampled uniformly in (Rq)d, s fixed and e sampled from D(1/q)R∗,r, where

α < ri = ri+n/2 ≤ α′, for all i ≤ n/2. Let a′ = f(a) be the element of (Rp)d obtained from a as described
above. Then:

b = 1
q
〈a, s〉+ e = 1

p
〈a′, s〉+ 1

p
〈p
q

a− a′, s〉+ e.

We consider the new error term 1
p 〈
p
qa − a′, s〉 + e. We aim at transforming it into a continuous Gaussian

distribution with parameter related to β. As it is discrete, we add to it continuous Gaussians to smooth it. In
fact, we are to consider both components 1

p 〈
p
qa−a′, s〉 and e independently. To smooth the first component,

we add to it a sample ed from νσ·smax , where smax =
√
d·α′q ·ω(

√
lognd) (resp. smax = α′q ·Ω(

√
nd)). We will

consider the second component directly in the description of the reduction from HNF-MLWEq,D(1/q)R∗,[α,α′]

to MLWEp,Ψ≤β .
First, we know that ‖s‖2,∞ ≤

√
d‖s‖∞. Let ε = (nd)−ω(1) (resp. ε = 2−Ω(nd)), by assumption, we have

that αq ≥ ηε(R∗). By Lemma 3 we have that ‖s‖∞ ≤ α′q · ω(
√

lognd) (resp. ‖s‖∞ ≤ α′q · Ω(
√
nd)) with

probability ≥ 1− ε, for s sampled from any DΛ,r such that ri ∈ (α, α′] for all i. As a consequence, with the
same probability we have that ‖s‖2,∞ ≤ smax.

Lemma 11. Let S > 0 and s ∈ Kd with ‖s‖2,∞ < S. Let d be distributed as DRd−a,σ for some arbitrary a

and σ ≥
√

2ηε(Rd) and e be distributed as ντ for some τ ≥ σ · S. Then the distribution of 〈d, s〉 + e
is within statistical distance 4ε of the elliptical Gaussian distribution νt over K, where t2i = t2i+n/2 =
σ2∑d

k=1 |σi(sk)|2 + τ2, for all i ≤ n/2.7

Proof. By Lemma 7, we have that e is following the same distribution as 〈es, s〉 with es distributed from
νr′,...,r′ and r′i = r′i+n/2 = τ/

√∑d
k=1 |σi(sk)|2 for i ≤ n/2.

As a consequence, we have that 〈d, s〉 + e is following the same distribution as 〈d + es, s〉. We write
es = e1 + e2 with e1 distributed from ντ/S and e2 distributed from ν(

√
(r′
i
)2−(τ/S)2)i . We now use Lemma 5:

As σ ≥
√

2ηε(Rd) and τ ≥
√

2S ·ηε(Rd), we have that d+e1 is within statistical distance 4ε from ν√
σ2+(τ/S)2 .

Now, the quantity d + es can be interpreted as the sum of two continuous Gaussians: It is within statistical
distance 4ε from ν(

√
σ2+(r′

i
)2)i .

We use Lemma 7 once more. We obtain that 〈d, s〉 + e is within statistical distance 4ε from νt with
t2i = t2i+n/2 = σ2∑d

k=1 |σi(sk)|2 + τ2, for all i ≤ n/2. ut

Reduction from the HNF of MLWEq,D(1/q)R∗,[α,α′] to MLWEp,Ψ≤β . Assume that we have a poly-
nomial time (resp. sub-exponential time) oracle that solves MLWEp,Ψ≤β with probability (nd)−O(1) (resp.
2−o(nd)). Our inputs are m samples from either U(Rdq × Tq,R∗) or from A

(q)
s,D(1/q)R∗,r

, where the secret s is
distributed from D(R∗)d,qr and where α < ri = ri+n/2 ≤ α′ for all i. The reduction R is as follows:
7 To be rigorous, we actually let d be distributed as σ−1

H (DRd−a,σ), and consider the distribution of σH(〈d, s〉). For
simplicity, we identify elements of Kd with their σH embeddings.
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• Sample s1 uniformly in (R∗p)d.
• For each sample (a, b), create the sample (a′, b′) as follows:
• Let e′ be a sample of να′ and let ed be a sample of νσ·smax .
• Let a′ = f(a) as defined in Lemma 10 and b′ = b+ 1

p 〈a
′, s1〉+ 1

ped + e′.
• Return the new sample (a′, b′).

• Call the MLWEp,Ψ≤β oracle on these samples, and return its answer.

Lemma 12. Let ε = (nd)−ω(1) (resp. ε = 2−Ω(nd)). The following holds with probability ≥ 1 − ε. If the
samples (a, b) are from A

(q)
s,D(1/q)R∗,r

, then the derived samples (a′, b′) follow a distribution that is within
statistical distance 20ε of A(p)

s′,νt′′
, where s′ is uniform in (R∗p)d and 0 < t′′i ≤ β for all i.

Proof. We assume that ‖s‖2,∞ ≤ smax, which holds with probability ≥ 1− ε.
We showed that a′ is within statistical distance 12ε from the uniform distribution in (Rq)d. Also, we

have that b′ = 1
p 〈a
′, s + s1〉+ 1

p 〈
p
qa− a′, s〉+ 1

ped + e+ e′.
First, we have that s′ = s + s1, where s1 is uniform in (R∗p)d and independent from s. This ensures that

s′ mod p is uniform in (R∗p)d.
We now study the component 〈pqa − a′, s〉 + ed. By applying Lemma 11, we have that it is within

statistical distance 4ε from νt with t2i = t2i+n/2 = σ2
(∑d

k=1 |σi(sk)|2 + s2
max

)
. As a consequence, the quantity

1
p (〈pqa− a′, s〉+ ed) is within statistical distance 4ε from ν 1

p t
.

By hypothesis α′q ≥ riq > αq ≥
√

2ηε(R∗) holds for all i. Thus, by Lemma 5, we have that e′′ = e + e′

is within statistical distance 4ε from νt′ with (t′i)2 = (t′i+n/2)2 = r2
i + (α′)2. Finally, the error component

1
p (〈pqa − a′, s〉 + ed) + e′′ is within statistical distance 8ε from νt′′ with (t′′i )2 = (t′′i+n/2)2 = r2

i + (α′)2 +
σ2

p2 (
∑d
k=1 |σi(sk)|2 + s2

max).
We now bound the t′′i ’s. As ri ≤ α′ holds for all i, and using the fact that ‖s‖2,∞ ≤ smax, we have:

t′′i = t′′i+n/2 ≤
√

2α · n1/4ω(lognd) ·

√
1 + q2

p2σ
2d · ω(lognd) ≤ β for all i

(resp. t′′i = t′′i+n/2 ≤
√

2α ·Ω(n5/4d) ·
√

1 + q2

p2σ2Ω(nd2) ≤ β for all i). ut

Conversely, if the samples (a, b) are from the uniform distribution over Rdq × Tq,R∗ , then the resulting
samples (a′, b′) are within statistical distance 12ε from the uniform distribution over Rdp × TR∗ .

The above arguments imply the correctness of reduction R. Let ε = (nd)−ω(1) (resp. ε = 2−Ω(nd)),
then with probability of success (nd)−O(1) (resp. 2−o(nd)), it allows us to solve the instance of the HNF
version of MLWE. There are two possible kinds of inputs. In the first case, it is given as inputs uniformly
distributed samples, whereas in the second case, it is given as inputs samples from a valid A(q)

s,D(1/q)R∗,r
. With

probability ≥ 1− ε, the transformation on the samples achieves the following: The uniform samples remain
(essentially) uniform and the samples from A

(q)
s,D(1/q)R∗,r

become samples within statistical distance 20ε of a
valid distribution A(p)

s′,νt′′
for MLWEp,Ψ≤β . As a consequence, the MLWEp,Ψ≤β oracle is given a valid input,

and succeeds (with good advantage) in correctly guessing which distribution it is given. The advantage of
reduction R in correctly solving the HNF-MLWEq,D(1/q)R∗,[α,α′] is not less than 20ε of the advantage of the
MLWEp,Ψ≤β oracle.

3.3 Reducing MLWEp,Ψ≤β to MLWEp,Υβ

This reduction is the last component of the proof of Theorem 2. The goal is to re-randomize the error
distribution of MLWE. The proof is adapted from the proof of [30, Le. 5.11].
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Lemma 13. Let p ≥ 2 be an integer and β ∈ (0, 1). There exists a randomized polynomial-time reduction
from solving MLWEp,Ψ≤β in polynomial-time (resp. sub-exponential time) with non-negligible (resp. non-
exponentially small) probability to solving MLWEp,Υβ in polynomial-time (resp. sub-exponential time) with
non-negligible (resp. non-exponentially small) probability.

Proof. Let (a, b = 1
p 〈a, s〉 + e) be a sample from A

(p)
s,νt with 0 < ti ≤ β for all i and s ←↩ U((R∗q)d). Let

x′1, . . . , x
′
n/2 be independent samples from Γ (2, 1). We perform the following transformation:

(a′, b′) := (a, b+ e′),

where e′ is sampled from νr, with r defined by r2
i = r2

i+n/2 = β2√nx′i.
This transformation maps the uniform distribution over (Rp)d×TR∗ to itself. On the other hand, it maps

A
(p)
s,νt to A

(p)
s,νr′ , with r′i = r′i+n/2 =

√
t2i + β2√nx′i, for all 1 ≤ i ≤ n/2.

Let S denote the set of ψ’s for which the oracle distinguishes with non-negligible (resp. non-exponentially
small) probability between the uniform distribution over (Rp)d × TR∗ and the distribution As,ψ. By as-
sumption, the measure of S under Υβ is non-negligible (resp. non-exponentially small). Lemma 1 implies
that νr′ ∈ S with non-negligible (resp. non-exponentially small) probability. The result follows. ut

This lemma completes the proof of Theorem 2.

4 Cryptographic applications

As mentioned in the introduction, the proven hardness of RLWE for a modulus q so that Rq is isomorphic
to (Fqn/2)2 allows us to adapt to the RLWE setting a number of LWE-based schemes, and therefore to
significantly improve their performance. In this section, we only consider the application to fast Identity-
Based Encryption (IBE). We describe a fast RLWE-based authentication scheme in Appendix B. We will
only describe the schemes, without giving their security proofs, as these can be obtained by adapting the
existing ones from [1] and [22] in a direct manner. Other LWE-based schemes that can be adapted to RLWE
for such a choice of modulus q include [15,42,4,27,38].

Efficient computations in Rq. Let us comment on the efficiency of the specific algebraic setting. Let n
be a power of 2, and q be prime such that q = 3 mod 8. This implies that xn + 1 has exactly two irreducible
factors Φ1 and Φ2 modulo q, each of degree n/2. We interpret the rings K,R and Rq as the polynomial
rings Q[x]/(xn+1), Z[x]/(xn+1) and Zq[x]/(xn+1) respectively. The vector σH(y) (for y ∈ K) and the vector
of the coefficients of y when interpreted as a polynomial are related by a similarity of center 0 and factor

√
n.

That similarity is closely related to the 2n-dimensional complex Fourier transform. This interpretation allows
for an efficient conversion of a sample from a noise distribution σ−1

H (νr) to the polynomial setting (see [43,
Se. 2] for more details). Once the element has been mapped to Q[x]/(xn + 1), it can be multiplied by q and
rounded to a closest element of Z[x]/(xn+1) (by rounding each coefficient to a nearest integer). The resulting
sample is expected to have norm ≈ αqn1/4. We let Υα,q denote this overall process. Independently, arithmetic
in the ring Rq can be efficiently implemented by using standard quasi-linear time polynomial arithmetic [17].
A practical solution could be to choose a prime q′ such that q′ = 1 mod 2n and q′ > 2nq2, and to perform
multiplications in Rq by first using a fast discrete Fourier transform to multiply in Rq′ ' (Fq′)n and then
reduce the coefficients modulo q. Overall, if q is also set such that q ≤ nO(1), then sampling from the
distribution on noise distributions, sampling from the resulting noise distribution and adding/multiplying
elements of Rq can all be performed in time quasi-linear in n.

A fast identity-based encryption scheme. The IBE scheme from Figure 1 is an adaptation of the IBE
scheme of Agrawal et al [1] to the RLWE setting. As in [1], the scheme can be adapted to provide a selectively
secure hierarchical IBE (with a small number of levels). By combining it with [9] along with a fast one-time
signature such as [28], it is possible to derive an IND-CCA (hierarchical identity-based) encryption scheme
with quasi-optimal performance and security relying (in the standard model) on the presumed quantum
worst-case hardness of approximate Id-SIVP.
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• Master key generation. Use the algorithm from [44, Se. 3] to obtain (T,a0) ∈ Rm×m × Rmq . Sample a1, b←↩
U(Rmq ), and u←↩ U(Rq). The public parameters are MPK = (a0,a1, b, u). The master secret key is msk = T .

• Uid’s public key generation. Use MPK to compute aid ∈ R2m
q as the concatenation of a0 and a1 +H(id) · b.

The public-key of Uid is pkid = (aid, u).
• Uid’s secret key derivation. Use the key delegation mechanism from [14] to derive from msk a matrix Tid ∈
R2m×2m with small entries, full K-rank, and such that Tidaid = 0 mod q.

• Encrypting M ∈ P for Uid. Use MPK and id to derive pkid = (aid, u). Sample the standard deviations of the
noise distribution Υα,q. Sample e1, . . . , e2m+1 ∈ R from the resulting noise distribution. Let e denote (ei)i≤2m.
Sample s uniformly in Rq. Return ciphertext (c1, c2) = (s · aid + e, s · u+ e2m+1 + bq/2eM).

• Decrypting (c1, c2) addressed to user Uid. Given ciphertext (c1, c2) and secret key Tid, compute x =
Tidc1 mod q (which should be Tide over R, as both Tid and e are small). Compute e′ = T−1

id x over K. A
candidate s′ for s is obtained by dividing (in Rq) the first component of c1 − e′ by the first component of a0.
Now, Round each coefficient of c2 − s′u mod q to b if it is closer to bbq/2e than to (1 − b)bq/2e. Return the
obtained M ′ ∈ R with coefficients in {0, 1}.

Fig. 1. A RLWE-based variant of the Agrawal et al IBE scheme.

The main differences between the IBE from Agrawal et al and the one from Figure 1 are as follows. First,
in the master key generation, we use the structured variant of the Alwen-Ajtai-Peikert trapdoor generation
algorithm [5,6], proposed in [44]. This provides a pair (T,a) ∈ Rm×m×Rmq such that the distribution of a is
within exponentially small statistical distance from uniform over Rmq , the matrix T has full rank over K, it
satisfies Ta = 0 mod q, and the entries of T are polynomials with small coefficients. Using the ring variant of
the recent algorithm from [32] may lead to a more efficient scheme in practice. Second, we encode identities
as elements of the finite field Fn/2

q . These are mapped to elements of Rq by using a diagonal encoding: We
let H(id) denote the unique element of Rq that is congruent to id when reduced both modulo Φ1 and Φ2,
i.e., its Chinese Remainder Theorem decomposition is (id, id) ∈ (Fqn/2)2. The property that allows for the
security proof of [1] to carry over to our setting is that H(id) − H(id′) = H(id − id′) is invertible in Rq
whenever id 6= id′. An alternative solution could be to let identities be the elements of Rq of degrees < n/2,
as all such polynomials are necessarily non-zero modulo Φ1 and Φ2. Third, the plaintext space P is the set
of polynomials in R with coefficients in {0, 1}, which allows for the encryption and decryption of n bits at
once. Finally, the linear algebra operations performed in the decryption procedure can all be implemented in
time quasi-linear in n, as these consist in small dimensional linear algebra tasks over the polynomial rings Rq
and R (with coefficients of small magnitudes in the latter case).

Typical parameters for which correctness holds and for which the security proof of [1] carries over are q =
O(nc), m = O(log q) and α = O(n−c′) for some constants c and c′.
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A Missing proofs

A.1 Proof of Lemma 5
This proof follows the same principle as the one of [40, Claim 3.9]. Using the Poisson summation formula,
one obtains that the probability density function Y can be written as:

∀x ∈ Rn : Y (x) = ρt(x)∏
i ti
·

(∏
i
ti
σri

)
· ̂ρt′,x′−u(Λ∗)(∏

i
1
ri

)
· ρ̂r,−u(Λ∗)

,

where ti =
√
r2
i + σ2, t′i = riσ

ti
and x′i = r2

i

t2
i
xi for all i, and where f̂ denotes the Fourier transform of f .

Then, we have that:∣∣∣∣∣1−
(∏

i

ti
σri

)
̂ρt′,x′−u(Λ∗)

∣∣∣∣∣ ≤ ρt′′(Λ∗ \ {0}), with t′′i = 1/t′i for all i,∣∣∣∣∣1−
(∏

i

1
ri

)
ρ̂r,−u(Λ∗)

∣∣∣∣∣ ≤ ρr′′(Λ∗ \ {0}), with r′′i = 1/ri for all i.

Let s′ and σ′ > 0 be such that s′i ≥ σ′ for all i. We have that for any vector x:

ρ1/σ′(x)
ρ(1/s′

i
)i(x) = exp

(
−π
∑
i

((σ′)2x2
i − (s′i)2x2

i )
)
≥ 1.

This implies that ρt′′(Λ∗ \ {0}) ≤ ε and ρr′′(Λ∗ \ {0}) ≤ ε, which completes the proof. ut

A.2 Proof of Lemma 8
We consider the following transformation: Given (a, b) ∈ (Rq)d×TR∗ , sample f ←↩ D(1/q)R∗−b,r and returns
(a, b+ f mod R∗).

If the sample (a, b) is uniform over (Rq)d × TR∗ , then (b+ f mod R∗) is uniform in Tq,R∗ . Now, assume
that (a, b) is distributed according to A(q)

s,νr : We have b = 1
q 〈a, s〉 + e, where e ∼ νr. Since 1

q 〈a, s〉 belongs
to 1

qR
∗, we have D(1/q)R∗−b,r = D(1/q)R∗−e,r. Then, we use [36, Th. 3.1] (in the same fashion as in the proof

of [21, Le. 2]), to state that sampling e from νr and then setting e′ = e+f with f sampled from D(1/q)R∗−e,r
gives that the distribution of e′ is statistically close to D(1/q)R∗,

√
2r. We conclude that in this case, the

transformation returns a sample of A(q)
s,D(1/q)R∗,

√
2r
. ut
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A.3 Proof of Lemma 9

We are given samples from a distribution D that is either the uniform distribution in (Rq)d × Tq,R∗ , or
from A

(q)
s,D(1/q)R∗,r

.
In a first stage, we take several samples (a, b) from D and construct a set of d pairs {(ai, bi)} such that

the ai’s are linearly independent over Rq and generate (Rq)d (recall that Rq is not a field). A polynomial
number of samples suffices to obtain such ai’s. This can be observed by considering the CRT components
ofRq ' (Fqk)nk independently: An equivalent condition is that the n/k matrices corresponding to each compo-
nent are invertible over the corresponding finite field. We define A = (aT1 , . . . ,aTd ) and b = (b1, . . . , bd)T . By
construction, the map y 7→ Ay is a bijection of (Rq)d, and if D = A

(q)
s,D(1/q)R∗,r

then we have b = 1
q

(
As + x

)
,

where x is sampled from D(R∗)d,qr.
In a second stage, we map the fresh samples (a, b) fromD, to samples (a′, b′) with a′ = −(A)−T ·a ∈ (Rq)d

and b′ = b+ 〈a′, b〉. As the map y 7→ Ay is a bijection of (Rq)d and as a is uniform in (Rq)d, we have that a′

is uniform in (Rq)d. For the right hand side b′, we consider two cases:

• If D is the uniform distribution on (Rq)d × Tq,R∗ , then (a′, b′) is also uniform on (Rq)d × Tq,R∗ .
• If D is A(q)

s,D(1/q)R∗,r
, then b′ = 1

q 〈a, s〉+ e− 1
q 〈(A)−Ta,As〉+ 1

q 〈a
′,x〉 = 1

q 〈a
′,x〉+ e. As a consequence,

the pair (a′, b′) is distributed as A(q)
x,D(1/q)R∗,r

, with x sampled from D(R∗)d,qr.
ut

B A fast authentication scheme

The authentication scheme from Figure 2 is a direct adaptation to the RLWE setting of the authentication
scheme from [22] based on the Ring version of the Learning Parity with Noise problem (LPN). The latter
can itself be naturally interpreted as an efficient variant of the authentication scheme from [25], which can
be instantiated to have its security rely on the presumed hardness of either LWE or LPN.

The function H is the same as in the identity-based encryption scheme from Section 4.

• Key generation. The shared key is a uniformly sampled pair (s1, s2) ∈ (Rq)2.
• Phase 1. The Verifier samples v uniformly in Fqn/2 and sends H(v) to the prover.
• Phase 2. The Prover samples r uniformly among the invertible elements of Rq and e from the RLWE noise

distribution φ ←↩ Υα,q. The Prover then replies to query H(v) by sending (r, z) to the Verifier, with z =
r(s1H(v) + s2) + e.

• Phase 3. After receiving (r, z) from the Prover, the Verifier accepts if and only if r is invertible and z−r(s1H(v)+
s2) mod q has sufficiently small coefficients.

Fig. 2. A RLWE-based variant of the Heyse et al authentication scheme.
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