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Abstract

In this paper we prove all balanced symmetric Boolean functions
of fixed degree are trivial when the number of variables grows large
enough. We also present the nonexistence of trivial balanced elemen-
tary symmetric Boolean functions except for n = l ·2t+1−1 and d = 2t,
where t and l are any positive integers, which shows Cusick’s conjec-
ture for balanced elementary symmetric Boolean functions is exactly
the conjecture that all balanced elementary symmetric Boolean func-
tions is trivial balanced. In additional, we obtain an integer n0, which
depends only on d, that Cusick’s conjecture holds for any n > n0.
Keywords: Boolean functions, Balancedness, elementary symmetric
functions

1 Introduction

Boolean functions play an important role in the design of symmetric crypto-
graphic systems. They are used for S-Box design in block cipher and utilized
as nonlinear filters and combiners in stream ciphers. Symmetric Boolean
functions, which have the property that their outputs only depend on the
Hamming weight of their inputs, are an interesting subclass of Boolean func-
tions for their advantage in both implementation complexity and storage s-
pace. In [1], A. Canteaut and M. Videau studied in detail symmetric boolean
functions. They established a link between the periodicity of simplified value
vector of a symmetric function and its degree. Cai et al. computed a closed
formula for the correlation between any two symmetric Boolean functions in
terms of their periods[5]. Castro et al. improved the formula for computing
the exponential sums of symmetric Boolean functions[2](also see, Lemma
1).
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Balancedness is a primary requirement to resist the attacks on each
cryptosystem. In [8], J. von zur Gathen and J. Rouche found all the balanced
symmetric boolean functions up to 128 variables. Canteaut et al. proved
that balanced symmetric functions of degree less than or equal to 7(exclud-
ing the trivial cases) only exist for eight variables[1]. Since the number of
nontrivial balanced functions seems to be very small, they conjectured that
balanced symmetric functions of fixed degree do not exist when the number
of variables grows. For elementary symmetric Boolean functions, Cusick et
al. proposed a conjecture in [3] about the nonexistence of nonlinear balanced
elementary symmetric Boolean functions σn,d except for n = l · 2t+1− 1 and
d = 2t, where t and l are any positive integers. They also obtained many
results towards the conjecture in [4]. Later in [6] Gao et al. proved that
when n = 3 mod 4, the function is balanced if and only if d = 2k, 1 ≤ k ≤ t.
It was mentioned in [4][2] that Cusick’s conjecture holds for sufficient large
number of variables, but a certain bound had not been obtained.

2 Preliminaries

Let Fn2 be the vector space of n-tuples over the Field F2 = {1, 0} of two
elements. We denote by ⊕ the sum over F2. A Boolean function of n
variables is a function from Fn2 into F2. A Boolean function is said to
be symmetric if its output is invariant under any permutation of its input
bits. We denote by Bn (resp. SBn) the set of all Boolean functions (resp.
symmetric Boolean functions) of n variables. If f : Fn2 → F2, then f can be
uniquely represented as a multivariate polynomial over F2, called algebraic
normal form (ANF):

f(x1, · · · , xn) =
⊕
µ∈Fn

2

λµ

(
n∏
i=1

xµii

)
, with λµ =

⊕
x�µ

f(x)

Where (x1, · · · , xn) � (µ1, · · · , µn) if and only if ∀i, xi ≤ µi. The addition
and multiplication operations are in F2. The number of variables in the
highest order product term with nonzero coefficient is called its algebraic
degree (denoted by deg(f) ).

Definition 1. For integers n and d, the elementary symmetric Boolean
function with n variables σn,d is defined as the sum of all terms of degree d,
that is

σn,d =
⊕

1≤i1≤···≤id≤n
xi1 · · ·xid .

If f(x) = σn,d, thenvf (i) =
(
i
d

)
mod 2.
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A Boolean function of n variables is symmetric if and only if its algebraic
normal form can be written as follows:

f(x1, · · · , xn) =
n⊕
i=0

λf (i)

 ⊕
µ∈Fn

2 ,wH(µ)=i

n∏
j=1

x
µj
j

 =

n⊕
i=0

λµσn,i,

Where σn,i is the elementary symmetric polynomial of degree i in n variables.
A Boolean function is said to be affine if its algebraic degree does not

exceed 1. The set of all n-variable affine functions is denoted by A(n).
The Hamming weight wH(x) of a binary vector x ∈ Fn2 is the number
of its nonzero coordinates, and the Hamming weight wH(f) of a Boolean
function f is the size of its support{x ∈ Fn2 | f(x) = 1}.If wH(x) = 2n−1,
we call f(x) balanced. A symmetric function can be represented by a vector
vf = (vf (0), · · · , vf (n)), where vf (i) = f(x) for x ∈ Fn2 with Hamming
weight wH(x) = i. It was proved in [1] that for any f ∈ SBn, vf is periodic
with period 2t, 2t < n, if and only if deg(f) ≤ 2t − 1; deg(f) = 2t if and
only if vf is periodic with period 2t+1 and is a part of (vf (0), · · · , vf (2t −
1), vf (0)⊕ 1, · · · , vf (2t − 1)⊕ 1)∞.

Definition 2. For any f ∈ Bn, we denote by F(f) the following value
related to the Fourier transform of f

F(f) =
∑
x∈Fn

2

(−1)f(x).

Definition 3. [1] Let n be an odd integer and f ∈ SBn. We say that f is
a trivial balanced function if

vf (i) = vf (n− i)⊕ 1, 0 ≤ i ≤ n.

The even case corresponds to affine functions.

Let a, b be positive integers and their 2-adic expressions are a =
∑n−1

i=0 ai2
i, b =∑n−1

i=0 bi2
i. We denote a � b if for all i(0 ≤ k ≤ n − 1), ai ≤ bi and oth-

erwise a 6� b.The Lucas formula says[7, p. 79],
(
n
k

)
≡
(
n0

k0

)(
n1

k1

)
· · ·
(
nl
kl

)
. Let

f(x) = σn,d, by Lucas formula, vf (i) = 1 if and only if d � i.
It was proved in [3] that if σn,d is balanced, then d ≤ dn2 e.

3 Asymptotic Behavior of Symmetric Boolean Func-
tions

In this section, we present the behavior of symmetric Boolean functions
with large number of variables. As a consequence of our discussion using
the technique for the correlation of symmetric functions in [5], we prove the
following conjecture.
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Conjecture 1. [1, VIII] Balanced symmetric functions of fixed degree ex-
cluding the trivial cases do not exist when the number of variables grows.

To prove Conjecture 1, we introduce the following lemma:

Lemma 1. [2] Let f(x) = σn,ks + · · · + σn,k1 , 1 ≤ k1 ≤ · · · ≤ ks and let
r = blog2 ksc+ 1. F(f) is given by

F(f) =
n∑
i=0

(−1)vf (i)
(
n

i

)
=

1

2r

2r−1∑
j=0

sjλ
n
j , (1)

where ξj = exp
(
π
√
−1j

2r−1

)
, λj = 1 + ξj, and

sj =

2r−1∑
i=0

(−1)vf (i)ξ−ij .

If f is not affine, then r ≥ 2. We have the following observation on
Lemma 1:

2r−1F(f) =
1

2

2r−1∑
j=0

sjλ
n
j

=

2r−1−1∑
j=1

Re
(
sjλ

n
j

)
+

1

2

(
s0λ

n
0 + s2r−1λn2r−1

)
(2)

where the second equality holds because ξ2r−j = ξj , s2r−j = sj and λ2r−j =
λj , so that the second half of the j -sum (2r−1 ≤ j ≤ 2r − 1)is the complex
conjugate of the first half. Let us define

tj(n) =
1

2r−1
Re
(
sjλ

n
j

)
, 0 ≤ j ≤ 2r−1 − 1.

Note that λ2r−1 = 0, thus

F(f) =
1

2
t0(n) +

2r−1−1∑
j=1

tj(n). (3)

If F(f) = 0, there are potentially two reasons for this: either all the tj(n)
are zero or several nonzero tj(n) ( 1

2 tj(n) for j = 0) can cancel each other.
The next lemma states that the latter cannot happen for large enough n.
However, we should point out that the following Lemma, although having a
different tj(n), contribute to Cai et al.[5].

Lemma 2. Let f ∈ Bn and f is not affine. There exists an integer n0 such
that for any n > n0,

F(f) = 0⇔ tj(n) = 0, 0 ≤ j ≤ 2r−1 − 1. (4)
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Proof. Suppose F(f) = 0. We can express tj(n) as1

tj(n) = |sj |
∣∣∣∣2 cos

(
πj

2r

)∣∣∣∣n cos

(
arg(sj)−

πnj

2r

)
. (5)

Clearly, we have tj(n) ≤ |sj |
∣∣∣2 cos

(
πj
2r

)∣∣∣n. On the other hand, if tj(n) 6=
0, since the cosine is periodic in n, for any j there exists a constant cj > 0
(cj does not depend on n) such that

tj(n) ≥ cj
∣∣∣∣2 cos

(
πj

2r

)∣∣∣∣n .
Hence, each |tj(n)| is either zero or in a constant range of

∣∣∣2 cos
(
πj
2r

)∣∣∣n.

Since
∣∣∣2 cos

(
πj
2r

)∣∣∣n dominates
∣∣∣2 cos

(
π(j+1)

2r

)∣∣∣n for large enough n and

j < 2r − 1, any tj(n) 6= 0 dominates all the tj′(n) for j < j′ < 2r−1. Thus if
j0 is the least j such that tj(n) 6= 0, then the subsequent terms cannot cancel
tj0(n) ( 1

2 tj0(n) for j = 0), and hence, F(f) 6= 0. Therefore, tj(n) = 0, for
all 0 ≤ j ≤ 2r−1 − 1.

If sj 6= 0, then for any j, 0 ≤ j ≤ 2r−1 − 1, we have

tj(n) = 0 ⇔ cos

(
arg(sj)−

πnj

2r

)
= 0

⇔ ∃l arg(sj)−
πnj

2r
=
π

2
+ lπ

⇔ ∃l exp (2i arg(sj)) = exp

(
2i

(
πnj

2r
+
π

2
+ lπ

))
⇔ |sj | exp (i arg(sj)) = −|sj | exp (−i arg(sj)) exp

(
πi

2r
nj

)
⇔ sj = −ξnj sj (6)

Note that if sj = 0, we get tj(n) = 0, sj = −ξnj sj = 0. Thus

tj(n) = 0⇔ sj = −ξnj sj , 0 ≤ j ≤ 2r−1 − 1 (7)

holds no matter whether sj is zero.
To prove our result, the following lemma is needed.

Lemma 3. Let f ∈ Bn and f is not affine. The following properties are
equivalent.

(i) sj = −ξnj sj , 0 ≤ j ≤ 2r − 1,

1Any complex number z 6= 0 can uniquely be written as z = |z|(cosϕ+i sinϕ) = |z|eiϕ.
where 0 ≤ ϕ ≤ 2π. ϕ is called the argument of z, ϕ = arg z. Hence Re(z) = |z| cos arg(z)
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(ii) vf (i) = 1⊕ vf (n− i) , 0 ≤ i ≤ 2r − 1

Proof. If property (ii) is true, then it is clear that

sj =
2r−1∑
i=0

(−1)vf (n−i)+1ξij , (8)

Since (−1)vf (i)ξij has period 2r, 0 ≤ j ≤ 2r − 1, thus

−ξnj sj = −ξnj
2r−1∑
i=0

(−1)vf (i)ξ−ij

= −ξnj
n+2r−1∑
i=n

(−1)vf (i)ξ−ij

= −
n+2r−1∑
i=n

(−1)vf (i)ξn−ij

=
2r−1∑
i=0

(−1)vf (n−i)+1ξij = sj (9)

If property (i) is true, then, for any 0 ≤ j ≤ 2r − 1,

2r−1∑
i=0

(−1)vf (i)ξij =
2r−1∑
i=0

(−1)vf (n−i)+1ξij (10)

Note that these sums are the Fourier transforms of the functions f(i) and
f(n−i), respectively. We can perform an inverse Fourier transform by using
the relation

2r−1∑
j=0,j 6=2r−1

ξi−i
′

j =

{
2r − 1 , i = i′

(−1)i−i
′+1 , i 6= i′

(11)

Now multiply the left and right hand sides of equation (10) by ξ−i
′

j and sum
over j from 0 to 2r − 1. Then we have

2r(−1)vf (i
′) −

2r−1∑
i=0

(−1)vf (i) = 2r(−1)vf (n−i
′)+1 −

2r−1∑
i=0

(−1)vf (n−i)+1 (12)

Since
∑2r−1

i=0 (−1)vf (n−i)+1 = −
∑2r−1

i=0 (−1)vf (i), thus

(−1)vf (i
′) + (−1)vf (n−i

′) =
1

2r−1

2r−1∑
i=0

(−1)vf (i) (13)

The left hand side can be ±2 or 0. If it is ±2, then f is constant, which
contradicts the hypothesis of the theorem. Hence, the left hand side is 0
and we conclude −1vf (i

′) = (−1)1+vf (n−i
′). The property (ii) follows.
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Now we prove the conjecture.

Theorem 1. For large enough n, balanced symmetric functions of fixed
degree are trivial.

Proof. When f ∈ Bn is affine function. If f is balanced, then f is trivial
regardless of the parity of n.

Let f be a non-affine function with period 2r. Following Lemma 1 to
Lemma 3, there exists an integer n0 such that for any n > n0,

F(f)⇔ vf (i) = 1⊕ vf (n− i), i = 0, · · · , 2r − 1.

Note that when n is even, we get vf (n2 ) = 1+vf (n2 ), which is a contradiction.
That is, for sufficient large n, non-affine balanced symmetric functions are
trivial for odd n and do not exist for even n. Therefore, Theorem 1 is
proved.

4 The equivalence of Cusick’s conjecture

In this section, we discuss the equivalence of Cusick’s conjecture for elemen-
tary symmetric functions. We show the conjecture is exactly the conjecture
that all balanced elementary symmetric Boolean function is trivial balanced.
Associating with the theorem in last section, we present the conjecture is
validated with sufficient large number of variables.

Conjecture 2. [3] There are no nonlinear balanced elementary symmet-
ric Boolean functions except for σl·2t+1−1,2t, where t and l are any positive
integers.

Let us consider f(x) = σl·2t+1−1,2t(x). Since deg(f) = 2t, vf is periodic
with period 2t+1 and is a part of (vf (0), · · · , vf (2t−1), vf (0)⊕ 1, · · · , vf (2t−
1)⊕ 1)∞. Note that n = l2t − 1, it is obvious that f(x) is trivial balanced.
Next we prove that all trivial balanced elementary symmetric Boolean func-
tions have the form σl·2t+1−1,2t .

Theorem 2. There are no trivial balanced elementary symmetric Boolean
functions except for σl·2t+1−1,2t, where t and l are any nonnegative integers.

Proof. Supposed f(x) = σl·2t+1−1,2t(x) is trivial balanced. If d = 1, the
conclusion follows regardless of the parity of n. When d > 1, n must be
odd, and vf (i) = vf (n − i), 0 ≤ i ≤ n. Since vf (i) =

(
i
d

)
mod 2 and

vf (i) = 1 if and only if d � i, we get either d � i or d � (n− i).
Let the 2-adic expressions of d, n are d =

∑t
i=0 di2

i, n =
∑l

i=0 ni2
i, l >

t. We assert that d is a power of 2. Otherwise, suppose dt, dj is ones(i.e.
d = 1t · · · 1j · · · ). Let i = 0t · · · 1j 0j−1 · · · 00︸ ︷︷ ︸

0

. Since d � i, we get d � (n− i),
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which implies nj = 0. On the other hand, let i′ = 1t · · · 0j · · · 00︸ ︷︷ ︸
0

. Since

d � i′,we get d � (n− i′),which implies nj = 1. It is a contradiction.
Furthermore, we claim that n = l ·2t+1−1 (i.e. n = nl · · ·nt+1 1t · · · 10︸ ︷︷ ︸

1

).

Otherwise, suppose nj is the first zero from t-th bit to the last bit(i.e.
n = nl · · ·nt+1 1t · · · 1j+1︸ ︷︷ ︸

1

0jnj−1 · · ·n0). Let i = 1t · · · 1j︸ ︷︷ ︸
1

0j−1 · · · 00︸ ︷︷ ︸
0

, then we

get n− i = nl · · ·nt+1 1t · · · 1j+11j︸ ︷︷ ︸
1

nj−1 · · ·n0, which implies d � i. It is a

contradiction to d � (n − i). Hence, we conclude that all trivial balanced
elementary symmetric Boolean functions have the form of σl·2t+1−1,2t .

Remark. By Theorem 2, Conjure 2 shows in essence that all balanced
elementary symmetric Boolean functions are trivial balanced. According to
Theorem 1 and Theorem 2, we conclude that there exists an integer n0 such
that Conjure 2 holds for any n > n0.

In additional, we give an estimation for n0. Let f(x) = σl·2t+1−1,2t(x),
by the conclusion in [1, VI, equation (2)], we get

F(f) =
2r−1∑
i=0

(−1)vf (i)

2n−r + 21−r
2r−1−1∑
j=1

(2cj)
n c′j


= 2n−r

2r−1∑
i=0

(−1)vf (i) + 2n−r+1
2r−1−1∑
j=1

2r−1∑
i=0

(−1)vf (i)cnj c
′
j (14)

where cj = cos
(
j π2r
)
, c′j = cos

(
j(n− 2i) π2r

)
. It is exactly the equation (3)

where for 0 ≤ j ≤ 2r−1 − 1

tj(n) = 2n−r+1 cosn
(
j
π

2r

) 2r−1∑
i=0

(−1)(
i
d) cos

(
j(n− 2i)

π

2r

)
. (15)

Consider the equation. If t0(n) ≥ 2j+1|tj(n)|, it is obvious that F(f) =
0 if and only if t0(n) = tj(n) = 0, 1 ≤ j ≤ 2r−1 − 1. Thus we have the
following result.

Theorem 3. Let r = blog2 dc+ 1. For any n, n > −2
(
log2 cos

(
π
2r

))−1
, all

these nonlinear balanced elementary symmetric Boolean functions are of the
form σl·2t+1−1,2t, where t and l are any positive integers.

Proof. Consider tj(n), 1 ≤ j ≤ 2r−1 − 1,
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(1) If
∑2r−1

i=0 (−1)(
i
d) cos

(
jπ
2r (n− 2i)

)
≥ 0, then

2r−1∑
i=0

(−1)(
i
d) −

2r−1∑
i=0

(−1)(
i
d) cos

(
jπ

2r
(n− 2i)

)

= 2
2r−1∑
i=0

(−1)(
i
d) sin2

(
jπ

2r
· n− 2i

2

)

≥ 2

2r−1−1∑
i=0

(−1)(
i
d)
(

sin2

(
jπ

2r
· n− 2i

2

)
+ cos2

(
jπ

2r
· n− 2i

2

))
= 0 (16)

(2) If
∑2r−1

i=0 (−1)(
i
d) cos

(
jπ
2r (n− 2i)

)
< 0, then

2r−1∑
i=0

(−1)(
i
d) +

2r−1∑
i=0

(−1)(
i
d) cos

(
jπ

2r
(n− 2i)

)

= 2

2r−1∑
i=0

(−1)(
i
d) cos2

(
jπ

2r
· n− 2i

2

)

≥ 2
2r−1−1∑
i=0

(−1)(
i
d)
(

cos2
(
jπ

2r
· n− 2i

2

)
+ sin2

(
jπ

2r
· n− 2i

2

))
= 0 (17)

These two equalities hold if and only if d = 2r−1. Therefore t0(n) ≥ |tj(n)|
for 1 ≤ j ≤ 2r−1 − 1.

When n > −2/
(
log2 cos

(
π
2r

))
, we have cosn

(
π
2r

)
< 1

4 , and hence
t0(n) > |4t1(n)|. In additional, since for any j, 1 ≤ j ≤ 2r−1 − 1,

cos
(
j
2r π
)

cos
(
j+1
2r π

) =
cos
(
j
2r π
)

cos
(
π
2r

)
cos
(
j
2r π
)
− sin

(
π
2r

)
sin
(
j
2r π
) > 1

cos
(
π
2r

) > 4,

(18)
t0(n) > 2j+1|tj(n)| holds for any j, 1 ≤ j ≤ 2r−1 − 1.

So F(f) = 0 if and only if t0(n) = tj(n) = 0. From the discussion
in Section 3, if f is balanced, then f is trivial. Therefore, by Theorem 2,
Conjecture 2 is validated for all n > −2

(
log2 cos

(
π
2r

))−1
, where 2r−1 ≤

d < 2r.
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