
Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky∗

nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti∗

canetti@tau.ac.il
Boston University and

Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu

MIT

Eran Tromer†

tromer@tau.ac.il
Tel Aviv University

March 19, 2012

Abstract

Succinct non-interactive arguments of knowledge (SNARKs), and their generalization to distributed
computations by proof-carrying data (PCD), are powerful tools for enforcing the correctness of compu-
tations in dynamic networks with multiple mutually-untrusting parties, with essentially minimal compu-
tational overhead. Current constructions achieve only variants with expensive setup, restricted function-
ality, or oracles.

We present recursive composition and bootstrapping techniques that:

1. Transform any SNARK with an expensive preprocessing phase into a SNARK without such a phase.

2. Transform any SNARK into a PCD system for constant-depth distributed computations.

3. Transform any PCD system for constant-depth distributed computations into a PCD system for
distributed computation over paths of fixed polynomial length.

Our transformations apply to both the public and private verification settings, and assume the existence
of CRHs (and FHE, for the private-verification setting).

By plugging into our transformations the NIZKs of [Groth, ASIACRYPT ’10], whose security is based
on a Knowledge of Exponent assumption in bilinear groups, we obtain the first publicly-verifiable
SNARKs and PCDs without preprocessing in the plain model. (Previous constructions were either in the
random-oracle model [Micali, FOCS ’94] or in a signature oracle model [Chiesa and Tromer, ICS ’10].)
Interestingly, the constructions we obtain do not rely on the PCP Theorem and are quite efficient.

∗Supported by the Check Point Institute for Information Security, Marie Curie grant PIRG03-GA-2008-230640, and ISF grant
0603805843.
†Supported by the Check Point Institute for Information Security and by the Israeli Centers of Research Excellence (I-CORE)

program (center No. 4/11).

1 Introduction

The general goal. The modern computing environment is a highly-connected one, where numerous ma-
chines, databases and networks, controlled by myriad organizations and individuals, are all simultaneously
involved in various computations — and may not trust each other’s results. Questions of correctness arise
from the largest scale of outsourcing computational infrastructure and functionality, to the smallest scale
of building devices out of externally-supplied components. Answering these challenges requires efficient
mechanisms for ensuring integrity and generating trust. Cryptography offers a host of potential solutions,
but as we argue below, to date these are only partial.

Succinct interactive arguments. The notion of interactive proofs [GMR89] provides the basic foun-
dations for protocols that allow a party to verify correctness of claims made by other parties. Kilian
[Kil92], based the work on probabilistically-checkable proofs starting from [BFLS91], showed an inter-
active proof system where the time required to verify correctness of an NP computation is only polyloga-
rithmic in the time required to perform the computation in the first place; following tradition, we call such
proof systems succinct. Kilian’s protocol is only computationally sound, i.e., it is an argument system
[BCC88]. (Indeed, there is evidence that obtaining succinct statistically-sound proofs for NP is hard; see
e.g. [BHZ87, GH98, GVW02, Wee05].)

Knowledge extraction. A natural strengthening of soundness (which is also satisfied by Kilian’s protocol)
is proof of knowledge. This property, which turns out to be very useful in the context of succinct arguments,
guarantees that whenever the verifier is convinced by a prover, we can not only conclude that a valid witness
for the theorem exists, but also that such a witness can be efficiently extracted from the prover. This captures
the intuition that that convincing the verifier of a given statement can only be achieved by (essentially) going
through specific intermediate stages and thereby explicitly obtaining a valid witness along the way.

Removing interaction. Kilian’s protocol requires four messages. A challenge, which is of both theoretical
and practical essence, is to come up with a non-interactive protocol that obtains similar properties. As a first
step in this direction, Micali [Mic00] shows how to construct publicly-verifiable one-message succinct non-
interactive arguments for NP, in the random oracle model, by applying the Fiat-Shamir paradigm [FS87] to
Kilian’s protocol. Valiant [Val08] shows that Micali’s protocol is a proof of knowledge.

Extending earlier attempts [ABOR00, DLN+04, DCL08], a set of recent works [BCCT11, DFH11,
GLR11] show how to construct two-message succinct arguments of knowledge in the plain model, where
the verifier message is generated independently of the statement to be proven. Following [GW11, BCCT11],
we call such arguments SNARGs of knowledge, or SNARKs. They are constructed assuming the existence
of extractable collision-resistant hash functions.

Public verifiability. The SNARKs in [BCCT11, DFH11, GLR11] are of the designated-verifier kind: the
verifier keeps a secret state τ associated with its message. This information is needed in order to verify the
prover’s message. In contrast, Micali’s protocol is publicly verifiable: any proof generated in that protocol
can be verified by anyone, without forcing the prover to generate the proof specifically for that verifier.
Furthermore, proofs can be archived for future use, without any secrets associated with them. We thus ask:

Question 1: Can we construct publicly-verifiable SNARKs?

Indeed, one can always assume that Micali’s protocol, when the random oracle is instantiated with a
sufficiently complicated hash function, is secure; but this seems more like a heuristic rather than a rig-
orous guarantee. In contrast, Gentry and Wichs [GW11] show that no non-interactive succinct argument
can be proven adaptively-sound via a black-box reduction to a falsifiable assumption [Nao03], even in the

1

designated-verifier case, and even if we drop the knowledge requirement. This suggests that non-standard
assumptions may be inherent here. Still, we would like to have a solution whose security is based on a
concise and as general as possible assumption that can be studied separately.

1.1 Verifying Arbitrary Distributed Computations

The solutions discussed so far concentrate on the case of a single prover and a single verifier. This suffices for
capturing, say, a client interacting with a single “worker” who performs some self-contained computation on
behalf of the client. However, reality is much more complex: computations involve multiple parties, where
each party has its own role, capabilities, and trust relations with others.

Consider for instance a server that wishes to prove to a customer that the customer’s website, which is
hosted on the server, interacted correctly with clients and provided the clients with information taken from
legitimate databases; or verifying correctness of an ongoing computation that moves from party to party and
dynamically unfolds.

In general, we have multiple (even unboundedly many) parties, where party i, given inputs from some
other parties, locally executes a program progi for ti steps, and sends its output zi to other parties, each of
which will in turn act likewise (i.e., perform local computation and send the output to other parties), and so on.

How can a participant in such computation verify that its inputs comply with the computation that “was
supposed to happen so far”? A first suggestion may be to use secure multiparty computation. However, these
solutions (such as [GMW87, BOGW88]) require all parties to co-exist and interact heavily. Furthermore,
they are far from being succinct.

Proof-carrying data. Instead, Chiesa and Tromer [CT10] propose an alternative solution approach: the
parties maintain the original communication pattern of the original protocol, and only add to each message
a succinct proof that asserts the correctness of the computation leading to the generation of the data. In fact,
the proof will assert not only the correctness of the computation of the party itself, but rather the correctness
of all the computation done by all the parties leading to the current message. This solution approach is
called Proof-Carrying Data (PCD). See Figure 1 for a diagram of this idea.

Proof Carrying Data is indeed a very powerful tool. However, to date we only know how to construct
general PCD systems in a model where all parties have access to a signature oracle [CT10]. This stands in
sharp contrast with the case of SNARKs, which can be seen as “one hop PCDs”. We thus ask:

Question 2: Is there PCD in the plain model? For which computations? And under which assumptions?

A natural approach to obtain PCD (that was used in [CT10]) is to recursively compose SNARKs; that is,
have each party use a SNARK to prove to the next party down the line that the local computation was correct,
and that the proofs provided by the previous parties were verified. The knowledge property is key in making
the composition work. Can this approach be made to work even for SNARKs in the plain model?

1.2 Our Results

We give positive answers to the questions about publicly-verifiable SNARKs and PCDs in the plain model:
we show that, starting from a significantly weaker notion of preprocessing SNARKs (which allows the ver-
ifier to conduct an expensive “offline” phase) we can obtain both publicly-verifiable SNARKs and PCDs
for a large class of distributed computations. Preprocessing SNARKs are known to exist in the plain model
under simple knowledge assumptions using bilinear techniques [Gro10]. Specifically, we prove:

2

Theorem. In both the publicly- and privately-verifiable cases, if there exist preprocessing SNARKs, collision-
resistant hashes (and, in the privately-verifiable setting, fully homomorphic encryption), then there exist:

(i) SNARKs with no preprocessing.

(ii) PCDs with no preprocessing for constant-depth distributed computations.

(iii) PCDs with no preprocessing for fixed-polynomial-depth distributed computations over paths.

(The depth of a distributed computation is, roughly, the length of the longest path in the graph representing
the distributed computation when “unfolded” over time.)

As corollary to our main result we obtain:

Publicly-verifiable SNARKs in the plain model. By plugging into our transformations the prepro-
cessing succinct NIZKs of Groth [Gro10], we obtain (based on Groth’s knowledge assumption) the
first publicly-verifiable SNARK in the plain model (a.k.a. “CS proofs” [Mic00]).

To prove our results we develop three main tools:

1. SNARK Recursive Composition Theorem: “Any SNARK can be composed a constant number of
times to obtain a PCD system for constant-depth distributed computations.” (Surprisingly, this is also
true for designated-verifier SNARKs.)

2. PCD Bootstrapping Theorem: “Distributed computations of constant depth can express distributed
computations over paths of polynomial length.”

3. RAM Compliance Theorem: “The problem of whether, for a given random-access machine M,
input x, and time bound t, there is a witness w that makes M(x,w) accept within t steps can be
computationally reduced to the problem of checking the correctness of a distributed computation along
a path, where every node’s computation time is only poly(|M|, |x|, k) for a security parameter k.”

PCD & compliance engineering. The above theorems highlight proof-carrying data not only as a desirable
primitive, but also as a powerful tool in its own right: it provides a flexible and expressive abstraction for
engineering and then ensuring the correctness (or compliance) of distributed computations, a task that lies
at the heart of the techniques developed in this paper.

Succinct Arguments without PCPs. When combined with the bilinear techniques of [Gro10], our transfor-
mations yield SNARK and PCD constructions that, unlike all previous constructions (even interactive ones),
do not invoke the PCP Theorem. The resulting construction, while not trivial, seems to be quite simple and
efficient. We thus show an essentially different (and potentially more practical) path to the construction of
succinct arguments, which diverges from previous PCP-based approaches (such as applying the Fiat-Shamir
paradigm [FS87] to Micali’s “CS proofs” [Mic00]). We find this interesting even on a heuristic level.

The ideas in a nutshell. Let us provide some intuition, stripping away all abstraction barriers, for perhaps
the more surprising of our results: how can we remove the handicap of preprocessing from a (say, publicly-
verifiable) SNARK?

In a preprocessing SNARK, in order to be convinced of the correctness of a long t-step computation,
the verifier must first spend time proportional to t during an expensive “offline” phase to generate a public
reference string and a short verification state. Our goal is to enable the verifier to avoid conducting such an
expensive offline phase.

3

At high-level, our approach is to (a) represent a long t-computation as an collection of many smaller
poly(k)-computations (where k is the security parameter), and (b) develop techniques that allow for aggre-
gating many SNARKs for the correctness of smaller computations into a single succinct proof. Intuitively
these two steps should suffice because then we would only be using preprocessing SNARKs for proving the
correctness of small computations, so that the preprocessing phase would be as cheap as poly(k) rather than
as expensive as poly(t).

Specifically, to be convinced that a machine M non-deterministically accepts within t steps, it suffices
to be convinced that there is a sequence of t′ ≤ t states S0, S1, . . . , St′ of M that (a) starts from an initial
state, (b) ends in an accepting state, and (c) every state correctly follows the previous one according to the
transition function of M. Equivalently, we can think of a distributed computation of ≤ t parties, where the
i-th party Pi receives the state Si−1 of M at step i − 1, evaluates one step of M, and sends the state Si of
M at step i to the next party; the last party checks that the received state is an accepting one. This way, the
computation of each party is seemingly small: it only involves proving correctness of a single step of M.

The above discussion suggests the following solution approach: using the preprocessing SNARK, the
first party P1 proves to the second party P2 that the state S1 was generated by running the first step of M
correctly. Then, again using the pre-processing SNARK, P2 proves to the third party P3 that, not only did
he evaluate the second step of M correctly and obtained the state S2, but he also received state S1 with a
valid proof claiming that S1 was generated correctly. Then, P3 proves to the fourth party P4 that, not only
did he evaluate the third step of M correctly and obtained the state S3, but he also received state S2 with a
valid proof claiming that S2 was generated correctly. And so on until the last party who, upon receiving a
state carrying a proof of validity, proves that the last state is an accepting one.

A verifier at the end of the chain would receive a single easy-to-verify proof that aggregates the correct-
ness of all steps in the computation of M. Because each application of the preprocessing SNARK was on a
small computation (namely, one step of the machine), the preprocessing phase is in fact not expensive at all.

So what is missing? The above intuition hides several important technical difficulties. A first difficulty is
that an arbitrary state Si in the “middle” of the computation of M may in fact be as large as t (i.e., the ma-
chine may use a lot of space). We solve this difficulty by invoking a computational reduction of Ben-Sasson
et al. [BSCGT12] that transforms M to a new machine M ′ only requiring poly(k) space and preserves the
proof of knowledge property (i.e., any efficient adversary producing a witness for M ′ can be used to find a
witness for M); roughly, this is done by moving the memory into the witness via Merkle hashing.

A second difficulty is that the above approach requires us to be able to prove security for a recursive com-
position of polynomially many proofs. However, due to the potential blow-up in extraction running-time,
we are only able to prove security for a constant-depth of recursive proof composition (without relying on
SNARKs with strong extractability properties). To deal with this issue, instead of structuring the distributed
computation and aggregating proofs along a line, we show how this can be done using a wide Merkle
tree of constant depth, via a “tree-squashing trick” that was already used in the SNARK constructions of
[BCCT11, GLR11] for similar technical reasons.

Another difficulty is how to make the construction described above go through even when the SNARK
proofs require a private state in order to be verified: in this case, it is not clear how a party can prove
that he verified a a received proof without actually knowing the corresponding verification state. We solve
this problem by showing how to use fully-homomorphic encryption to recursively compose proofs without
knowledge of the verification state.

Formalizing the above solution approach, as well as the tools that enable us to overcome the afore-
mentioned technical difficulties, will greatly benefit from the abstractions provided by PCD systems and
compliance predicates; ultimately, these will provide clean and simple explanations for what is going on.

4

Roadmap. In Section 2, we discuss our results in slightly more detail, describing each of the three tools
we develop, and then how they come together for our main result. We then proceed to the technical sections
of the paper, beginning with definitions of the universal relation and random-access machines in Section 3,
of SNARKs in Section 4, and of proof-carrying data in Section 5. After that, we give the technical details
for our three tools, in Section 6, Section 7, and Section 8 respectively. In Section 9, we recall existing
constructions of preprocessing SNARKs. In Section 10, we finally give the technical details for how our
tools come together to yield the transformations claimed by our main theorem, and then what constructions
can be plugged into these transformations. In Section 12, we discuss cryptographic applications of proof-
carrying data.

2 Overview of Results

We discuss our results in more detail.

2.1 Recalling SNARKs and Proof-Carrying Data

Recall that non-interactive succinct arguments of knowledge (SNARKs) are two-message succinct argu-
ments of knowledge where the verifier’s message is independent of the statement to be proved.

Proof-carrying data (PCD), alluded to in Section 1.1 above, generalizes the notion of a SNARK to the
setting of distributed computations, by offering a simple and general paradigm to reason about and ensure
the security of distributed computations. Given a security property C, called a compliance predicate, PCD
enforces compliance with C, in the presence of adversarial behavior, by attaching succinct proofs “on-the-
fly” to every message exchanged between parties during the distributed computation.

In this paper, PCD will serve not only as an ultimate goal but also as a powerful tool; indeed, PCD allows
to elegantly abstract away details about recursive proof composition of SNARKs and directly leverage the
power of verifying certain carefully-chosen compliance predicates in distributed computations.

We now recall in slightly more detail the main components and guarantees of a PCD system, which
formally captures the PCD framework as a cryptographic primitive; we do so by comparing these alongside
the (more familiar) SNARK. We defer a formal discussion of SNARKs and PCD systems to Section 4 and
Section 5 respectively.

Components. A SNARK for an NP language L is a triple of algorithms (G,P,V) that works as follows.
The (probabilistic) generator G, on input the security parameter k, outputs a reference string σ and a cor-
responding verification state τ ; the generator is run during an offline phase by the verifier or someone the
verifier trusts The (honest) prover P(σ, y, w) produces a proof π for the statement y = (M,x, t) given a
witness w for y ∈ L; then V(τ, y, π) verifies the validity of π.

Just like a SNARK, a PCD system for a given compliance predicate C (representing some desired secu-
rity property) is also a triple of algorithms (G,PC,VC); roughly, these work as follows. The (probabilistic)
generator G, on input the security parameter k, outputs a reference string σ and a corresponding verification
state τ . The (honest) prover PC(σ, zo, prog,~zi, ~πi) is given σ, a (claimed) output zo, a local program prog
(which may include code and local input and randomness), and input messages~zi with corresponding proofs
~πi; PC then produces a proof πo for the claim that zo is consistent with a C-compliant distributed compu-
tation leading up to it. The verifier VC is given the verification state τ , an output zo, and a proof string πo,
and should accept only when it is convinced that the output is consistent with some C-compliant distributed
computation leading up to zo.

A distributed computation graph. A distributed computation, when “unfolded over time”, can simply

5

be thought of as a (labeled) directed acyclic1 graph (generated dynamically “on the fly” as the distributed
computation evolves) where computations occur at nodes, and directed edges denote messages exchanged
between parties. This graphical representation will be a very useful one to keep in mind when reasoning
about distributed computations. See Figure 1.

Succinctness. A SNARK requires the generator G(1k) to run in time poly(k), the (honest) proverP(σ, y, w)
in time poly(k, |y|, t), and the verifier V(τ, y, π) in time poly(k, |y|). Analogously, the generator G(1k) is
required to run in time polyC(k), the (honest) prover PC(σ, zo, prog,~zi, ~πi) in time polyC(k, |zo|, tC(|zo|)),
and the verifier VC(τ, zo, πo) in time polyC(k, |zo|), where tC(|zo|) is the time to evaluate C(zo;~zi, prog)
and polyC is a polynomial only depending on C.

In other words, proof-generation by the prover PC is (relatively) efficient in the local computation (and
independent of the computation performed by past or future nodes), and proof verification by the verifier
VC is independent of the computation that produced the message (no mater how “long” and expensive is the
history of computations that eventually led to the message being verified).

We can also consider a significantly-weaker (expensive) preprocessing definition in which the generator
may run in time poly(k,B) and the reference string only works for computations of length at mostB. (In the
PCD case, the bound B refers to a single node’s computation, and not the entire distributed computation.)

Security. A SNARK has a proof of knowledge property: when a malicious prover P∗(σ) produces a
statement y and proof π such that V(τ, y, π) accepts then, with all but negligible probability, the extractor
EP∗(σ) outputs a valid witness w for y. In other words, V can only be convinced to accept a given statement
whenever the prover P∗ actually “knows” a valid witness for that statement.

Analogously, a PCD system also has a proof of knowledge property: when a malicious prover P∗(σ)
produces a message zo and proof πo such that VC(τ, zo, πo) = 1 then, with all but negligible probability, the
extractor EP∗(σ) outputs an entire distributed computation that is C-compliant and leads up to the message
zo. In other words, VC can only be confined to accept a given message whenever the prover P∗ actually
“knows” a C-compliant computation leading up to that message.

Thus, a PCD system for C induces a compiler that, given a protocol for a distributed computation, yields an
augmented protocol that enforces C, because each party can simply use PC to compute proofs for outgoing
messages based on proof-carrying incoming messages, and VC(τ, ·, ·) can be used to succinctly verify any
message. This compiler respects the original distributed computation because it preserves the computation’s
communication graph, dynamics, and efficiency (concretely, the compiler only asks parties to compute
proofs and attach them to messages).

But what “security properties” should C express? Certainly we want to be able to express, if desired,
the property that every node carried out its own computation without making any mistakes. But this is only
one very specific choice for C. Another example is having C require that, not only each party’s computation
was carried out without errors, but also that the program run by each party carried a signature valid under
the system administrator’s public key; in such a case, the local program supplied by each party would be the
combination of the program and the signature. Generally, the choice of C varies with the application. This
notion of compliance is essentially the most powerful integrity guarantee for distributed computation one can
think of, short of interfering with the communication and dynamics of the original distributed computation.
Expressing security properties as a compliance predicate (to be enforced by PCD) constitutes compliance
engineering. When we use PCD as a technical tool in this paper, we do so by engineering a suitable C.

Previous constructions. Chiesa and Tromer showed how to construct PCD systems from standard cryp-
tographic assumptions in a model where every party has access to a signature oracle. As mentioned, PCD

1When the same party computes twice, it will be a separate node “further down” the graph.

6

systems are not known to exist in the random-oracle model, despite the existence of CS proofs of knowledge
in the random oracle model. In this paper we shall work in the plain model, and thus the definitions of PCD
systems will be adapted to this model.

PCD systems essentially generalize the “computationally-sound proofs” of Micali [Mic00], which con-
sider the “one-hop” case of a single prover and a single verifier, and also generalize the “incrementally
verifiable computation” of Valiant [Val08], which considers the case of an a-priori fixed sequence of compu-
tations. Special cases of PCD systems include targeted malleability [BSW11] and computing on signatures
[BF11] and authenticated data [ABC+11]; see Section 2.6 for further discussion, and Section 12 for details.

2.2 Constant Depth PCDs and the SNARK Recursive Composition Theorem

Our first step is establishing PCDs for a specific class of constant depth compliance predicates. The depth
of a predicate C, denoted by d(C) is the length of the longest path in (the graph corresponding to) any
distributed computation compliant with C. Note that a distributed computation of a given depth d(C) (even
a constant) may have many more “nodes” than d(C); e.g., it could be a very wide tree of height d(C). We
show that any SNARK can be composed a constant number of times, yielding constant-depth PCDs:

Theorem 1 (SNARK Recursive Composition — informal). The existence of a SNARK implies the existence
of a corresponding PCD system, with analogous verifiability and efficiency properties, for every compliance
predicate whose depth is constant. More precisely:

(i) If there exist publicly-verifiable SNARKs, then there exist publicly-verifiable PCD systems for every
constant-depth compliance predicate.

(ii) Assuming the existence of FHE, if there exist designated-verifier SNARKs, then there exist designated-
verifier PCD systems for every constant-depth compliance predicate.

Moreover, the SNARK can be of the preprocessing kind, in which case so is the PCD system.

The purpose of the theorem is to cleanly encapsulate the idea of “recursive proof composition” of
SNARKs within a PCD construction. After proving this theorem, every time we need to leverage the benefits
of proof composition, we can simply and conveniently work “in the abstract” by engineering a (constant-
depth) compliance predicate that will enforce the desired properties across a distributed computation, and
then invoke the guarantees of a PCD system, without worrying about its implementation details (which hap-
pen to involve recursive composition of SNARKs). In the next subsection (Section 2.3), we discuss how to
achieve more in certain special cases. We now outline the idea behind each part of the theorem above.

The case of public verifiability. In this case, the construction itself is similar to the one in Chiesa and
Tromer [CT10] (where it was done with a signature oracle). The basic idea is to apply recursive verification
of proofs relative to the compliance predicate C.

Roughly, when a partyAwishes to start a computation with a message zA for partyB,Awill attach to zA
a SNARK proof πA for the claim “C(zA;⊥,⊥) = 1”, which essentially says that zA is a compliant “source
input” for the distributed computation. When party B receives zA and, after performing some computation
according to some local input (or code) progB , B produces a message zB for party C; B will also attach
to zB a SNARK proof πB for the claim “∃ (progB, zA, πA) s.t. C(zB; progB, zA) = 1 and πA is a valid
SNARK proof for the C-compliance of zA”. And so on: in general, any party receiving input messages ~zi
with corresponding proofs ~πi will use the SNARK prover to generate πo for the claim

“∃ (prog,~zi, ~πi) s.t. C(zo; prog,~zi) = 1 and each πi is a valid SNARK proof for the C-compliance of zi”

7

for the output message zo, when giving a local input prog.
Crucially, the proof of knowledge property of the SNARK makes the above idea work. Indeed, there

likely exists a proof, say, π1 for the C-compliance of z1, even if this is not the case, because the SNARK
is only computationally sound; while such “bad” proofs may indeed exist, they are hard to find. Proving
the statement above with a proof of knowledge, however, already ensures that whoever is able to prove that
statement also knows a proof π1, and this proof can be found efficiently (and thus is not a “bad” one).

The above intuitive construction is formally captured by proving SNARK statements regarding the com-
putation of a recursive “PCD machine” MC. The machine MC , given an alleged output message together
with a witness consisting of proof-carrying inputs, verifies: (a) that the inputs and outputs are C-compliant
as well as (b) verifying that each input carries a proof that attests to its own C-compliance. More precisely,
for each incoming input z and proof π in the witness, it checks that the SNARK verifier accepts the statement
saying that MC itself accepts z after a given number of steps.

The proof of security is technically quite different from the one in Chiesa and Tromer [CT10], as now
we are working in the plain model, as opposed to a model where parties have black-box to a signature oracle.

The case of designated verifiers. The more surprising part of the theorem, in our mind, is the fact that
designated-verifier SNARKs can also be composed. Here, the difficulty is that the verification state τ
(and hence the verification code) is not public. Hence, we cannot apply the same strategy as above and
prove statements like “the verifier accepts”. Intuitively, fully-homomorphic encryption (FHE) may help in
resolving this problem; using FHE in the right way, however, is rather subtle.

Specifically, if we homomorphically evaluate the verifier, we only obtain its answer encrypted, whereas
we intuitively would like to know right away whether the proof we received is good or not, because we
need to generate a new proof depending on it. We solve this issue by directly proving that we evaluated
the verifier, and that a certain bit encryption is indeed the result of this (deterministic) evaluation procedure.
Then, with every proof we carry an encrypted bit denoting whether the data so far is C-compliant or not;
when we need to “compose” we ensure that the encrypted answer of the current verification is correctly
multiplied with the previous bit, thereby aggregating the compliance up to this point. See Section 6.2.

Preprocessing. The SNARK Recursive Composition Theorem can also be instantiated with preprocessing
SNARKs; we will make use of this fact in our end result (discussed in Section 2.5).

In a preprocessing SNARK, the verifier (or some generator trusted by him) is given, in an offline phase,
a time bound B and then outputs a (possibly long) reference string σ for the prover along with a short veri-
fication state τ ; the running time of this offline phase may be polynomial in B (and the security parameter).
Later, in the “online” phase, a prover uses σ to generate a proof that can now be succinctly verified by the
verifier by using τ ; however, (σ, τ) work only for computations that are as as long as B.

When plugging a preprocessing SNARK into our SNARK Recursive Composition Theorem, we obtain
a corresponding preprocessing PCD, where again the offline generator will get a time bound B, and the
resulting PCD will only work as long as the amount of computation done at each node in the distributed
computation (or, more precisely, the time to verify compliance at each node) is bounded by B. More con-
cretely, using preprocessing SNARKs with time boundB′, we construct PCD that allows the computation at
each node i to be roughly as large as B′−deg(i) · tV , where tV is the time required for SNARK verification
and deg(i) is the number of incoming inputs (which is also the number of proofs to be verified); thus we
can simply set B′ = B+ max deg(i) · tV . (The degree will always be bounded by a fixed polynomial in the
security parameter in our applications.)

Unlike completeness, the security properties are not affected by preprocessing; the proof of the SNARK
Recursive Composition Theorem in the case with no preprocessing carries over to the preprocessing case.

Finally, note that, while we do not need to provide a different security proof for the preprocessing case,

8

setting up a PCD construction that works properly in this setting should be done with care. For example,
[BSW11] studied targeted malleability, which is a special case of a PCD system, and presented a prepro-
cessing construction that does not leverage the succinctness of the SNARK verifier, and hence their prepro-
cessing is with respect to the entire distributed computation and not just a single node’s computation (as in
our case). This difference is crucial in our applications (which ultimately achieve removing preprocessing
altogether.) See Section 12.1 for a technical comparison.
Why only constant depth? The restriction for constant-depth compliance predicates arises because of
technical reasons during the proof of security. Specifically, we must apply SNARK extraction “into the
past”, which can be done iteratively at most a constant number of times as each extraction potentially blows
up the size of the extractor by a polynomial factor. (See Remark 6.3 for more details.) Nevertheless, in the
next section we show that constant depth PCDs can be rather expressive.

A formal discussion of SNARKs and PCDs can be respectively found in Section 4 and Section 5, and the
proof of the SNARK Recursive Composition Theorem in Section 6.

2.3 The PCD Bootstrapping Theorem and Path PCD

The SNARK Recursive Composition Theorem presented in the previous section gives us PCDs for constant-
depth compliance predicates from any SNARK. While already significantly more powerful than SNARKs,
PCDs for only constant-depth compliance predicates are still not completely satisfying; in general, we may
want to ensure the compliance of “polynomially-deep” distributed computations.

Nonetheless, we show that such PCDs can “bootstrap themselves” to yield PCDs for long paths. Specif-
ically, a path PCD system is one where completeness does not necessarily hold for any compliant compu-
tation, but only for distributed computations where the associated graph is a path, i.e., each node has only a
single input message. We show:

Theorem 2 (PCD Bootstrapping — informal). If there exist PCDs for constant-depth compliance predi-
cates, then there exist path PCDs for compliance predicates of fixed polynomial depth.2 (And the verifiability
properties of the PCD carry over, as do the preprocessing properties.)

The high-level idea of the proof is as follows. Say that C has fixed polynomial depth d(C) = kc.

1. We design a new compliance predicate TREEC of (constant) depth c that is a “tree version” of C. Essen-
tially, TREEC forces any distributed computation that is compliant with it to be structured in the form of a
k-ary tree whose leaves are C-compliant nodes of a computation along a path, and whose internal nodes
aggregate information about the computation. A message at the root of the tree is TREEC-compliant only
if the leaves of the tree had been “filled in” with a C-compliant distributed computation along a path.

2. We then design a new PCD system (G′,P′C,V′C) based on (G,PTREEC ,VTREEC) that, intuitively, dynami-
cally builds a (shallow) Merkle tree of proofs “on top” of an original distributed computation.

Thus, the new prover P′C at a given “real” node along the path will run PTREEC for each “virtual” node in
a slice of the tree constructed so far; roughly, PTREEC will be responsible for computing the proof of the
current virtual leaf, as well as merging any internal virtual node proofs that can be bundled together into
new proofs, and forwarding all these proofs to the next real node. (Note that the number of proofs sent
between real nodes is not very large: at most ck.)

The new verifier V′C will run VTREEC for each subproof in a given proof of the new PCD system.
2This can be generalized; see Remark 8.9.

9

Essentially, the above technique combines the wide Merkle tree idea used in the construction of SNARKs
in [BCCT11, GLR11] and (once properly abstracted to the language of PCD) the idea of Valiant [Val08] for
building proofs “on top” of a computation in the special case of incrementally-verifiable computation.

For the above high-level intuition to go through, there are still several technical challenges to deal with;
we account for these in the full construction and the proof of the theorem in Section 8 (where a diagram
outlining the construction can also be found, see Figure 7).

Effect on the preprocessing case. Recall that if the constant depth PCD is a preprocessing one, there is
a bound B on the allowed computation at each node. In particular, using such a preprocessing PCD in the
Bootstrapping Theorem results in preprocessing path PCDs where the bound on the allowed computation at
each node along the path is the same as allowed by the underlying constant depth PCD, up to polynomial
factors in the security parameter.

2.4 The RAM Compliance Theorem

We will ultimately rely (as described in Section 2.5) on the SNARK Recursive Composition Theorem and
PCD Bootstrapping Theorem for transforming a given preprocessing SNARK into one without preprocess-
ing. One last ingredient that we rely on in this transformation is the following.

We seek to reduce the task of verifying SNARK statements into the task of verifying the compliance of
a related distributed computation evolving over a path. Our goal is to make sure that each node along the
path only performs a small amount of work, which will, in turn, enable us to use SNARKs with “not-too-
expensive” preprocessing to plug into the SNARK Recursive Composition Theorem, and then plugging the
result into the PCD Bootstrapping Theorem for obtaining a PCD system to ensure the desired compliance.

In attempting to construct the reduction we seek, we encounter the following problem: an arbitrary
machine M running in time t (on some input x) may in general use a large amount of memory (possibly as
large as t), hence naı̈vely breaking its computation into smaller computations that go from one state to the
next one, will not work — the resulting nodes may need to perform work as large as t (just to read the state).

To deal with this obstacle we invoke a result of Ben-Sasson et al. [BSCGT12] that essentially shows how
to use Merkle hashing to transform any M to a new “computationally equivalent” machine M ′ that “out-
sources” its memory, and itself checks memory consistency as it runs. We can then engineer a compliance
predicate for ensuring correct computation of M ′, one step at a time.

It will be convenient (and consistent with [BSCGT12]) to state our results in terms of random-access
machines [CR72, AV77] (though, they naturally generalize to other abstract models of computation, such as
Turing machines):

Theorem 3 (RAM Compliance Theorem — informal). LetH be a family of collision-resistant hashes. For
any y = (M,x, t) and any h ∈ H, there exists a compliance predicate Cy,h with depth O(t log t), such that:

1. Completeness: Given w ∈ RU (y) it is possible to efficiently emulate a distributed computation along
a path that is compliant with Cy,h. Moreover, in such a distributed computation, each node performs
work that is only poly(|y|, k).

2. Proof of knowledge: From any efficient adversary that, given a random h, outputs a Cy,h-compliant
distributed computation we can extract a witness w ∈ RU (y).

The the theorem is formally stated in Section 7; in Section 7.1 we recall the idea of the proof of the first
step by Ben-Sasson et al. [BSCGT12], and then in Section 7.2 we give the details for the second step.

10

Bootstrapping for more efficiency. Interestingly, the RAM Compliance Theorem and the PCD Bootstrap-
ping Theorem not only have theoretical consequences (which we will discuss shortly in Section 2.5), but
also efficiency consequences. Namely, by combining the RAM Compliance Theorem and the PCD Boot-
strapping Theorem, we can show that the mere existence of PCDs implies the existence of corresponding
PCDs with much better efficiency:

Theorem 2.1 (PCD Linearization — informal). If there exist constant-depth PCDs, then there exist constant-
depth PCDs where the PCD prover running time is tpoly(k) where t is the time of the computation per-
formed at the node (and polynomial in the security parameter).

2.5 Putting Things Together: SNARKs and PCDs without Preprocessing

Finally, equipped with the SNARK Recursive Composition, PCD Bootstrapping, and RAM Compliance
Theorems, we can now present our end result:

Theorem 4 (Main Theorem). Assume there exist preprocessing SNARKs. Then there exist:

(i) SNARKs with no preprocessing.

(ii) PCDs for compliance predicates of constant depth with no preprocessing.

(iii) Path PCDs for compliance predicates of fixed polynomial depth with no preprocessing.

The above holds for both the publicly-verifiable and designated-verifier cases. In the private-verification
case, we assume the existence of a fully-homomorphic encryption scheme; in both cases we assume the
existence of collision-resistant hash functions.

We have already shown how the second part and third part of the theorem follow from the first part:
we can simply invoke the SNARK Recursive Composition Theorem (discussed in Section 2.2) to obtain (ii)
from (i), and then the PCD Bootstrapping Theorem (discussed in Section 2.3) to obtain (iii) from (ii). We
are thus left to show the first part of the theorem: removing preprocessing from a SNARK.

To remove preprocessing, we follow the plan outlined at the beginning of Section 2.4. That is, using the
RAM Compliance Theorem, we reduce the task of verifying SNARK statements to the task of verifying the
compliance of multiple “small” computations along a path. Then we use the SNARK Recursive Composition
and PCD Bootstrapping Theorems to enforce compliance of path computations. As a basis for the SNARK
Recursive Composition Theorem, we use a pre-processing SNARK that only needs to account for “small
computations” that are bounded by a fixed polynomial in the security parameter. A bit more concretely, it
should account for the time required to compute compliance at each one of the nodes, plus the overhead of
SNARK verification, which is again a fixed polynomial in the security parameter.

For a diagram summarizing how our main theorems come together, see Figure 2. More details can be
found in Section 10.

Existing pre-processing SNARKs. The theorem above gives a compiler that takes as input preprocessing
SNARKs and outputs a preprocessing-free SNARK (or even certain PCD systems if desired). Let us briefly
discuss what constructions are known that we can plug into this compiler; for more details, see Section 9.

• Groth [Gro10] constructed publicly-verifiable SNARKs with preprocessing; his construction relies on
a variant of the Knowledge of Exponent assumption [Dam92, BP04], which he calls q-PKEA, and a
computational Diffie-Hellman assumption, which he calls q-CPDH, in bilinear groups.

11

Plugging Groth’s construction into our compiler, we obtain, based on the same assumptions (and the
existence of collision-resistance hash functions), the first construction, in the plain model, of publicly-
verifiable SNARKs (a.k.a. “CS proofs” [Mic00]) and PCDs (for compliance predicates of constant
depth, or polynomial depth for paths). Surprisingly, the resulting construction does not invoke the
PCP Theorem and only involves quite simple techniques.

In summary, thanks to our machinery that shows how to generically remove preprocessing from any SNARK,
we have thus shown how to leverage quite simple techniques, such as techniques based on pairings [Gro10],
that at first sight seem to necessarily give rise to only preprocessing solutions, in order to obtain much more
powerful solutions with no preprocessing. The resulting constructions, while certainly not trivial, seem to
be quite simple, and do not invoke along the way additional probabilistic-checking machinery. We find this
(pleasantly) surprising.

2.6 Applications

In order to further exemplify the power of compliance engineering, we show how proof-carrying data implies
targeted malleability [BSW11] and a variant of computing on authenticated data [BF11, ABC+11]. We are
able to obtain for the first time, starting with a simple knowledge assumption, targeted malleability (with
no preprocessing) and computing on authenticated data for any functionality in the plain model for any
distributed computation of constant depth or paths of polynomial length.

z1

z2

z3

z4

z5

z6

z7

z8

⇡8
⇡3

⇡2

prog1

prog2

prog3

prog4

prog5

prog6

prog7

prog8

z2

z2

z3

C
?

?

z1

z2

z3

z4

z5

z6

z7

z8
prog1

prog2

prog3

prog4

prog5

prog6

prog7

prog8

z2

z2

z3

C

?

?

⇡2

⇡2

⇡4

⇡5

⇡6
⇡3

⇡7

⇡1PCD

Figure 1: Proof-carrying data enables each party in a distributed computation to augment
his message zi with a short easy-to-verify proof πi computed “on-the-fly”. At any point
during the computation, a party may inspect the computation’s outputs to decide if they are
“compliant” with a given property C. Distributed computations are naturally represented as
directed acyclic graphs, when “unfolded over time”.

12

preprocessing
SNARKs

preprocessing PCDs
for O(1)-depth compliance

preprocessing path PCDs
for poly-depth compliance

SNARKs

PCDs
for O(1)-depth compliance

path PCDs
for poly-depth compliance

+ FHE

preprocessing

no preprocessing

publicly
verifiable

(P)ECHRs

+ CRH

+ PIR

bilinear
power-KEA

[BCCT12]

[Groth10]
[Lipmaa11]

SNARK
Recursive Composition

Theorem

PCD
Bootstrapping

Theorem

RAM
Compliance

Theorem

PCD
Bootstrapping

Theorem

SNARK
Recursive Composition

Theorem

+ FHE

(a.k.a. "CS proofs")

designated
verifier

Figure 2: Summary of how our three main results come together; also see Section 2.5 for a
high-level discussion. Solid gray arrows are results that were previously known or folklore.
Dotted gray arrows are trivial implications.

13

3 Bounded-Halting Problems and Random-Access Machines

We define the universal relation and its language (along with related relations), which will us express,
throughout the rest of this paper, the membership problems that we will be interested in. We also informally
discuss random-access machines, the choice of abstract machine that we adopt, because they are a natural
and convenient model for expressing one of our results.

3.1 Universal Relation and NP Relations

The universal relation [BG08] is defined to be the set RU of instance-witness pairs (y, w), where y =
(M,x, t), |w| ≤ t, and M is an abstract machine (e.g., a Turing machine), such that M accepts (x,w) after
at most t steps. While the witness w for each instance y = (M,x, t) is of size at most t, there is no a-priori
polynomial bounding t in terms of |x|. We denote by LU the universal language corresponding to RU . At
high level, we can say that deciding membership in the universal relation of a given instance (M,x, t) is a
(non-deterministic) bounded-halting problem on the machine M.

For any c ∈ N, we denote by Rc the subset of RU consisting of those pairs (y, w) =
(
(M,x, t), t

)

for which t ≤ |x|c; in other words, Rc is a “generalized” NP relation, where we do not insist on the same
machine accepting different instances, but only insist on a fixed polynomial bounding the running time in
terms of the instance size. We denote by Lc the language corresponding toRc.

3.2 Random-Access Machines

We choose random-access machines [CR72, AV77] to be the abstract machine used in the universal relation
RU ; in the context of this paper, these will be more convenient to discuss than Turing machines.3 We do not
formally define random-access machines, but we provide an informal description of their operation.

A (two-tape) random-access machine M consists of a vector of registers and a vector of n instructions.
Instructions may consist of operations to modify memory (such as load and store instructions), operations
to read the next symbol on either of the two tapes, and a set of arithmetic / branch operations to operate on
registers and possibly alter the program flow (by changing the program counter). We call δM the function
that, on input values for the program counter, the register, and a value from memory (in case the program
counter points to a load instruction), executes one step of computation of M and outputs the new values for
the program counter and registers.

Note that in order to (directly) check whether
(
(M,x, t), w

)
∈ RU , one has to run the machine M on

input (x,w) for at most t steps. More precisely, running the machine entails

(i) code consistency: correctly executing its transition function at every step of computation (on input the
current values of the program counter, registers, and appropriate memory value, in order to produce
the new values for the program counter and registers), and

(ii) memory consistency: correctly maintaining its memory (i.e., for memory access, the value returned
must be equal to the last written value to that memory address).

We also define a “weak” universal relation R′U (which in fact is a strict superset of RU) corresponding to
the case where the memory of the machine is “not trusted”, that is, memory may return inconsistent values.
(In particular, if a machine cares about meaningfully using memory, it must somehow verify on its own the

3Concretely, we build on a computational Levin reduction of Ben-Sasson et al. [BSCGT12] that shows how to delegate to
untrusted storage the memory of a random-access machine.

14

returned values; see Section 7.1.) More precisely, witnesses in the universal relation R′U consist of pairs
(w,m), where the i-th component ofm is interpreted as the i-th value returned from untrusted memory; that
is,
(
(M,x, t), (w, (mi)

t
i=1)

)
∈ R′U if and only if M accepts (x,w) after at most t steps when responding

to the memory read of step i (if there is one) with value mi. In other words, (M,x, t) ∈ L′U , where L′U is
the language corresponding to R′U , if and only if there is some run of M(x,w) with untrusted memory that
accepts (code consistency of an accepting run suffices for membership).

4 SNARKs

A succinct non-interactive argument (SNARG) is a triple of algorithms (G,P,V) that works as follows. The
(probabilistic) generator G, on input the security parameter k, outputs a reference string σ and a correspond-
ing verification state τ . The honest prover P(σ, y, w) produces a proof π for the statement y = (M,x, t)
given a witness w; then V(τ, y, π) verifies the validity of π. The SNARG is adaptive if the prover may
choose the statement after seeing the σ, otherwise, it is non-adaptive.

Definition 4.1. A triple of algorithms (P,G,V) is a SNARG for the relation RU if the following conditions
are satisfied:

1. Completeness

For any (y, w) ∈ RU ,

Pr
(σ,τ)←G(1k)

[V(τ, y, π) = 1 | π ← P(σ, y, w)] = 1 .

In addition, P(σ, y, w) runs in time poly(k, |y|, t).

2. Soundness

Depending on the notion of adaptivity:

• Non-adaptive soundness. For all poly-size prover P∗, large enough k ∈ N, and y /∈ LU ,

Pr
(σ,τ)←G(1k)

[V(τ, y, π) = 1 | π ← P∗(σ, y)] ≤ negl(k) .

• Adaptive soundness. For all poly-size prover P∗ and large enough k ∈ N,

Pr
(σ,τ)←G(1k)

[
V(τ, y, π) = 1

y /∈ LU

∣∣∣∣ (y, π)← P∗(σ)

]
≤ negl(k) .

3. Succinctness

There exist a universal polynomial p such that, for any instance y = (M, |x|, t) and large enough
security parameter k,

• The running time of the prover P is at most p(k, t).

• The running time of the verifier V is at most p(k+ |y|) = p(k+ |M|+ |x|+log t), when verifying
an honestly generated proof.

• The length of an honestly generated proof is p(k).

15

For the process of generating the reference string and the verification state, we consider two variants:

• “Full” succinctness.
The generator G(1k) runs in time p(k) (independently of the computation), and in particular the
generated (σ, τ) are of size at most p(k).

• Succinctness up to preprocessing.
The verifier reference string may depend on a pre-given time bound B for the computation
(which may not be bounded by any fixed polynomial in the security parameter). In this case, the
running time of G and the length of the reference string σ that it outputs may be p(k,B).

A SNARG of knowledge, or SNARK for short, is a SNARG where soundness is strengthened as follows:

Definition 4.2. A triple of algorithms (G,P,V) is a SNARK if it is a SNARG where adaptive soundness is
replaced by the following stronger requirement:

• Adaptive proof of knowledge4

For any poly-size prover P∗ there exists a poly-size extractor EP∗ such that for all large enough k ∈ N
and all auxiliary inputs z ∈ {0, 1}poly(k),

Pr
(σ,τ)←G(1k)

[
V(τ, y, π) = 1
w /∈ RU (y)

∣∣∣∣
(y, π)← P∗(z, σ)

(y, w)← EP∗(z, σ)

]
≤ negl(k) .

Universal arguments vs. universal succinctness and non-universal soundness. The SNARG (and
SNARKs) given in Definitions 4.1 and 4.2 are for the universal relation RU and are called universal ar-
guments.5 A weaker notion that we will also consider is a SNARG (or a SNARK) for a specific NP relation
Rc ⊂ RU . In this case, soundness is only required to hold with respect to Rc; in particular, the verifier al-
gorithm may depend on c . Nevertheless, we require (and achieve) universal succinctness, where a universal
polynomial p, independent of c, upper bounds the length of every proof and the verification time.

Remark 4.3 (Public vs. designated verification and security in the presence of a verification oracle). We
distinguish between the case where the verifier state τ may be public or needs to remain private. Specifically,
a publicly-verifiable SNARK (pvSNARK for short) is one where security holds even if τ is public; in contrast,
a designated-verifier SNARK (dvSNARK for short) is one where τ needs to remain secret.

One property that is greatly effected by the above distinction, is whether security (i.e., soundness or
proof of knowledge) also holds when the malicious prover is given access to a verification oracle V(τ, ·, ·).
This property is essential in settings where the same verification state (and corresponding reference string)
are used multiple times, and the verifier’s responses to given proofs may leak and taken advantage of by a
malicious prover. For pvSNARKs, this requirement is automatically guaranteed; for dvSNARKs, however,
soundness in the presence of a verification oracle needs to be required explicitly as an additional property.
It can be seen that given limited number of O(log k)-verifications, soundness will inherently hold; the
“non-trivial” case is when the number of verifications learned is ω(log k) or even not bounded by any
specific polynomial. (In the delegation regime, the issue is often circumvented by assuming that the verifier’s
responses remain secret, or re-generating σ, τ every logarithmically-many verifications, e.g., as in [KR06,
Mie08, GKR08, KR09, GGP10, CKV10].)

4One can also formulate weaker proof of knowledge notions; in this work we focus on the above strong notion.
5Barak and Goldreich [BG08] define universal arguments for RU with a black-box “weak proof-of-knowledge” property; in

contrast, our proof of knowledge property is not restricted to black-box extractors, and does not require the extractor to be an
implicit representation of a witness.

16

Remark 4.4 (Assumptions on the reference string). Depending on the model and required properties, there
may be different trust assumptions about who runs G(1k) to obtain (σ, τ) and publish σ and make sure the
verifier has access to τ .

For example, in a dvSNARK, the verifier itself may run G and then publish σ (or send it to the appropriate
prover when needed) and keep τ secret for later; in such a case, we may think of σ as a verifier-generated
reference string. But if we further require the property of zero-knowledge, then we must assume that σ is a
common reference string, and thus that a trusted party ran G.

As another example, in a pvSNARK, the verifier may once again run G and then publish σ, though
other verifiers if they do not trust him may have to run on their own G to obtain outputs that they trust;
alternatively, we could assume that σ is a global reference string that everyone trusts. Once again, though,
if we further require the property of zero-knowledge, then we must assume that σ is a common reference
string.

The SNARK extractor E . Above, we require that any poly-size family of circuits P∗ has a specific poly-
size family of extractors EP∗ ; in particular, we allow the extractor to be of arbitrary poly-size and to be
“more non-uniform” than P∗. In addition, we require that for any prover auxiliary input z ∈ {0, 1}poly(k),
the poly-size extractor manages to perform its witness-extraction task given the same auxiliary input z. The
definition can be naturally relaxed to consider only specific distributions of auxiliary inputs according to the
required application.

One could consider stronger notions in which the extractor is a uniform machine that gets P∗ as input,
or even only gets black-box access to P∗. (For the case of adaptive SNARKs, this notion cannot be achieved
based on black-box reductions to falsifiable assumptions [GW11].) In common security reductions, how-
ever, where the primitives (to be broken) are secure against arbitrary poly-size non-uniform adversaries, the
non-uniform notion seems to suffice. In our case, going from a knowledge assumption to SNARKs, the no-
tion of extraction will be preserved: if you start with uniform extraction you will get SNARK with uniform
extraction.

Extraction for multiple theorems. In this work we will be interested in performing recursive extraction
along tree structures; in particular, we will be interested in provers that may produce a vector of theorems
~y together with a vector of corresponding proofs ~π. In such cases, it will be more convenient to apply
corresponding extractors that can extract a vector of witnesses ~w for each of the proofs that is accepted by
the SNARK verifier. This notion of extraction can be shown to follow from the single-witness extraction as
defined above.

Lemma 4.5 (adaptive proof of knowledge for multiple inputs). Let (P,G,V) be a SNARK (as in Defini-
tion 4.2), then for any multi-theorem poly-size prover P∗ there exists a poly-size extractor EP∗ such that for
all large enough security parameter k ∈ N and any auxiliary input z ∈ {0, 1}poly(k),

Pr
(σ,τ)←G(1k)

[
∃ i s.t.

V(τ, yi, πi) = 1
wi /∈ R(yi)

∣∣∣∣
(~y, ~π)← P∗(z, σ)

(~y, ~w)← EP∗(z, σ)

]
≤ negl(k) .

5 Proof-Carrying Data Systems

We formally introduce proof-carrying data (PCD) systems, which are the cryptographic primitive that for-
mally captures the framework for proof-carrying data.

17

5.1 Compliance of Computation

We begin by specifying the (syntactic) notion of a distributed computation that is considered in proof-
carrying data. Essentially, we view a distributed computation simply as a directed acyclic graph with edge
labels (representing messages) and node labels (representing the program allegedly run at the node).

Definition 5.1. A distributed computation transcript is a triple T = (G, lprog, data) representing a
directed acyclic graph G where each vertex v corresponds to a local program lprog(v), and each edge
(u, v) corresponds to a message data(u, v) sent between u and v. Typically, the local program of v takes
as input the message data(u, v) and some additional local input, and outputs a message data(v, w) for the
following vertex w. Each source vertex has a single outgoing edge, carrying an input to the distributed
computation (there are no programs at sources). The final outputs of the distributed computation is the data
carried along edges going into sinks.

A proof-carrying transcript is a transcript where the messages are augmented by proof strings. (This is
a syntactic definition; the semantics are discussed in Section 5.2.)

Definition 5.2. A proof-carrying transcript PCT = (T, proof) augments a distributed computation tran-
script T with a corresponding proof string proof(e) for any edge e.

Next, we define what it means for a distributed computation to be compliant, which is the notion of
“correctness with respect to a given specification”. Compliance is captured via an efficiently computable
predicate C that should be locally satisfied in each vertex with respect to the the local program and the
incoming and outgoing data.

Definition 5.3. Given a polynomial-time predicate C, we say that a distributed computation transcript
T = (G, lprog, data) is C-compliant (denoted by C(T) = 1) if, for every vertex v ∈ V (G), it holds that

C(outdata(v); lprog(v), indata(v)) = 1 ,

where indata(v) and outdata(v) denote all incoming and outgoing messages corresponding v and lprog(v)
is the local program at v.

Remark 5.4 (Polynomially-balanced compliance predicates). We restrict our attention to polynomial-time
compliance predicates that are also polynomially balanced with respect to the outgoing message. Namely,
the running time of C(zo;~zi, prog) is bounded by polyC(|zo|), for a fixed polyC that depends only on C.
This, in particular, implies that inputs where |prog| + |~zi| > polyC(|zo|) are rejected. This restriction shall
often simplify presentation, and the relevant class of compliance predicates is expressive enough for most
applications that come to mind.

A property of a compliance predicate that plays an important role in many of our results is that of depth:

Definition 5.5. The depth of a transcript T, denoted d(T), is the largest number of nodes on a source-to-
sink path in T minus 2 (to exclude the source and the sink). The depth of a a compliance predicate C,
denoted d(C), is defined to be the maximum depth of any transcript T compliant with C. If d(C) :=∞ (i.e.,
paths in C-compliant transcripts can be arbitrarily long) we say that C has unbounded depth.

18

5.2 PCD Systems

A proof-carrying data (PCD) system for a compliance predicate C is a triple of algorithms (G,PC,VC) that
works as follows. The (probabilistic) generator G, on input the security parameter k, outputs a reference
string σ and a corresponding verification state τ . The (honest) prover PC is given σ, inputs ~zi with corre-
sponding proofs ~πi, a program prog, and an output zo (corresponding to (indata(v), inproof(v), lprog(v))
and an output in outdata(v) for some vertex v); PC then produces a proof πo for the output zo being con-
sistent with some C-compliant transcript. The verifier VC is given the verification state τ , an output zo, and
a proof string πo, and is meant to accept only when it is convinces that the output is consistent with some
C-compliant transcript.

Using these algorithms, a distributed computation transcript T is compiled into a proof-carrying tran-
script PCT by generating and adding a proof to each edge. The process of generating proofs is defined
inductively, by having each (internal) vertex v in the transcript T use the PCD prover PC to produce a proof
πo for each output zo being consistent with a C-compliant transcript.

More precisely, given a transcript T = (G, lprog, data), we define a process PrfGen(σ,T) that assigns a
proof for all edges inE(G) as follows. All edges outgoing from sources are assigned empty proofs⊥. Next,
moving up the graph from sources to sinks, each non source edge (u, v) is assigned a proof as follows. Let
~zi = indata(v) be v’s incoming messages, let ~πi = inproof(v) be its incoming proofs, let prog = lprog(v)
be its local program, and let zo = data(u, v) be the message going from u to v. The proof πo assigned
to (u, v) is πo = PC(σ, zo, prog,~zi, ~πi). We denote by PrfGen(σ,T, (u, v)) the proof assigned to (u, v) by
this process. Above, we simplify exposition by assuming that the computation transcript T is generated
independently of the proofs. This can be naturally extended to also consider computation transcripts that are
dynamically generated, also depending on previous proofs (see Remark 5.7).

Running time and succinctness. Given a distributed computation graph G, we associate with each vertex
v a time bound t(v), which is intuitively is the time required for the local program lprog to perform its
computation (and more generally a bound on the running time of the compliance predicate). We denote by
k the security parameter. We require that the running time of prover PC, when producing a proof at a given
node v, is a fixed polynomial in t(v) and k. The length of a any proof generated by PC is a fixed polynomial
in k (and, essentially, independent of t(v)). The running time of the verifier VC is a fixed polynomial
(depending on C) in zo and k. The running time of the generator G is ideally a fixed polynomial in the
security parameter; in particular, both the reference string σ and the verification state τ are polynomial in
k. However, we shall also consider PCDs with preprocessing. Here, G is also given a time bound B and
may produce a reference string σ that depends on B; we still require though that the verification state τ is
succinct (namely, it is a fixed polynomial in the security parameter.)

We now formally define the notion of PCDs.

Definition 5.6. A C-compliance proof-carrying data system is a triple of algorithms (G,PC,VC), where
G is probabilistic and PC, VC are deterministic, that satisfies the following conditions:

1. Completeness

For every C-compliant transcript T = (G, lprog, data), edge (u, v) ∈ E(G), and message zo =
data(u, v),

Pr
(σ,τ)←G(1k)

[VC(τ, zo, πo) = 1 | πo ← PrfGen(σ,T, (u, v))] ≥ 1− negl(k) .

19

2. Proof of Knowledge

For every polynomial-size prover P∗, there exists a polynomial-size knowledge-extractor EP∗ , such
that for any large enough security parameter k and all auxiliary inputs z ∈ {0, 1}poly(k):

Pr
(σ,τ)←G(1k)

[
VC(τ, z, π) = 1
C(Tz) 6= 1

∣∣∣∣
(z, π)← P∗(σ, z)
Tz ← EP∗(σ, z)

]
≤ negl(k) ,

where Tz is a transcript with a single sink edge (u, s) and corresponding message data(u, s) = z.

3. Succinctness

Given a distributed computation transcript T = (G, lprog, data), we denote by tC(v) the time required
to run the compliance predicate on input (indata(v), lprog(v), outdata(v)) for any vertex v ∈ V (G)
(and assume that, for any v, tC(v) ≤ klog k). We require that there exist a fixed polynomial p (inde-
pendently of any specific transcript T), such that for large enough security parameter k:

• The running time of the prover PC at any node v is at most p(k, tC(v)).
• The length of any proof π produced by PC is at most p(k).
• The running time of the verifier VC, when verifying (z, π) = (proof(e), data(e)) for any edge
e ∈ E(G) is at most p(k, |z|) (independently of tC(v)).

For the process of generating the reference string and the verification state, we consider two variants:

• “Full” succinctness.
The generator G(1k) runs in time p(k) (independently of the computation), and in particular the
generated (σ, τ) are of size at most p(k).
• Succinctness up to preprocessing.

The verifier reference string may depend on a pre-given time bound B for the computation
(which may not be bounded by any fixed polynomial in the security parameter). In this case, G
may output a reference string σ of size at most p(k,B)). In this model, proof and verification for
any node v is only done so long that tC(v) ≤ B (in which case, the running times of the prover
and verifier are the same as above).

We shall also consider a restricted notion of PCD system: a path PCD system is a PCD system where com-
pleteness is only guaranteed to hold for distributed computations that evolve over paths (i.e., line graphs).

Remark 5.7 (Proof-dependent transcripts). Formally, Definition 5.6 only captures the case where the com-
putation transcript T is independent of the proofs to be generated by the PCD system, in the sense that the
entire proof generation procedure is done for some pre-existing transcript T. We can of course consider a
more general definition where the computation transcript T (including data and local programs) is dynami-
cally generated along with the proofs (and may potentially depend on these). For the sake of simplicity, we
restrict attention to the simpler definition, but our constructions satisfy the more general definition as well.

Remark 5.8 (Public vs. designated verification and security in the presence of a verification oracle). As
was the case with SNARKs (see Remark 4.3), we distinguish between the case where the verifier state τ
may be public or needs to remain private. Specifically, a publicly-verifiable PCD system (pvPCD for short)
is one where security holds even if τ is public. In contrast, a designated-verifier PCD system (dvPCD for
short) is one where τ needs to remain secret. Similarly to SNARKs, this affects whether security holds in the
presence of a verification oracle: in the pvPCD case this property is automatically guaranteed, while in the
dvPCD case this it does not follow directly (besides as usual the trivial guarantees forO(log k) verifications).

20

Remark 5.9. In Definition 5.6 we could have allowed the adversary to choose the compliance predicate C
for which he chooses the “final output” z. And indeed all of the theorems we discuss in this paper hold
with respect to this stronger definition (though one has to be careful about how to formally state the results).
For convenience of presentation and also because almost always C is “under our control”, we choose to not
explicitly consider this strengthening.

6 A Recursive Composition Theorem for All Kinds of SNARKs

We provide here the technical details for the high-level discussion in Section 2.2.

We prove a composition theorem for “all kinds” of SNARKs: we show how to use a SNARK to obtain a
PCD system for constant-depth compliance predicates. More precisely, we present two constructions for this
task, depending on whether the given SNARK is of the designated-verifier kind or the publicly-verifiable
kind. (In particular, we learn that even designated-verifier SNARKs can be made to compose, which may
come as a surprise.)

Formally:

Theorem 6.1 (SNARK Recursive Composition Theorem). The existence of a SNARK implies the existence
of a corresponding PCD system, with analogous verifiability and efficiency properties, for every compliance
predicate whose depth is constant. More precisely:

(i) If there exist publicly-verifiable SNARKs, then there exist publicly-verifiable PCD systems for every
constant-depth compliance predicate.

(ii) Assuming the existence of FHE, if there exist designated-verifier SNARKs, then there exist designated-
verifier PCD systems for every constant-depth compliance predicate.6

Moreover, in either of the above statements, the SNARK can be of the preprocessing kind, in which case so
will the PCD system.

We begin in Section 6.1 by discussing the construction for the publicly-verifiable case, and then in
Section 6.2 we discuss the construction for the designated-verifier case.

Remark 6.2 (bootstrapping). Constant-depth compliance predicates are not all that weak! Indeed, as we
will show in Section 8, the depth of a compliance predicate can always be improved exponentially, via the
PCD Bootstrapping Theorem, at least for all distributed computations evolving over paths.

Remark 6.3 (beyond constant depth). In the SNARK Recursive Composition Theorem we have to restrict
the depth of compliance predicates to constant because our security reduction is based on a recursive com-
position of SNARK extractors, where the extractor at a given level of the recursion may incur an arbitrary
polynomial blowup in the size of the previous extractor; in particular, if we want the “final” extractors at the
leaves of the tree to each have polynomial size, we must make the aforementioned restriction in the depth.

If one is willing to make stronger assumptions regarding the size of the extractor EP∗ of a prover P∗
then the conclusion of the SNARK Recursive Composition Theorem will be stronger.

Specifically, let us define the size of a compliance predicate C, denoted s(C), to be the largest number
of nodes in any transcript compliant with C. Then, for example:

6We do not require the verification state to be reusable. If it happens to be, then this property will be preserved by our construc-
tion.

21

• By assuming that |EP∗ | ≤ C|P∗| for some constant C (possibly depending on P∗), that is assuming
only a linear blowup, our result can be strengthened to yield PCDs for logarithmic-depth polynomial-
size compliance predicates.

For instance, if a compliance predicate has O(log(k)) depth and only allows O(1) inputs per node,
then it has polynomial size; more generally, if a compliance predicate has depth logw(poly(k)) and
only allows w inputs per node, then it has polynomial size.

• By assuming that |EP∗ | ≤ |P∗| + p(k) for some polynomial p (possibly depending on P∗), that is
assuming only an additive blowup, our result can be strengthened to yield PCDs for polynomial-size
compliance predicates (which, in particular, have polynomial depth).

For instance, if a compliance predicate has polynomial depth and only allows one input per node, then
it has polynomial size.

(An alternative way to obtain PCDs for polynomial-size compliance predicates is to strengthen the
extractability assumption to an “interactive online extraction”; see, e.g., [BP04, DFH11] for examples
of such assumptions. For example, the kind of extraction that Damgård et al. [DFH11] assume for
a collision-resistant hash is enough to construct a SNARK with the interactive online extraction that
will in turn be sufficient for obtaining PCDs for polynomial-size compliance predicates.)

More generally, it is always important that during extraction: (a) we only encounter distributed computation
transcripts that are not too deep relative to the blowup of the extractor size, and (b) we only encounter
distributed computation transcripts of polynomial size.

When we must limit the depth of a compliance predicate to constant (which we must when the blowup
of the extractor may be an arbitrary polynomial), there is no need to limit its size, because any compliance
predicate of constant depth must have polynomial size. However, when we limit the depth to a super constant
value (which we can afford when making stronger assumptions on the blowup of the extractor), we must
also limit the size of the compliance predicate to polynomial.7

6.1 Composition of Publicly-Verifiable SNARKs

We begin by proving the SNARK Recursive Composition Theorem for the publicly-verifiable case with
no preprocessing (i.e., proving Item (i) of Theorem 6.1 with no preprocessing). We shall later extend the
discussion to the case with preprocessing (and then to the designated-verifier case in Section 6.2).

The construction. We follow the PCD construction of Chiesa and Tromer [CT10]. At high-level, at each
node in the distributed computation, the PCD prover invokes the SNARK prover to generate a proof attest-
ing to the fact that the node knows input messages that are compliant with the claimed output message,
and also that he knows corresponding proofs attesting that these input messages themselves come from a
compliant distributed computation. The PCD verifier simply invokes the SNARK verifier (on an appropriate
statement).

We are given two ingredients:
7Interestingly, it seems that even if the size of a compliance predicate is not polynomial, a polynomial-size prover should not

give rise to distributed computations of super-polynomial-size during extraction, but we do not see how to prove that this is the
case. This technical issue is somewhat similar to the difficulty that we found in constructing universal SNARKs in [BCCT11] and
not just SNARKs for specific languages. Chiesa and Tromer [CT10] were able to construct PCDs for any compliance predicate,
with no restrictions on depth or size, but this was not in the plain model. We believe it to be an interesting open question to make
progress on the technical difficulties we find in the plain model with the ultimate goal of understanding what it takes to construct
PCDs for any compliance predicate in the plain model.

22

• A compliance predicate C of constant depth d(C). (See Definition 5.5.)

• A publicly-verifiable SNARK (G,P,V) for the relation Rc (as defined in Section 3.1), where c is a
constant that depends on the running time of the compliance predicate C, as well as on a universal
constant, given by the SNARK verification time. We explain later on how to choose this parameter;
for now, we advise the the reader to think of (G,P,V) as a SNARK for the universal relationRU .

We construct the corresponding PCD system as follows.

The PCD generator. Given as input the security parameter 1k, the PCD generator G simply runs the
SNARK generator G(1k) in order to create a reference string σ and verification state τ , both of size that is a
fixed polynomial in the security parameter. We assume that both (σ, τ) include the security parameter 1k in
the clear. Also, because we are focusing on the publicly-verifiable case, we may assume that σ includes τ in
the clear. (Moreover, in the publicly-verifiable case with no preprocessing that we are currently discussing,
σ and τ can in fact be merged, but we shall keep them separate for the sake of clarity and exposition of the
other cases.)

The PCD prover and the PCD machine. Given input (σ, zo, prog,~zi, ~πi), the PCD prover PC constructs
a “SNARK theorem and witness” (y, w) = ((M,x, t), w) and then runs the SNARK prover P(σ, y, w) to
produce the “outgoing” proof πo.

More precisely, y := y(z) and w := (prog,~zi, ~πi), where y(z) = y(z, τ, k) is the SNARK statement
(MC, (z, τ), tk

MC(|z|)) and MC is a fixed machine called the PCD machine (it only depends on the compliance
predicate C and the SNARK verifier V).

The PCD machine MC takes an input x and a witness w where x = (zo, τ, k) and w = (prog,~zi, ~πi).
(Note that we use here the fact that the verification state τ is public and given to the prover.) Then, MC

verifies that: (a) the message zo is C-compliant with the local program prog and input messages ~zi, and (b)
each π ∈ ~πi is a valid SNARK proof attesting to the consistency of a corresponding z ∈ ~zi with a previous
C-compliant distributed computation.

The formal description of the machine MC is given in Figure 3.

Input and witness. (x,w) = ((zo, τ, k), (prog,~zi, ~πi)), where ~zi represent input messages, ~πi corresponding
compliance proofs, prog a local program, zo an output message, τ the SNARK verification state, and k the
security parameter.
Time bound. If the machine MC reaches a time bound tkMC(|zo|) it halts and rejects. The function tkMC(|z|) is a
fixed polynomial in (|z|, k, |〈C〉|). (We explain how this function is chosen in the parameters paragraph below.)
Base case. If (prog,~zi, ~πi) = ⊥, verify that C(zo;⊥,⊥) = 1. (This corresponds to checking that zo is a
C-compliant source for the computation.)

General case. Verify:

• Compliance of the current node: C(zo; prog,~zi) = 1.

• Compliance of the past: For each input z ∈ ~zi and corresponding proof π ∈ ~πi verify that V(τ, y(z), π) =
1, where y(z) = y(z, τ, k) is the SNARK statement (MC, (z, τ), tkMC(|z|)). (We now think of each z as an
output of a previous distributed computation carrying a proof π attesting to its C-compliance.)

If any of the above fails, output reject.

Figure 3: The PCD machine MC for the publicly-verifiable case.

23

The PCD verifier. Given input (τ, zo, πo), the PCD verifier VC simply runs the SNARK verifier V , with
verification state τ , input statement (M,x, t) = (MC, (zo, τ), tk

MC(|zo|)), and proof πo.

Parameters and succinctness. We explain how the time bound function tk
MC is set. The main part of

the computation of the PCD machine MC is, typically, verifying C-compliance at the local node, namely,
verifying that C(zo; prog,~zi) = 1; since C is polynomially balanced (see Remark 5.4), the time to perform
this check is at most polyC(|zo|), where polyC is a fixed polynomial depending only on C. But the PCD
machine also needs to verify C-compliance of the past, and the time required to do so depends on the running
time of the SNARK verification algorithm V . Specifically, running each of the SNARK verifiers requires:

∑

z∈~zi

tV

(
k, |z|+ |〈C〉|, log

(
tkMC(|z|)

))
,

where tV is the running time bound on the SNARK verifier, which is a fixed (universal) polynomial. We
can assume that all computations are bounded by some super-polynomial function in the security parameter,
say klog k, and hence can bound tk

MC(|z|) by klog k. Hence, because log tk
MC(|z|) ≤ log2 k, the succinctness

of the SNARK verifier implies that the overhead of verifying each input z ∈ ~zi is a fixed polynomial in k
and |z| + |〈C〉|, independently of the actual computation time tk

MC(|z|). By the fact that C is balanced we
also deduce that the number of nodes z summed over is a fixed polynomial in |zo|, i.e., |~zi| ≤ polyC(|zo|).
Hence, we deduce that the above sum is also bounded by polyC(k, |zo|), where polyC is a fixed polynomial
depending only on C.

Overall, there is a fixed polyC that depends only on C (and the SNARK in use), such that:

tkMC(|zo|) ≤ polyC(k, |zo|) .

Having established this bound, we can choose accordingly the relation Rc for which the SNARK is
sound. (Note that the succinctness of the SNARK is universal and independent of c, so there is no issue of
circularity here.)

We now show that (PC,G,VC) is a C-compliance (publicly-verifiable) PCD system assuming that C is of
constant depth d(C).

The completeness of the system follows directly from the underlying SNARK. We concentrate on the
adaptive proof of knowledge property. Our goal is to construct for any possibly malicious prover P∗ a
corresponding extractor EP∗ such that, when P∗ convinces VC of the C-compliance of a message zo, the
extractor can (efficiently) find a C-compliant transcript to “explain” why the verifier accepted. For this
purpose we employ a natural recursive extraction strategy, which we now describe.

The extraction procedure. Given a poly-size prover P∗, we derive d(C) circuit families of extractors, one
for each potential level of the distributed computation. To make notation lighter, we do not explicitly write
the auxiliary input z which might be given to P∗ and its extractor (e.g., any random coins used by P∗); this
is also done for the SNARK provers and their extractors discussed below. Doing so is all right because what
we are going to prove holds also with respect to any auxiliary input distribution Z , assuming the underlying
SNARK is secure with respect to the same auxiliary input distribution Z .

We start by defining E1 := EP∗1 to be the SNARK extractor for the SNARK prover P∗1 that, given σ,
computes (z1, π1) ← P∗(σ) , constructs the instance y1 := (MC, (z1, τ1), t

k
MC(|z1|)), and outputs (y1, π1).

Like P∗1 , E1 also expects input σ; E1 returns a string (~z2, ~π2, prog1) that should be a valid witness for the
SNARK statement y1, assuming that VC (and hence also V) accepts π1.

24

Next, we augment E1 into a new SNARK prover P∗2 that, given σ, outputs multiple statements ~y2 and
corresponding proofs ~π2, where for each z ∈ ~z2 (now viewed as an output message) there is an entry
y(z) := (MC, (z, τ), tk

MC(|z|)) in ~y2. We can thus consider a new extractor E2 := EP∗2 for P∗2 that, given σ,
should output a witness for each convincing proof and statement (y, π) ∈ (~y2, ~π2).

In general, for each 1 ≤ j ≤ d(C) we define P∗j and Ej := EP∗j according to the above rule.
Overall, the witness extractor EP∗ operates as follows. Given as input the reference string σ, it constructs

a transcript T for a directed tree, by applying each one of the extractors Ej defined above. Each such
extractor produces a corresponding level in the computation tree: each witness (~z, ~π, prog) (among the
multiple witnesses) extracted by Ej corresponds to a node v on the j-th level of the tree, with local program
lprog(v) := prog, and incoming messages indata(v) := ~z from its children. The tree has a single sink edge
(s, s′) with a corresponding message data(s, s′) := z1, which is the output of P∗. The leaves of the tree are
set to be the vertices for which the extracted witnesses are (prog,~z, ~π) = ⊥.8

Note that the the final (composed) extractor is of polynomial size, as the number of recursive levels
is constant, and hence even an arbitrary polynomial blowup in the size of the extractor (relative to the
corresponding prover) can be tolerated.

We are left to argue that the transcript T extracted by EP∗ is C-compliant:

Proposition 6.4. Let P∗ be a polynomial size malicious PCD prover, and let EP∗ be its corresponding
extractor as defined above. Then, for any large enough security parameter k ∈ N:

Pr
(σ,τ)←G(1k)

[
VC(τ, z1, π1) = 1

C(Tz1) 6= 1

∣∣∣∣
(z1, π1)← P∗(σ)

Tz1 ← EP∗(σ)

]
≤ negl(k) ,

where Tz1 is a transcript with a single sink edge (s, s′) and corresponding message data(s, s′) = z1.

Proof. The proof is by induction on the level of the extracted tree; recall that there is a constant number d(C)
of levels all together. As the base case, we show that for all large enough k ∈ N, except with negligible
probability, whenever the prover P∗ convinces the verifier VC to accept (z1, π1), the extractor E1 outputs
(~z2, ~π2, prog1) such that:

1. Compliance holds, namely, C(z1;~z2, prog1) = 1.

2. For each (z, π) ∈ (~z2, ~π2), V(τ, y(z), π) = 1, where y(z) is the SNARK statement (MC, (z, τ), tk
MC(|z|)).

Indeed, the fact that VC accepts (τ, z1, π1) implies that the SNARK verifier V accepts y(z1) = (MC,
(z1, τ), tk

MC(|z1|)), and hence, by the SNARK proof of knowledge property, the extractor E1 will output
(except with negligible probability) a valid witness (~z2, ~π2, prog2) for the statement y(z1). This, in particular,
means that the extracted witness satisfies both the required properties (as verified by the PCD machine MC).

To complete the proof, we can continue inductively and prove in the same manner the compliance of
each level in the extracted distributed computation tree. Specifically, assume that for each extracted node v
in level 1 ≤ j < d(C), the second property holds; namely, for each (z, π) ∈ (~zc(v), ~πc(v)), it holds that V(τ,
π, y(z)) = 1, where (~zc(v), ~πc(v)) denotes the incoming messages and proofs from v’s children, extracted
by Ej , and y(z) is the SNARK statement (MC, (z, τ), tk

MC(|z|)). This, in turn, implies that, with all but
negligible probability, for any of child u ∈ c(v), the extractor Ej+1 outputs a valid witness (~zc(u), ~πc(u),

8During extraction we may find the same message twice; if so, we could avoid extracting from this same message twice by
simply putting a “pointer” from where we encounter it the second time to the first time we encountered it. We do not perform this
“representation optimization” as it is inconsequential in this proof. (Though this optimization is important when conducting the
proof for super-constant d(C) starting from stronger extractability assumptions; see Remark 6.3.)

25

progu) for the statement y(zu), where zu ∈ ~zc(v) is the message corresponding to u. This, in turn, means
that u satisfies both required properties:

1. Compliance, namely, C(zu;~zc(u), progu) = 1.

2. For each (z, π) ∈ (~zc(u), ~πc(u)), V(τ, y(z), π) = 1, where y(z) is the SNARK statement (MC, (z, τ), tk
MC(|z|)).

Thus we can complete the induction and deduce compliance of the tree transcript T.

The-preprocessing case. We now describe how to adapt the above to the case where the input SNARK
is of the preprocessing kind. In such SNARKs, one has to pre-specify a time bound B = B(k) when
generating the reference string σ and corresponding verification state τ . In this case, the SNARK will only
allow proving and verifying statements of the form (M,x, t) where |M| + |x| + t < B; statements that do
not meet this criteria will be automatically rejected by the verifier. (Note that this differs from SNARKs for
a relation Rc that do allow t to grow proportionally to |x|c, but not faster than |x|c.) Still, in preprocessing
SNARKs, the verifier’s running time is required to be as succinct as in SNARKs with no preprocessing and,
in particular, independent of B (this succinctness is crucial in our context).

When using such SNARKs to construct PCD systems, the preprocessing constraint translates to a pre-
processing constraint on the PCD. (Recall Item 3 of Definition 5.6.) That is, we can only construct PCD
systems where the generator G is also given a time bound B, which is passed on as a time bound for the
underlying SNARK (up to polynomial factors in the security parameter). Here, PCD proving and verifying
is only carried out as long as the running time of the PCD machine tk

MC(|z|) is at most B. This essentially
means that the PCD will work only as long as the computation and proof verification done at each node are
bounded by B.9 We stress again that, the SNARK verification time (and hence also tk

MC) are independent
of B. Other than the latter restriction on the running time tk

MC , using essentially the same construction as
before, we immediately obtain preprocessing PCDs.

A particularly useful special case is when tk
MC happens to be bounded by a fixed polynomial in the

security parameter; namely, not only is the SNARK verification time bounded by some poly(k), but also all
the inputs and computation time of C are also bounded by some fixed poly(k):

Corollary 6.5 (preprocessing PCDs for fixed-polynomial computations). Let C be any compliance predicate
of constant depth d(C) = O(1), and assume that its running time tC is bounded by a fixed polynomial in
the security parameter. Then for any preprocessing SNARK, instantiating the PCD machine MC with the
SNARK verifier, there is a fixed bound p(k) on the running time tk

MC of MC. In particular, we can set
accordingly B(k) := p(k), and obtain a corresponding PCD system with preprocessing time that is only a
fixed polynomial in the security parameter.

Ultimately, one of the results in this paper will show that we can always get rid of preprocessing in
a SNARK, and it is in the proof of this result that we will invoke the above corollary. (See high-level
discussion in Section 2.5.)

Having dealt with the publicly-verifiable case, in the next subsection, we proceed to discuss the designated-
verifier case.

9We emphasize that the bound B applies to the computation of a single node, and not the entire distributed computation!

26

6.2 Composition of Designated-Verifier SNARKs

We now show that (perhaps surprisingly) we can also compose designated-verifier SNARKs (dvSNARKs) to
obtain designated-verifier PCDs for constant-depth compliance predicates.10 That is, we prove the SNARK
Recursive Composition Theorem for the designated-verifier case (i.e., Item (ii) of Theorem 6.1).

As before, we describe the construction for SNARKs with no preprocessing first; the extension to the
preprocessing case is analogous to the discussion for the publicly-verifiable case of preprocessing, which
can be found at the end of the previous section.

The construction. When we try to adapt the PCD construction for the publicly-verifiable case to the
designated-verifier case, we encounter the following difficulty: how does an arbitrary node in the com-
putation prove that it obtained a convincing proof of compliance for its own input, when it cannot even
verify the proof on its own? More concretely: the node does not know the verification state (because it is
secret) and, therefore, cannot provide a witness for such a theorem.

We show how to circumvent this difficulty, using fully-homomorphic encryption (FHE). The idea goes
as follows. We encrypt the private verification state τ and attach its encryption cτ to the public reference
string σ. Then, when a node is required to verify the proof it obtained, it homomorphically evaluates
the SNARK verification circuit V on the encrypted verification state cτ and the statement and proof at
hand. In order to achieve compliance of the past, each node provides, as part of his proof, the result of the
homomorphic evaluation ĉ, and a proof that it “knows” a previous proof, such that ĉ is indeed the result
of evaluating V on cτ on this proof (and some corresponding statement). At each point the PCD verifier
VC, can apply the SNARK verifier V to check that: (a) the SNARK proof is valid, (b) the decryption of ĉ
is indeed “1”. (More precisely, we need to do an extra step in order to avoid the size of the proofs from
blowing up due to appending ĉ at each node.)

We now convert the above intuitive explanation into a precise construction.

The two ingredients now are:

• A compliance predicate C of constant depth d(C). (See Definition 5.5.)

• A designated-verifier SNARK (G,P,V) for the relation Rc (as defined in Section 3.1), where c is a
constant that depends on the running time of the compliance predicate C, as well as on a universal
constant, given by the SNARK verification time and homomorphic evaluation time overhead. We
explain later on how to choose this parameter; for now, we advise the the reader to think of (G,P,V)
as a SNARK for the universal relationRU .

We construct the corresponding PCD system as follows.

The PCD generator. Given as input the security parameter 1k, the PCD generator G runs the SNARK
generator G(1k) in order to create a reference string σ and verification state τ , both of size that is a fixed
polynomial in the security parameter. Then, G samples a secret key sk and an evaluation key ek for the FHE
scheme, and computes an encryption cτ of the secret verification state. The (private) verification state is
then set to be τ̃ := (τ, sk), and the reference string is set to be σ̃ := (σ, cτ) (and for simplicity of notation
we assume that cτ also includes the evaluation key ek). We assume throughout that both (σ, τ) include the
security parameter 1k in the clear.

10We recall that “designated-verifier” means (just like in the SNARK case) that verifying a proof requires a secret verification
state, and not that the messages in the distributed computation are encrypted; see Remark 5.8.

27

The PCD prover and the PCD machine. As in the publicly-verifiable case, the heart of the PCD system
construction is the design of the PCD machine MC. We define the PCD machine required for the current
construction in Figure 4 and then proceed to describe how the prover uses it to generate PCD proofs.

Input and witness. (x,w) = ((zo, ĉo, c
τ , k), (prog,~zi, ~πi,~̂ci)), where ~zi represents input messages, ~πi corre-

sponding compliance proofs and ~̂ci corresponding evaluated verification bits, prog a local program, zo an output
message, ĉo an output evaluated verification bit, cτ an encrypted SNARK verification state, and k the security
parameter.
Time bound. If the machine MC reaches a time bound tkMC(|zo|) it halts and rejects. The function tkMC(|z|) is a
fixed polynomial in (|z|, k, |〈C〉|). (We explain how this function is chosen in the parameters paragraph below.)

Base case. If (prog,~zi, ~πi,~̂ci) = ⊥, verify that C(zo;⊥,⊥) = 1. (This corresponds to checking that zo is a
C-compliant source for the computation.)
General case. Verify:

• Compliance of the current node: C(zo; prog,~zi) = 1.

• Complianc of the past: Verify that the cipher ĉo “aggregates the correctness of the previous computation”.
That is,

ĉo = Evalek
(∏

, (~̂ci,~̂cV)
)
,

where each ĉV ∈ ~̂cV corresponds to (z, π, ĉ) ∈ (~zi, ~πi,~̂ci) and is the result of homomorphically evaluating
the SNARK verifier as follows:

ĉV = Evalek(V(·, y(z, ĉ), π), cτ) ,

where y(z, ĉ) = y(z, ĉ, cτ , k) is the SNARK statement (MC, (z, ĉ, cτ), tkMC(|z|)).

If any of the above fails, output reject.

Figure 4: The PCD machine MC for the designated-verifier case.

Given input (σ, cτ , zo, prog,~zi, ~πi,~̂ci), the PCD prover PC performs two main computations: first, it
computes a new evaluated verification bit ĉo that “aggregates” the evaluations ~̂cV of the SNARK verifier
together with the previous verification bits ~̂ci. That is, it computes:

ĉo := Evalek

(∏
, (~̂ci,~̂cV)

)
,

where each ĉV ∈ ~̂cV corresponds to (z, π, ĉ) ∈ (~zi, ~πi,~̂ci) and is the result of homomorphically evaluating
the SNARK verifier on the proof π and the statement y(z, ĉ) = y(z, ĉ, cτ , k) = (MC, (z, ĉ, cτ), tk

MC(|z|))
attesting to the compliance of z with a previous compliant computation and the consistency of ĉ with a
previous homomorphic evaluation. That is, ĉV = Evalek(V(·, y(z, ĉ), π), cτ).

After computing ĉo, the PCD prover runs the SNARK prover P(σ, y, w) with the instance y := y(zo, ĉo)

and witness w := (prog,~zi, ~πi,~̂ci), to produce the “outgoing” proof πo.

The PCD verifier. Given input (τ, zo, πo, ĉo), the PCD verifier VC: (a) verifies that the SNARK verifier V ,
with verification state τ , accepts the statement (MC, y(zo, ĉo), t

k
MC(|zo|)) with proof πo, and (b) verifies that

Decsk(ĉo) = 1.

Parameters and succinctness. We explain how the time bound function tk
MC is set. As before, the main part

of the computation of the PCD machine MC is, typically, verifying C-compliance at the local node, namely,

28

verifying that C(zo; prog,~zi) = 1; since C is polynomially balanced (see Remark 5.4), the time to perform
this check is at most polyC(|zo|), where polyC is a fixed polynomial depending only on C. But now this
verification is conducted under the encryption.

Thus, (homomorphically) checking C-compliance of the past depends on the time to homomorphically
evaluate the SNARK verification algorithm and the time to homomorphically aggregate the various en-
crypted bits. Specifically, performing the homomorphic evaluation of the SNARK verifier requires:

∑

z∈~zi

tEvalek

(
k, tV

(
k, |z|+ |〈C〉|, log

(
tkMC(|z|)

)))
,

where tEvalek(k, T) is the time required to homomorphically evaluate a T -time function and tV is the run-
ning time bound on the SNARK verifier, which is a fixed (universal) polynomial. We can assume that all
computations are bounded by some super-polynomial function in the security parameter, such as klog k, and
hence can bound tk

MC(|z|) by klog k. Hence, because log tk
MC(|z|) ≤ log2 k, the succinctness of the SNARK

verifier implies that the overhead of verifying each input z ∈ ~zi is a fixed polynomial in k and |z| + |〈C〉|,
independently of the actual computation time tk

MC(|z|). By the fact that C is balanced we also deduce that
the number of nodes z summed over is a fixed polynomial in |zo|, i.e., |~zi| ≤ polyC(|zo|). Hence, we deduce
that the above sum is bounded by polyC(k, |zo|), where polyC is a fixed polynomial depending only on C.

We are left to note that the homomorphic multiplication (for aggregating the encrypted bits) is done over
a number of encryptions, each of fixed size in the security parameter k, that is at most twice the number of
components in the vector ~̂ci, which is at most twice the number of components in the vector ~zi, which is at
most polyC(|zo|).

We conclude that there is a fixed polyC that depends only on C (and the FHE and SNARK in use), such
that:

tkMC(|zo|) ≤ polyC(k, |zo|) .

Having established this bound, we can choose accordingly the relation Rc for which the SNARK is
sound. (Note that the succinctness of the SNARK is universal and independent of c, so there is no issue of
circularity here.)

We now show that (PC,G,VC) is a C-compliance (designated-verifier) PCD system assuming that C is of
constant depth d(C).

As before, the completeness of the system follows directly from the underlying SNARK. We concentrate
on the adaptive proof of knowledge property. And again our goal is to construct for any possibly malicious
prover P∗ a corresponding extractor EP∗ such that, when P∗ convinces VC of the C-compliance of a message
zo, the extractor can (efficiently) find a C-compliant transcript to “explain” why the verifier accepted. For
this purpose we employ a natural recursive extraction strategy, similar to the one we used in the publicly-
verifiable case, which we now describe.

The extraction procedure. Given a poly-size prover P∗, we derive d(C) circuit families of extractors,
one for each potential level of the distributed computation. As before, to make notation lighter, we do not
explicitly write the auxiliary input z which might be given to P∗ and its extractor (e.g., any random coins
used by P∗). When we apply SNARK extraction, however, we will need to explicitly refer to the auxiliary
input it gets (in this case, an encryption of the verification state; see Remark 6.6). All mentioned implications
hold also with respect any auxiliary input distribution Z , assuming the underlying SNARK is secure with
respect to the auxiliary input distribution Z .

29

Overall, the PCD extractor EP∗ is defined analogously to the case of publicly-verifiable SNARKs, except
that now statements refer to the new PCD machine as well as to ciphers ĉ of the aggregated verification bits,
and the encrypted verification state cτ .

Concretely, we start by defining E1 := EP∗1 to be the SNARK extractor for a SNARK prover P∗1
that is defined as follows. Given a SNARK reference string σ and the encrypted verification state cτ

as auxiliary input, P∗1 computes (z1, π1, ĉ1) ← P∗(σ, cτ), constructs a corresponding instance y1 :=
(MC, (z1, ĉ1, c

τ), tk
MC(|z1|)), and outputs (y1, π1). Like P∗1 , E1 also expects a reference string σ and auxil-

iary input cτ ; E1 returns a string (prog1,~z2, ~π2,
~̂c2) that is hopefully a valid witness for the SNARK statement

y1, assuming that VC (and hence also V) accepts the proof π1. (As we shall see later on, showing the validity
of such a witness will require invoking semantic security, since the SNARK prover also has cτ as auxiliary
input, while the formal guarantee of extraction is only given when (σ, τ) are independent of the auxiliary
input.)

Next, we augment E1 to a new SNARK prover P∗2 that, given σ and cτ , outputs multiple statements ~y2
and corresponding proofs ~π2, where for each (z, ĉ) ∈ (~z2,~̂c2) there is an entry y(z, ĉ) := (MC, (z, ĉ, cτ), tk

MC(|z|))
in ~y2. We can thus consider a new extractor E2 := EP∗2 for P∗2 that, given (σ, cτ), should output a witness
for each convincing proof and statement (y, π) ∈ (~y2, ~π2).

In general, for each 1 ≤ j ≤ d(C) we define P∗j and Ej := EP∗j according to the above rule.
Overall, the witness extractor EP∗ combines the extractors Ej to construct the transcript T, similarly to

the publicly-verifiable case. That is, given as input the reference string σ and the encrypted verification
state cτ , EP∗ constructs a transcript T for a directed tree, by applying each one of the extractors Ej defined
above. Each such extractor produces a corresponding level in the computation tree: each witness (~z, ~π,~̂c,
prog) (among the multiple witnesses) extracted by Ej corresponds to a node v on the j-th level of the tree,
with local program lprog(v) := prog, and incoming messages indata(v) := ~z from its children. The tree
has a single sink edge (s, s′) with a corresponding message data(s, s′) := z1, which is the output of P∗. The
leaves of the tree are set to be the vertices for which the extracted witnesses are (~z, ~π,~̂c, prog) = ⊥. (See
Footnote 8.)

As before, note that the the final (composed) extractor is of polynomial size, as the number of recursive
levels is constant.

Remark 6.6 (SNARK security with auxiliary input). We require that the underlying SNARK is secure with
respect to auxiliary inputs that are encryptions of random strings (independently of the state (σ, τ) sampled
by the SNARK generator). Using FHE schemes with pseudo-random ciphers (e.g., [BV11]), we can relax
the auxiliary input requirement to only hold for truly random strings (which directly implies security with
respect to pseudo-random strings).

We are left to argue that the transcript T extracted by EP∗ is C-compliant:

Proposition 6.7. Let P∗ be a polynomial size malicious PCD prover, and let EP∗ be its corresponding
extractor as defined above. Then, for any large enough security parameter k ∈ N:

Pr
(σ, τ)
(cτ , sk)

←G(1k)

[
VC(τ, sk, z1, π1, ĉ1) = 1

C(Tz1) 6= 1

∣∣∣∣
(z1, π1, ĉ1)← P∗(σ, cτ)

Tz1 ← EP∗(σ, c
τ)

]
≤ negl(k) ,

where Tz1 is a transcript with a single sink edge (s, s′) and corresponding message data(s, s′) = z1.

Proof. The proof is by induction on the level of the extracted tree; recall that there is a constant number
of levels all together. As the base case, we show that for all large enough k ∈ N, except with negligible

30

probability, whenever the prover P∗ convinces the verifier VC to accept (z1, π1, ĉ1), the extractor E1 outputs
(prog1,~z2, ~π2,

~̂c2) such that:

1. Compliance holds, namely, C(z1;~z2, prog1) = 1.

2. The cipher ĉ1 “aggregates” the correctness of the previous computation.
Formally, ĉ1 = Evalek

(∏
, (~̂c2,~̂cV)

)
, where each ĉV ∈ ~̂cV corresponds to (z, π, ĉ) ∈ (~z2, ~π2,~̂c2)

and is the result of homomorphically evaluating the SNARK verifier as required; namely, ĉV =
Evalek(V(·, y(z, ĉ), π), cτ), where y(z, ĉ) is the statement (MC, (z, ĉ, cτ), tk

MC(|z|)).

3. For each ĉ ∈ ~̂c2, it holds that Decsk(ĉ) = 1.

4. For each (z, π, ĉ) ∈ (~z2, ~π2,~̂c2), it holds that V(τ, y(z, ĉ), π) = 1.

To show that the above indeed holds, we consider an alternative experiment where, instead of receiving
the encrypted verification state cτ , the prover P∗ receives an encryption of an arbitrary string, say 0|τ |,
denoted by c0. We show that in this case, whenever the verifier is convinced the first two conditions above
conditions must hold, and then we deduce the same for the real experiment.

Indeed, since in the the alternative experiment, the SNARK prover P∗1 is only given c0, which is inde-
pendent of the verification state τ , the SNARK proof of knowledge guarantee kicks in. Namely, except with
negligible probability, whenever VC (hence also V) accepts, it must be that the extractor E1 outputs a valid
witness (~z2, ~π2,~̂c2, prog1) for the statement y(z1, ĉ1) = (MC, (z1, ĉ1, c

0), tk
MC(|z1|)) output by P∗1 (only this

time when given c0 rather than cτ). This, in particular, means that the extracted witness satisfies the first two
properties (as verified by the PCD machine MC).

Next, note that the first two properties can be efficiently tested given:

(z1, π1, ĉ1,~z2, ~π2,~̂c2, prog1, c
0) ,

simply by running (the deterministic) algorithms C and Evalek (and note that neither sk nor τ are required
for such a test). We can thus deduce that in the real experiment where P∗1 and E1 are given cτ , the two
first properties hold with all but negligible probability; otherwise, we can break the semantic security of the
encryption, by distinguishing encryptions of a random τ from encryptions of 0|τ |.

Now having established the two first properties, we can deduce the last two properties from the second.
Indeed, since the statement y(z1, ĉ1) is accepted by the verifier, we know that Decsk(ĉ1) = 1. This and the
correctness of Evalek implies that all ciphers in (~̂c2,~̂cV) must also decrypt to “1”.11 Hence, we deduce the
third property (all ciphers in ~̂c2 decrypt to “1”), and by invoking the correctness of Evalek once more we can
deduce the last property (namely, for each (z, π, ĉ) ∈ (~z2, ~π2,~̂c2), it holds that V(τ, y(z, ĉ), π) = 1).

To complete the proof, we can continue inductively and prove in the same manner the compliance of each
level in the extracted computation tree. That is, assuming that properties three and four are satisfied by the
j-th level of the tree, we can deduce properties one and two for level j+ 1. This is done by first establishing
them in an alternative experiment where cτ is replaced by c0, and then invoking semantic security to deduce
the same for the real experiment. We then deduce, from the second property, the last two properties as we
did for the base case.

11We can assume without loss of generality that all ciphers are decrypted to either “0” or “1”, either by choosing FHE where any
cipher can be interpreted as such, or by adding simple consistency checks to the evaluated circuit.

31

7 RAM Compliance Theorem

We provide here the technical details for the high-level discussion in Section 2.4.

In this section we prove the RAM Compliance Theorem; it will be useful to keep in mind the definitions
from Section 3 (where the universal language LU is introduced and random-access machines are discussed
informally). Recall that the RAM Compliance Theorem gives a simple proof of the second statement of
the PCD Linearization Theorem (Theorem 2.1), and, when combined with the PCD Bootstrapping Theorem
(discussed in Section 8), gives a simple proof of the second statement of the PCD Linearization Theorem
(Theorem 2.1) and is one of the tools we use in the proof of our main result, discussed in Section 10.

We show that membership in LU of an instance y = (M,x, t) can be computationally reduced to the
question of whether there is a distributed computation compliant with Chy , which has depth at most t·poly(k)
and a small computation of size poly(|y|, k) at each node, for a collision-resistant hash function h.

Formally:

Theorem 7.1 (RAM Compliance Theorem). Let H be a CRH function family. There exist deterministic
polynomial-time transformations Φ,Ψ0,Ψ1 : {0, 1}∗ → {0, 1}∗ such that, for every compliance predicate
C, the following properties hold:

1. Completeness: For every (y, w) ∈ RU and h ∈ H it holds that Chy(Tw) = 1, where Chy := Φ(C, y, h)
is a compliance predicate and Tw := Ψ0(C, y, w, h) is a distributed computation transcript.

2. Soundness: For every polynomial-size circuit C and large enough security parameter k ∈ N:

Pr
h←H

Chy(T) = 1

and(
y,Ψ1(C, y,T)

)
6∈ RU

∣∣∣∣∣∣
(
y,T

)
← C(h)

 ≤ negl(k) .

3. Efficiency: For every y and h ∈ H it holds that d(Chy) ≤ t · poly(k); moreover, if (y, w) ∈ RU
then Tw := Ψ(C, y, w, h) is a distributed computation whose graph is a path and the computation
performed at each node is only poly(|y|, k) (and thus independent of t whenever, say, t ≤ kk).

In other words, the RAM Compliance Theorem ensures a computational Levin reduction from verifying
membership in LU to verifying the correctness of certain distributed computations. Recall that a Levin
reduction is simply a Karp (instance) reduction that comes with witness reductions going “both ways”; in the
theorem statement, the instance reduction is Ψ, the “forward” witness reduction is Φ0, and the “backward”
witness reduction is Φ1; in our case the soundness guarantee provided by Ψ is only computational.

When invoking the reduction for a given instance y and then using a PCD system for Chy , Φ0 preserves
the completeness property of the PCD prover, and Φ1 makes sure that we do not break the proof of knowl-
edge property of the PCD verifier. We stress that, in order to be able to use the RAM Compliance Theorem,
the PCD system must have a proof of knowledge property, as is clear from the soundness guarantee as stated
in the theorem above. (Also see the proof of Theorem 10.1 for more details.)

As discussed in Section 2.4, the proof of the RAM Compliance Theorem divides into two steps, respectively
discussed in the next two subsections (Section 7.1 and Section 7.2).

Remark 7.2 (optimization). Of course, for some machine computations, the delegation of memory per-
formed by the RAM Compliance Theorem is not needed: for example, for computations that do not use

32

much memory (say much less than O(k) where k is the security parameter), we can directly reduce the
correctness of computation of the machine to the correctness of a distributed computation where each node
does not perform much work (and the compliance predicate for this distributed computation will be a simple
modification of the one given in the proof of the RAM Compliance Theorem). This optimization may turn
out to be useful in practice for certain machine computations.

7.1 Machines with Untrusted Memory

We are ultimately interested to decide whether a given instance (M,x, t) is in the universal language LU
or not. Ben-Sasson et al. [BSCGT12] showed that this question can be “computationally simplified” by
exhibiting a computational Levin reduction to the weaker language L′U . We briefly recall their result.

Because membership in the weaker language L′U does not require the memory to behave honestly, the
computational Levin reduction will essentially modify the machine M into a new machine M ′ that checks
its own memory, by dynamically maintaining a Merkle tree over untrusted storage. Of course, the running
time t′ of the new machineM ′ will be larger than the old one, but only by a logarithmic factor in the memory
size (up to polynomial factors in the security parameter due to the computation time of the hash function).

Formally:

Lemma 7.3 (RAM Untrusted Memory Lemma [BSCGT12]). LetH = {Hk}k∈N be a CRH function family.
There exists a deterministic polynomial-time function f : {0, 1}∗ → {0, 1}∗ such that:

1. Syntax: For every random-access machineM, k ∈ N, h ∈ Hk, f(h,M) is a random-access machine.

2. Completeness: There exists a function B : N2 → N such that for every (M,x, t) ∈ LU , k ∈ N, and
h ∈ Hk, (f(h,M), x,B(t, k)) ∈ L′U ; B(t, k) := t · kd for sufficiently large d will suffice.

Moreover, given w such that
(
(M,x, t), w

)
∈ RU , it is possible to compute in polynomial time

m = (m1, . . . ,mB(t,k)) such that
(
(f(h,M), x,B(t, k)), (w,m)

)
∈ R′U .

3. Soundness: For every polynomial-size circuit family {Ck}k∈N and sufficiently large k ∈ N,

Pr
h←Hk

(
(f(h,M), x,B(t, k)), (w,m)

)
∈ R′U

and(
(M,x, t), w

)
6∈ LU

∣∣∣∣∣∣
(
(M,x, t), (w,m)

)
← Ck(h)

 ≤ negl(k) .

In the theorem statement we have made implicit only the instance reduction f of the Levin reduction.
The “forward” witness reduction, as we will see shortly in the proof sketch, will be simple: the vector m is
simply the vector of snapshots of memory when runningM(x,w). As for the “backward” witness reduction,
it is also simple: given a valid (w,m), the reduction would simply output w. (That is, we can think of f as
a “systematic reduction” in a sense similar to [BSS08, Definition 3.9], where the witness we want for the
origin language is simply “embedded” into a larger witness for the destination language.)

For completeness we sketch the proof of the lemma:

Proof sketch. We first describe f and then prove its properties.
Constructing f . The main idea is to construct from M a new machine M ′ := f(h,M) that uses the

collision-resistant hash function h to delegate its memory to “untrusted storage” by dynamically maintaining
a Merkle tree over it.

More precisely, the program of M ′ is equal to the program of M after replacing every load and store
instruction with corresponding secure load and secure store operations, the register size of M ′ is equal to

33

the maximum between the register size of M and the bit-length of images of h plus 1 (to ensure that M ′ can
actually store images of h and index into a memory that is large enough to also contain the Merkle tree),
and the number of registers of M ′ is equal to the number of registers of M plus enough registers to compute
h and then some for storing temporary variables. (In fact, the computation of M ′ actually begins with an
initialization stage which computes a Merkle tree for a sufficiently-large all-zero memory, and then proceeds
to the (modified) program of M.) Crucially, M ′ will always keep in a register the most up-to-date root of
the Merkle tree. (Clearly, all of these modifications can be performed in polynomial time by f .)

A secure load for address i in memory will load from memory a claimed value and claimed hash, and
will also load all the other relevant information for the authentication path of the i-th “leaf”, in order to
check the value against the (trusted) root stored in one of the machine’s registers.

A secure store for address i in memory will update the relevant information for the authentication path
of the i-th “leaf” and then update the (trusted) root stored in one of the machine’s registers.

Secure load and secure store operations will not be atomic instructions in the new machine M ′ but
instead will “expand” into macros consisting of instructions from the old machine M, also using (untrusted)
load and store instructions in their implementation. (This ensures that in each time step we only have a
single memory access, which will simplify notation later on.)

Properties of f . The syntax property of f holds by construction. The completeness property of f
holds because we can choose m to be the sequence of “honest” values returned from a non-adversarial
memory. The soundness property of f holds because of the collision-resistant property of h; namely, if
(M,x, t) 6∈ LU , in order for an adversary to find (w,m) showing that (f(h,M), x,B(t)) ∈ L′U , since
f(h,M) checks its own memory, the adversary must find some collision of h. (Note that it is crucial that
the adversary be required to exhibit (w,m), because surely such (w,m) very often exists but may be hard
to find.)

7.2 A Compliance Predicate for Code Consistency

The advantage of working with L′U instead of LU (which can be achieved by relying on the computational
Levin reduction guaranteed by Lemma 7.3) is that we only have to worry about code consistency and not
also memory consistency.

We now show how code consistency can be “broken down” into the compliance of a distributed com-
putation (by leveraging the inherent “self-reducibility” of the notion of correct computation) containing a
path with a certain property. In the resulting distributed computation, since memory need not be explicitly
maintained, messages and computations at each node are quite small, and this was the purpose of working
with L′U instead of LU .

Intuitively, we show how for any instance y = (M,x, t) it is possible to efficiently construct a compli-
ance predicate UMCy, which we call the Untrusted Memory Checker for y, that verifies computation of y
one step at a time (when given values from the second tape and memory as untrusted advice) and thus serves
as a way to verify membership of y in L′U .

Details follow.

The mapping from y to UMCy is formally given by the following construction:

Construction 7.4. Given an instance y = (M,x, t), define the following compliance predicate:

UMCy(zo;~zi, prog)
def
=

1. Verify that~zi = (zi) for some zi.
(That is, ensure that~zi is a vector consisting of a single component.)

34

2. If zi = ⊥:
(a) Verify that prog = ⊥.
(b) Verify that zo = (τ ′, S′) for some time stamp τ ′ and configuration S′ of M.
(c) Verify that S′ is an initial configuration of M.

3. If zo = ok:
(a) Verify that prog = ⊥.
(b) Verify that zi = (τ, S) for some time stamp τ and configuration S of M.
(c) Verify that S is a final accepting configuration of M.

4. Otherwise:
(a) Verify that zi = (τ, S) for some time stamp τ and configuration S of M.
(b) Verify that zo = (τ ′, S′) for some time stamp τ ′ and configuration S′ of M.
(c) Verify that τ, τ ′ ∈ {0, 1, . . . , t}.
(d) Verify that τ ′ = τ + 1.
(e) Verify that executing a single step of M starting with configuration S results in configuration S′,

with x on the first input tape of M and by supplying prog as the answer to a read to the second input
tape (if a read to that tape is made) or supplying prog as the answer to a memory read (if a read to
memory is made); note that there cannot be both a read to the second tape and a load in the same
time step.

The first thing to note about the new compliance predicate is that its depth is bounded by the time bound:

Lemma 7.5. d(UMCy) ≤ t+ 1.

Proof. Any transcript that is compliant with UMCy consists of disjoint paths, because UMCy forbids mul-
tiple messages to enter a node; and each of these paths, because the timestamp is forced to grow each time
and is bounded by t, has depth at most t+ 1.

Next we prove the completeness and soundness properties of the “compliance reduction”:

Claim 7.6. y ∈ L′U if and only if there exists a (distributed computation) transcript T that is compliant with
respect to UMCy and contains a source-to-sink path where the data entering the sink is the string “ok”.

Moreover, we can efficiently find witnesses “both ways”:

• Given (w,m) such that (y, (w,m)) ∈ R′U , it is possible to efficiently construct a transcript T that is
compliant with respect to UMCy containing a path ending in ok.

• Given a transcript T that is compliant with respect to UMCy containing a path ending in ok, it is
possible to efficiently construct (w,m) such that (y, (w,m)) ∈ R′U .

Proof. We need to prove two directions:

(→) Assume that y ∈ L′U , and let (w,m) be such that
(
y, (w,m)

)
∈ R′U . Construct a transcript T as

follows.
First runM on input (w,m) to deduce for each time step whether the second input tape is read or instead

memory is read (or neither); let t′ ≤ t be the number of steps that it takes for M to halt and let S0, . . . , St′
be the sequence of configurations obtained by runningM. Define a = (ai)

t′
i=1 so that ai is equal to the value

being read from the second input tape if in the i-th step M(x,w) did read the second input tape, or equal
to the value being read from memory if in the i-th step M(x,w) did read memory, or an arbitrary value
otherwise.

Next define T := (G, lprog, data) where G is the (directed) path graph of t′ + 3 nodes, lprog(0) :=
lprog(t′ + 1) := lprog(t′ + 2) := ⊥ and lprog(i) := ai for i = 1, . . . , t′, data(i, i + 1) := (i, Si) for

35

i = 0, 1, . . . , t′, and data(t + 1, t + 2) := ok. In other words, T is the path whose vertices are labeled
with the sequence a (and the sink and the source are labeled with ⊥) and whose edges are labeled with the
time-stamped sequence of configurations of M followed by ok.

See Figure 5 for a diagram.
Because

(
y, (w,m)

)
∈ R′U , we know that UMCy holds at every node of the computation and, moreover,

the only path we constructed satisfies the property of having the appropriate label entering the sink.
Finally, the constructive nature of this argument also yields an efficient way to compute T from (w,m).

?
�
y, (w, m)

�
2 R0

U a1, a2, . . . , at0
a1 a2 at0

(0, S0) (1, S1) (2, S2) (t0, St0) ok
??a3 . . .$$ S0, S1, . . . , St0

Figure 5: Constructing a UMCy-compliant transcript starting from
(
y, (w,m)

)
∈ R′U , and

vice versa.

(←) Consider any transcript T that is compliant with respect to UMCy containing a source-to-sink path
where the data entering the sink is ok.

We first note that because UMCy never allows more than one message into a node, the graph of T is a
set of disjoint paths. By assumption, there is a special path p where the label entering the sink is equal to ok.

Construct (w,m) as follows. Partition [t′] into three subsets I, J,K where I is the subset of those time
steps in which M reads the second input tape at node i in path p, J is the subset of those time steps in which
M reads memory at node i, and K is [t′] − I − J . Define w := lprog(I) and m := lprog(J), where the
indexing is with respect to nodes in path p. Once again see Figure 5.

By compliance of T with UMCy and because we know that the path p ends with the label ok, we know
that

(
y, (w,m)

)
∈ R′U .

Finally, the constructive nature of this argument also yields an efficient way to compute (w,m) from T.

8 A Bootstrapping Theorem for PCD

We provide here the technical details for the high-level discussion in Section 2.3.

Recall that the SNARK Recursive Composition Theorem (Theorem 6.1) gives us PCDs only for (polynomially-
balanced) compliance predicates with constant depth. The RAM Compliance Theorem (Theorem 7.1) tells
us that we can (computationally) reduce membership in LU of an instance y = (M,x, t) to the question
of whether there is a distributed computation that has depth at most O(t log t)poly(k) (and a small com-
putation of size poly(|y|, k) at each node) but this depth is super-constant; it thus seems that we are not
able to benefit from the SNARK Recursive Composition Theorem. (Unless we make stronger extractability
assumptions; see Remark 6.3.)

To address the aforementioned problem and, more generally, to better understand the expressive power
of constant-depth compliance predicates, we prove in this section a “Bootstrapping Theorem” for PCD:

Theorem 8.1 (PCD Bootstrapping Theorem). If there exist PCDs for constant-depth compliance predicates,
then there exist path PCDs for compliance predicates of fixed polynomial depth. (And the verifiability
properties of the PCD carry over, as do the preprocessing properties.)

The main claim behind the theorem is that we can achieve an exponential improvement in the depth of
a given compliance predicate C, while at the same time maintaining completeness for transcripts that are
paths, by constructing a new compliance predicate TREEC that is a “tree version” of C.

36

The basic idea is that the new compliance predicate TREEC will essentially force any compliant dis-
tributed computation to build a Merkle tree of proofs with large in-degree r (similar to the wide Merkle tree
used in the security reduction of [BCCT11]) “on top” of the original distributed computation. Hence, the
depth of the new compliance predicate will be blogr d(C)c + 1; in particular, when d(C) is bounded by a
polynomial in the security parameter k (as is the case for the compliance predicate produced by the RAM
Compliance Theorem), by setting r = k the depth of TREEC becomes constant — and we can now indeed
benefit from the SNARK Recursive Composition Theorem.

For expository purposes, we begin by proving in Section 8.1 a special case of the PCD Bootstrapping The-
orem for the specific compliance predicate Chy produced by the RAM Compliance Theorem (Theorem 7.1).
This concrete example, where we will construct a Merkle tree of proofs on top of the step-by-step compu-
tation of a random-access machine with untrusted memory, will build the necessary intuition for the more
abstract setting of the general case, which we present in Section 8.2, and is needed in one of our results.

8.1 Warm-Up Special Case

As discussed, we first prove the PCD Bootstrapping Theorem for the special case where the starting com-
pliance predicate is Chy produced by the RAM Compliance Theorem (Theorem 7.1) for a given instance
y = (M,x, t).

In order to build intuition for the general case, here we will give a “non-blackbox” proof by relying on
certain properties of the specific compliance predicate Chy . So recall from the proof of the RAM Compliance
Theorem (discussed in Section 7.1 and Section 7.6) that Chy = UMCy′ , where UMCy′ is the Untrusted
Memory Checker for the instance y′ = (M ′, x, t′), and M ′ = f(h,M) and t′ = B(t, k)).

We will construct a new compliance predicate TREEUMCy′ based on UMCy′ with exponentially better
depth. The intuition of the construction is to add “metadata” to force verification of single nodes according
to UMCy′ to lie at the leaves of a tree so that the only way to “exit” the tree and produce a valid final proof
is to travel upwards through the tree nodes, which make sure to aggregate appropriately the metadata until
the root of the tree, which produces the final proof.

Construction 8.2. Given r ∈ N and an instance y′ = (M ′, x, t′), define the following compliance predicate:

TREEUMC4̂ry′ (zo;~zi, prog)
def
=

1. Leaf Stage

If zo = (1, z′o) and~zi =
(
(0, z1i), (0, z2i)

)
:

(a) Parse z′o as (τ, S, τ ′, S′) and each zii as (τi, Si).
(b) Parse z1i as (τ1, S1) and verify that τ = τ1 and S = S1.
(c) If z2i = ok, verify that τ ′ = τ1 and S′ = ok;

otherwise parse z2i as (τ2, S2) and verify that τ ′ = τ2 and S′ = S2.
(d) Verify that UMCy′(z

2
i ; (z1i), prog) accepts.

2. Internal Stage

If zo =
(
(d+ 1, z′o)

)
and~zi =

(
(d, zii)

)r
i=1

:
(a) Parse z′o as (τ, S, τ ′, S′) and each zii as (τi, Si, τ

′
i , S
′
i).

(b) Verify that τ = τ1, τ ′1 = τ2, τ ′2 = τ3, and so on until τ ′r−1 = τr, τ ′r = τ ′.
(c) Verify that S = S1, S′1 = S2, S′2 = S3, and so on until S′r−1 = Sr, S′r = S′.

3. Exit Stage

If zo = ok and~zi =
(
(di, z

i
i)
)r′
i=1

:

37

(a) Parse each zii as (τi, Si, τ
′
i , S
′
i).

(b) Verify that τ ′1 = τ2, τ ′2 = τ3, and so on until τ ′r′−1 = τr′ .
(c) Verify that S′1 = S2, S′2 = S3, and so on until S′r′−1 = Sr′ .
(d) Verify that τ1 = 0 and S′r′ = ok.

4. If none of the above conditions hold, reject.

We can immediately see that, as promised, the depth of the new compliance predicate TREEUMC4̂ry′ is
improved; recall from Lemma 7.5 that the depth of the old compliance predicate UMCy′ could be as bad as
t′ + 1, whereas the new bound is now given by the following lemma:

Lemma 8.3. d
(
TREEUMC4̂ry′

)
≤ blogr(t

′ + 1)c+ 1.

Proof. Any transcript that is compliant with TREEUMC4̂ry′ consists of disjoint trees. In each such tree,
nodes of different heights are all forced to directly point to the root of the tree, and other nodes of the same
height are always grouped in sets of size r. Thus, the “worst possible height”, given that any tree can have
at most t′ + 1 leaves, is given by blogr(t

′ + 1)c+ 1 (achieved by making maximal use of merging nodes of
the same height).

The depth reduction is relevant because we can accompany it with completeness and soundness guar-
antees that ensure that despite the fact that we changed the compliance predicate to a different one, the
“semantics” have been preserved:

Claim 8.4. y′ ∈ L′U if and only if there exists a (distributed computation) transcript T that is compliant
with respect to TREEUMC4̂ry′ containing at least one sink with the data ok entering it.

Moreover, we can efficiently find witnesses “both ways”:

• Given (w,m) such that (y′, (w,m)) ∈ R′U , it is possible to efficiently construct a transcript T that is
compliant with respect to TREEUMC4̂ry′ containing a sink with the data “ok” entering it.

• Given a transcript T that is compliant with respect to TREEUMC4̂ry′ containing a sink with the data
“ok” entering it, it is possible to efficiently construct (w,m) such that (y′, (w,m)) ∈ R′U .

Proof. We need to prove two directions:

(→) Assume that y′ ∈ L′U , and let (w,m) be such that
(
y′, (w,m)

)
∈ R′U . Construct a transcript T as

follows.
First follow the forward direction in the proof of Claim 7.6 to construct a temporary transcript T̃ that is

compliant with respect to UMCy′ containing a path ending in ok; T̃ will be a path graph with t̃ + 3 nodes
for some t̃ ≤ t′ nodes.

Now consider t̃ + 1 nodes labeled the same way as in T̃ (when excluding the source and sink from the
path), and for each node i put two edges entering it, labeled with the messages entering and exiting node
i + 1 in T̃. Construct a tree having the t̃ + 1 nodes as leaves as follows: first group every consecutive set
of r leaves (leaving any leftover leaves alone) and give a single parent (i.e., first level node) to each set of r
leaves; then group every consecutive set r of first-level nodes (leaving any leftover first-level nodes alone)
and give a single parent (i.e., second-level node) to each set of r leaves; and so on until no more grouping can
be performed; finally, take all the top-level nodes and make them all children of the root. Next label the tree
recursively by “merging” timestamp-configuration pairs as suggested by the second case in the description
of TREEUMC4̂ry ; finally put an edge exiting the root with the message ok.

See Figure 6 for a diagram of an example where r = 2 and t̃ = 4.

38

?

a1 a2

ok

a3

?

�
1, (0, S0, 1, S1)

� �
1, (1, S1, 2, S2)

� �
1, (2, S2, 3, S3)

� �
1, (3, S3, 4, S4)

�

? ? ?

a4

?

�
0, (0, S0)

� �
0, (1, S1)

� �
0, (2, S2)

� �
0, (3, S3)

� �
0, (4, S4)

�

? ?

?
�
2, (0, S0, 2, S2)

� �
2, (2, S2, 4, S4)

�

�
3, (0, S0, 4, S4)

�

?
ok

�
1, (4, S4, 4, ok)

�

?

?

Figure 6: A compliant transcript for the tree construction with in-degree 2 and a computation
of t̃ = 4 time steps.

Because
(
y′, (w,m)

)
∈ R′U , we know that T is compliant with TREEUMC4̂ry′ and indeed contains a

sink with the data ok entering it.

(←) Consider any transcript T that is compliant with respect to TREEUMC4̂ry′ and contains a sink with
the data ok entering it.

According to TREEUMC4̂ry′ the only way to obtain the message ok is to receive messages (τi, Si, τ
′
i , S
′
i)

of possibly different depths spanning the entire (accepting) computation; also according to TREEUMC4̂ry′
the only way to obtain each of these messages is to receive r messages that correctly collapse to the message
or is to receive two messages where the second one is correctly obtained from the first with one step of
computation (and in this latter case we know that we are at a leaf).

Thus, we can simply trace back from the sink receiving the message ok to the leaves, and at the leaves
we will find enough information to construct (w,m) such that (y′, (w,m)) ∈ R′U , in a similar manner as
we did in the backward direction of the proof of Claim 7.6.

8.2 General Case

In Section 8.1 we saw how for a very specific distributed computation that naturally evolves over a path,
namely the step-by-step computation of a random access machine with untrusted memory (and we reiterate
here that untrusted memory allows for the computation at each node to be small), we can enforce correctness
by constructing a wide Merkle tree of proofs “on top” of it rather than directly composing proofs along a
path.

More generally, given a compliance predicate C, we can apply the same technique to obtain a “tree”
version TREEC of the compliance predicate with much smaller depth. To actually pull this through in the
general case we need to be more careful because the data exchanged along the computation may not be so
small (as was the case for a configuration of the random-access machine), so that, instead of comparing this
data as we go up the tree, we compare their hashes.

39

Details follow.

We start again by giving the mapping from C to TREEC; this construction will be quite similar to the
one we gave in Construction 8.2, except that, as already mentioned, we will be comparing hashes of data
when going up the tree, rather than the original data itself.

Construction 8.5. Let H be a collision-resistant hash function family. For any compliance predicate C,
h ∈ H, and r ∈ N, define the following compliance predicate:

TREE
h,4̂r
C (zo;~zi, prog)

def
=

1. Leaf Stage

If zo = (1, z′o) and~zi =
(
(0, z1i), (0, z2i)

)
:

(a) Parse z′o as (τ, ρ, τ ′, ρ′) and each zii as (τi, zi).
(b) Verify that τ = τ1 and τ ′ = τ2.
(c) Verify that ρ = h(z1) and ρ′ = h(z2).
(d) Verify that C(z2; (z1), prog) accepts.

2. Internal Stage

If zo = (d+ 1, z′o) and~zi =
(
(d, zii)

)r
i=1

:

(a) Parse z′o as (τ, ρ, τ ′, ρ′) and each zii as (τi, ρi, τ
′
i , ρ
′
i).

(b) Verify that τ = τ1, τ ′1 = τ2, τ ′2 = τ3, and so on until τ ′r−1 = τr, τ ′r = τ ′.
(c) Verify that ρ = ρ1, ρ′1 = ρ2, ρ′2 = ρ3, and so on until ρ′r−1 = ρr, ρ′r = ρ′.

3. Exit Stage

If zo = prog and~zi =
(
(di, z

i
i)
)r′
i=1

:

(a) Parse each zii as (τi, ρi, τ
′
i , ρ
′
i).

(b) Verify that τ ′1 = τ2, τ ′2 = τ3, and so on until τ ′r′−1 = τr′ .
(c) Verify that ρ′1 = ρ2, ρ′2 = ρ3, and so on until ρ′r′−1 = ρr′ .
(d) Verify that τ1 = 0 and ρ′r′ = h(prog).

4. If none of the above conditions hold, reject.

The main advantage of using the compliance predicate TREE
h,4̂r
C instead of C is that we have been able

to squash the depth of the compliance predicate (assuming of course that the original depth was bounded to
begin with):

Lemma 8.6. For any compliance predicate C, h ∈ H, and r ∈ N,

d
(

TREE
h,4̂r
C

)
≤ blogr d(C)c+ 1 .

Proof. Any transcript that is compliant with TREE
h,4̂r
C consists of disjoint trees. In each such tree, nodes

of different heights are all forced to directly point to the root of the tree, and other nodes of the same height
are always grouped in sets of size r. Thus, the “worst possible height”, given that any tree can have at most
d(C) leaves, is given by blogr d(C)c + 1 (achieved by making maximal use of merging nodes of the same
height).

Next, we show that the transformation is “computationally sound”:

40

Lemma 8.7. For any compliance predicate C and r ∈ N, with all but negligible probability over a random
choice of h in H, if an adversary A(h) outputs a transcript T′ that is compliant with TREE

h,4̂r
C containing

at least one sink with the data ok entering it, then we can extract from T′ a transcript T that is compliant
with C.

Proof. Due to the collision resistance property of the family H, with all but negligible probability over a
random choice of h in H, the adversary A(h) does not find any collisions for h. Conditioned on A not
having found any collisions, we proceed to extract T from T′ as follows.

As already observed in the proof of Lemma 8.6, any transcript that is compliant with TREE
h,4̂r
C consists

of disjoint trees. Consider a tree corresponding to the sink that has the data ok entering it. (By assumption,
such a sink exists.) Then we see that, by construction of TREE

h,4̂r
C , the only way we could have obtained the

message ok is by receiving messages from nodes at different heights of a tree and these messages merged
appropriately (namely, they had the appropriate time stamps and hashes); each of these messages must have
been the product of merging corresponding messages at the same height in groups of r, and recursively so
on until we reach messages whose depth is equal to 1. These messages must have been generated by a node
which checked C-compliance for inputs hashing down to the hashes contained in each depth-1 message. We
thus have found a “path of C-compliant computation” at the leaves of the tree, and thus can easily generate
the transcript T by constructing a graph containing this path and labeling it appropriately.

Next, we prove that that moving to the new compliance predicate TREE
h,4̂r
C instead of the old C does

not hurt completeness when starting from a transcript that is a path; moreover, the transformation can be
done “on-the-fly” by a sequence of parties on the same path without much overhead in computation and
communication.

Lemma 8.8. Any transcript T compliant with a compliance predicate C that is a path can be efficiently
transformed into a transcript T′ compliant with TREE

h,4̂r
C , when given as input C, h ∈ H, and r ∈ N.

Moreover, the transformation to T′ can be performed “on-the-fly” by parties along the path with only
r·dlogr d(T)e overhead in state sent between any two consecutive parties on the graph (and a corresponding
additive polynomial in r · dlogr d(T)e overhead in computation at each node).

Proof. Let T be a transcript that is a path graph and is compliant with C. Consider the nodes in T that are
not the source or a sink as the leaves of a tree we are going to construct (more precisely, each of these nodes
will be pointed to by two edges, each coming from a different source); note that there are d(T) ≤ d(C) such
nodes. The tree above the leaves is constructed by always trying to group sets of r consecutive nodes of the
same height together under a parent; when this cannot be done anymore, all the topmost nodes point directly
to a root, which itself points to a sink.

We can then label the resulting tree graph and produce a transcript T′ as follows. We take the input label
of each (non-source, non-sink) node in T and set the label of the corresponding leaf in the tree graph equal
to it. All other nodes in the tree can be labeled arbitrarily, except that the root of the tree is labeled with the
data coming out of the last node in T. As for the edge labels, we can start by labeling every left child of leaf
nodes in the tree with the incoming data of the corresponding node in T, and then labeling every right child
of leaf nodes in the tree with the outgoing data of the corresponding node in T. We then recursively label
the tree going upwards following the labels suggested by the compliance predicate (i.e., at the first level we
take hashes of the inputs, and then keep comparing hashes keeping only the first and last one, until the root
where we ultimately compare the last hash with the claimed output that is available as a label there). By
construction, T′ is compliant with TREE

h,4̂r
C .

41

Finally, note that the labeling of the above described tree can be done “on-the-fly” by parties places
along the “original” path graph that gave rise to T. Specifically, the i-th party needs to communicate to the
(i + 1)-th party only the roots only the labels and proofs of the “current roots”, of which there are at most
r · dlogr ie; the proofs are of course short, and the labels are short because they only contain timestamps and
hashes of inputs. The next party will thus receive, along with its “semantic” input, a vector of inputs and
proofs from the inside of the tree; this party will produce the proof corresponding to its node, and will then
try to build further the tree if it can, and then forwards its “semantic” output along with whatever state is
needed to keep building the tree to the next party. Clearly this process has the claimed efficiency properties.

In Figure 7 we show how the computation of parties is modified when moving from computing proofs
for C to computing proofs for TREE

h,4̂r
C with r = 2.

prog1 prog2 prog3 prog4 prog5

z1 z2 z3 z4 z5z0

PC PC PC PC PC
⇡3⇡2 ⇡4 ⇡5⇡1

�
(0, (0, z0)), (0, (1, z1))

� �
(0, (1, z1)), (0, (2, z2))

� �
(0, (2, z2)), (0, (3, z3))

� �
(0, (3, z3)), (0, (4, z4))

� �
(0, (4, z4)), (0, (5, z5))

�
�
1, (0, ⇢0, 1, ⇢1)

� �
1, (1, ⇢1, 2, ⇢2)

�
prog1 prog2 prog3�

1, (2, ⇢2, 3, ⇢3)
�

prog4 prog5�
1, (3, ⇢3, 4, ⇢4)

� �
1, (4, ⇢4, 5, ⇢5)

�

�
2, (0, ⇢0, 2, ⇢2)

�
?

⇡0,1 ⇡1,2

�
2, (2, ⇢2, 4, ⇢4)

�
?

⇡2,3 ⇡3,4

⇡2,4⇡0,2

?

�
3, (0, ⇢0, 4, ⇢4)

�

⇡4,5

⇡0,4

party 1 party 2 party 3 party 4 party 5

PCD
Bootstrapping

Theorem

PC0 PC0

PC0

PC0 PC0

PC0

PC0

PC0

Figure 7: How the computation of parties is modified when moving from computing proofs
for C to computing proofs as a Merkle tree of in-degree r with r = 2; essentially, each party
will compute its own proof and attempt to build the tree as far “up” as possible, and then
forward to the next party the relevant state.

We are now ready to prove the PCD Bootstrapping Theorem:

Proof of Theorem 8.1. We have already prove all the ingredients for the theorem, but let us explain how they
come together. Let (G,PC′ ,VC′) be a PCD system that is secure for constant-depth compliance predicates
C′. We explain how to construct (G′,P′C,V′C) that is a PCD system that is secure for compliance predicates
of fixed polynomial depth though its completeness we can only show for transcripts that are paths.

42

As an intuitive guide for the construction, refer to Figure 7. The first step is to define the new compliance
predicate C′ := TREE

h,4̂k
C ; note that we have chosen the in-degree of the Merkle tree to be equal to the

security parameter k.
The new prover P′C will run the old prover PC′ but with the new compliance predicate C′ to compute the

proof of the leaf of the node, and may have to run it more times in order to compute proofs internal to the
Merkle tree.

The new verifier V′C will receive a claimed output and not just one but a vector of (possibly more)
proofs, representing the current “state” of a partially built Merkle tree of proofs; in order to verify, V′C will
verify each proof separately (by running the old verifier VC′ with the new compliance predicate C′) and then
check consistency of the corresponding state messages (following the “Exit Stage” case in the definition of
TREEC); indeed, in the proofs of completeness (Lemma 8.8) and soundness (Lemma 8.7) above we have
used the message ok as a proxy for the verifier that we have described now.

As for the new generator G′, if the original system PCD is not of the preprocessing kind, then there
is nothing else to do (that is, we can just set G′ = G. If instead the original PCD system was of the
preprocessing kind, then the new generator G′ may have to invoke the old generator G with a slightly higher
time bound, if the computation at “internal nodes” of the tree exceeds the previous time bound.

Remark 8.9. Of course concentrating on paths is merely the simplest example of a PCD Bootstrapping
Theorem obtained given the techniques discussed here. We could generalize or modify the mapping from C
to TREEC to accommodate other structures. For example, we could have a PCD Bootstrapping Theorem for
graphs that have the shape of a “Y ” instead of for paths, by simply building a wide Merkle tree independently
on each of the three segments of the “Y ”. It is interesting to understand to what extent one can find PCD
Bootstrapping Theorems beyond the case for paths and other related basic graphs and apply them with
success.

9 Constructions of Publicly-Verifiable Preprocessing SNARKs12

Groth [Gro10] shows how to construct non-interactive succinct zero-knowledge arguments with a common
reference string (CRS) that is quadratic in the size of the NP-verification circuit C at hand. (Later, Lipmaa
[Lip11] showed how to extend Groth’s techniques to make the CRS quasilinear in the size of C, but with
a prover that still runs in quadratic time.) The construction relies on a variant of the Knowledge of Expo-
nent assumption [Dam92, BP04], which he calls q-PKEA, and a computational Diffie-Hellman assumption,
which he calls q-CPDH, in bilinear groups.

While Groth mainly focuses on the succinctness of the proof and its zero-knowledge property, his con-
struction can in fact be viewed as a publicly-verifiable (zero-knowledge) SNARK with preprocessing; in-
deed, in Groth’s construction, not only are the proofs succinct in their length, but the verification state corre-
sponding to the CRS as well as the verification time are succinct, i.e., polynomial in the security parameter
and independent of the circuit size |C|.

We now recall at high-level the main components of Groth’s construction, stressing the observations that
are relevant for succinctness, which is required for the applications considered in this paper.

At high-level, the construction of Groth follows a (by now common) paradigm [GOS06] for constructing
NIZKs over bilinear groups: the prover commits to the values of all the wires in the circuit C and, using
homomorphic properties of the commitment, adds proofs attesting to their consistency. Then, to verify these

12We thank Daniel Wichs for discussions of the preprocessing constructions of Groth and Lipmaa, and for pointing out a mistake
in a previous draft of this paper.

43

proofs, the verifier uses the bilinear map. However, without modification, this approach results in proofs
and verification time that are proportional to the size of the circuit |C|.

To achieve succinctness, Groth uses succinct commitments of knowledge, where a commitment to all
the values in the circuit C is of length that is a fixed polynomial in the security parameter. Then, using
some additional algebraic properties of the commitments, Groth presents clever methods for “packing”
all the consistency proofs into a few simultaneous proofs (while still maintaining succinctness). As the
knowledge commitment includes the witness w satisfying the circuit C, Groth’s protocol also enjoys a proof
of knowledge property, as required to be a SNARK.

We address two aspects of the construction that are implicit in Groth:

• Succinct verification. As already observed by Lipmaa [Lip11], the verification procedure can be
divided into two main stages. The first is an “offline preprocessing stage”, where a (long) CRS σ and
a corresponding short verification state τ are generated; concretely, τ consists of a constant number
of group elements that are pre-computed based on the topology of the circuit C to be verified, so
that |τ | = poly(k) is independent of |C|. The second stage is an “online verification stage” where
the proof received from the prover is verified against the short verification state τ ; this verification
involves a constant number of applications of the bilinear map, and thus overall requires poly(k)
time, again independent of |C|.

• Adaptive choice of inputs and universality. In our applications, we will be interested in applying
Groth’s techniques to a fixed universal circuit deciding bounded halting problems, i.e., deciding mem-
bership in the universal language. (Recall the definitions in Section 3.) Specifically, for a given bound
B, we will use a universal circuit UB that takes any input (y, w) = ((M,x, t), w) with |w| ≤ t and
|M| + |x| + t ≤ B, and checks whether M accepts (x,w) after at most t steps. (The circuit can be
constructed in time poly(B), for some fixed polynomial poly.13)

An important property satisfied by Groth’s construction is that the CRS σ and the corresponding
verification state τ only depend on the (fixed) circuit U , and can in fact support different inputs
y = (M,x, t) that may be chosen by the prover, possibly depending on σ.

Note that, as presented in Groth, the input y is hardwired into the verification circuit (and, as previ-
ously explained, the generation of (σ, τ) depends on this circuit). However, the construction can be
slightly augmented to support an adaptive choice of inputs, where the same (σ, τ) can be used for
many statements y, including those that are adaptively chosen by the prover. For example, this can
be achieved by thinking about the input as part of the witness, and requiring the prover to provide an
additional proof asserting that the relevant part of the commitment to the witness is indeed consistent
with the claimed input y (chosen by verifier or prover). Such a consistency check is an integral part of
the techniques developed by Groth (the CRS only suffers at most a linear blowup, and the verification
state only grows additively in poly(k)).14

Overall, we have the following:

Theorem 9.1 ([Gro10]). Assuming q-PKEA and q-CPDH over bilinear groups, there exist preprocessing
publicly-verifiable SNARKs where, given any size bound B with |UB| = O(

√
q),

13The bound can be refined: for any two given size bounds B0 and B1 there exists a circuit UB0,B1 of size poly(B0)Õ(B1) that
can handle any input (y, w) = ((M,x, t), w) with |w| ≤ t, |M|+ |x| ≤ B0, and t ≤ B1. See, e.g., [BSCGT12].

14In the terms of Groth’s construction, this involves dividing the input from the commitment and performing a corresponding
restriction argument.

44

• it supports instances y = (M,x, t) such that |M|+ |x|+ t ≤ B,

• the reference string σ has size p(k)|UB|2,

• the verification state τ has size p(k),

• the prover running time is p(k)|UB|2, and

• the verifier running time is p(k, |y|),

where p is a universal polynomial, independent of B.

9.1 Where are the PCPs?

The work mentioned above does not invoke the PCP Theorem. This is an interesting aspect, regardless of
the ability to achieve public verifiability or not.

Concretely, Groth [Gro10] does not make explicit use of any probabilistic-checking techniques. This
stands in contrast with all other known SNARK constructions, including Micali’s construction in the random
oracle model, who leverage the full machinery of PCPs.

While the original construction is not quite so efficient because the prover incurs in a quadratic blowup
in running time (even in Lipmaa’s construction with a shorter reference string), not having to invoke the
PCP Theorem raises the hope that constructions leveraging their techniques (such as the transformations for
removing preprocessing that we present in this paper) may be potentially more efficient than constructions
that do invoke the PCP Theorem.

10 Putting Things Together: Main Theorem

In the previous sections we have shown three main results:

• in Section 6 the SNARK Recursive Composition Theorem (Theorem 6.1);

• in Section 7 the RAM Compliance Theorem (Theorem 7.1); and

• in Section 8 the PCD Bootstrapping Theorem (Theorem 8.1).

We proceed to explain how these results can be combined together to ascend from the humble properties of
a preprocessing SNARK, to a SNARK without preprocessing, and then even beyond that to path PCDs for
compliance predicates of fixed polynomial depth. Furthermore, along the way, the verifiability properties of
the underlying SNARK will be perfectly preserved. Note that we do not use PCPs along the way; in partic-
ular, if the beginning preprocessing SNARK is practical enough, so will the SNARK with no preprocessing
as well as the resulting PCD schemes. Another way to interpret our results is that building preprocessing
SNARKs contains almost all the hardness of building the much stronger primitives of SNARKs with no
preprocessing and PCDs. We find this to be quite surprising.

That is, we now prove the following theorem:

Theorem 10.1 (Main Theorem). Assume there exist preprocessing SNARKs. Then there exist:

(i) SNARKs with no preprocessing.

(ii) PCDs for compliance predicates of constant depth with no preprocessing.

45

(iii) Path PCDs for compliance predicates of fixed polynomial depth with no preprocessing.

The above holds for both the publicly-verifiable and designated-verifier cases. In the private-verification
case, we assume the existence of a fully-homomorphic encryption scheme; in both cases we assume the
existence of collision-resistant hash functions.

In particular, in light of the discussion in Section 9, we obtain the following two corollaries.

Corollary 10.2. Assuming q-PKEA and q-CPDH over bilinear groups:

1. there exist publicly-verifiable SNARKs with no preprocessing,

2. there exist publicly-verifiable PCDs for constant-depth compliance predicates, and

3. there exist publicly-verifiable path PCDs for compliance predicates of fixed polynomial depth.

Proof. We can simply plug into our Theorem 10.1 the publicly-verifiable preprocessing SNARKs of Groth
(see Theorem 9.1).

Corollary 10.2 gives the first construction of a publicly-verifiable SNARK with no preprocessing (a.k.a.
a “CS proof” [Mic00]) in the plain model based on a simple knowledge assumption in bilinear groups; at
the same time we obtain the first PCD constructions in the plain model as well. Both constructions do not
use PCPs, or “traditional” probabilistic checking techniques (such as proximity testing or sum checks).

In summary, thanks to our machinery that shows how to generically remove preprocessing from any SNARK,
we have thus shown how to leverage quite simple techniques, such as techniques based on pairings [Gro10]
that at first sight seem to necessarily give rise to only preprocessing solutions, in order to obtain much more
powerful solutions with no preprocessing. The resulting constructions, while certainly not trivial, seem to
be quite simple, and do not invoke along the way additional probabilistic-checking machinery. We find this
(pleasantly) surprising.

We now proceed to sketch the proof of the theorem; see Figure 2 for a diagram of what we are about to
explain.

Proof of Theorem 10.1. We discuss each implication separately.

(i) Removing preprocessing from a SNARK. Given a preprocessing SNARK, we wish to “improve” it
via a black-box construction so the resulting SNARK does not suffer from the handicap of preprocessing.

The very high level idea is that we are going to break up the theorem that needs to be proved into a
distributed computation of many small computations, and then use the fact that we can compose SNARKs
(to obtain a PCD system) to prove correctness of this distributed computation, after properly structuring it
to have low depth.

More precisely, the SNARK Recursive Composition Theorem tells us that SNARKs can be composed
to obtain a PCD system (with preprocessing) for which we can show security for every constant-depth
compliance predicate. Then, the PCD Bootstrapping Theorem tells us that we can lift any such PCD system
to a PCD system for which we can show security for compliance predicates of fixed polynomial depth
(though we can show completeness only for distributed computation transcripts that are paths). Now it is left
to observe that RAM Compliance Theorem implies that membership in LU of an instance (M,x, t) can be
computationally reduced to the question of whether there is a distributed computation compliant with UMCy,
which has depth at most O(t log t)poly(k); moreover, this distributed computation is a path. Because each

46

of the computations in the resulting distributed computation are small, the fact that we are using a PCD
with preprocessing does not hurt — and thus we have removed the preprocessing handicap. Here, we have
invoked a special case of the SNARK Recursive Composition Theorem, described in Corollary 6.5, where
the computations to be proven are all of fixed polynomial size in the security parameter.

Note that to meaningfully invoke the RAM Compliance Theorem, it was important for the SNARK
(and thus PCD) to have a proof-of-knowledge property. Moreover, because the RAM Compliance Theorem
guarantees a (computational) Levin reduction, this proof of knowledge is preserved through the reduction
(as discussed in mode detail in Section 7).

Also note that the transformation preserves the verifiability properties of the SNARK. For example, if
the beginning preprocessing SNARK was publicly verifiable, so will be the resulting SNARK coming out
of our construction. We have thus shown a way to obtain publicly-verifiable SNARKs (also known as “CS
proofs” [Mic00]) from merely a publicly-verifiable preprocessing SNARK.

(ii) Composing SNARKs. Once we have SNARKs without preprocessing, we can use our tools once more
to go further, and obtain PCDs without preprocessing. Namely, we can use (again) the SNARK Recursive
Composition Theorem to obtain PCD systems (this time without preprocessing) for which we can show
security for every constant-depth compliance predicate.

(iii) Bootstrapping PCDs. Then, if we wish to, we can use (again) the PCD Bootstrapping Theorem to
lift any PCD system for constant-depth compliance predicates to a PCD system (without preprocessing)
for which we can show security for compliance predicates of fixed polynomial depth, though we can show
completeness only for distributed computations evolving over paths.

Remark 10.3 (a word about efficiency). We briefly discuss the efficiency of the SNARK prover P ′ and
verifier V ′ generated by our Main Theorem, for a given underlying preprocessing SNARK (G,P,V). (A
similar discussion will hold for PCD provers and verifiers generated by our Main Theorem.)

The SNARK verifier V ′ is of course succinct, and will thus run in time poly(k, |y|) when given an
instance y and proof π, where poly is a universal polynomial. More concretely (but still informally), V ′
will apply a reduction to the instance y to obtain a related compliance predicate Cy and then run the PCD
verifier resulting from the recursive composition of proofs of (G,P,V), which is essentially running the
verifier V on an instance y′ derived from Cy. Overall, the cost of running V ′ is roughly the cost of applying
the reduction from y to Cy, and then running V on an instance y′ derived from Cy.

Note that, if the running time of V depends poorly on |y| (e.g., it runs in time poly(k, |y|) = |y|2kc
for some c), then so will V ′.15 We can fix this by invoking another reduction of [BSCGT12]:16 on input
y = (M,x, t), V ′ can simply first hash y to obtain a digest h(y), and then, instead of expecting a proof
for y, V ′ will expect a proof for a related instance ỹ = (U, h(y), t′), where (1) U is a fixed machine that
interprets a given witness as a pair (y, w) and verifies that h(y) is the hash of y and that (y, w) ∈ RU , and
(2) t′ = t · poly(k). In this way, we can ensure that the running time of V ′ is equal to poly(k) plus the time
required to hash y (which is typically, |y|poly(k)).

As for the prover P ′, we note that, for reasons that are similar to the proof of the PCD Linearization
Theorem (Theorem 2.1), P ′ runs in time t · |y|r · poly(k) where r is the exponent of |y| in the running time
of P (and this holds even if the underlying P ′ is super-linear, e.g., quadratic as in [Gro10]). If r > 1, we can
apply the same instance-hashing trick described in the previous paragraph to ensure that |y| only appears as
a linear factor in the running time of P ′, and thus ensure that P ′ runs in time t · |y|r · poly(k).

15This is, fortunately, not the case in [Gro10]: the verifier runs in time |y|poly(k).
16Concretely, see the Untrusted Input Lemma and Untrusted Code Lemma of [BSCGT12].

47

11 Zero Knowledge

In many applications of both SNARKs and PCDs a very desirable additional property is zero knowledge,
which, for example, can be used to ensure function privacy or worker input privacy. We define this property
for both primitives and explain how it can be obtained.

11.1 Zero-Knowledge SNARKs

In SNARKs, the property of zero knowledge ensures that the honest prover can generate valid proofs for
true theorems without leaking any information about the theorem beyond the fact that the theorem is true
(in particular, without leaking any information about the witness that he used to generate the proof for the
theorem). Formally:

Definition 11.1. A (perfect) zero-knowledge SNARK is a triple of algorithms (G,P,V) that is a SNARK
(following Definition 4.2) and, moreover, satisfies the following property:

• Zero Knowledge

There exists a stateful interactive polynomial-size simulator S such that for all stateful interactive
polynomial-size distinguishersD, sufficiently large security parameter k ∈ N, and all auxiliary inputs
z ∈ {0, 1}poly(k), the following holds:

Pr
(σ,τ)←G(1k)

[
(y, w) ∈ RU
D(π) = 1

∣∣∣∣
(y, w)← D(z, σ)
π ← P(σ, y, w)

]

= Pr
(σ,τ,trap)←S(1k)

[
(y, w) ∈ RU
D(π) = 1

∣∣∣∣
(y, w)← D(σ)

π ← S(z, σ, y, trap)

]
.

We can obtain zero-knowledge SNARKs in at least two ways:

• We proved in [BCCT11] that it is possible to combine designated-verifier SNARKs (dvSNARKs) with
(not-necessarily-succinct) non-interactive zero-knowledge arguments of knowledge (e.g., [AF07]),
using one of two different constructions (depending on whether the SNARK is “on top” or “on the
bottom”), to obtain zero-knowledge dvSNARKs.

The two constructions are even simpler in the case of publicly-verifiable SNARKs (pvSNARKs) as
we do not have to worry about the privacy of the verifier verification state τ ; we can thus also obtain
via the same approach zero-knowledge pvSNARKs starting from pvSNARKs and non-interactive
zero-knowledge arguments of knowledge.

• We could start with a zero-knowledge preprocessing SNARK at the “bottom of our result stack” and
then construct corresponding SNARKs (with no preprocessing) as described in the proof of Theo-
rem 10.1; the various transformations will preserve the zero-knowledge property. For example, we
could plug into our transformations the construction of Groth [Gro10], which does have the zero-
knowledge property. (See discussion in Section 9.)

11.2 Zero-Knowledge PCDs

In PCDs, the property of zero-knowledge ensures that the honest prover can generate valid proofs for his
compliant output data without leaking any information about the data besides that fact that it is compliant (in

48

particular, without leaking any information about the input data and the local program he used to generate
the proof for the output data). Formally:

Definition 11.2. A C-compliance (perfect) zero-knowledge PCD system is a triple of algorithms (G,PC,
VC) that is a PCD system (following Definition 5.6) and, moreover, further satisfies the following property:

• Zero Knowledge

There exists a stateful interactive polynomial-size simulator SC such that for all stateful interactive
polynomial-size distinguishersD, sufficiently large security parameter k ∈ N, and all auxiliary inputs
z ∈ {0, 1}poly(k), the following holds:

Pr
(σ,τ)←G(1k)

C(~zi, prog,~zo) = 1
VC(τ,~zi, ~πi) = 1
D(πo) = 1

∣∣∣∣∣∣
(~zo, prog,~zi, ~πi)← D(z, σ)
πo ← PC(σ,~zi, ~πi, prog, zo)

= Pr
(σ,τ,trap)←S(1k)

C(~zi, prog,~zo) = 1
VC(τ,~zi, ~πi) = 1
D(πo) = 1

∣∣∣∣∣∣
(~zo, prog,~zi, ~πi)← D(z, σ)
πo ← S(z, σ, zo, trap)

 .

As already mentioned in the previous subsection, both our SNARK Recursive Composition Theorem
and our PCD Bootstrapping Theorem preserve the property of zero-knowledge. So we can obtain zero-
knowledge PCDs simply by starting from zero-knowledge SNARKs.

We emphasize here that an important feature of the above definition is that an honest prover at some
node in the computation can still “protect” himself with zero-knowledge even if previous provers were not
honest, as long of course as he receives valid proofs to begin with.

Remark 11.3. The definition of a zero-knowledge SNARK (Definition 11.2) and zero-knowledge PCD
(Definition 11.2) can of course be meaningfully relaxed in various ways.

For example, we may want to relax the indistinguishability requirement of the two distributions from
exact equality to mere statistical indistinguishability, or even further to computational indistinguishability.

In another direction, we may want to let the SNARK simulator S or PCD simulator SC non-uniformly
depend on the distinguisher D, as opposed to insisting on the simulator being universal.

We choose to state the above strong version of the definition, because we can achieve it (as already
explained).

12 Applications

SNARKs are a quite powerful cryptographic primitive: they allow for the construction of various extractable
cryptographic primitives in the plain model, they have immediate applications to delegation of computation
(including, thanks to their knowledge property, the ability to elegantly delegate large memories and data
streams), and ultimately also enable constructing non-interactive succinct secure computation (A detailed
discussion of all the above can be found in [BCCT11]).

In this paper, via Theorem 10.1 and its corollaries, we also obtain for the first time (certain kinds of)
PCD systems in the plain model. Previously, PCD systems only had a proof of security in model where
every party had access to signature oracle [CT10]. We thus want to briefly discuss a couple of the many
applications specific to PCD (which cannot be obtained directly from SNARKs).

49

Compliance engineering. Recall that PCD provides a framework for reasoning about integrity of data in
distributed computations. Specifically, integrity is abstracted away as a compliance predicate C that must
locally hold at each node of computation, and each party computes on-the-fly short and easy-to-verify proofs
to attach to each message exchanged with other parties in order to enforce C-compliance.

Being able to enforce arbitrary compliance predicates on distributed computations is, indeed, very pow-
erful. Yet, this is by far not the end of the journey — figuring out what are useful compliance predicates is
a problem in its own right! This is especially true for real-world applications where a system designer may
have to think hard to distill security properties to enforce in his distributed system. Thus, as SNARKs, and
thus hopefully PCDs too, become more and more practical, we envision compliance engineering becoming
an ever-more-relevant and exciting research direction.

In this paper, we have already exercised some compliance engineering skills. For example, the proof of
the PCD Bootstrapping Theorem and the RAM Compliance Theorem were both problems about designing
compliance predicates that would ensure the appropriate properties that we cared about in a distributed com-
putation: in the former, the goal was to artificially slash down the depth of the input compliance predicate;
in the second, the goal was to ensure the step-by-step execution of a random-access machine with untrusted
memory.

We believe that, as we begin to explore and understand how to think about compliance in concrete
problem domains, we are likely to uncover common problems and corresponding design patterns [GHJV95],
thus improving our overall ability to correctly phrase desired security properties as compliance predicates
and thus ultimately our ability to secure complex distributed systems.

In the following two applications we shall show how compliance engineering alone suffices for two
recent goals whose integrity guarantees can be easily met by the guarantees of proof-carrying data.

12.1 Targeted Malleability

Boneh et al. [BSW11] recently defined targeted malleability as an intermediate notion between non-malleable
encryption and fully-homomorphic encryption.

More precisely, given a set of “allowed functions” F , the security goal is the following: for any efficient
adversary that is given an encryption c of a message m and then outputs an encryption c′ of message m′, it
should hold that either c′ = c, m′ is unrelated to m, or m′ is obtained from m by applying a sequence of
functions from the set F to m. (And here the security of the encryption could be considered, for example,
with respect to a CPA game or, say, with respect to a CCA1 game.)

At the same time, of course, the functionality goal is to enable honest parties to successively apply any
function from F on ciphertexts and, in order to make the problem interesting, the ciphertext size should not
grow in the process.

Targeted malleability as a special case of PCD. Targeted malleability is, however, simply a special case
of (zero-knowledge) proof-carrying data: we can easily engineer a compliance predicate CTM

pk,ek,F that will
ensure the desired security properties for a given set of functions F . Here is the construction:

CTM
pk,ek,F (zo;~zi, prog)

def
=

1. Source Case
If~zi = ⊥ and prog = ⊥:
(a) Verify that zo is equal to (plain, z) for some z.

2. Encrypt Case
If~zi = ((plain, z)) and zo = (cipher, c):
(a) Verify that c is the encryption of z under public key pk and randomness prog.

50

3. Compute Case
If~zi = ((cipher, ci))i and zo = (cipher, c):
(a) Interpret prog as a function f and verify that f ∈ F .
(b) Verify that c is the homomorphic evaluation of f on (encrypted) inputs (ci)i with evaluation key ek.

4. Reject in all other cases.

In other words, the compliance predicate CTM
pk,ek,F for targeted malleability simply makes sure that every

edge exiting a source carries a plaintext that at the next node can only be encrypted and, following that, only
allowed computations of ciphertexts can be done. Thus, the only way that a ciphertext can enter the system
is if someone encrypted a message first and then sent it to someone and once a ciphertext has entered then
it can only be modified via functions in F . The above compliance predicate also captures the case with
functions with multiple input.
Better conceptual understanding. Once again proof-carrying data provides a powerful framework to
enforce integrity properties in distributed computations. In our view, though, proof-carrying data also helps
us separate integrity concerns and other “application-specific” ones. For example, in the case of targeted
malleability, Boneh et al. provided a definition that simultaneously enforces the integrity and confidentiality
properties, whereas by abstracting away the integrity properties as a compliance predicate we can see how
confidentiality interacts with the basic integrity guarantees. (In other words, we can see that “security of
encryption scheme plus proof-carrying data for a carefully chosen compliance predicate implies targeted
malleability”.)

(Moreover, a technical difference between the security property of PCDs and targeted malleability is
that we formalized the former as an extraction property whereas Boneh et al. formalized the latter as a sim-
ulatability property. It turns out that these two views are equivalent, also in other settings. See Section 13.)
Improved construction. Boneh et al. in their construction only assumed preprocessing publicly-verifiable
SNARKs with a very weak succinctness requirement: the length of a proof is at most a multiplicative factor
γ smaller than the size of the witness generating it; they did not pose any restrictions on the verifier running
time (which potentially can be as long as the time to directly verify the original computation). With this
assumption they showed how to construct targeted malleability for a pre-determined constant number of
nodes, and using a different long reference string for each node.

Proving the existence of such SNARKs via black-box reductions to standard assumptions is not ruled
out by the result of Gentry and Wichs [GW11]; on the other hand, the closest primitive that we know is
the much more powerful preprocessing publicly-verifiable SNARKs of Groth [Gro10] (see Section 9) based
on a Knowledge of Exponent assumption. Unfortunately, the weak succinctness requirements suggested
by Boneh et al. are not enough for being used in our PCD Bootstrapping Theorem. We find it an inter-
esting question to explore whether there are ways to generically “improve” these succinctness properties
in a manner similar to what we did in this paper to go form preprocessing SNARKs to SNARKs with no
preprocessing. (A first observation is that γ-compressing preprocessing publicly-verifiable SNARKs imply
extractable collision-resistant hash functions [BCCT11] with compression factor close to γ; unfortunately,
the compression factor is not enough to construct designated-verifier SNARKs form them as in [BCCT11],
where a super-constant compression factor seems to be necessary.)

Nonetheless, since targeted malleability is anyways a special case of proof-carrying data, we can at least
exhibit much better constructions of targeted malleability, by making assumptions as weak as the existence
of preprocessing designated-verifier SNARKs (with succinctness as defined by us), by using the results in
this paper to obtain polynomially-long chains of nodes for targeted malleability, a problem that was left open
by [BSW11].17 Furthermore, our solution does not suffer from preprocessing as in [BSW11].

17More precisely, in order to apply our PCD Bootstrapping Theorem, we first need to tweak CTM
pk,ek,F to have polynomial depth.

51

12.2 Computing on Authenticated Data / Homomorphic Signatures

Boneh and Freeman [BF11] and Ahn et al. [ABC+11] recently introduced definitions for homomorphically
computing on signatures as a way to compute on authenticated data, and thereby provide integrity guarantees
for distributed computations for the supported functionalities.

The integrity guarantees of these two works follow a definition of unforgettability against chosen-
message attack that still enables signatures for further messages to be derived, as long as these messages are
“compliant”. And, indeed, proof-carrying data can once again express the integrity guarantees desired in
this setting via a simple compliance predicate: given a verification key vk and a “sub-compliance predicate”
C determining which derivations are permitted,

CAD
vk,C(zo;~zi, prog)

def
=

1. Source Case
If~zi = ⊥ and prog = ⊥:
(a) Verify that zo is equal to (unsigned, tag, z) for some z.

2. Sign Case
If~zi = ((unsigned, tag, z)) and zo = (signed, tag, z′):
(a) Verify that z′ = z and prog is a valid signature for (z′, tag) under verification key vk.

3. Compute Case
If~zi = ((signed, tag, zi))i and zo = (signed, tag, z):
(a) Interpret prog as a function f and verify that f ∈ F .
(b) Verify that C(z; (zi)i, prog) accepts.

4. Reject in all other cases.

We thus see that “security of signature scheme plus proof-carrying data for a carefully chosen compliance
predicate implies computing on authenticated data”.

Technical differences. We should mention that both [BF11] and [ABC+11] insisted on the ability to
homomorphically compute on signatures without the help of the messages; syntactically, this is not exactly
what we obtain by ensuring integrity with proof-carrying data, because previous messages are required for
generating the proof of the previous message. However, we do not see how this can be a drawback in most
natural applications.

Also, [ABC+11] give a definition of unforgettability that is stronger than [BF11]; we indeed achieve the
stronger notion.

Improved construction. Both [BF11] and [ABC+11] only obtained security against chosen-message
attack in the random-oracle model, and only selective security in the plain model; this, only for specific
functionalities (constant-degree multivariate functions in the former, and quoting, subsets, weighted sums,
averages, Fourier transforms in the latter). On the other hand, by leveraging proof-carrying data in the plain
model, we obtain adaptive security in the plain model for any functionality.

(It is interesting to note here that even in the random-oracle model it is not clear how to do better than
[BF11] or [ABC+11]. Namely, it is not known how to construct proof-carrying data in the random oracle
model, but only in a model where every party has access to a simple signing functionality [CT10].)

Privacy. Both works consider the possibility that one may wish to hide the history of derivation of a
signature. This notion is called context hiding, and it comes in two flavors: weak context hiding and strong
context hiding. We only achieve the first.18

18This requires the use of zero-knowledge PCDs, which we shall formally define in a later version of this paper.

52

13 Integrity from Extraction or Simulation?

We have used “extraction-based” definitions to formulate the integrity guarantees of SNARKs (Defini-
tion 4.2) and PCDs (Definition 5.6). An alternative approach would have been to formulate them via a
“simulation-based” definition, in a way that is more similar to, for example, the definition of [BSW11]. We
wish to discuss how these two approaches are related.

13.1 First Warm Up: ECRHs

In order to illustrate what we mean between a definition based on extraction versus a definition based on
simulation, we begin with a very simple example: extractable functions versus simulatable functions.

Recall that an extractable collision-resistant function (ECRH) [BCCT11] is simply a collision resistant
function familyH that is also an extractable function ensemble in the following sense:

Definition 13.1 (Function Extractability). We say thatH is extractable if for any polynomial-size adversary
A there exists a polynomial-size extractor EA such that for all large enough k ∈ N and any auxiliary input
z ∈ {0, 1}poly(k):

Pr
h←Hk

[
y ∈ Image(h)
h(x) 6= y

∣∣∣∣
y ← A(z, h)
x← EA(z, h)

]
≤ negl(k) .

A natural question to ask is how does the above notion compare against the following seemingly weaker
alternative notion:

Definition 13.2 (Function Simulatability). We say that H is simulatable if for any polynomial-size adver-
sary A there exists a polynomial-size simulator SA such that for all large enough k ∈ N and any auxiliary
input z ∈ {0, 1}poly(k) the following two distributions are computationally indistinguishable:

{
(z, h, ỹ)

∣∣∣∣
y ← A(z, h)

ỹ ← ok?real(h, y)

}

h←H
and

{
(z, h, ỹ)

∣∣∣∣
(y, x)← S(z, h)

ỹ ← ok?sim(h, y, x)

}

h←H
,

where ok?real(h, y) outputs y if y ∈ Image(h) and ⊥ otherwise, and ok?sim(h, y, x) outputs y if h(x) = y
and ⊥ otherwise.

It turns out, however, that the above two definitions are equivalent:

Lemma 13.3. A function ensembleH is extractable if and only if it is simulatable.

Proof. Clearly, ifH is extractable then it is also simulatable: the simulator may simply run the extractor.
Conversely, suppose thatH is not extractable, that is, there exists a non-negligible fraction of h ∈ H for

which the extractor E does not work. Then, for any candidate simulator S, define the distinguisher DS as
follows:

DS(z, h, ỹ)
def
=

1. If ỹ = ⊥, output a random bit. Otherwise continue.
2. Compute x← S(z, h).
3. If h(x) = ỹ, output “simulation” else output “real world”.

In order to prove success of the distinguisher DS it suffices to not that it must be the case that any candidate
simulator must induce the output ỹ = ⊥ with probability negligibly close to that of A (or else the “⊥ test”
distinguisher would work).

53

13.2 Second Warm Up: Soundness & Proof of Knowledge

Next, we compare extraction versus simulatability in a more standard setting: soundness and proof of knowl-
edge for proof systems. For convenience, we shall use a non-interactive formulation of proof system that
leverages the notation we have already introduced for SNARKs (see Section 4), though here we will not be
concerned with succinctness properties as we are only discussing security notions.

We can directly capture various notions of soundness and proof-of-knowledge via an extraction-based
definition:

Definition 13.4 (Extractability). We say that a proof system (G,P,V) for the relation R is extractable if
for any prover P∗ there exists a an extractor EP∗ such that for all large enough k ∈ N and all auxiliary
inputs z ∈ {0, 1}poly(k):

Pr
(σ,τ)←G(1k)

[
V(τ, y, π) = 1
w /∈ R(y)

∣∣∣∣
(y, π)← P∗(z, σ)

(y, w)← EP∗(z, σ)

]
≤ negl(k) .

Note that:

(i) If both P∗ and EP∗ may be inefficient, the above requirement is soundness.

(ii) If P∗ may be inefficient but EP∗ must be efficient, the above requirement is proof of knowledge.

(iii) If P∗ must be efficient but EP∗ may be inefficient, he above requirement is computational soundness.

(iv) If both P∗ and EP∗ must be efficient, the above requirement is computational proof of knowledge.

Also: (ii)→ (i)→ (iii), (ii)→ (iv)→ (iii), and (i) and (iv) are incomparable.

Once again a natural question to ask is how does the above notion compare against the following seem-
ingly weaker alternative notion:

Definition 13.5 (Simulatability). We say that a proof system (G,P,V) for the relation R is simulatable if
for any prover P∗ there exists a a simulator SP∗ such that for all large enough k ∈ N and all auxiliary
inputs z ∈ {0, 1}poly(k) the following two distributions are computationally indistinguishable:
{

(z, σ, ỹ)

∣∣∣∣
(y, π)← A(z, h)

ỹ ← ok?real(τ, y, π)

}

(σ,τ)←G(1k)
and

{
(z, σ, ỹ)

∣∣∣∣
(y, w)← S(z, h)

ỹ ← ok?sim(τ, y, w)

}

(σ,τ)←G(1k)
,

where ok?real(τ, y, π) outputs y if V(τ, y, π) = 1 and ⊥ otherwise, and ok?sim(τ, y, w) outputs y if
(y, w) ∈ R and ⊥ otherwise.

Note that:

• As in Definition 13.4, we have four flavors of simulatability, depending on whether the prover P∗ or
the simulator SP∗ are required to be efficient (with analogous implications between the four flavors).

• We have the choice of considering a stronger requirement where the above two distributions are
statistically indistinguishable (and not merely computationally so).

It turns out here too that the above two definitions are (mostly) equivalent:

54

Lemma 13.6. If a proof system (G,P,V) is extractable then it is simulatable (when considering both with
the same “flavor”).

If a proof system is simulatable with an efficient simulators then it is extractable (when considering both
with the same “flavor”).

Proof. Clearly, if (G,P,V) is extractable (in one flavor), then it is also simulatable (in the same flavor).
For the converse direction, we can reason in the same way as we did in Lemma 13.3.

Remark 13.7. Note that that in Section 13.1 when we discussed extraction versus simulation for functions,
we did not raise the possibility that either the adversary or the extractor (or simulator) may be inefficient,
because any function would trivially satisfy the definition under either of these relaxations. Because in
this section we use proofs (as opposed to “ground truth”) to establish the “goodness” of the output of an
adversary in the real world (via the ok?real function), the (three) relaxations of the strongest definition
(where both the adversary and extractor/simulator are efficient) are quite meaningful (i.e., non-trivial).

Also, in Section 13.1 there was not any need to consider the stronger requirement of statistical indistin-
guishability because we did not consider relaxations that required it.

Remark 13.8. One may want to consider definitions where the auxiliary input is restricted. The first thing
to note is that requiring the definition to hold for all auxiliary input strings z is equivalent to requiring the
definition to hold for all auxiliary input distributions Z (that may be inefficiently samplable). A weaker
requirement would be to let the adversary A begin first by choosing an efficient auxiliary input distribution
Z depending on σ, from his auxiliary input will be drawn. (Note that this distribution cannot be inefficient,
else it would “invert” the σ.) An even weaker requirement would be to require the definition to hold only
for all auxiliary input distributions Z that are efficiently samplable.

The “flavor” of auxiliary input distribution is preserved in the aforementioned implications between
extraction and simulation.

13.3 Case of Interest: PCDs

We now come to comparing extraction versus simulatability in the setting of PCDs. As discussed, the
purpose of this section is to better understand in a larger context our choice of security definition of PCDs.

Let us repeat

Definition 13.9 (Extractability). A C-compliance proof-carrying data system (G,PC,VC) is extractable if
for every prover P∗ there exists a knowledge-extractor EP∗ such that for any large enough security parameter
k and all auxiliary inputs z ∈ {0, 1}poly(k):

Pr
(σ,τ)←G(1k)

[
VC(τ, z, π) = 1
C(Tz) 6= 1

∣∣∣∣
(z, π)← P∗(σ, z)
Tz ← EP∗(σ, z)

]
≤ negl(k) .

Note that:

(i) If both P∗ and EP∗ may be inefficient, the above requirement is soundness.

(ii) If P∗ may be inefficient but EP∗ must be efficient, the above requirement is proof of knowledge.

(iii) If P∗ must be efficient but EP∗ may be inefficient, he above requirement is computational soundness.

(iv) If both P∗ and EP∗ must be efficient, the above requirement is computational proof of knowledge.

55

Also: (ii)→ (i)→ (iii), (ii)→ (iv)→ (iii), and (i) and (iv) are incomparable.

The analogous simulatability definition is the following:

Definition 13.10 (Simulatability). A C-compliance proof-carrying data system (G,PC,VC) is simulat-
able if for any prover P∗ there exists a a simulator SP∗ such that for all large enough k ∈ N and all auxiliary
inputs z ∈ {0, 1}poly(k) the following two distributions are computationally indistinguishable:
{

(z, σ, z̃)

∣∣∣∣
(z, π)← P∗(z, σ)

z̃← ok?real(τ, z, π)

}

(σ,τ)←G(1k)

and
{

(z, σ, z̃)

∣∣∣∣
Tz ← SP∗(z, σ)

z̃← ok?sim(τ,Tz)

}

(σ,τ)←G(1k)

,

where ok?real(τ, z, π) outputs z if VC(τ, z, π) = 1 and ⊥ otherwise, and ok?sim(τ,Tz) outputs z if C(Tz)
and ⊥ otherwise (and where z is the data on the sink of Tz).

Note that:

• As in Definition 13.9, we have four flavors of simulatability, depending on whether the prover P∗ or
the simulator SP∗ are required to be efficient (with analogous implications between the four flavors).

• We have the choice of considering a stronger requirement where the above two distributions are
statistically indistinguishable (and not merely computationally so).

It turns out here too that the above two definitions are (mostly) equivalent:

Lemma 13.11. If a PCD system (G,PC,VC) is extractable then it is simulatable (when considering both
with the same “flavor”).

If a proof system is simulatable with efficient simulators then it is extractable (when considering both
with the same “flavor”).

Proof. Clearly, if (G,PC,VC) is extractable (in one flavor), then it is also simulatable (in the same flavor).
For the converse direction, we can reason in the same way as we did in Lemma 13.3.

Remark 13.12. One may wish to relax the above definitions by, for example, letting the compliance pred-
icate be drawn from a family of compliance predicates, instead of requiring the definition to hold for every
compliance predicate. This may be particularly convenient when, say, the compliance predicate is indexed
with some sort of public key.

14 Other Related Work

Knowledge assumptions. A popular class of knowledge assumptions, which have been successfully used
to solve a number of (at times notoriously open) cryptographic problems, is that of Knowledge of Exponent
(KE) assumptions. These have the following flavor: if an efficient circuit, given the description of a finite
group along with some other public information, computes a list of group elements that satisfies a certain
algebraic relation, then there exists a knowledge extractor that outputs some related values that “explain”
how the public information was put together to satisfy the relation. Most such assumptions have been proven
secure against generic algorithms (see Nechaev [Nec94], Shoup [Sho97], and Dent [Den06]), thus offering
some evidence for their truth. In the following we briefly survey prior works which relied on Knowledge of
Exponent assumptions.

56

Damgård [Dam92] first introduced a Knowledge of Exponent assumption to construct a CCA-secure
encryption scheme. Later, Hada and Tanaka [HT98] showed how to use two Knowledge of Exponent as-
sumptions to construct the first three-round zero-knowledge argument. Bellare and Palacio [BP04] then
showed that one of the assumptions of [HT98] was likely to be false, and proposed a modified assumption,
using which they constructed a three-round zero-knowledge argument.

More recently, Abe and Fehr [AF07] extended the assumption of [BP04] to construct the first perfect
NIZK for NP with “full” adaptive soundness. Prabhakaran and Xue [PX09] constructed statistically-hiding
sets for trapdoor DDH groups [DG06] using a new Knowledge of Exponent assumption. Gennaro et al.
[GKR10] used another Knowledge of Exponent assumption (with an interactive flavor) to prove that a modi-
fied version of the Okamoto-Tanaka key-agreement protocol [OT89] satisfies perfect forward secrecy against
fully active attackers.

In a different direction, Canetti and Dakdouk [CD08, CD09, Dak09] study extractable functions. Roughly,
a function f is extractable if finding a value x in the image of f implies knowledge of a preimage of x. The
motivation of Canetti and Dakdouk for introducing extractable functions is to capture the abstract essence
of prior knowledge assumptions, and to formalize the “knowledge of query” property that is sometimes
used in proofs in the Random Oracle Model. They also study which security reductions are “knowledge-
preserving” (e.g., whether it possible to obtain extractable commitment schemes from extractable one-way
functions). In this direction, Bitansky et al. [BCCT11] showed how SNARKs can be used to construct a vari-
ety of extractable cryptographic primitives (and can themselves be built out of extractable collision-resistant
hashes).

Delegation of computation. An important folklore application of succinct arguments is delegation of
computation schemes: to delegate the computation of a function F on input x, the delegator sends F and
x to the worker, the worker responds with a claimed output z for the computation, and then the delegator
and worker engage in a succinct argument, respectively taking the roles of the verifier and the prover, so the
delegator can be convinced that indeed z = F (x).19 In fact, because succinct arguments can “support” all
of NP, the worker can also contribute his own input x′ to the computation, and prove claims of the form
“I know x′ such that z = F (x, x′)”; this is particularly valuable when the succinct argument has a proof-
of-knowledge property, because the delegator can deduce that x′ can be found efficiently (and not only that
such an x′ exists).20

When the succinct argument is a SNARK, the corresponding delegation scheme is particularly conve-
nient. For example, if the SNARK is of the designated-verifier kind, then the worker can simply generate and
send the reference string σ to the worker (and keep the corresponding verification state τ as a private state),
along with any information about the computation to delegate (which the delegator can do since σ is inde-
pendent of the statement to be proven), and the worker can reply with an adaptively-chosen statement and
a proof. Recently, Bitansky et al. [BCCT11] showed how to construct such designated-verifier SNARKs
from a simple and generic non-standard primitive, extractable collision-resistant hashes, and showed that
this primitive is in fact necessary. (Concurrently to our work [DFH11, GLR11] also had similar ideas; see

19Of course, the first two messages of this interaction (namely, the delegator sending F and x to the worker, and the worker
responding with the claimed output z) can be sent in parallel to messages of the following succinct argument if the succinct
argument allows for it. For example, this is the case in Kilian’s protocol [Kil92], where the first message from the verifier to the
prover is independent of the statement being proved, and the prover can reply the verifier’s first message with an adaptively-chosen
statement; thus, overall, Kilian’s protocol yields a four-message delegation of computation scheme.

20For example, the untrusted worker may store a long database x′ whose short Merkle tree hash h = MT(x′) is known to the
delegator; the delegator may then ask the worker to compute F (x′) for some function F . However, from the delegator’s perspective,
merely being convinced that “there exists x̃′ such that h = MT(x̃′) and F (x̃′) = f” is not enough. The delegator should also be
convinced that the worker knows such a x̃′, which implies due to collision resistance of the Merkle tree hash that indeed x̃′ = z.

57

[BCCT11] for more details on the comparison.)
When the SNARK is publicly-verifiable, the corresponding delegation scheme is even more convenient,

because one can set up a global reference string σ for everyone to use, without the need for delegators to
contact workers beforehand.

Finally, sometimes in delegation of computation one also cares about confidentiality, and not only sound-
ness, guarantees. It is folklore the fact that succinct arguments (and thus SNARKs too) can be trivially
combined with fully-homomorphic encryption [Gen09] (in order to ensure privacy) to obtain a delegation
scheme with similar parameters.

Delegation of computation with preprocessing. Within the setting of delegation, where the same delega-
tor may be asking an untrusted worker to evaluate an expensive function on many different inputs, even the
weaker preprocessing approach may still be meaningful. In such a setting, the delegator performs a one-time
function-specific expensive setup phase, followed by inexpensive input-specific delegations to amortize the
initial expensive phase. Indeed, in the preprocessing setting a number of prior works have already achieved
constructions where the online stage is only two messages [GGP10, CKV10, AIK10]. These constructions
do not allow for an untrusted worker to contribute his own input to the computation, namely they are “P-
delegation schemes” rather than “NP-delegation schemes”. Note that all of these works do not rely on any
knowledge assumption; indeed, the impossibility results of [GW11] only apply for NP and not for P.

However, even given that the preprocessing model is very strong, all of the mentioned works suffer
from an important handicap: soundness over many delegations only as long as the verifier’s answers remain
secret. (A notable exception is the work of Benabbas et al. [BGV11], though their constructions are not
generic, and are only for specific functionalities such as polynomial functions.)

Goldwasser et al. [GKR08] construct interactive proofs for log-space uniform NC where the verifier run-
ning time is quasi-linear. When combining [GKR08] with the PIR-based squashing technique of Kalai and
Raz [KR06], one can obtain a succinct two-message delegation scheme. Canetti et al. [CRR11] introduce
an alternative way of squashing [GKR08], in the preprocessing setting; their scheme is of the public coin
type and hence the verifier’s answers need not remain secret (another bonus is that the preprocessing state is
publicly verifiable and can thus be used by anyone).

The techniques we develop for removing preprocessing do not seem to apply to any of the above works,
because our techniques seem to inherently require the ability to delegate (with knowledge) “all” of NP,
whereas the above works only support P computations.

Acknowledgments

We thank Daniel Wichs for discussions of the preprocessing constructions of Groth and Lipmaa, and for
pointing out a mistake in a previous draft of this paper. We thank Yuval Ishai for valuable comments and
discussions.

58

References

[ABC+11] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and Brent Wa-
ters. Computing on authenticated data. Cryptology ePrint Archive, Report 2011/096, 2011.

[ABOR00] William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan. Fast
verification of any remote procedure call: Short witness-indistinguishable one-round proofs
for NP. In Proceedings of the 27th International Colloquium on Automata, Languages and
Programming, ICALP ’00, pages 463–474, 2000.

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Proceedings of the
4th Theory of Cryptography Conference, TCC ’07, pages 118–136, 2007.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In Proceedings of the 37th International Colloquium on
Automata, Languages and Programming, ICALP ’10, pages 152–163, 2010.

[AV77] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for hamiltonian circuits
and matchings. In Proceedings on 9th Annual ACM Symposium on Theory of Computing,
STOC ’77, pages 30–41, 1977.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowl-
edge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BCCT11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. Cryptology
ePrint Archive, Report 2011/443, 2011.

[BF11] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions.
Cryptology ePrint Archive, Report 2011/018, 2011.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, STOC ’91, pages 21–32, 1991.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM Journal
on Computing, 38(5):1661–1694, 2008. Preliminary version appeared in CCC ’02.

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of computa-
tion over large datasets. In Proceedings of the 31st Annual International Cryptology Confer-
ence, CRYPTO ’11, pages 111–131, 2011.

[BHZ87] Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-NP have short interactive proofs?
Information Processing Letters, 25(2):127–132, 1987.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, STOC ’88, pages 1–10, 1988.

59

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In Proceedings of the 24th Annual International Cryptology Con-
ference, CRYPTO ’04, pages 273–289, 2004.

[BSCGT12] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from
RAMs to delegatable succinct constraint satisfaction problems, 2012. Cryptology ePrint
Archive.

[BSS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM Journal
on Computing, 38(2):551–607, 2008.

[BSW11] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: Homomorphic encryption for
restricted computations. Cryptology ePrint Archive, Report 2011/311, 2011.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS ’11, 2011.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Extractable perfectly one-way functions. In Pro-
ceedings of the 35th International Colloquium on Automata, Languages and Programming,
ICALP ’08, pages 449–460, 2008.

[CD09] Ran Canetti and Ronny Ramzi Dakdouk. Towards a theory of extractable functions. In Pro-
ceedings of the 6th Theory of Cryptography Conference, TCC ’09, pages 595–613, 2009.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation using
fully homomorphic encryption. In Proceedings of the 30th Annual International Cryptology
Conference, CRYPTO ’10, pages 483–501, 2010.

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In Pro-
ceedings of the 4th Annual ACM Symposium on Theory of Computing, STOC ’72, pages 73–80,
1972.

[CRR11] Ran Canetti, Ben Riva, and Guy N. Rothblum. Two 1-round protocols for delegation of com-
putation. Cryptology ePrint Archive, Report 2011/518, 2011.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from signa-
ture cards. In Proceedings of the 1st Symposium on Innovations in Computer Science, ICS ’10,
pages 310–331, 2010.

[Dak09] Ronny Ramzi Dakdouk. Theory and Application of Extractable Functions. PhD thesis, Yale
University, Computer Science Department, December 2009.

[Dam92] Ivan Damgård. Towards practical public key systems secure against chosen ciphertext attacks.
In Proceedings of the 11th Annual International Cryptology Conference, CRYPTO ’92, pages
445–456, 1992.

[DCL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an extractability as-
sumption. In Proceedings of the 4th Conference on Computability in Europe, CiE ’08, pages
175–185, 2008.

60

[Den06] Alexander W. Dent. The hardness of the DHK problem in the generic group model. Cryptology
ePrint Archive, Report 2006/156, 2006.

[DFH11] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low
communication. Cryptology ePrint Archive, Report 2011/508, 2011.

[DG06] Alexander Dent and Steven Galbraith. Hidden pairings and trapdoor DDH groups. In Florian
Hess, Sebastian Pauli, and Michael Pohst, editors, Algorithmic Number Theory, volume 4076
of Lecture Notes in Computer Science, pages 436–451. 2006.

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold. Succinct
NP proofs and spooky interactions, December 2004. Available at www.openu.ac.il/
home/mikel/papers/spooky.ps.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and
signature problems. In Proceedings of the 6th Annual International Cryptology Conference,
CRYPTO ’87, pages 186–194, 1987.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC ’09, pages 169–178, 2009.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. In Proceedings of the 30th Annual International
Cryptology Conference, CRYPTO ’10, pages 465–482, 2010.

[GH98] Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with bounded
communication. Information Processing Letters, 67(4):205–214, 1998.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Inter-
active proofs for Muggles. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, STOC ’08, pages 113–122, 2008.

[GKR10] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Okamoto-Tanaka revisited: Fully authen-
ticated Diffie-Hellman with minimal overhead. In Proceedings of the 8th International Con-
ference on Applied Cryptography and Network Security, ACNS ’10, pages 309–328, 2010.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without rejec-
tion problem from designated verifier CS-proofs. Cryptology ePrint Archive, Report 2011/456,
2011.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interac-
tive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. Preliminary version
appeared in STOC ’85.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, STOC ’87, pages 218–229, 1987.

61

www.openu.ac.il/home/mikel/papers/spooky.ps
www.openu.ac.il/home/mikel/papers/spooky.ps

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for
NIZK. In Proceedings of the 11th Annual International Cryptology Conference, CRYPTO ’06,
pages 97–111, 2006.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceedings of
the 16th International Conference on the Theory and Application of Cryptology and Informa-
tion Security, ASIACRYPT ’10, pages 321–340, 2010.

[GVW02] Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs with a laconic prover.
Computational Complexity, 11(1/2):1–53, 2002.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Proceedings of the 43rd Annual ACM Symposium on Theory of Com-
puting, STOC ’11, pages 99–108, 2011.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols.
In Proceedings of the 18th Annual International Cryptology Conference, CRYPTO ’98, pages
408–423, 1998.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the
24th Annual ACM Symposium on Theory of Computing, STOC ’92, pages 723–732, 1992.

[KR06] Yael Tauman Kalai and Ran Raz. Succinct non-interactive zero-knowledge proofs with pre-
processing for LOGSNP. In Proceedings of the 47th Annual IEEE Symposium on Foundations
of Computer Science, pages 355–366, 2006.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Proceedings of
the 29th Annual International Cryptology Conference, CCC ’09, pages 143–159, 2009.

[Lip11] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. Cryptology ePrint Archive, Report 2011/009, 2011.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000. Preliminary version appeared in FOCS ’94.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. Journal of Mathematical Cryptol-
ogy, 2(4):343–363, 2008.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Proceedings of the 23rd Annual
International Cryptology Conference, CRYPTO ’03, pages 96–109, 2003.

[Nec94] Vassiliy Ilyich Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55:165–172, 1994.

[OT89] Eiji Okamoto and Kazue Tanaka. Key distribution system based on identification information.
Selected Areas in Communications, IEEE Journal on, 7(4):481–485, May 1989.

[PX09] Manoj Prabhakaran and Rui Xue. Statistically hiding sets. In Proceedings of the The Cryptog-
raphers’ Track at the RSA Conference 2009, CT-RSA 2009, pages 100–116, 2009.

62

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Proceedings
of the International Conference on the Theory and Application of Cryptographic Techniques,
EUROCRYPT ’97, pages 256–266, 1997.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Proceedings of the 5th Theory of Cryptography Conference, TCC ’08, pages
1–18, 2008.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In Proceedings of the 32nd International
Colloquium on Automata, Languages and Programming, ICALP ’05, pages 140–152, 2005.

63

	Abstract
	1 Introduction
	1.1 Verifying Arbitrary Distributed Computations
	1.2 Our Results

	2 Overview of Results
	2.1 Recalling SNARKs and Proof-Carrying Data
	2.2 Constant Depth PCDs and the SNARK Recursive Composition Theorem
	2.3 The PCD Bootstrapping Theorem and Path PCD
	2.4 The RAM Compliance Theorem
	2.5 Putting Things Together: SNARKs and PCDs without Preprocessing
	2.6 Applications

	3 Bounded-Halting Problems and Random-Access Machines
	3.1 Universal Relation and NP Relations
	3.2 Random-Access Machines

	4 SNARK s
	5 Proof-Carrying Data Systems
	5.1 Compliance of Computation
	5.2 PCD Systems

	6 A Recursive Composition Theorem for All Kinds of SNARK s
	6.1 Composition of Publicly-Verifiable SNARKs
	6.2 Composition of Designated-Verifier SNARKs

	7 RAM Compliance Theorem
	7.1 Machines with Untrusted Memory
	7.2 A Compliance Predicate for Code Consistency

	8 A Bootstrapping Theorem for PCD
	8.1 Warm-Up Special Case
	8.2 General Case

	9 Constructions of Publicly-Verifiable Preprocessing SNARK s
	9.1 Where are the PCP s?

	10 Putting Things Together: Main Theorem
	11 Zero Knowledge
	11.1 Zero-Knowledge SNARK s
	11.2 Zero-Knowledge PCD s

	12 Applications
	12.1 Targeted Malleability
	12.2 Computing on Authenticated Data / Homomorphic Signatures

	13 Integrity from Extraction or Simulation?
	13.1 First Warm Up: ECRHs
	13.2 Second Warm Up: Soundness & Proof of Knowledge
	13.3 Case of Interest: PCD s

	14 Other Related Work
	Acknowledgments
	References

