
Recursive Composition and Bootstrapping
for SNARKs and Proof-Carrying Data

Nir Bitansky∗

nirbitan@tau.ac.il
Tel Aviv University

Ran Canetti∗

canetti@tau.ac.il
Boston University and

Tel Aviv University

Alessandro Chiesa
alexch@csail.mit.edu

MIT

Eran Tromer†

tromer@tau.ac.il
Tel Aviv University

December 27, 2012

Abstract

Succinct non-interactive arguments (SNARGs) enable verifying NP statements with much lower
complexity than required for classical NP verification (in fact, with complexity that is independent of
the NP language at hand). In particular, SNARGs provide strong solutions to the problem of verifiably
delegating computation.

Despite recent progress in the understanding and construction of SNARGs, there remain unattained
goals. First, publicly-verifiable SNARGs are only known either in the random oracle model, or in a
model that allows expensive offline preprocessing. Second, known SNARGs require from the prover
significantly more time or space than required for classical NP verification.

We show that, assuming collision-resistant hashing, any SNARG having a natural proof of knowledge
property (i.e., a SNARK) can be “bootstrapped” to obtain a complexity-preserving SNARK, i.e., one
without expensive preprocessing and where the prover’s time and space complexity is essentially the
same as that required for classical NP verification. By applying our transformation to known publicly-
verifiable SNARKs with expensive preprocessing, we obtain the first publicly-verifiable complexity-
preserving SNARK in the plain model (and in particular, eliminate the expensive preprocessing), thereby
attaining the aforementioned goals. We also show an analogous transformation for privately-verifiable
SNARKs, assuming fully-homomorphic encryption. Curiously, our transformations do not rely on PCPs.

At the heart of our transformations is recursive composition of SNARKs and, more generally, new
techniques for constructing and using proof-carrying data (PCD) systems, which extend the notion of
a SNARK to the distributed setting. Concretely, to bootstrap a given SNARK, we recursively compose
the SNARK to obtain a “weak” PCD system for shallow distributed computations, and then use the PCD
framework to attain stronger, complexity-preserving SNARKs and PCD systems.

∗Supported by the Check Point Institute for Information Security, Marie Curie grant PIRG03-GA-2008-230640, and ISF grant
0603805843. The first author was also supported by the Fulbright program.
†Supported by the Check Point Institute for Information Security and by the Israeli Centers of Research Excellence (I-CORE)

program (center No. 4/11).

1

Contents

Contents 2

1 Introduction 3
1.1 Motivating Questions . 4
1.2 Our Results . 5
1.3 More on Proof-Carrying Data and Compliance Engineering 7
1.4 The Ideas In A Nutshell . 9
1.5 Roadmap . 11

2 Overview of Results 11
2.1 SNARKs and Proof-Carrying Data . 11
2.2 The SNARK Recursive Composition Theorem . 13
2.3 The PCD Depth-Reduction Theorem . 15
2.4 The Locally-Efficient RAM Compliance Theorem . 16
2.5 Putting Things Together: A General Technique for Preserving Complexity 16

3 The Universal Language on Random-Access Machines 20

4 SNARKs 20

5 Proof-Carrying Data 24
5.1 Distributed Computations And Their Compliance With Local Properties 24
5.2 Proof-Carrying Data Systems . 25

6 Proof Of The SNARK Recursive Composition Theorem 28
6.1 Recursive Composition For Publicly-Verifiable SNARKs 30
6.2 Recursive Composition For Designated-Verifier SNARKs 35

7 Proof Of The Locally-Efficient RAM Compliance Theorem 41
7.1 Machines With Untrusted Memory . 42
7.2 A Compliance Predicate for Checking RAM Computations 43

8 Proof of The PCD Depth-Reduction Theorem 45
8.1 Warm-Up Special Case: Reducing The Depth Of RAM Checkers 47
8.2 General Case . 51

9 Putting Things Together 56

Acknowledgments 58

References 59

2

1 Introduction

Succinct arguments. We study proof systems [GMR89] for the purpose of verifying NP statements
faster than by deterministically checking an NP witness in the traditional way. When requiring statis-
tical soundness, significant savings in communication (let alone verification time) are unlikely [BHZ87,
GH98, GVW02, Wee05]. If we settle for proof systems with computational soundness, known as argu-
ment systems [BCC88], then significant savings can be made. Using collision-resistant hashing (CRHs)
and probabilistically-checkable proofs (PCPs) [BFLS91], Kilian [Kil92] showed a four-message interactive
argument for NP where, to prove membership of an instance x in a given NP language L with NP machine
M , communication and the verifier’s time are bounded by poly(k + |M | + |x| + log t), while the prover’s
running time by poly(k+ |M |+ |x|+ t). Here, t is the classical NP verification time of M for the instance
x, k is a security parameter, and poly is a universal polynomial (i.e., independent of k, M , x, and t). We
call such argument systems succinct.

Proof of knowledge. A strengthening of computational soundness is (computational) proof of knowledge:
it guarantees that, whenever the verifier is convinced by an efficient prover, not only a valid witness for
the theorem exists, but also such a witness can be extracted efficiently from the prover. This captures the
intuition that convincing the verifier of a given statement can only be achieved by (essentially) going through
specific intermediate stages and thereby explicitly obtaining a valid witness along the way, which can be
efficiently recovered by a knowledge extractor. Proof of knowledge is a natural property (satisfied by most
proof system constructions, including the aforementioned one of Kilian [BG08]) that is useful in many
applications of succinct arguments. It is also essential to the results of this paper.

Non-interactive succinct arguments. Kilian’s protocol requires four messages. A challenge, which is of
both theoretical and practical interest, is removing interaction from succinct arguments. As a first step in
this direction, Micali [Mic00] constructed one-message succinct non-interactive arguments for NP, in the
random oracle model, by applying the Fiat-Shamir paradigm [FS87] to Kilian’s protocol.

In the plain model, it is known that one-message solutions are impossible for hard-enough languages
(against non-uniform provers), so one usually considers the weaker goal of two-message succinct arguments
where the verifier message is generated independently of the statement later chosen by the prover. Such
arguments are called SNARGs. More precisely, a SNARG for a languageL is a triple of algorithms (G,P,V)
where: (i) the generator G, given the security parameter k, samples a reference string σ and a corresponding
verification state τ (G can be thought to be run during an offline phase, by the verifier, or by someone the
verifier trusts); (ii) the prover P(σ, x, w) produces a proof π for the statement “x ∈ L” given a witness w;
(iii) V(τ, x, π) deterministically verifies the validity of π for that statement.

Extending earlier work [ABOR00, DLN+04, Mie08, DCL08], several recent works showed how to
remove interaction in Kilian’s PCP-based protocol and obtain SNARGs of knowledge (SNARKs) using ex-
tractable collision-resistant hashes [BCCT12, DFH12, GLR11], or construct MIP-based SNARKs using
fully-homomorphic encryption with an extractable homomorphism property [BC12].

The use of non-standard assumptions in the aforementioned works may be partially justified in light of
the work of Gentry and Wichs [GW11], which shows that no SNARG can be proven sound via a black-box
reduction to a falsifiable assumption [Nao03]. (We remark that [GW11] rule out SNARGs only for hard-
enough NP languages. For the weaker goal of verifying deterministic polynomial-time computations, there
are constructions relying on standard assumptions in various models.)

The preprocessing model. A notion that is weaker than a SNARK is that of a preprocessing SNARK: here,
the verifier is allowed to conduct an expensive offline phase. More precisely, the generator G takes as an

3

additional input a time bound B, may run in time poly(k+B) (rather than poly(k+ logB)), and generates
a reference string σ and a verification state τ that can be used, respectively, to prove and verify correctness
of computations of length at most B. A set of works [Gro10, Lip12, GGPR12, BCI+13] achieves this
weaker goal using techniques that can be cast as a combination of linear PCPs and linearly homomoprhic
encryption/encoding with suitable knowledge properties [BCI+13].

1.1 Motivating Questions

In this work, we study three open questions regarding SNARGs and SNARKs:

Public verifiability. A basic question regarding SNARKs is whether the verification state τ needs to be
kept secret. In a designated-verifier SNARK, τ must be kept secret; in particular, τ must be protected from
leakage, including the verifier’s responses when checking proofs. (Of course, a new pair (σ, τ) can always
be generated afresh to regain security.) In contrast, in a publicly-verifiable SNARK, the verification state τ
associated with the reference string σ can be published. Thus leakage is not a concern, τ and σ can be used
repeatedly, anyone who trusts the generation of τ can verify proofs, and proofs can be publicly archived for
future use.

The SNARKs in [DCL08, Mie08, BCCT12, DFH12, GLR11, BC12] are of the designated-verifier kind
(and there, indeed, an adversary learning the verifier’s responses on, say, k proofs can break soundness). In
contrast, Micali’s protocol is publicly verifiable, but is in the random-oracle model. The protocols based on
linear PCPs [Gro10, Lip12, GGPR12, BCI+13] are also publicly verifiable, but only yield the weaker notion
of preprocessing SNARKs. We thus ask:

Q-1: Can we construct publicly-verifiable SNARKs without preprocessing in the plain model?

Of course, we could always assume that Micali’s protocol, when the random oracle is instantiated with a
sufficiently-complicated hash function, is sound. However, this assumption does not seem to be satisfying,
because it strongly depends on the specific construction, and does not shed light on the required properties
from such a hash function. Instead, we would like to have a solution whose soundness is based on a concise
and general assumption that is “construction-independent” and can be studied separately.

Complexity-preserving SNARKs. While typically the focus in SNARKs is on minimizing the resources
required by the verifier, minimizing those required by the prover is another critical goal: e.g., the verifier
may be paying to use the prover’s resources by renting servers from the cloud, and the more resources are
used the greater the cost to the verifier. These resources include, not only time complexity, but also space
complexity, which tends to be a severe problem in practice (often more so than time complexity).

When instantiating the PCP-based SNARK constructions of [Mic00, DCL08, Mie08, BCCT12, DFH12,
GLR11] with known time-efficient PCPs [BSCGT12], the SNARK prover runs in time t · poly(k) and the
SNARK verifier in time |x| · poly(k). However, the quasilinear running time of the prover is achieved via
the use of FFT-like methods, which unfortunately demand Ω(t) space even when the computation of the NP
verification machine M requires space s with s� t.

The situation is even worse in the preprocessing SNARKs of [Gro10, Lip12, GGPR12, BCI+13], where
the generator runs in time Ω(t) ·poly(k) to produce a reference string σ of length Ω(t) ·poly(k). This string
must then be stored somewhere and accessed by the prover every time it proves a new statement; thus, once
again, Ω(t) space is needed (in contrast to a SNARK without preprocessing where the generator runs in time
poly(k) and the reference string is short).

Ideally, we want SNARKs that simultaneously enable the verifier to run fast and enable the prover to
use an amount of resources that is as close as possible to those required by the original computation. We

4

thus define a complexity-preserving SNARK to be a SNARK where the prover runs in time t · poly(k) and
space s ·poly(k), and the verifier runs in time |x| ·poly(k), when proving and verifying that a t-time s-space
random-access machine M non-deterministically accepts an input x. We ask:

Q-2: Can we construct complexity-preserving SNARKs?

The SNARKs constructed by [BC12] are, in fact, complexity-preserving. However, that construction
is for designated verifiers and also relies on a rather specific knowledge assumption. The case of public
verifiability remains open, as well as whether there are more generic approaches to construct complexity-
preserving SNARKs.

SNARK composition and proof-carrying data. It is tempting to use a SNARK to produce proofs that,
in addition to attesting to the correctness of a given computation, also attest that a previous SNARK proof
for another (related) computation has been verified (and so on recursively). An intriguing question is thus
whether one can achieve stronger cryptographic primitives via such recursive composition of SNARKs, and
under what conditions.

Several works have in fact studied this question. Valiant [Val08] studied the problem of incrementally-
verifiable computation (IVC), where a deterministic computation is compiled into a new computation (with
polynomially-related time and space) that after each step outputs, in addition to the current state, a short
proof attesting to the correctness of the entire computation so far. Valiant showed (when phrased in our
terminology) that IVC can be obtained by recursively composing publicly-verifiable SNARKs that have
very efficient knowledge extractors, and conjectured that such SNARKs exist. In another work along these
lines, Boneh, Segev, and Waters [BSW12] studied targeted malleability (TM), and showed how to obtain
certain forms of TM by recursively composing publicly-verifiable preprocessing SNARKs that may have an
expensive online verification.

Chiesa and Tromer [CT10] formulated and studied the security goal of enforcing local properties in
dynamic distributed computations; this goal, in particular, captures many scenarios which seem to require
SNARK recursive composition, such as the goals in [Val08] and [BSW12] (by choosing appropriate local
properties to enforce). To achieve this security goal, [CT10] introduced a cryptographic primitive called
proof-carrying data (PCD), which allows to dynamically compile a distributed computation into one where
messages are augmented by short proofs attesting to the fact that the local property holds; this, without
incurring significant overhead in communication or computation. They showed how to use recursive proof
composition to obtain PCD, but only in a model where parties can access a signature oracle. We ask:

Q-3: Under what conditions can SNARKs be recursively composed?
More generally, what forms of PCD can be achieved in the plain model?

We further discuss and motivate the notions of verifying local properties of distributed computations and
the framework of proof-carrying data in Section 1.3.

1.2 Our Results

In this work, we positively answer all three questions. To do so, we develop techniques demonstrating that
the three questions are, in fact, tightly related to one another.

A bootstrapping theorem for SNARKs and PCD. Our main technical result consists of two generic
transformations. The first transformation takes any SNARK (possibly having poor efficiency, e.g., having
expensive preprocessing, a prover running in quadratic time, a prover requiring large space, and so on) and
outputs a PCD system, with analogous efficiency properties, for a large class of distributed computations.

5

The second transformation takes any PCD system (such as the one output by the firsttransformation) and
outputs a complexity-preserving SNARK or PCD system. These transformations work in both publicly-
verifiable or designated-verifier cases (where SNARKs can be proved secure based on potentially weaker
knowledge assumptions).

Theorem (informal). Assume existence of collision-resistant hash functions. Then:
(i) Any publicly-verifiable SNARK can be efficiently transformed into a publicly-verifiable PCD system for

distributed computations of constant depth or over paths of polynomial depth.
(ii) Any publicly-verifiable PCD system (for distributed computations of constant depth or over paths of

polynomial depth) can be efficiently transformed into a complexity-preserving publicly-verifiable SNARK
or PCD system.

(Where the depth of a distributed computation is, roughly, the length of the longest path in the graph repre-
senting the distributed computation over time.)
Assuming existence of fully-homomorphic encryption, an analogous statement holds for the designated-
verifier case.

While this theorem implies a significant efficiency improvement for preprocessing SNARKs (as it re-
moves the expensive preprocessing), it is also useful for improving the efficiency of SNARKs that do not
have expensive preprocessing, yet are still not complexity preserving, such as PCP-based constructions in
the plain model.

Applying our theorem to any of the preprocessing SNARKs of [Gro10, Lip12, GGPR12, BCI+13], we
obtain positive answers to the three aforementioned open questions:

Corollary (informal). There exist publicly-verifiable SNARKs and PCD systems (for a large class of dis-
tributed computations), in the plain model, under “knowledge-of-exponent” assumptions. Moreover, there
exist such SNARKs and PCD systems that are complexity-preserving.

To prove our main theorem, we develop three generic tools:
1. SNARK Recursive Composition: “A (publicly- or privately-verifiable) SNARK can be composed a

constant number of times to obtain a PCD system for constant-depth distributed computations (without
making special restrictions on the efficiency of the knowledge extractor).”

2. PCD Depth Reduction: “Distributed computations of constant depth can express distributed computa-
tions over paths of polynomial depth.”

3. Locally-Efficient RAM Compliance: “The problem of checking whether a random-access machine
non-deterministically accepts an input within t steps can be reduced to checking that a certain local
property holds throughout a distributed computation along a path of t · poly(k) nodes and every node’s
local computation is only poly(k), independently of t, where k is the security parameter.”

Succinct arguments without the PCP Theorem. When combined with the protocols of [Gro10, Lip12,
GGPR12, BCI+13], our transformations yield SNARK and PCD constructions that, unlike all previous
constructions (even interactive ones), do not invoke the PCP Theorem but only elementary probabilistic-
checking techniques [BCI+13]. (Note that the “PCP-necessity” result of [RV09] does not apply here.) This
provides an essentially different path to the construction of succinct arguments, which deviates from all
previous approaches (such as applying the Fiat-Shamir paradigm [FS87] to Micali’s “CS proofs” [Mic00]).
We find this interesting both on a theoretical level (as it gives us the only known complexity-preserving
publicly-verifiable SNARKs) and on a heuristic level (as the construction seems quite simple and efficient).

6

technique main generator prover prover verifier verification complexity
assumption time time space time preserving?

PCP extractable CRH poly(k) t · poly(k) t · poly(k) poly(k) designated no
linear PCP linear-only hom. t · poly(k) t · poly(k) t · poly(k) poly(k) public no

MIP hom. extraction poly(k) t · poly(k) s · poly(k) poly(k) designated yes
this work any SNARK poly(k) t · poly(k) s · poly(k) poly(k) public yes

Table 1: Features of known SNARK constructions vs. those obtained using our transformations.

1.3 More on Proof-Carrying Data and Compliance Engineering

Succinct arguments focus on the case of a single prover and a single verifier. This suffices for capturing,
say, a client interacting with a single worker performing some self-contained computation for the client.
However, reality is often more complex: computations may be performed by multiple parties, each party
with its own role, capabilities, and trust relations with others.

In general, there are multiple (even apriori unboundedly many) parties, where each party i, given inputs
from some other parties, and having its own local input linpi, executes a program, and sends his output
message zi to other parties, each of which will in turn act likewise (i.e., perform a local computation and
send the output message to other parties), and so on in a dynamical fashion. In other words, reality often
involves possibly complex distributed computations.

There are many security goals, both about integrity and privacy, that one may wish to achieve in dis-
tributed computations. The study of multi-party computation (MPC) in the past three decades has focused on
formulating definitions and providing solutions that are as comprehensive as possible for secure distributed
computations. This ambitious goal was met by powerful generic constructions, working for any polynomial-
time functionality and in the presence of arbitrary malicious behavior, e.g., [GMW87, BOGW88]. A major
caveat of generic MPC protocols, however, is that they often require the parties participating in the compu-
tation to interact heavily with all other parties and perform much more expensive computations than their
“fair share”. In fact, such overheads are inherent for some security goals, e.g., broadcast [FLP85, KY86].

Chiesa and Tromer [CT10, CT12] introduced and studied a specific security goal, enforcing compliance
with a given local property; as we shall see, for this goal, it is possible to avoid the aforementioned caveats.
More concretely, the goal is to ensure that any given message z output by any party during the distributed
computation is the result of some previous distributed computation in which every party’s local computation
(including the party’s input messages, local inputs, and output message) satisfies a prescribed local property
C; i.e., the goal is to ensure that there is some “explanation” for the generation of the message z as the
aggregate of many local computations, each satisfying C. For example, the local property C might be “the
local input linpi is a program progi bearing a valid signature of the system administrator and, moreover,
the output message zi is the correct output of running progi on the input messages”. Such a local property
would ensure that a message z resulting from a distributed computation satisfying C is in fact the result of
correctly executing only programs vetted by the system administrator.

Here, the focus is not on the behavior of specific parties with respect to specific inputs but, rather,
whether the generation of a given message can be properly explained by some “compliant” behavior. As we
shall see shortly, the advantage of studying this security goal is that it will ultimately allow for solutions that
do not introduce additional interaction between parties and do not need to rely on a fixed set of parties who
are all familiar with each other and jointly come together to compute some functionality. We also note that,
in its most basic form, the security goal only talks about integrity and not about privacy.

7

Proof-carrying data. To fulfill the above goal, Chiesa and Tromer [CT10] proposed the Proof-Carrying
Data (PCD) solution approach: each party i behaves exactly as in the original distributed computation
(where there is no integrity guarantee), except that i also appends to his message zi a succinct proof πi as-
serting that zi is consistent with some distributed computation in which every local computation satisfies C.
Party i generates the proof πi based on zi, linpi, previous messages, and their proofs. Crucially, generating
πi does not require party i to perform much more work than generating zi in the first place. Furthermore, the
“natural” evolution of the distributed computation, including its communication pattern, is unaffected. This
solution approach extends Valiant’s notion of incrementally-verifiable computation [Val08], which can be
cast as verifying a “path” distributed computation where the local property to be enforced is the transition
function of a fixed deterministic machine, and the set of parties is fixed according to the number of steps
made by the machine. See Figure 1 on page 8 for a diagram of this idea.

An abstraction for SNARK recursive composition, and compliance engineering. As already mentioned,
in this work we use recursive composition of SNARKs to obtain PCD systems for a large class of distributed
computations. While describing the proof to parts of our main theorem could be done without using PCD
systems, PCD systems enable us to state, once and for all, exactly what we can “squeeze” out of recursive
composition of (even the most basic and inefficient) SNARKs. From thereon, we can forget about the
many technical details required to make recursive composition work, and only focus on the corresponding
guarantees, rather than implementation details. Specifically, armed with PCD systems, we can concentrate
on the simpler and cleaner task of compliance engineering: how to express a given security goal as a local
property. We can then achieve the security goal by enforcing the local property by using a PCD system.

For example, already in this work, after constructing a “weak” PCD system, we solve all other technical
challenges (including obtaining stronger PCD systems) via compliance engineering. As another example,
targeted malleability [BSW12] can be obtained via a suitable choice of local property and then enforcing the
local property by using a PCD system over any homomorphic encryption scheme.1 The class of distributed
computations supported by the resulting construction is the same as that of the PCD system used.

More generally, we believe that investigating the power (and limits) of compliance engineering is a very
interesting question: what security goals can be efficiently achieved by enforcing local properties?

⇡8
⇡3

⇡2

z1

z2

z3

z4

z5

z6

z7

z8
prog1

prog2

prog3

prog4

prog5

prog6

prog7

prog8

z2

z2

z3

C?

?

⇡2

⇡2

⇡4

⇡5

⇡6
⇡3

⇡7

⇡1

PCD

z1

z2

z3

z4

z5

z6

z7

z8
prog1

prog2

prog3

prog4

prog5

prog6

prog7

prog8

z2

z2

z3

C?

?

Figure 1: Proof-carrying data enables each party in a distributed computation to augment his
message zi with a short easy-to-verify proof πi that is computed “on-the-fly”, based on previous
messages and proofs. At any point during the computation, anyone may inspect a message to
decide if it is compliant with the given local property C. Distributed computations are represented
as directed acyclic graphs “unfolding over time”.

1More precisely, the PCD system must have a zero-knowledge property. Zero-knowledge PCD systems are easily defined and,
as expected, follow from recursive composition of zero-knowledge SNARKs.

8

1.4 The Ideas In A Nutshell

We now give the basic intuition, stripping away all abstraction layers, behind one part of our main the-
orem. Specifically, we explain how to transform any (possibly very inefficient) SNARK (G,P,V) into a
complexity-preserving SNARK (G?,P?,V?) (that, in particular, has no expensive preprocessing), assuming
collision-resistant hashing. Consider first the case where (G,P,V) is publicly verifiable.

Suppose that (G,P,V) is a preprocessing SNARK (this only makes the transformation harder because
we must get rid of preprocessing). Recall that, in such a SNARK, the online verification phase is succinct,
but the offline phase is allowed to be expensive, in the following sense. The generator G takes as an additional
input a time boundB, may run in time poly(k+B), and generates a (potentially long) reference string σ and
a (short) verification state τ that can be used, respectively, to prove and verify correctness of computations
of length at most B. The (online) verifier V still runs in time poly(k), independently of B. (Additionally,
no guarantees are made about the time and space complexity of the honest prover, except that they both are
poly(k+B).) We would like to construct (G?,P?,V?) so that G? runs in time poly(k) (which in particular
bounds the size of the reference string σ) and P? runs in time t · poly(k) and space s · poly(k).

At high-level, the idea is to first represent the long t-step computation of the random-access machine M
to be verified as a collection of O(t) small poly(k)-step computations, and then use recursive composition
to aggregate many SNARK proofs for the correctness of each of these small computations into a single
SNARK proof. Indeed, by repeatedly invoking the prover P of the “inefficient” preprocessing SNARK (G,
P,V) only to prove the correctness of small computations, we would “localize” the effect of the SNARK’s
inefficiency. Specifically, when running the generator G in the offline phase in order to produce (σ, τ), we
would only have to budget for a time bound B = poly(k), thereby making running G cheap. Furthermore,
if the collection of small computations can be computed in time t and space s (up to poly(k) factors), then
running P on each of these small computations in order to produce the final proof would only take time
t · poly(k) and space s · poly(k). Overall, we would achieve complexity preservation. Let us make this
intuition somewhat more concrete.

Starting point: incrementally-verifiable computation. A natural starting point towards fulfilling the
above plan is trying to use of the idea of incrementally-verifiable computation (IVC) [Val08]. Recall that
the goal in IVC is to transform a given computation into a new computation that after every step outputs its
entire state and a proof of its correctness so far, while preserving the time and space efficiency of the original
computation (up to poly(k) factors).

Specifically, to be convinced that there exists a witness w for which the random-access machine M
accepts w within t steps, it suffices to be convinced that there is a sequence of t′ states S0, S1, . . . , St′ of M
(with t′ ≤ t) that (a) starts from an initial state, (b) ends in an accepting state, and (c) every state correctly
follows the previous one according to the transition function of M. Equivalently, from the perspective of
proof-carrying data, we can think of a distributed computation of at most t parties, where the i-th party Pi
receives the state Si−1 of M at step i − 1, evaluates one step of M, and sends the state Si of M at step i to
the next party; the last party checks that the received state is an accepting one.

This suggests the following solution, which we can think of as happening “in the mind” of the new
SNARK prover P?. Using the SNARK prover P , the first party P1 proves to the second party P2 that the
state S1 was generated by running the first step of M correctly. Then, again using P , P2 proves to the third
party P3 that, not only did he evaluate the second step of M correctly and obtained the state S2, but he
also received state S1 carrying a valid proof (i.e., accepted by the SNARK verifier V) claiming that S1 was
generated correctly. Then, P3 uses P to prove to the fourth party P4 that, not only did he evaluate the third
step of M correctly and obtained the state S3, but he also received state S2 carrying a valid proof claiming

9

that S2 was generated correctly, and so on until the last party who, upon receiving a state carrying a proof of
validity, proves that the last state is accepting. A verifier at the end of the chain gets a single, easy-to-verify,
proof aggregating the correctness of all the steps in M’s computation. Hopefully, by relying on the proof of
knowledge property of the SNARK, it is possible to recursively extract from any convincing prover a full
transcript of the computation attesting to its correctness.

From the above IVC-based approach to our eventual goal of complexity-preserving SNARKs without pre-
processing there is still a significant gap; we now describe the difficulties and how we overcome them.

Challenge 1: IVC with preprocessing SNARKs, and the size of local computations. In his construction
of IVC, Valiant relies on the existence of publicly-verifiable SNARKs that do not have expensive prepro-
cessing. In our setting, we have only a preprocessing SNARK at hand, so we have to ensure that each of
the computations whose correctness we are proving is shorter than the time bound B associated with the
preprocessing. Specifically, B must be larger than the running time of the SNARK verifier V plus a single
computation step ofM. This is reminiscent of the bootstrapping paradigm in fully-homomorphic encryption
[Gen09], where, in order to bootstrap a somewhat homomorphic scheme, homomorphic evaluation should
support the decryption operation plus a single computation step. Whereas in bootstrapping of homomorphic
encryption the challenge is to get the decryption circuit to be small enough, in our setting the running time of
V (even for a preprocessing SNARK) is already poly(k)-small, and the challenge is to get the computation
required to perform one step of M to be small enough. Indeed, running step i in the “middle” of the com-
putation requires computation proportional to the corresponding state Si. Such a computations may thus be
as large as the space s used by M, which in turn could be as large as Ω(t). If, instead, we could ensure that
each local computation being proven is of size poly(k), then we could set B = poly(k) and thereby avoid
expensive preprocessing.

To achieve this goal, we invoke a “computational” reduction [BEG+91, BSCGT13] that transforms M
into machine M ′ that requires only poly(k) space and preserves the proof of knowledge property (i.e., any
computationally-bounded adversary producing a witness that M ′ accepts can be efficiently used to find a
witness that M accepts). The idea is that M ′ emulates M but does not bother to explicitly store its random-
acess memory; instead, reads from memory are satisfied by “guessing” the resulting value, and verifying
its correctness via dynamic Merkle hashing. These guesses, and corresponding Merkle verification paths,
are appended to the witness, whose length, crucially, does not affect the time to run a step of the machine.
(To ensure that the new computation steps are small enough, we ensure that each step only looks at a small
chunk of the witness, which is now at least as large as the original space s of M.)

This strategy also ensures that the resulting SNARK is complexity-preserving. Indeed, reducing M to
the “small-space”M ′ and its representation as a Õ(t)-step distributed computation can be done “on the fly”,
using the same time t and space s as the original computation, up to poly(k) factors.

Challenge 2: extractor efficiency and the depth of the computation. As mentioned, to prove that the
above approach is secure, we need to rely on proof of knowledge, in order to perform recursive extraction.
This means that a proof of security based on recursive knowledge extraction will work for only a constant
number of recursive compositions (due to the polynomial blowup in extractor size for each such compo-
sition). However, the distributed computation we described has polynomial depth. Valiant showed that, if
the knowledge extractor is extremely efficient (linear in the prover’s size), then the problem can be avoided
by aggregating proofs along a tree rather than along a path. We avoid Valiant’s assumption by extending
his idea into aggregating proofs along “wide proof trees” of constant depth (similarly to the construction of
SNARKs from extractable collision-resistant hash functions [BCCT12, GLR11].)

Another challenge: the case of designated-verifier SNARKs. So far we have assumed that the SNARK

10

(G,P,V) is publicly verifiable. What happens in the designated-verifier case? In this case, it is not clear how
a party can prove that he verified a received proof without actually knowing the corresponding private verifi-
cation state (which we cannot allow because doing so would void the security guarantee of the SNARK). We
solve this problem by showing how to carefully use fully-homomorphic encryption to recursively compose
proofs without relying on intermediate parties knowing the verification state.

From intuition to proof through PCD. We have now presented all the high-level ideas that go into proving
one part of our main theorem: how to transform any SNARK into a complexity-preserving one. Let us
briefly outline how these ideas are formalized via results about the constructibility of PCD systems. Our first
step is to transform any SNARK into a PCD system for constant-depth distributed computations; this step
generalizes the notion of IVC to a richer class of distributed computations (not only paths) and to arbitrary
local security properties (not only the transition function of a fixed machine). We then forget about the details
of recursively composing SNARKs, and express the security goals we are interested in via the compliance of
distributed computations with carefully-chosen local properties. In this spirit, we show how PCD systems for
constant-depth distributed computations give rise to PCD systems for a class of polynomial-depth distributed
computations (including polynomial-length paths). Finally, we show how these can in turn be used to
obtain complexity-preserving SNARKs (that, in particular, have no preprocessing), by suitably representing
a computation to be verified as a sequence of “small” computations in a distributed path computation.

Proving the above claims about PCD systems will enable us to construct complexity-preserving PCD
systems as well. Next, we provide a more detailed discussion of these claims.

1.5 Roadmap

In Section 2, we discuss our results in somewhat more detail, describing each of the three tools we develop,
and then how these come together for our main result. We then proceed to the technical sections of the
paper, beginning with definitions of the universal relation and RAMs in Section 3, of SNARKs in Section 4,
and of PCD in Section 5. After that, we give technical details for our three tools, in Section 6, Section 7, and
Section 8 respectively. In Section 9, we finally give the technical details for how our tools come together to
yield the transformations claimed by our main theorem.

2 Overview of Results

We discuss our results in more detail.

2.1 SNARKs and Proof-Carrying Data

To describe our results, we first recall in more detail what are SNARKs and Proof-Carrying Data. The
formal definitions can be found in Section 4 and Section 5 respectively.

When discussing verification-of-computation problems, it is convenient to consider a canonical repre-
sentation given by the universal language LU [BG08]. This language consists of all y = (M,x, t), where
M is a random-access machine, x is an input for M, and t is a time bound, such that there is a witness w for
which M(x,w) accepts within t time steps (see Section 3). When considering an NP language L ⊆ LU , the
machine M is the NP verification machine and t = t(|x|) is the polynomial bound on its running time.

SNARKs. A SNARK (G,P,V) for an NP language L ⊂ LU works as follows. The generator G(1k), where
k is the security parameter, samples a reference string σ and verification state τ in time poly(k). The prover
P(σ, y, w), where y = (M,x, t) ∈ L and w is a witness for y, produces a proof π in time poly(k+ |y|+ t).

11

The verifier V(τ, y, π) deterministically decides whether to accept π as a proof for y, in time poly(k + |y|).
The polynomial poly is universal (and thus independent of the NP language L, and its associated running
time t). In terms of security, the SNARK proof of knowledge property states that: when a malicious efficient
prover P∗(σ) produces a statement y (possibly depending on σ) and proof π that is accepted by V , then,
with all but negligible probability, a corresponding efficient extractor EP∗(σ) outputs a witness w for y.

PCD. We define PCD systems as in [CT10], except for minor modifications to suit our setting and the
plain model. A PCD system is associated with a compliance predicate C representing a local security
property to be enforced throughout a distributed computation. It is a triple (G,PC,VC), where G is the
generator, PC the prover, and VC the verifier; it induces a dynamic compiler to be used in a distributed
computation as follows. The generator G, on input the security parameter k, samples a reference string σ
and a corresponding verification state τ . Then, any party in the distributed computation, having received
proof-carrying input messages ~zi and produced an output message zo to be sent to a next party, invokes the
PCD prover PC(σ, zo, linp,~zi, ~πi), where~zi are the input messages, ~πi their proofs, and linp is any additional
local input used (e.g., code or randomness), to produce a proof πo for the claim that zo is consistent with
some C-compliant distributed computation leading up to zo. The verifier VC(τ, zo, πo) can be invoked by
any party knowing the verification state τ in order to verify the compliance of a message zo. (If the PCD
system is publicly verifiable, anyone can be assumed to know τ ; in the designated-verifier case, typically,
only some parties, or even just one, will know τ .)

From a technical perspective, we can think of a PCD system as a distributed SNARK: the proving algo-
rithm is “distributed” among the parties taking part in the computation, each using a local prover algorithm
(with local inputs) to prove compliance of the distributed computation carried out so far, based on previous
proofs of compliance.

Succinctness. Analogously to a SNARK, the generator G(1k) is required to run in time poly(k), the
(honest) prover PC(σ, zo, linp,~zi, ~πi) in time poly(k + |C| + |zo| + tC(|zo|)), and the verifier VC(τ, zo, πo)
in time poly(k + |C| + |zo|), where tC(|zo|) is the time to evaluate C(zo;~zi, linp) and poly is a universal
polynomial. In other words, proof-generation by the prover PC is (relatively) efficient in the local computa-
tion (and independent of the computation performed by past or future nodes), and proof verification by the
verifier VC is independent of the computation that produced the message (no matter how long and expensive
is the history that led to the message being verified).

Security. Again analogously to a SNARK, a PCD system also has a proof of knowledge property: when
a malicious prover P∗(σ) produces a message zo and proof πo such that VC(τ, zo, πo) = 1 then, with all
but negligible probability, the extractor EP∗(σ) outputs a full transcript of a distributed computation that
is C-compliant and leads to the message zo. In other words, VC can only be convinced to accept a given
message whenever the prover P∗ actually “knows” a C-compliant computation leading up to that message.

A useful notion: the distributed computation graph. It will be convenient to think of a distributed
computation “unfolding over time” as a (labeled) directed acyclic graph (generated dynamically as the com-
putation evolves) where computations occur at nodes, and directed edges denote messages exchanged be-
tween parties. (When the same party computes twice, it will be a separate node “further down” the graph;
hence the graph is acyclic.) See Figure 1 for a graphical depiction.

Preprocessing SNARKs and PCD systems. We also consider the weaker notion of an (expensive) pre-
processing SNARK, in which the generator takes as additional input a time bound B, may run in time
poly(k+B), and the reference string it outputs only works for computations of length at mostB. Similarly,
we also consider preprocessing PCD systems, where the reference string works for distributed computations
in which every node’s computation is at most B (and not the entire distributed computation).

12

We now move to describe in more detail, each of the three main tools developed to obtain our transformation.

2.2 The SNARK Recursive Composition Theorem

Our first step is to show that the existence of a SNARK implies the existence of a PCD system, with anal-
ogous verifiability and efficiency properties, for the class of constant-depth compliance predicates. Here,
the depth d(C) of a compliance predicate C is the length of the longest path in (the graph corresponding to)
any distributed computation compliant with C. (Note that a distributed computation of depth d(C), even a
constant, may have many more “nodes” than d(C); e.g., it could be a wide tree of depth d(C).)

Theorem 1 (SNARK Recursive Composition— informal).
(i) Any publicly-verifiable SNARK can be efficiently transformed into a corresponding publicly-verifiable

PCD system for constant-depth compliance predicates.
(ii) Assuming the existence of FHE, any designated-verifier SNARK can be efficiently transformed into a

corresponding designated-verifier PCD system for constant-depth compliance predicates.
Moreover, if the SNARK is of the preprocessing kind, then so is the corresponding PCD system; in such a
case, our transformation further relies on collision-resistant hashing.

The purpose of the theorem is to cleanly encapsulate the idea of “recursive proof composition” of
SNARKs within a PCD construction. After proving this theorem, every time we need to leverage the bene-
fits of recursive proof composition, we can conveniently work “in the abstract” by engineering a (constant-
depth) compliance predicate encoding the desired local property, and then invoke a PCD system to enforce
this property across a distributed computation. We now outline the ideas behind the proof of the theorem;
see Section 6 for details.

Part (i): the case of public verifiability. At high level, the PCD system (G,PC,VC) is constructed by
using the SNARK (G,P,V) as follows. The PCD generator G invokes the SNARK generator G. The
PCD prover PC uses the SNARK prover P to perform recursive proof composition relative to the given
compliance predicate C. Roughly, when a party A wishes to begin a computation with message zA, A
uses P to generate a SNARK proof πA for the claim “C(zA;⊥,⊥) = 1”; πA attests to the fact that zA is
a compliant “input” to the distributed computation. When a party B receives zA, after performing some
computation by using some local input linpB (which may include a program) and then producing a message
zB , B uses P to generate a SNARK proof πB for the claim “∃ (linp′B, z

′
A, π

′
A) s.t. C(zB; linp′B, z

′
A) = 1 and

π′A is a valid SNARK proof for the C-compliance of z′A”. And so on: in general, a party receiving input
messages~zi with corresponding proofs ~πi, having local input linp, and producing message zo, runs the PCD
prover PC(σ, zo, linp,~zi, ~πi), which uses P to generate a SNARK proof πo for the claim

“∃ (linp′,~z′i, ~π
′
i) s.t. C(zo; linp

′,~z′i) = 1 and each π′i is a valid SNARK proof for the C-compliance of z′i”;

the proof πo attests to the fact that zo can be “explained” with some C-compliant distributed computation.
The PCD verifier VC uses the SNARK verifier V to verify the proofs.

The proof of knowledge property of the SNARK is crucial for the above to work. Indeed, there likely
exists a proof, say, π1 for the C-compliance of z1, even if compliance does not hold, because the SNARK is
only computationally sound. While such “bad” proofs may indeed exist, they are hard to find. Proving the
statement above with a proof of knowledge, however, ensures that whoever is able to prove that statement
also knows a proof π1, and this proof can be found efficiently (and thus is not “bad”).

A key technical point is how to formalize the statement that “π is a valid proof for the C-compliance of
z”. Naively, such a statement would directly ask about the existence of a C-compliant distributed computa-
tion transcript T leading to z. However, this would mean that each prover along the way would have to know

13

the entire distributed computation so far. Instead, by carefully using recursion, we can ensure that the state-
ment made by each prover only involves its own proof-carrying input messages, local inputs, and outputs.
Following [CT10], this is formally captured by proving SNARK statements regarding the computation of a
special recursive “PCD machine” MC. The machine MC, given an alleged output message together with a
witness consisting of proof-carrying inputs, verifies: (a) that the inputs and outputs are C-compliant as well
as (b) verifying that each input carries a valid proof that MC itself accepts z after a given number of steps.
(Of course, to formalize this recursion, one has to use an efficient version of the Recursion Theorem.) See
Section 6.1 for details.

While the core idea behind our construction is similar to the ideas used in [Val08] and in [CT10], the
details and the proof are quite different: [Val08] focuses on a special case of PCD, while [CT10] work in a
model where parties can access a signature oracle rather than in the plain model.

Part (ii): the case of designated verifiers. The more surprising part of the theorem, in our mind, is the fact
that designated-verifier SNARKs can also be composed. Here, the difficulty is that the verification state τ
(and hence the verification code) is not public. Hence, we cannot apply the same strategy as above and prove
statements like “the SNARK verifier accepts”. Intuitively, fully-homomorphic encryption (FHE) may help
in resolving this problem, but it is not so clear how to use it. Indeed, if we homomorphically evaluate the
verifier, we only obtain its answer encrypted, whereas we intuitively would like to know right away whether
the proof we received is good or not, because we need to generate a new proof depending on it.

We solve this issue by directly proving that we homomorphically evaluated the verifier, and that a certain
encrypted bit is indeed the result of this (deterministic) evaluation procedure. Then, with every proof we
carry an encrypted bit denoting whether the data so far is C-compliantor not;when we need to “compose”
we ensure that the encrypted answer of the current verification is correctly multiplied with the previous bit,
thereby aggregating the compliance up to this point. For further details see Section 6.2.

The case of preprocessing SNARKs. Our theorem also works with preprocessing SNARKs. Specifically,
when plugging a preprocessing SNARK into the SNARK Recursive Composition Theorem, we obtain a
corresponding preprocessing PCD system, where (as in a preprocessing SNARK) the PCD generator G also
takes as input a time bound B, and produces a reference string and verification state that work as long as the
amount of local computation performed by a node (or, more precisely, the time to compute C at a node) in
the distributed computation is bounded by B. More concretely, if G invokes the SNARK generator G with
time boundB′, the computation allowed at each node i is allowed to be, roughly, as large asB′−deg(i) · tV ,
where tV is the running time of SNARK verifier V and deg(i) is the number of incoming inputs (which
is also the number of proofs to be verified); thus we can simply set B′ = B + maxi deg(i) · tV . (The
degree will always be bounded by a fixed polynomial in the security parameter in our applications.) Unlike
completeness, the security properties are not affected by preprocessing; the proof of the SNARK Recursive
Composition Theorem in the case with no preprocessing carries over to the preprocessing case. Yet, while
we do not need a different security proof for the preprocessing case, setting up a PCD construction that works
properly in this setting should be done with care. For example, in their construction of encryption with
targeted malleability, Boneh, Segev, and Waters [BSW12] recursively composed preprocessing SNARKs
without leveraging the fast running time of the SNARK verifier, and hence they needed a preprocessing step
that budgets for an entire distributed computation and not just a single node’s computation (as in our case).
This difference is crucial; for instance, it is essential to our result that allows to remove preprocessing from
a SNARK or PCD system.

Why only constant depth? The restriction to constant-depth compliance predicates arises because of tech-
nical reasons during the proof of security. Specifically, we must recursively invoke the SNARK knowledge

14

property in order to “dig into the past”, starting from a given message and proof. The recursion works for at
most a constant number of times, because each extraction potentially blows up the size of the extractor by a
polynomial, and that is why we need d(C) = O(1). (See Remark 6.3 for more details.) Still, we next show
that constant-depth compliance predicates can already be quite expressive.

2.3 The PCD Depth-Reduction Theorem

PCD systems for constant-depth compliance predicates are significantly more powerful than SNARKs; yet,
they may seem at first sight to not be as expressive as we would like. In general, we may be interested in
compliance predicates of polynomial depth, i.e., that allow for compliant distributed computations that are
polynomially deep. To alleviate this restriction, we prove that PCD systems for constant-depth compliance
predicates can “bootstrap themselves” to yield PCD systems for polynomial-depth compliance predicates, at
least for distributed computations that evolve over a path. Specifically, in a path PCD system, completeness
does not necessarily hold for any compliant distributed computation, but only for those where the associated
graph is a path, i.e., each node has only a single input message. We show:

Theorem 2 (PCD Depth Reduction— informal). Assume there exist collision-resistant hash functions. Any
PCD system for constant-depth compliance predicates can be efficiently transformed into a corresponding
path PCD system for polynomial-depth compliance predicates. The verifiability properties carry over, as do
efficiency properties. (The result also holds for additional classes of graphs; see Remark 8.8.)

At high-level, the proof consists of two main steps:
• Step 1. Say that C has polynomial depth d(C) = kc. We design a new compliance predicate TREEC of

constant depth c that is a “tree version” of C. Essentially, TREEC forces any distributed computation that
is compliant with it to be structured in the form of a k-ary tree whose leaves are C-compliant nodes of
a computation along a path, and whose internal nodes aggregate information about the computation. A
message at the root of the tree is TREEC-compliant only if the leaves of the tree have been “filled in” with
a C-compliant distributed computation along a path.
• Step 2. We then design a new PCD system (G′,P′C,V′C) based on (G,PTREEC ,VTREEC) that, intuitively,

dynamically builds a (shallow k-ary) Merkle tree of proofs “on top” of an original distributed computa-
tion. Thus, the new prover P′C at a given “real” node along the path will run PTREEC for each “virtual”
node in a slice of the tree constructed so far; roughly, PTREEC will be responsible for computing the proof
of the current virtual leaf, as well as merging any internal virtual node proofs that can be bundled together
into new proofs, and forwarding all these proofs to the next real node. The number of proofs sent between
real nodes is small: at most ck. The new verifier V′C will run VTREEC for each subproof in a given proof
of the new PCD system.

Essentially, the above technique combines the wide Merkle tree idea used in the construction of SNARKs
in [BCCT12, GLR11] and (once properly abstracted to the language of PCD) the idea of Valiant [Val08] for
building proofs “on top” of a computation in the special case of IVC. For the above high-level intuition to go
through, there are still several technical challenges to deal with; we account for these in the full construction
and the proof of the theorem in Section 8.

Effect of preprocessing. When the starting PCD system is a preprocessing one, there is a bound B on
the computation allowed at any node. Using a preprocessing PCD system in the PCD Depth-Reduction
Theorem yields a preprocessing path PCD system where the bound on the computation allowed at each
node along the path is equal to the one of the starting PCD system, up to polynomial factors in k.

15

2.4 The Locally-Efficient RAM Compliance Theorem

So far we have shown how, given any SNARK, we can obtain a PCD system for constant-depth compliance
predicates, and then obtain a path PCD system for polynomial-depth compliance predicates; both PCD
systems inherit the efficiency and verifiability features of the given SNARK.

We now discuss the last ingredient required for our main technical result. Looking ahead, our proof
strategy to achieve complexity preservation, say, in a SNARK will be to reduce the task of verifying an NP
statement “∃ w s.t. M(x,w) = 1 in time t” to the task of verifying that a path distributed computation
is compliant with a corresponding (polynomial-depth) compliance predicate C(M,x,t). We can then verify
compliance with C(M,x,t) of such a distributed computation by using the path PCD system we constructed
from the SNARK. Moreover, if we can ensure that each node along the path of the distributed computation
only performs a small amount of computation, then we can “localize” the impact of any inefficiency of
the path PCD system. Concretely, preprocessing becomes inexpensive (because it only needs to budget for
small local computations), and computing a proof of compliance for the entire distributed computation can
be done in roughly the same time and space as those required to compute M(x,w).

At high-level, to achieve the above, we engineer the compliance predicate C(M,x,t) so to force any
distributed computation compliant with C(M,x,t) to verify the computation of the random-access machine
M on x (and some witness w), one step at a time for at most t steps. While verifying a single step of M
seems like a “small and local” computation, such verification takes time at least linear in the size ofM’s state,
which can be as large as M’s space complexity s. Because s could be on the order of t, naively breaking the
computation of M into many single-step computations does not yield small-enough local computations.

To overcome this problem, we proceed in two steps. First, we invoke a reduction by Ben-Sasson et
al. [BSCGT13]: given collision-resistant hashing, the problem of verifying an NP statement “∃ w s.t.
M(x,w) = 1 in time t” can be reduced to the simpler task of verifying a new NP statement “∃ w s.t.
M ′(x,w) = 1 in time t′”, where M ′ is a poly(k)-space machine and t′ = t · poly(k). The reduction
follows from techniques for online memory checking of Blum et al. [BEG+91], which use Merkle hashing
to outsource the machine’s memory and dynamically verify its consistency using only a small poly(k)-size
“trusted” memory. Second, we engineer a compliance predicate for ensuring correct computation of M ′,
one state transition at a time. Crucially, the overall reduction allows to compute a compliant distributed
computation using the same time and space as those originally required by M (up to poly(k) factors).

We now state informally the result; for details, see Section 7.

Theorem 3 (Locally-Efficient RAM Compliance — informal). LetH be a family of collision-resistant hash
functions. There is a linear-time transformation from any instance (M,x, t) and function h ∈ H to a
compliance predicate C(M,x,t),h with depth t · poly(k) satisfying the following properties.
1. Completeness: Given w such that M(x,w) accepts in time t and space s, one can generate, in time

(|M|+ |x|+ t) ·poly(k) and space (|M|+ |x|+ s) ·poly(k), a distributed computation on a path that is
compliant with C(M,x,t),h. Each node in the distributed computation performs poly(k+ |M|+ |x|) work.

2. Proof of knowledge: From any efficient adversary that, given a random h, outputs a distributed compu-
tation compliant with C(M,x,t),h, we can efficiently extract w such that M(x,w) accepts in time t.

2.5 Putting Things Together: A General Technique for Preserving Complexity

Equipped with the SNARK Recursive Composition, PCD Depth-Reduction, and Locally-Efficient RAM
Compliance Theorems, we restate our main theorem and sketch its proof.

Theorem 4 (Main Theorem, restated). LetH be a collision-resistant hash-function family.

16

1. Complexity-Preserving SNARK from any SNARK. There is an efficient transformation TH such that
for any publicly-verifiable SNARK (G,P,V) there is a polynomial p for which (G?,P?,V?) := TH(G,
P,V) is a publicly-verifiable SNARK that is complexity-preserving with a polynomial p, i.e.,
• the generator G? runs in time p(k) (in particular, there is no expensive preprocessing);
• the prover P? runs in time t ·p(k) and space s ·p(k) when proving that a t-time s-space NP random-

access machine M non-deterministically accepts an input x;
• the verifier V? runs in time |x| · p(k).

2. Complexity-Preserving PCD from any SNARK. There is an efficient transformation T′H such that for
any publicly-verifiable SNARK (G,P,V) there is a polynomial p for which (G?,P?,V?) := T′H(G,P,
V) is a publicly-verifiable PCD for constant-depth compliance predicates that is complexity-preserving
with polynomial p, i.e.,
• the generator G? runs in time p(k);
• the prover P? runs in time t · p(k) and space s · p(k) when proving that a message zo is C-compliant,

using local input linp and received inputs~zi, and evaluating C(zo; linp,~zi) takes time t and space s;
• the verifier V? runs in time |zo| · p(k).

Assuming fully-homomorphic encryption, similar statements hold for the designated-verifier cases.

Proof sketch. We first sketch the proof to the first item; we follow the plan outlined in Section 1.4. Let
(G,P,V) be any SNARK, and assume (for the worst) that it has expensive preprocessing. We invoke the
SNARK Recursive Composition Theorem to obtain a corresponding PCD system (G,P,V) for constant-
depth compliance predicates, and then the PCD Depth-Reduction Theorem to obtain a corresponding path
PCD system (G′,P′,V′) for polynomial-depth compliance predicates. Both transformations preserve the
verifiability and efficiency of the SNARK (including preprocessing).

We now use (G′,P′,V′) to construct a complexity-preserving SNARK (G?,P?,V?) as follows. The
new generator G?, given input 1k, outputs (σ′, τ ′) := ((h, σ), (h, τ)), where h← Hk, (σ, τ)← G′(1k, kc),
and c is a constant that only depends on (G,P,V). The new prover P?, given a reference string σ′, instance
(M,x, t), and a witness w, invokes the Locally-Efficient RAM Compliance Theorem in order to compute
the polynomial-depth compliance predicate C(M,x,t),h and, using the prover P′, computes a proof for each
message in the path distributed computation obtained from (M,x, t) and w (each time using the previous
proof); it outputs the final such proof as the SNARK proof. (We assume, without loss of generality, that |M|
and |x| are bounded by a fixed poly(k); if that is not the case (e.g., M encodes a large non-uniform circuit),
P? can work with a new instance (Uh, x̃,poly(k)+ t), where Uh is a universal random-access machine that,
on input (x̃, w̃), parses w̃ as (M,x, t, w), verifies that x̃ = h(M,x, t), and then runs M(x,w) for at most t
steps.) The new verifier V? similarly deduces C(M,x,t),h and uses V′ to verify a proof.

Overall, we “localized” the use of the (inefficient) PCD system (G′,P′,V′) (obtained from the inefficient
SNARK (G,P,V)), so the SNARK (G?,P?,V?) is complexity preserving.

To obtain the second item of the theorem, we invoke again the SNARK Recursive Composition Theorem
and the PCD Depth-Reduction Theorem, but this time with the complexity-preserving SNARK (G?,P?,V?);
the resulting PCD systems are complexity preserving.

See Figure 2 for a summary of how our theorems come together and Section 9 for more details.
Instantiations. Our theorem provides a technique to improve the algorithmic properties of any SNARK.
For concreteness, let us discuss what we obtain via our theorem from known SNARK constructions.

From preprocessing SNARKs. When plugging into our theorem any of the publicly-verifiable preprocess-
ing SNARKs in [Gro10, Lip12, GGPR12, BCI+13] (each of which can, roughly, be based on “knowledge-
of-exponent” [Dam92, BP04] and variants of computational Diffie-Hellman assumptions in bilinear groups),

17

we obtain the first constructions, in the plain model, of publicly-verifiable SNARKs and PCD systems that
are complexity-preserving (and, in particular, have no expensive preprocessing).

The aforementioned preprocessing SNARKs do not invoke the PCP Theorem but instead rely on simpler
probabilistic-checking techniques (which can be cast as linear PCPs [BCI+13]). While at first sight, these
techniques seem to inherently require an expensive preprocessing, our transformation shows that, in fact,
they can be used to obtain stronger solutions with no preprocessing (in fact, that are complexity-preserving),
still without invoking the PCP Theorem.

From PCP-based SNARKs. When plugging into our theorem any of the PCP-based SNARKs in [Mic00,
BCCT12, DFH12, GLR11], we obtain complexity-preserving SNARKs based on the PCP Theorem; this,
regardless of how poor is the time or space complexity of the PCP in the SNARK we start with. In particular,
our theorem circumvents the seemingly-inherent suboptimal time-space tradeoffs of PCP-based SNARKs.

Technical comparison. Our main theorem says that PCD systems for a large class of distributed compu-
tations can be obtained from collision-resistant hashing and any SNARK (that may have expensive prepro-
cessing). Our theorem does not rely on the SNARK knowledge extractor being very fast; we only assume
that the extractor is of polynomial size.

For convenience, we conclude by spelling out what our PCD constructions imply, via compliance engi-
neering (see Section 1.3), for the special cases of incrementally-verifiable computation (IVC) and targeted
malleability (TM) and how it compares to the relevant previous work. Valiant [Val08] obtained IVC for
every poly(k)-space machine from publicly-verifiable SNARKs having very efficient knowledge extractors;
we obtain IVC for any machine, under the same assumptions as our theorem. Boneh, Segev, and Waters
[BSW12] obtained TM for constant-depth distributed computations and a reference string as long as the
entire computation, from publicly-verifiable preprocessing SNARKs; we obtain TM, with poly(k)-size ref-
erence string, for distributed computations that are of constant depth or polynomially-long paths, under the
same assumptions as our theorem.

18

any (including preprocessing) SNARK

PCD for O(1)-depth compliance

path PCD for poly-depth compliance

complexity-preserving SNARK

complexity-preserving PCD for O(1)-depth compliance

complexity-preserving path PCD for poly-depth compliance

SNARK Recursive Composition Theorem

PCD Depth-Reduction Theorem

Locally-Efficient RAM Compliance Theorem

PCD Depth-Reduction Theorem

SNARK Recursive Composition Theorem

Figure 2: Summary of how our three main results come together; see Section 2.5 for a high-level
discussion. Starting from any SNARK, our main result produces a corresponding complexity-
preserving SNARK and PCD system (for a large class of distributed computations and compli-
ance predicates).

19

3 The Universal Language on Random-Access Machines

We define the universal relation [BG08] (along with related notions), which provides us with a canonical
form to represent verification-of-computation problems. Because, the notion of preserving complexity (of
SNARKs and PCD schemes) is defined relative to random-access machines [CR72, AV77], we make them
our choice of abstract machine for the universal relation.2 Doing so is also convenient because verification-
of-computation problems typically arise in the form of algorithms (e.g., “is there w that makes algorithm A
accept (x,w)?”).

Definition 3.1. The universal relation is the set RU of instance-witness pairs (y, w) =
(
(M,x, t), w

)
,

where |y|, |w| ≤ t and M is a random-access machine, such that M accepts (x,w) after at most t steps.3

We denote by LU the universal language corresponding toRU .

For any c ∈ N, we denote by Rc the subset of RU consisting of those pairs (y, w) =
(
(M,x, t), t

)

for which t ≤ |x|c; in other words, Rc is a “generalized” NP relation, where we do not insist on the same
machine accepting different instances, but only insist on a fixed polynomial bounding the running time in
terms of the instance size. We denote by Lc the language corresponding toRc.

4 SNARKs

A succinct non-interactive argument (SNARG) is a triple of algorithms (G,P,V) that works as follows.
The generator G, on input the security parameter k and a time bound B, samples a reference string σ and
a corresponding verification state τ . The honest prover P(σ, y, w) produces a proof π for the statement
y = (M,x, t) given a valid w, provided that t ≤ B; then V(τ, y, π) deterministically verifies π.

The SNARG is adaptive if the prover may choose the statement after seeing σ, otherwise, it is non-
adaptive. The SNARG is fully-succinct if G runs “fast”, otherwise, it is of the preprocessing kind.

Definition 4.1. A triple of algorithms (G,P,V), where G is probabilistic and V is deterministic, is a SNARG
for the relationRU if the following conditions are satisfied:

1. Completeness

For every large enough security parameter k ∈ N, every time bound B ∈ N, and every instance-witness
pair (y, w) =

(
(M,x, t), w

)
∈ RU with t ≤ B,

Pr

[
V(τ, y, π) = 1

∣∣∣∣
(σ, τ)← G(1k, B)
π ← P(σ, y, w)

]
= 1 .

2. Soundness (depending on which notion is considered)

2While random-access machines can be (nondeterministically) simulated by multitape Turing machines with only polyloga-
rithmic overhead in running time [Sch78, GS89], the space complexity of the random-access machine is not preserved by this
simulation. It is not known how to avoid the large space usage of this simulation. Thus, it is indeed important that we define the
universal relation with respect to random-access machines and not Turing machines.

3While the witness w for an instance y = (M,x, t) has size at most t, there is no a-priori polynomial bounding t in terms of
|x|. Also, the restriction that |y|, |w| ≤ t simplifies notation but comes with essentially no loss of generality: see [BSCGT13] for a
discussion of how to deal with “large inputs” (i.e., x or w much larger than t, in the model where M has random access to them).

20

• non-adaptive: For every polynomial-size prover P∗, every large enough security parameter k ∈ N,
every time bound B ∈ N, and every instance y = (M,x, t) /∈ LU ,

Pr

[
V(τ, y, π) = 1

∣∣∣∣
(σ, τ)← G(1k, B)

π ← P∗(σ, y)

]
≤ negl(k) .

• adaptive: For every polynomial-size prover P∗, every large enough security parameter k ∈ N, and
every time bound B ∈ N,

Pr

[
V(τ, y, π) = 1

y /∈ LU

∣∣∣∣
(σ, τ)← G(1k, B)

(y, π)← P∗(σ)

]
≤ negl(k) .

3. Efficiency

There exists a universal polynomial p such that, for every large enough security parameter k ∈ N, every
time bound B ∈ N, and every instance y = (M,x, t) with t ≤ B,

• the generator G(1k, B) runs in time

{
p(k +B) for a fully-succinct SNARG
p(k + logB) for a preprocessing SNARG

;

• the prover P(σ, y, w) runs in time

{
p(k + |M|+ |x|+ t+ logB) for a fully-succinct SNARG
p(k + |M|+ |x|+B) for a preprocessing SNARG

;

• the verifier V(τ, y, π) runs in time p(k + |M|+ |x|+ logB);

• an honestly generated proof has size p(k + logB).

A complexity-preserving SNARG is a SNARG where the generator, prover, and verifier complexities are
essentially optimal:

Definition 4.2. A triple of algorithms (G,P,V) is a complexity-preserving SNARG if it is a SNARG where
efficiency is replaced by the following stronger requirement:

Complexity-preserving efficiency

There exists a universal polynomial p such that, for every large enough security parameter k ∈ N, every
time bound B ∈ N, and every instance y = (M,x, t) with t ≤ B,

• the generator G(1k, B) runs in time p(k + logB);

• the prover P(σ, y, w) runs in time (|M|+ |x|+ t) · p(k + logB);

• the prover P(σ, y, w) runs in space (|M|+ |x|+ s) · p(k + logB);

• the verifier V(τ, y, π) runs in time (|M|+ |x|+ log t) · p(k + logB);

• an honestly generated proof has size p(k + logB).

A SNARG of knowledge, or SNARK for short, is a SNARG where soundness is strengthened as follows:

Definition 4.3. A triple of algorithms (G,P,V) is a SNARK if it is a SNARG where adaptive soundness is
replaced by the following stronger requirement:

21

Adaptive proof of knowledge4

For every polynomial-size prover P∗ there exists a polynomial-size extractor EP∗ such that for every
large enough security parameter k ∈ N, every auxiliary input z ∈ {0, 1}poly(k), and every time bound
B ∈ N

Pr

 V(τ, y, π) = 1

(y, w) /∈ RU

∣∣∣∣∣∣

(σ, τ)← G(1k, B)
(y, π)← P∗(z, σ)
w ← EP∗(z, σ)

 ≤ negl(k) .

One may want to distinguish between the case where the verifier state σ is allowed to be public or needs
to remain private. Specifically, a publicly-verifiable SNARK (pvSNARK) is one where security holds even
if σ is public; in contrast, a designated-verifier SNARK (dvSNARK) is one where σ needs to remain secret.

The SNARKs given in Definition 4.3 are for the universal relationRU and are called universal SNARKs.5

In this work, we neither rely on nor achieve universal SNARKs. Instead, we rely on and achieve SNARKs
for NP: these are SNARKs in which, when the verifier V is given as additional input a constant c > 0, proof
of knowledge only holds with respect to the NP relation Rc ⊂ RU (see Section 3). (Even in a SNARK for
NP, though, the polynomial p governing the efficiency of the SNARK is still required to be universal, that
is, independent of c.) Thus, everywhere in this paper, when we say “SNARK”, we mean “SNARK for NP”.
(And this is indeed the definition of SNARK studied, and achieved, by previous work.)

The technical difference between a universal SNARK and a SNARK for NP will not matter much for
most of the paper, except for when proving the SNARK Recursive Composition Theorem in Section 6 (and
this is why we first give the more natural definition of a universal SNARK). For completeness, we now also
define a SNARK for NP.

Definition 4.4. A SNARK for NP is defined as in Definition 4.3, except that proof of knowledge is replaced
by the following weaker requirement:

Adaptive proof of knowledge for NP

For every polynomial-size prover P∗ there exists a polynomial-size extractor EP∗ such that for every
large enough security parameter k ∈ N, every auxiliary input z ∈ {0, 1}poly(k), every time bound
B ∈ N, and every constant c > 0,

Pr

 Vc(τ, y, π) = 1

(y, w) /∈ Rc

∣∣∣∣∣∣

(σ, τ)← G(1k, B)
(y, π)← P∗(z, σ)
w ← EP∗(z, σ)

 ≤ negl(k) .

Remark 4.5 (fully-succinct SNARKs for NP). In a fully-succinct SNARK for NP, there is no need to
provide a time boundB to G, because we can setB := klog k. We can then write G(1k) to mean G(1k, klog k);
then, because logB = poly(k), G will run in time poly(k), P in time poly(k + |M|+ |x|+ t), and so on.

Remark 4.6 (multi-instance extraction). In this work we perform recursive extraction along tree structures.
In particular, we will be interested in provers producing a vector of instances ~y together with a vector of
corresponding proofs ~π. In such cases, it is convenient to use an extractor that can extract a vector of
witnesses ~w containing a valid witness for each proof accepted by the SNARK verifier. This notion of
extraction can be shown to follow from the “single-instance” extraction notion of Definition 4.3.

4One can also formulate weaker proof of knowledge notions; in this work we focus on the above strong notion.
5Barak and Goldreich [BG08] define universal arguments for RU with a black-box “weak proof-of-knowledge” property. In

contrast, our proof of knowledge property is not restricted to black-box extractors, and does not allow the extractor to be an implicit
representation of a witness.

22

Lemma 4.7 (adaptive proof of knowledge for instance vectors). Let (G,P,V) be a SNARK (as in Defini-
tion 4.3). Then for any polynomial-size prover P∗ there exists a polynomial-size extractor EP∗ such that for
every large enough security parameter k ∈ N, every auxiliary input z ∈ {0, 1}poly(k), and every time bound
B ∈ N,

Pr

 ∃ i s.t.

V(τ, yi, πi) = 1
(yi, wi) /∈ RU

∣∣∣∣∣∣

(σ, τ)← G(1k, B)
(~y, ~π)← P∗(z, σ)

~w ← EP∗(z, σ)

 ≤ negl(k) .

Remark 4.8 (security in the presence of a verification oracle). A desirable property (especially so when
preprocessing is expensive) is the ability to generate σ once and for all and then reuse it in polynomially-
many proofs (potentially by different provers). Doing so requires security also against provers that have
access to a proof-verification oracle, namely, have oracle access to V(τ, ·, ·). For pvSNARKs, this multi-
theorem proof of knowledge6 is automatically guaranteed. For dvSNARKs, however, multi-theorem proof
of knowledge needs to be required explicitly as an additional property. Usually, this is achieved by ensuring
that the verifier’s response “leaks” only a negligible amount of information about τ .7 The transformations
presented in this paper will preserve multi-theorem proof of knowledge; see [BCI+13] for a formal definition
of the property.

Remark 4.9 (generation assumptions). Depending on the model and required properties, there may be
different trust assumptions about who runs G(1k) to obtain (σ, τ), publish σ, and make sure the verifier has
access to τ . For example, in a dvSNARK, the verifier may run G himself and then publish σ (or send it to the
appropriate prover when needed) and keep τ secret for later; in such a case, we may think of σ as a verifier-
generated reference string. As another example, in a pvSNARK, the verifier may run G and then publish
σ; other verifiers, if they do not trust him, may have to run their own G to obtain outputs that they trust;
alternatively, we could assume that σ is a global reference string that everyone trusts. For both dvSNARKs
and pvSNARKs, when requiring a zero-knowledge property, we must assume that σ is a common reference
string (i.e., a trusted party ran G). The transformations presented in this paper will preserve zero-knowledge,
whenever available; in this paper, though, we do not study zero knowledge.

Remark 4.10 (the SNARK extractor E). In Definition 4.3, we require that any polynomial-size family of
circuits P∗ has a specific polynomial-size family of extractors EP∗ . In particular, we allow the extractor to
be of arbitrary polynomial-size and to be “more non-uniform” than P∗. In addition, we require that, for
any prover auxiliary input z ∈ {0, 1}poly(k), the polynomial-size extractor manages to perform its witness-
extraction task given the same auxiliary input z. The definition can be naturally relaxed to consider only
specific distributions of auxiliary inputs according to the required application.

One could consider stronger notions in which the extractor is a uniform machine that gets P∗ as in-
put, or even only gets black-box access to P∗. (For the case of adaptive SNARGs, this notion cannot be
achieved based on black-box reductions to falsifiable assumptions [GW11].) In common security reductions,
however, where the primitives (to be broken) are secure against arbitrary polynomial-size non-uniform ad-
versaries, the non-uniform notion seems to suffice (and is indeed the one we adopt in Definition 4.3). The
transformations presented in this paper preserve the notion of extraction; e.g., if you start with a SNARK
with uniform extraction, then you will obtain a complexity-preserving SNARK with uniform extraction too.

6Security against such provers can be formulated for soundness or proof of knowledge, both in the non-adaptive and adaptive
regimes. Because in this paper we are most interested in adaptive proof of knowledge, we shall refer to this setting.

7Note that O(log k)-theorem soundness always holds; the “non-trivial” case is whenever ω(log k). Weaker solutions to support
more theorems include simply assuming that the verifier’s responses remain secret (so that there is no leakage on τ), or re-generating
σ every logarithmically-many rejections, e.g., as in [KR06, GKR08, KR09, GGP10, CKV10].

23

5 Proof-Carrying Data

In Section 5.1, we begin by specifying the (syntactic) notion of a distributed computation that is considered
in proof-carrying data, the notion of compliance, and other auxiliary notions. Then, in Section 5.2, we
define proof-carrying data (PCD) systems, which are the cryptographic primitive that formally captures the
framework for proof-carrying data.

5.1 Distributed Computations And Their Compliance With Local Properties

We view a distributed computation as a directed acyclic8 graph G = (V,E) with node labels linp : V →
{0, 1}∗ and edge labels data : E → {0, 1}∗. The node label linp(v) of a node v represents the local input
(which may include a local program) used by v in his local computation. (Whenever v is a source or a sink,
we require that linp(v) = ⊥.) The edge label data(u, v) of a directed edged (u, v) represents the message
sent from node u to node v. Typically, a party at node v uses the local input linp(v) and input messages
(data(u1, v), . . . , data(uc, v)), where u1, . . . , uc are the parents of v in lexicographic order, to compute an
output message data(v, w) for a child node w; the party also similarly computes a message for every other
child node. We can think of the messages on edges going out from sources as the “inputs” to the distributed
computation, and the messages on edges going into sinks as the “outputs” of the distributed computation;
for convenience we will want to identify a single distinguished output.

Definition 5.1. A (distributed computation) transcript is a triple T = (G, linp, data), where G = (V,E)
is a directed acyclic graph G, linp : V → {0, 1}∗ are node labels, and data : E → {0, 1}∗ are edge labels;
we require that linp(v) = ⊥ whenever v is a source or a sink. The output of T, denoted out(T), is equal to
data(ũ, ṽ) where (ũ, ṽ) is the lexicographically first edge such that ṽ is a sink.

A proof-carrying transcript is a transcript where messages are augmented by proof strings, i.e., a function
proof : E → {0, 1}∗ provides for each edge (u, v) an additional label proof(u, v), to be interpreted as a proof
string for the message data(u, v). (This is a syntactic definition; the semantics are discussed in Section 5.2.)

Definition 5.2. A proof-carrying (distributed computation) transcript PCT is a pair (T, proof) where T
is a transcript and proof : E → {0, 1}∗ is an edge label.

Next, we define what it means for a distributed computation to be compliant, which is the notion of
“correctness with respect to a given local property”. Compliance is captured via an efficiently-computable
compliance predicate C, which must be locally satisfied at each vertex; here, “locally” means with respect to
a node’s local input, incoming data, and outgoing data. For convenience, for any vertex v, we let children(v)
and parents(v) be the vector of v’s children and parents respectively, listed in lexicographic order.

Definition 5.3. Given a polynomial-time predicate C, we say that a distributed computation transcript
T = (G, linp, data) is C-compliant (denoted by C(T) = 1) if, for every v ∈ V and w ∈ children(v), it
holds that

C(data(v, w); linp(v), inputs(v)) = 1 ,

where inputs(v) :=
(
data(u1, v), . . . , data(uc, v)

)
and (u1, . . . , uc) := parents(v). Furthermore, we say

that a message z is C-compliant if there is T such that C(T) = 1 and out(T) = 1.

8If the same party takes part in the computation at different times, we represent the party as multiple nodes.

24

Remark 5.4. We emphasize that in Definition 5.3 we consider one output message data(v, w) of v at a time.
The reason is that if we were to simultaneously give as input to C all the output messages of v, then C may
verify non-local properties (e.g., the messages sent to two different parties are the same). Such non-local
properties are beyond the scope of the PCD framework; in particular, to enforce such non-local properties,
additional communication among the parties may be required.

Remark 5.5 (polynomially-balanced compliance predicates). We restrict our attention to polynomial-time
compliance predicates that are also polynomially balanced with respect to the outgoing message. Namely,
the running time of C(zo;~zi, linp) is bounded by tC(|zo|) = |zo|eC , for a constant exponent eC that depends
only on C. This, in particular, implies that inputs for which |linp|+ |~zi| is greater than tC(|zo|) are rejected.
This restriction will simplify presentation, and the relevant class of compliance predicates is expressive
enough for most applications that come to mind. We also assume that the constant eC is hardcoded in the
description of C.

A notion that will be very useful to us is that of distributed computation transcripts that are B-bounded:

Definition 5.6. Given a distributed computation transcript T = (G, linp, data) and any edge (v, w) ∈ E,
we denote by tT,C(v, w) the time required to evaluate C(data(v, w); linp(v), inputs(v)). We say that T is
B-bounded if tT,C(v, w) ≤ B for every edge (v, w).

Remark 5.7. Note that B is a bound on the time to evaluate C at any node, and not a bound on the sum
of all such times. Furthermore, because we only consider polynomial-time computation, we always have a
concrete super-polynomial bound, e.g. tT,C(v, w) ≤ klog k, where k is the security parameter.

A property of a compliance predicate that plays an important role in many of our results is that of depth:

Definition 5.8. The depth of a transcript T, denoted d(T), is the largest number of nodes on a source-to-
sink path in T minus 2 (to exclude the source and the sink). The depth of a a compliance predicate C,
denoted d(C), is defined to be the maximum depth of any transcript T compliant with C. If d(C) :=∞ (i.e.,
paths in C-compliant transcripts can be arbitrarily long) we say that C has unbounded depth.

5.2 Proof-Carrying Data Systems

A proof-carrying data (PCD) system for a class of compliance predicates C is a triple of algorithms (G,P,
V) that works as follows:

• The (probabilistic) generator G, on input the security parameter k, outputs a reference string σ and a
corresponding verification state τ .

• For any C ∈ C, the (honest) prover PC := P(C, · · ·) is given a reference string σ, inputs ~zi with
corresponding proofs ~πi, a local input linp, and an output zo, and then produces a proof πo attesting to
the fact that zo is consistent with some C-compliant transcript.

• For any C ∈ C, the verifier VC := V(C, · · ·) is given the verification state τ , an output zo, and a
proof string πo, and accept if it is convinced that zo is consistent with some C-compliant transcript.

After the generator G has been run to obtain σ and τ , the prover PC is used (along with σ) at each node of
a distributed computation transcript to dynamically compile it into a proof-carrying transcript by generating
and adding a proof to each edge. Each of these proofs can be checked using the verifier VC (along with τ).

25

As in SNARKs, we say that a PCD system is fully-succinct if the generator G runs “fast”, otherwise, it
is of the preprocessing kind.

The formal definition. We now formally define the notion of PCD systems.9 We begin by introducing the
dynamic proof-generation process, which we call ProofGen. We define ProofGen as an interactive protocol
between a (not necessarily efficient) distributed-computation generator S and the PCD prover P, in which
both are given a compliance predicate C ∈ C and a reference string σ. Essentially, at every time step, S
chooses to do one of the following actions: add a new unlabeled vertex to the computation transcript so
far (this corresponds to adding a new computing node to the computation), label an unlabeled vertex (this
corresponds to a choice of local input by a computing node), or add a new labeled edge (this corresponds to
a new message from one node to another). In case S chooses the third action, the PCD prover PC produces
a proof for the C-compliance of the new message, and adds this new proof as an additional label to the new
edge. When S halts, the interactive protocol outputs the distributed computation transcript T, as well as
T’s output and corresponding proof. Intuitively, the completeness property requires that if T is compliant
with C, then the proof attached to the output (which is the result of dynamically invoking PC for each
message in T, as T was being constructed by S) is accepted by the verifier. Formally the interactive protocol
ProofGen(C, σ, S,P) is defined as follows:

ProofGen(C, σ, S,P) ≡

1. Set T and PCT to be “empty transcripts”.
(That is, T = (G, linp, data) and PCT = (T, proof) with G = (V,E) = (∅, ∅).)

2. Until S halts and outputs a message-proof pair (zo, πo), do the following:

(a) Give (C, σ,PCT) as input to S and obtain as output (b, x, y).
(b) If b = “add unlabeled vertex” and x 6∈ V , then set V := V ∪ {x} and linp(x) := ⊥.
(c) If b = “label vertex”, x ∈ V , x is nor a source or sink, and linp(x) = ⊥, then linp(x) := y.
(d) If b = “add labeled edge” and x 6∈ E:

i. Parse x as (v, w) with v, w ∈ V .
ii. Set E := E ∪ {(v, w)}.

iii. Set data(v, w) := y.
iv. If v is a source, set π := ⊥.
v. If v is not a source, set π := PC(σ, data(v, w), linp(v), inputs(v), inproofs(v)), where

inputs(v) :=
(
data(u1, v), . . . , data(uc, v)

)
, inproofs(v) :=

(
proof(u1, v), . . . , proof(uc, v)

)
,

and (u1, . . . , uc) := parents(v).
vi. Set proof(v, w) := π.

3. Output (zo, πo,T).

Having defined ProofGen, we are now ready for the definition:

Definition 5.9. A proof-carrying data system for a class of compliance predicates C is a triple of algo-
rithms (G,P,V), where G is probabilistic and V is deterministic, such that:

9At a technical level, our definition differs slightly than that given in [CT10]. First, we work in the plain model, while [CT10]
worked in a model where parties had access to a signature oracle. Second, we limit ourselves to the case where a compliance
predicate has a known polynomial running time, while [CT10] uniformly handled all polynomial-time compliance predicates; this
difference is analogous to the difference between a universal SNARK and a SNARK for NP (see discussion in Section 4), and is
not an important restriction for our purposes.

26

1. Completeness

For every compliance predicate C ∈ C and (possibly unbounded) distributed computation generator S,

Pr

T is B-bounded
C(T) = 1

VC(τ, zo, πo) 6= 1

∣∣∣∣∣∣
(σ, τ)← G(1k, B)

(zo, πo,T)← ProofGen(C, σ, S,P)

 ≤ negl(k) .

2. Proof of Knowledge

For every polynomial-size prover P∗ there exists a polynomial-size extractor EP∗ such that for every
compliance predicate C ∈ C, every large enough security parameter k ∈ N, every auxiliary input
z ∈ {0, 1}poly(k), and every time bound B ∈ N

Pr

 VC(τ, z, π) = 1(

out(T) 6= z ∨ C(T) 6= 1
)
∣∣∣∣∣∣

(σ, τ)← G(1k, B)
(z, π)← P∗(σ, z)

T← EP∗(σ, z)

 ≤ negl(k) .

3. Efficiency

There exists a universal polynomial p such that, for every compliance predicate C ∈ C, every large
enough security parameter k ∈ N, every time bound B ∈ N, and every B-bounded distributed compu-
tation transcript T,

• the generator G(1k, B) runs in time

{
p(k +B) for a fully-succinct PCD
p(k + logB) for a preprocessing PCD

;

• the prover PC(σ, data(v, w), linp(v), inputs(v), ~πi) runs in time
{
p(k + |C|+ tT,C(v, w) + logB) for a fully-succinct PCD
p(k + |C|+B) for a preprocessing PCD

,

where tT,C(v, w) denotes the time to evaluate C(data(v, w); linp(v), inputs(v)) at an edge (v, w);

• the verifier VC(τ, z, π) runs in time p(k + |C|+ |z|+ logB);

• an honestly generated proof has size p(k + logB).

We shall also consider a restricted notion of PCD system: a path PCD system is a PCD system where
completeness is guaranteed to hold only for distributed computations transcripts T whose graph is a line.

As with SNARKs (see Section 4), we distinguish between the case where the verifier state τ may be
public or needs to remain private. Specifically, a publicly-verifiable PCD system is one where security holds
even if τ is public. In contrast, a designated-verifier PCD system is one where τ needs to remain secret.
Similarly to SNARKs, this affects whether security holds in the presence of a proof-verification oracle
(see Remark 4.8): in the publicly-verifiable case this property is automatically guaranteed, while in the
designated-verifier case this it does not follow directly (besides as usual the trivial guarantees for O(log k)
verifications).

Remark 5.10. In a fully-succinct PCD system, there is no need to provide a time boundB to G, because we
can set B := klog k. In such cases, we write G(1k) to mean G(1k, klog k); then, because logB = poly(k),
G will run in time poly(k), P in time p(k + |C|+ tT,C(v, w)), and so on.

27

Remark 5.11 (adversarial compliance predicates). We could strengthen Definition 5.9 by allowing the ad-
versary to choose the (polynomially-balanced) compliance predicate C for which he produces a message
and proof. All of the theorems we discuss in this paper hold with respect to this stronger definition (though
one has to be careful about how to formally state the results). For convenience of presentation and also
because almost always C is “under our control”, we choose to not explicitly consider this strengthening.

A complexity-preserving PCD system is a PCD system where the generator, prover, and verifier com-
plexities are essentially optimal:

Definition 5.12. A triple of algorithms (G,P,V) is a complexity-preserving PCD system if it is a PCD
system where efficiency is replaced by the following stronger requirement:

Complexity-preserving efficiency

There exists a universal polynomial p such that, for every compliance predicate C ∈ C, every large
enough security parameter k ∈ N, every time bound B ∈ N, and every B-bounded distributed compu-
tation transcript T,

• the generator G(1k, B) runs in time p(k + logB);

• the prover PC(σ, data(v, w), linp(v), inputs(v), ~πi) runs in time (|C|+ tT,C(v, w)) · p(k + logB),
where tT,C(v, w) denotes the time to evaluate C(data(v, w); linp(v), inputs(v)) at an edge (v, w);

• the prover PC(σ, data(v, w), linp(v), inputs(v), ~πi) runs in space (|C|+sT,C(v, w)) ·p(k+logB),
where sT,C(v, w) denotes the space to evaluate C(data(v, w); linp(v), inputs(v)) at an edge (v, w);

• the verifier VC(τ, z, π) runs in time (|C|+ |z|) · p(k + logB);

• an honestly generated proof has size p(k + logB).

6 Proof Of The SNARK Recursive Composition Theorem

We provide here the technical details for the high-level discussion in Section 2.2. Concretely, we prove the
SNARK Recursive Composition Theorem, which is one of the three tools we use in the proof of our main
result (discussed in Section 9). Throughout this section, it will be useful to keep in mind the definitions
from Section 3 (where the universal language LU is introduced), Section 4 (where SNARKs are introduced),
Section 5.1 (where the notions of distributed computation transcripts, compliance predicates, and depth are
introduced), and Section 5.2 (where PCD systems are introduced).

We prove a composition theorem for “all kinds” of SNARKs: we show how to use a SNARK to obtain
a PCD system for constant-depth compliance predicates. More precisely, we present two constructions
for this task, depending on whether the given SNARK is of the designated-verifier kind or the publicly-
verifiable kind. (In particular, we learn that even designated-verifier SNARKs can be recursively composed,
which may come as a surprise.) In sum, we learn that the existence of a SNARK implies the existence of
a corresponding PCD system, with analogous verifiability and efficiency properties, for every compliance
predicate whose depth is constant. (In particular, if the SNARK is of the preprocessing kind, so will the
PCD system constructed from it.)

Formally:

Theorem 6.1 (SNARK Recursive Composition Theorem).

28

1. There exists an efficient transformation RECCOMP such that, for every publicly-verifiable SNARK (G,
P,V), (G,P,V) = RECCOMP(G,P,V) is a publicly-verifiable PCD system for every constant-depth
compliance predicate.

(If (G,P,V) is a preprocessing SNARK, we further assume the existence of a collision-resistant hash-
function familyH, and RECCOMP also depends onH.)

2. Suppose that E is a fully-homomorphic encryption scheme. There exists an efficient transformation
RECCOMPE such that, for every designated-verifier SNARK (G,P,V), (G,P,V) = RECCOMPE(G,
P,V) is a designated-verifier PCD system for every constant-depth compliance predicate.10

In Section 6.1 we prove the first part of the theorem (which deals with the publicly-verifiable case), and
then in Section 6.2 we prove the second part of the theorem (which deals with the designated-verifier case).

Remark 6.2 (depth-reduction for PCD systems). Constant-depth compliance predicates are not all that
weak. Indeed, as discussed informally in Section 2.3 (and in detail in Section 8), the depth of a compliance
predicate can always be improved exponentially, via the PCD Depth-Reduction Theorem, at least for all
distributed computations evolving over paths.

Remark 6.3 (beyond constant depth). In the SNARK Recursive Composition Theorem we have to restrict
the depth of compliance predicates to constant because our security reduction is based on a recursive com-
position of SNARK extractors, where the extractor at a given level of the recursion may incur an arbitrary
polynomial blowup in the size of the previous extractor; in particular, if we want the “final” extractors at the
leaves of the tree to each have polynomial size, we must make the aforementioned restriction in the depth.

If one is willing to make stronger assumptions regarding the size of the extractor EP∗ of a prover P∗ then
the conclusion of the SNARK Recursive Composition Theorem will be stronger. (Whether such stronger
extractability assumptions are plausible or not should be judged on a case-by-case basis. Here we do not
condemn or condone their use, but we simply state what are their implications to our theorem.)

Specifically, let us define the size of a compliance predicate C, denoted s(C), to be the largest number
of nodes in any transcript compliant with C. Then, for example:

• By assuming that |EP∗ | ≤ C|P∗| for some constant C (possibly depending on P∗), that is assuming
only a linear blowup, our result can be strengthened to yield PCD systems for logarithmic-depth
polynomial-size compliance predicates.

For instance, if a compliance predicate has O(log(k)) depth and only allows O(1) inputs per node,
then it has polynomial size; more generally, if a compliance predicate has depth logw(poly(k)) and
only allows w inputs per node, then it has polynomial size.

An extractability assumption of this kind is implicitly used in Valiant’s construction of incrementally-
verifiable computation [Val08].

• By assuming that |EP∗ | ≤ |P∗|+ p(k) for some polynomial p (possibly depending on P∗), that is as-
suming only an additive blowup, our result can be strengthened to yield PCD systems for polynomial-
size compliance predicates (which, in particular, have polynomial depth).

For instance, if a compliance predicate has polynomial depth and only allows one input per node, then
it has polynomial size.

10We do not require the verification state to be “reusable”; that is, we do not require the SNARK to be secure against provers
having access to a proof-verification oracle (see Remark 4.8). If this happens to be the case, then this “multi-theorem” proof-of-
knowledge property is preserved by the transformation.

29

(An alternative way to obtain PCD systems for polynomial-size compliance predicates is to strengthen
the extractability assumption to an “interactive online extraction”; see, e.g., [BP04, DFH12] for ex-
amples of such assumptions. For example, the kind of extraction that Damgård et al. [DFH12] assume
for a collision-resistant hash is enough to construct a SNARK with the interactive online extraction
that will in turn be sufficient for obtaining PCD systems for polynomial-size compliance predicates.)

More generally, it is always important that during extraction: (a) we only encounter distributed computation
transcripts that are not too deep relative to the blowup of the extractor size, and (b) we only encounter
distributed computation transcripts of polynomial size.

When we must limit the depth of a compliance predicate to constant (which we must when the blowup
of the extractor may be an arbitrary polynomial), there is no need to limit its size, because any compliance
predicate of constant depth must have polynomial size. However, when we limit the depth to a super constant
value (which we can afford when making stronger assumptions on the blowup of the extractor), we must
also limit the size of the compliance predicate to polynomial.11

6.1 Recursive Composition For Publicly-Verifiable SNARKs

We begin by giving the construction and proof, respectively in Section 6.1.1 and in Section 6.1.2, for the
publicly-verifiable case with no preprocessing of the SNARK Recursive Composition Theorem (i.e., Item 1
of Theorem 6.1 with no preprocessing); it will be useful to keep in mind Remark 4.5. After that, in Sec-
tion 6.1.3, we extend the discussion to the case with preprocessing. (And after that, in Section 6.2, we
proceed to the designated-verifier case of the theorem.)

6.1.1 The Construction

We are given a publicly-verifiable (fully-succinct) SNARK (G,P,V) for NP (see Definition 4.4). To con-
struct a publicly-verifiable (fully-succinct) PCD system (G,P,V) for constant-depth compliance predicates,
we follow the PCD construction of Chiesa and Tromer [CT10]. At high-level, given a (constant-depth)
compliance predicate C, at each node in the distributed computation, the PCD prover P invokes the SNARK
prover P to generate a SNARK proof attesting to the fact that the node knows (i) input messages (and a local
input) that are C-compliant with the claimed output message, and also (ii) corresponding proofs attesting
that these input messages themselves come from a C-compliant distributed computation. The PCD verifier
V then invokes the SNARK verifier V on an appropriate statement. More precisely, the construction of the
PCD system (G, wPPCD,V) is as follows:

• The PCD generator. On input the security parameter 1k, the PCD generator G runs the SNARK genera-
tor G(1k) in order to obtain a reference string σ and verification state τ , and then outputs (σ, τ). Without
loss of generality, we assume that both σ and τ include the security parameter 1k in the clear; further-
more, because we are focusing on the publicly-verifiable case, we may also assume that σ includes τ in
the clear.

11Interestingly, it seems that even if the size of a compliance predicate is not polynomial, a polynomial-size prover should not give
rise to distributed computations of super-polynomial-size during extraction, but we do not see how to prove that this is the case. This
technical issue is somewhat similar to the difficulty that Bitansky et al. found in constructing universal SNARKs in [BCCT12] and
not just SNARKs for specific languages. Chiesa and Tromer [CT10] were able to construct PCD systems for emphany compliance
predicate, with no restrictions on depth or size, but this was not in the plain model. We believe it to be an interesting open question
to make progress on the technical difficulties we find in the plain model with the ultimate goal of understanding what it takes to
construct PCD systems for any compliance predicate in the plain model.

30

Recall that we are temporarily focusing on the case where the publicly-verifiable SNARK (G,P,V)
is fully-succinct, so that σ and τ have size that is a fixed polynomial in the security parameter k; in
particular, σ and τ could be merged into one public parameter, but we choose to keep them separate for
the sake of clarity and exposition of the other cases.

• The PCD prover. For any compliance predicate C, on input (σ, zo, linp,~zi, ~πi), the PCD prover PC :=
P(C, · · ·) constructs a “SNARK theorem and witness” (y, w) = ((M,x, t), w) and then runs the SNARK
prover P(σ, y, w) to produce the outgoing proof πo to attach to the outgoing message zo. More precisely
(and recalling that τ is part of σ, i.e., it is public), PC chooses y and w as follows:

y :=
(
MV,C, (zo, τ), tV,C(|zo|+ |τ |)

)
and w := (linp,~zi, ~πi) ,

where MV,C is a machine called the PCD machine and tV,C(n) = neV,C is a polynomial time bound; both
MV,C and the exponent eV,C only depend on (and are efficiently computable from) the SNARK verifier
V and the compliance predicate C. We define MV,C and eV,C below.

• The PCD verifier. For any compliance predicate C, on input (τ, zo, πo), the PCD verifier VC :=
V(C, · · ·) checks that

VeV,C
(
τ,
(
MV,C, (zo, τ), tV,C(|zo|+ |τ |)

)
, πo

)
= 1 .

(Recall that, in a SNARK for NP, Vc denotes the fact that the verifier is given as additional input a
constant c > 0 and is only required to work for the relationRc; see Definition 4.4.)

Both the PCD prover PC and PCD verifier VC need to be able to efficiently generate the SNARK statement
(MV,C, (zo, τ), tV,C(|zo|+|τ |)) starting from (zo, τ); in particular, both need to efficiently generate MV,C and
tV,C(|zo|+ |τ |). We now define both MV,C and tV,C, and explain how these can be efficiently constructed.

The PCD machine MV,C. The PCD machine MV,C takes input x and witness w where x = (zo, τ) and
w = (linp,~zi, ~πi). Then, MV,C verifies that: (a) the message zo is C-compliant with the local input linp and
input messages ~zi, and (b) each π in the vector ~πi is a valid SNARK proof attesting to the C-compliance of
the corresponding message z in ~zi. The formal description of the machine MV,C is given in Figure 3; it is
clear from its description that one can efficiently deduce MV,C from V , C, and eV,C.

The time bound tV,C. We want tV,C(|zo|+|τ |) to bound the computation time of MV,C
(
(zo, τ), (linp,~zi, ~πi)

)
,

for any witness (linp,~zi, ~πi). We now explain how to choose the exponent eV,C of the time bound function
tV,C(n) = neV,C . Note that:

• The first part of the computation of the PCD machine MV,C is verifying C-compliance at the local
node, namely, verifying that C(zo; linp,~zi) = 1; since C is polynomially balanced (see Remark 5.5),
the time to perform this check is tC(|zo|), where tC is a polynomial depending on C.

• The second part of MV,C’s computation is verifying that the inputs are C-compliant, by relying on the
proofs that they carry; the time required to do so depends on the running time of the SNARK verifier
V and how many such inputs there are.

Thus, letting tV be the polynomial bounding the running time of the SNARK verifier V , the total computation
time of MV,C

(
(zo, τ), (linp,~zi, ~πi)

)
is:

tC(|zo|) +
∑

z∈~zi

tV
(
k + |yz|

)
(1)

31

MV,C(x,w) ≡
1. Parsing input and witness. Parse x as (zo, τ) and w as (linp,~zi, ~πi). Intuitively, ~zi are the input messages,
~πi corresponding proofs of C-compliance, linp a local input, zo an output message, and τ the SNARK verifi-
cation state.

2. Base case. If (linp,~zi, ~πi) = ⊥, verify that C(zo;⊥,⊥) = 1. (This corresponds to checking that zo is a
C-compliant source for the distributed computation.)

3. General case. Verify:

• Compliance of the current node: C(zo; linp,~zi) = 1.

• Compliance of the past: For each input z in~zi and corresponding proof π in ~πi verify that

VeV,C

(
τ,
(
MV,C, (z, τ), tV,C(|z|+ |τ |)

)
, π
)

= 1 .

(We now think of each z as an output of a previous distributed computation that carries a proof π attesting
to the C-compliance of z.)

Furthermore, if MV,C reaches the time bound tV,C(|zo| + |τ |), it halts and rejects. The function tV,C(·) is such
that tV,C(|zo|+ |τ |) = (k+ |zo|)eV,C where eV,C is an exponent depending on (and efficiently computable from)
V and C. We explain how to choose eV,C in the paragraph below.

(Above, the description of MV,C appears in its own code. This is only syntactic sugar, and, to give a completely
formal definition of MV,C, one needs to invoke an efficient version of the Recursion Theorem.)

Figure 3: The PCD machine MV,C for the publicly-verifiable case.

= tC(|zo|) +
∑

z∈~zi

tV

(
k + |MV,C|+ |(z, τ)|+ log

(
tV,C(|z|+ |τ |)

))
(2)

= tC(|zo|) +
∑

z∈~zi

tV

(
k + |C|+ |V|+ |z|+ |τ |+ log

(
tV,C(|z|+ |τ |)

))
(3)

= tC(|zo|) +
∑

z∈~zi

tV

(
k + |C|+ |z|+ |τ |+ log

(
tV,C(|z|+ |τ |)

))
(4)

≤ tC(|zo|) +
∑

z∈~zi

tV
(
k + |C|+ |z|+ |τ |+ (log k)2

)
(5)

≤ tC(|zo|) + tC(|zo|) · tV
(
k + |C|+ tC(|zo|) + |τ |+ (log k)2

)
, (6)

where (2) follows from (1) by expanding |yz|; (3) follows from (2) by expanding |MV,C| and |(z, τ)|; (4)
follows from (3) by assuming without loss of generality that |V| ≤ tV(k + |y|) for all k and y; (5) follows
from (4) because all computations are bounded by some super-polynomial function in the security param-
eter, say klog k, and hence can bound tV,C(|z| + |τ |) by klog k and thus log tV,C(|z| + |τ |) ≤ (log k)2 (see
Remark 5.7); (6) follows from (5) because C is polynomially-balanced and thus |~zi| ≤ tC(|zo|).

Overall, from (6), we conclude that the total computation time of MV,C
(
(zo, τ), (linp,~zi, ~πi)

)
can be

bounded by tV,C(|zo| + |τ |) = (|zo| + |τ |)eV,C where eV,C is an exponent that can be efficiently computed
from V (and tV) and C (and tC). (Note that the running time of VeV,C is tV , which is is independent of eV,C;
thus, there is no issue of circularity here; see Definition 4.4.)

32

6.1.2 Proof Of Security

We now show that (G,P,V) is a (publicly-verifiable) PCD system for constant-depth compliance predi-
cates. The completeness and efficiency properties of the PCD system immediately follow from those of the
SNARK (G,P,V). We thus concentrate on proving the adaptive proof of knowledge property. Let us fix a
compliance predicate C with constant depth d(C).

Our goal is the following: for any (possibly malicious) polynomial-size prover P∗, we need to construct
a corresponding polynomial-size extractor EP∗ such that, when P∗ convinces VC that a message zo is C-
compliant, the extractor can find a C-compliant transcript T with output zo (which “explains” why VC
accepted). To achieve this goal, we employ a natural recursive extraction strategy, which we now describe.

Given the prover P∗, we construct d(C) (families of) polynomial-size extractors E1, . . . , Ed(C), one for
each potential depth of the distributed computation. To make notation lighter, we do not explicitly write
the auxiliary input z that may be given to P∗ and its extractor EP∗ (e.g., any random coins used by P∗);
similarly for the SNARK provers and their extractors discussed below. This is not a problem because what
we are going to prove holds also with respect to any auxiliary input distribution Z , provided the underlying
SNARK is secure with respect to the same auxiliary input distribution Z .

Specifically, the extractors are constructed in the following way:

• Use the PCD prover P∗ to construct the SNARK prover P∗1 that works as follows: on input σ, P∗1
computes (z1, π1) ← P∗(σ), constructs the instance y1 := (MV,C, (z1, τ), tV,C(|z1| + |τ |)), and
outputs (y1, π1). Then define E1 := EP∗1 to be the SNARK extractor for the SNARK prover P∗1 .
Like P∗1 , E1 also expects input σ; E1 returns a string (~z2, ~π2, linp1) that is (with all but negligible
probability) a valid witness for the SNARK statement y1, assuming that VC (and thus also VeV,C)
accepts π1.

• Use E1 to construct the new SNARK prover P∗2 that works as follows: on input σ, P∗2 computes
(~z2, ~π2, linp1)← E1(σ) and then outputs (~y2, ~π2), where the vector of SNARK statements ~y2 contains
an entry yz := (MV,C, (z, τ), tV,C(|z| + |τ |)) for each entry z in ~z2. Then define E2 := EP∗2 to be the
SNARK extractor for the SNARK prover P∗2 . Given σ, with all but negligible probability, E2 outputs
a witness for each statement and convincing proof (y, π) in (~y2, ~π2). (See Remark 4.6.)

• In general, for each 1 < j ≤ d(C), we similarly define P∗j and Ej := EP∗j .

We can now define the extractor EP∗ . On input σ, EP∗ constructs a distributed computation transcript T
whose graph is a directed tree, by running E1, . . . , Ed(C) in order; each such extractor produces a corre-
sponding level in the distributed computation tree. Specifically, each witness (~z, ~π, linp) extracted by Ej
corresponds to a node v on the j-th level of the tree, with local input linp(v) := linp and incoming messages
inputs(v) := ~z. The tree has a single sink s with only one edge (s′, s) going into it; the message on that
edge is data(s, s′) := z1. (Recall that z1 is the message output by P∗.) The leaves of the tree are the vertices
for which the extracted witnesses are (linp,~z, ~π) = ⊥.12

Note that each Ej is of polynomial size, because each Ej is constructed via a constant number of recursive
invocations of the SNARK proof of knowledge, and each such invocation incurs an arbitrary polynomial
blowup in the size of the extractor relative to its prover. Thus, we deduce that EP∗ is also of polynomial size.

We are left to argue that the transcript T extracted by EP∗ is C-compliant and has output z1:
12During extraction we may find the same message twice; if so, we could avoid extracting from this same message twice by

simply putting a “pointer” from where we encounter it the second time to the first time we encountered it. We do not perform this
“representation optimization” as it is inconsequential in this proof. (Though this optimization is important when carrying out the
proof for super-constant d(C) starting from stronger extractability assumptions; see Remark 6.3.)

33

Proposition 6.4. Let P∗ be a polynomial-size PCD prover, and let EP∗ be its corresponding polynomial-size
extractor as defined above. Then:

Pr

 VC(τ, z1, π1) = 1(

out(T) 6= z1 ∨ C(T) 6= 1
)
∣∣∣∣∣∣

(σ, τ)← G(1k)
(z1, π1)← P∗(σ)

T← EP∗(σ)

 ≤ negl(k) .

Proof. By construction, out(T) = z1 always. We are left to prove that (with all but negligible probability
whenever VC accepts) it holds that C(T) = 1. The proof is by induction on the level of the extracted tree
(going from root to leaves). Recall that there are at most d(C) = O(1) levels all together.

For the base case, we show that for all large enough k ∈ N, except with negligible probability, whenever
the prover P∗ convinces the verifier VC to accept (z1, π1), the extractor E1 outputs (~z2, ~π2, linp1) such that:

1. C(z1;~z2, linp1) = 1, and

2. for each (z, π) in (~z2, ~π2), letting yz := (MV,C, (z, τ), tV,C(|z|+ |τ |)), it holds that VeV,C(τ, yz, π) = 1.

Indeed, VC(τ, z1, π1) = 1 implies VeV,C(τ, yz1 , π1) = 1, where yz1 = (MV,C, (z1, τ), tV,C(|z1| + |τ |)).
By the SNARK proof of knowledge property, whenever VC accepts, with all but negligible probability, the
extractor E1 outputs a valid witness (~z2, ~π2, linp2) for the statement yz1 . By construction of the PCD machine
MV,C, the extracted witness (~z2, ~π2, linp2) satisfies both of the claimed properties.

For the inductive step, we can prove in a similar manner the compliance of a level in the extracted
distributed computation tree, assuming compliance of the previous level. Specifically, assume that for each
node v in level 1 ≤ j < d(C) the following holds: for each (z, π) in (~zv, ~πv), it holds that VeV,C(τ, yz, π) =
1, where (~zv, ~πv) are v’s incoming messages and proofs (extracted by Ej) and yz := (MV,C, (z, τ), tV,C(|z|+
|τ |)). Then, with all but negligible probability, for any node u with (u, v) ∈ E, the extractor Ej+1 outputs a
valid witness (~zu, ~πu, linpu) for the statement yzu , where zu is the message in ~zv corresponding to the edge
(u, v). We conclude that:

1. C(zu;~zu, linpu) = 1, and

2. for each (z, π) in (~zu, ~πu), letting yz := (MV,C, (z, τ), tV,C(|z|+ |τ |)), it holds that VeV,C(τ, yz, π) = 1.

This completes the inductive step, and we can indeed conclude that T is compliant with C.

6.1.3 The Preprocessing Case

We now describe how to modify the aforementioned discussion for the case where (G,P,V) is a prepro-
cessing SNARK. In such a case, the generator G takes as additional input a time bound B = B(k), and
generates a reference string σ and corresponding verification state τ that only allow proving and verifying
statements y of the form (M,x, t) where |M| + |x| + t < B; statements that do not meet this criteria are
automatically rejected by the verifier. (Note that this differs from a SNARK for a relationRc, which allows
t to grow as fast as, but not faster than, |x|c.) Of course, the running time of the SNARK verifier V is still
required to be poly(k + |y|) and is, in particular, independent of B. (The fact that the running time of V ,
and not just the length of an honestly-generated proof, is short is crucial in our context.)

When using a preprocessing SNARK in the construction from Section 6.1.1, we obtain a preprocessing
PCD system. (See Item 3 of Definition 5.9.) That is, the construction yields PCD systems where the
generator G takes as additional input a time bound B, and the PCD system works only for B-bounded
distributed computations (see Definition 5.6): namely, distributed computations where computing C at any

34

node takes time at most B. (We stress once more that the bound B is for a single node’s computation time,
and not for the sum of all such times!)

More precisely, the construction of the generator G in Section 6.1.1 has to be slightly modified: the
generator G, on input (1k, B), invokes G(1k, B′) where B′ := polyV,H(k + B) for some polyV,H that
only depends on V and the collision-resistant hash-function family H. Essentially, we need to ensure that,
whenever checking compliance of a message z takes time at most B, it holds that tV,C(|z|+ |τ |) ≤ B′. We
now explain why the above choice of B′ suffices.

Whenever computing C on a message z takes time at most B (as is the case in a B-bounded distributed
computation), one can verify that tV,C(|z|+|τ |) ≤ polyV(k+B+|C|). Furthermore, we can assume without
loss of generality that |C| = polyH(k). Indeed, if that is not the case, we can consider C′ that has hardcoded
a hash ρ of C, always expects a local input linp′ = (C, linp), and first checks that ρ = h(C) and then checks
that the output is C-compliant relative to linp and the input messages. Thus, overall, polyC(|z|) ≤ B implies
that tV,C(|z|) ≤ polyV,H(k +B), and thus our choice of B′ suffices.

The aforementioned modification to the construction of G is the only one needed to make the construc-
tion from Section 6.1.1 work in the preprocessing setting.

We conclude by remarking that, when choosing B = poly(k), running G requires only poly(k) time;
in other words, preprocessing becomes “inexpensive”. One of the results of this paper is that, ultimately,
we can always get rid of expensive preprocessing, and being able to choose B = poly(k) (and make do
with enforcing C-compliance in only poly(k)-bounded distributed computations) is an important step when
proving this fact. See Section 2.5 and Section 9 for more details.

6.2 Recursive Composition For Designated-Verifier SNARKs

In Section 6.1 we have proved the publicly-verifiable case of the SNARK Recursive Composition Theo-
rem (i.e., Item 1 of Theorem 6.1). We now prove the designated-verifier case of the SNARK Recursive
Composition Theorem (i.e., Item 2 of Theorem 6.1). In other words, we show that we can also recur-
sively compose designated-verifier SNARKs to obtain designated-verifier PCD systems for constant-depth
compliance predicates.13

As before, we first give the construction and proof, respectively in Section 6.2.1 and in Section 6.2.2,
for the (designated-verifier) case with no preprocessing. Extending the discussion to the preprocessing case
is completely analogous to the extension in the publicly-verifiable case, explained in Section 6.1.3.14

6.2.1 The Construction

We are given a designated-verifier (fully-succinct) SNARK (G,P,V) for NP (see Definition 4.4). We need to
construct a designated-verifier (fully-succinct) PCD system (G,P,V) for constant-depth compliance predi-
cates.

When we try to adapt the PCD construction for the publicly-verifiable case (see Section 6.1.1) to the
designated-verifier case, we encounter the following difficulty: how does an arbitrary node in the computa-
tion prove that it obtained a convincing proof of compliance for its own input, when it cannot even verify
the proof on its own? More concretely: the node does not know the verification state τ (because it is secret)
and, therefore, cannot provide a witness for such a theorem.

13We recall that “designated-verifier” means (just like in the SNARK case) that verifying a proof requires a secret verification
state, and not that the messages in the distributed computation are encrypted; see Section 5.

14In particular, this extension also relies on collision-resistant hashing; however, this assumption does not have to be explicitly
required in the theorem statement, because it is implied by homomorphic encryption [IKO05].

35

We show how to circumvent this difficulty, using fully-homomorphic encryption (FHE). The idea goes
as follows. We encrypt the private verification state τ and attach its encryption cτ to the public reference
string σ. Then, when a node is required to verify the proof it obtained, it homomorphically evaluates the
SNARK verifier V on the encrypted verification state cτ and the statement and proof at hand. In order to
achieve compliance of the past, each node provides, as part of his proof, the result of the homomorphic
evaluation ĉ, and a proof that it “knows” a previous proof, such that ĉ is indeed the result of evaluating
V on cτ on this proof (and some corresponding statement). At each point the PCD verifier VC, can apply
the SNARK verifier V to check that: (a) the SNARK proof is valid, (b) the decryption of ĉ is indeed “1”.
(More precisely, we need to do an extra step in order to avoid the size of the proofs from blowing up due to
appending ĉ at each node.)

We now convert the above intuitive explanation into a precise discussion. The construction of the PCD
system (G,P,V) is as follows:

• The PCD generator. On input the security parameter 1k, the PCD generator G runs the SNARK gener-
ator G(1k) in order to obtain a reference string σ and verification state τ , samples a secret key sk and an
evaluation key ek for the FHE scheme E , computes an encryption cτ of the secret verification state, and
then outputs (σ̃, τ̃) :=

(
(σ, cτ), (τ, sk)

)
. Without loss of generality, we assume that both σ and τ include

the security parameter 1k in the clear; furthermore, we may also assume that cτ includes the evaluation
key ek. Recall that we are temporarily focusing on the case where the designated-verifier SNARK (G,
P,V) is fully-succinct, so that σ and τ have size that is a fixed polynomial in the security parameter.

• The PCD prover and the PCD machine. For any compliance predicate C, given input (σ̃, zo, linp,~zi, ~π
′
i),

the PCD prover PC = P(C, · · ·) works as follows:

1. Parse each π′i in ~π′i as a pair (πi, ĉi); construct corresponding vectors ~πi and ~̂ci.

2. First, PC computes a new evaluated verification bit ĉo that “aggregates” the evaluations ~̂cV of the
SNARK verifier together with the previous verification bits ~̂ci. Concretely, PC computes:

ĉo := Evalek

(∏
, (~̂ci,~̂cV)

)
,

where each ciphertext ĉV in ~̂cV corresponds to a triple (z, π, ĉ) in (~zi, ~πi,~̂ci) and is the result of
homomorphically evaluating the SNARK verifier as follows:

ĉV = Evalek

(
VeV,C

(
·, (MV,C, (z, ĉ, cτ), tV,C(|z|+ |ĉ|+ |cτ |)), π

)
, cτ
)
,

where MV,C is a machine called the PCD machine and tV,C(n) = neV,C is a polynomial time bound;
both MV,C and the exponent eV,C only depend on (and are efficiently computable from) the SNARK
verifier V and the compliance predicate C. We define MV,C and eV,C below.

3. Having computed ĉo, PC constructs a “SNARK theorem and witness” (y, w) = ((M,x, t), w) and
then runs the SNARK prover P(σ, y, w) to produce the proof πo, in order to then attach the proof
π′o := (πo, ĉo) to the outgoing message zo. More precisely, PC chooses y and w as follows:

y :=
(
MV,C, (zo, ĉo, c

τ), tV,C(|zo|+ |ĉo|+ |cτ |)
)

and w := (linp,~zi, ~πi,~̂ci) .

• The PCD verifier. For any compliance predicate C, on input (τ̃ , zo, π
′
o), the PCD verifier VC :=

V(C, · · ·) checks that Decsk(ĉo) = 1 and

VeV,C
(
τ, (MV,C, (zo, ĉo, c

τ), tV,C(|zo|+ |ĉo|+ |cτ |)), πo
)

= 1 .

36

(Recall that, in a SNARK for NP, Vc denotes the fact that the verifier is given as additional input a
constant c > 0 and is only required to work for the relationRc; see Definition 4.4.)

Similarly to the publicly-verifiable case, both the PCD prover PC and PCD verifier VC need to be able to effi-
ciently generate the SNARK statement (MV,C, (zo, ĉo, c

τ), tV,C(|zo|+ |ĉo|+ |cτ |)) starting from (zo, ĉo, c
τ);

in particular, both need to efficiently generate MV,C and tV,C(|zo|+ |ĉo|+ |cτ |). We now define both MV,C
and tV,C, and explain how these can be efficiently constructed.

The PCD machine MV,C. Similarly to the publicly-verifiable case, the heart of the construction is the design
of the PCD machine MV,C. The formal description of the machine MV,C is given in Figure 4; it is clear from
its description that one can efficiently deduce MV,C from V , C, and eV,C.

MV,C(x,w) ≡

1. Parsing input and witness. Parse x as (zo, ĉo, c
τ) and w as (linp,~zi, ~πi,~̂ci). Intuitively, ~zi are the input

messages, ~πi corresponding (encrypted) proofs of C-compliance and ~̂ci corresponding evaluated verification
bits, linp a local input, zo an output message, ĉo an output evaluated verification bit, and cτ the encrypted
SNARK verification state.

2. Base case. If (linp,~zi, ~πi,~̂ci) = ⊥, verify that C(zo;⊥,⊥) = 1. (This corresponds to checking that zo is a
C-compliant source for the distributed computation.)

3. General case: Verify:

• Compliance of the current node: C(zo; linp,~zi) = 1.

• Compliance of the past: Verify that the ciphertext ĉo correctly aggregates the C-compliance of the input
messages: namely, verify that

ĉo = Evalek
(∏

, (~̂ci,~̂cV)
)
,

where each ciphertext ĉV in ~̂cV corresponds to a triple (z, π, ĉ) in (~zi, ~πi,~̂ci) and is the result of homomor-
phically evaluating the SNARK verifier as follows:

ĉV = Evalek

(
VeV,C

(
·, (MV,C, (z, ĉ, cτ), tV,C(|z|+ |ĉ|+ |cτ |)), π

)
, cτ
)
.

Furthermore, if MV,C reaches the time bound tV,C(|zo| + |ĉo| + |cτ |), it halts and rejects. The function tV,C(·)
is such that tV,C(|zo| + |ĉo| + |cτ |) = (|zo| + |ĉo| + |cτ |)eV,C where eV,C is an exponent depending on (and
efficiently computable from) V and C. We explain how to choose eV,C in the paragraph below.

(Above, the description of MV,C appears in its own code. This is only syntactic sugar, and, to give a completely
formal definition of MV,C, one needs to invoke an efficient version of the Recursion Theorem.)

Figure 4: The PCD machine MV,C for the designated-verifier case.

The time bound tV,C. Similarly to the publicly-verifiable case, we want tV,C(|zo| + |ĉo| + |cτ |) to bound
the computation time of MV,C

(
(zo, ĉo, c

τ), (linp,~zi, ~πi,~̂ci)
)
, for any witness (linp,~zi, ~πi,~̂ci). We now explain

how to choose the exponent eV,C of the time bound function tV,C(n) = neV,C . Note that:

• The first part of the computation of the PCD machine MV,C is (as before) verifying C-compliance
at the local node, namely, verifying that C(zo; linp,~zi) = 1; since C is polynomially balanced (see
Remark 5.5), the time to perform this check is tC(|zo|), where tC is a polynomial depending on C.

37

• The second part of MV,C’s computation is homomorphically evaluating the SNARK verifier for each
input message and homomorphically aggregating the various encrypted bits; the time required to do
so depends on the running time of the SNARK verifier V and how many such inputs there are.

Thus, letting tV be the polynomial bounding the running time of the SNARK verifier V , and letting tEvalek
be a polynomial such that tEvalek(k + T) bounds the time needed by Evalek to homomorphically evaluate a
T -time algorithm, the total computation time of MV,C

(
(zo, ĉo, c

τ), (linp,~zi, ~πi,~̂ci)
)

is:

tC(|zo|) +
∑

z∈~zi

tEvalek

(
k + tV

(
k + |y(z,ĉ)|

))
+
∑

z∈~zi

tEvalek

(
k + 2|~zi|

)
(7)

≤ tC(|zo|) + 2 ·
∑

z∈~zi

tEvalek

(
k + tV

(
k + |MV,C|+ |(z, ĉ, cτ)|+ log

(
tV,C(|z|+ |ĉ|+ |cτ |)

)))
(8)

= tC(|zo|) + 2 ·
∑

z∈~zi

tEvalek

(
tV

(
k + |C|+ |V|+ |z|+ |ĉ|+ |cτ |+ log

(
tV,C(|z|+ |ĉ|+ |cτ |)

)))
(9)

= tC(|zo|) + 2 ·
∑

z∈~zi

tEvalek

(
tV

(
k + |C|+ |z|+ |ĉ|+ |cτ |+ log

(
tV,C(|z|+ |ĉ|+ |cτ |)

)))
(10)

≤ tC(|zo|) + 2 ·
∑

z∈~zi

tEvalek

(
tV
(
k + |C|+ |z|+ |ĉ|+ |cτ |+ (log k)2

))
(11)

≤ tC(|zo|) + 2 · tC(|zo|) · tEvalek
(
tV
(
k + |C|+ tC(|zo|) + |ĉ|+ |cτ |+ (log k)2

))
, (12)

(8) follows from (7) by expanding |y(z,ĉ)|; (9) follows from (8) by expanding |MV,C| and |(z, ĉ, cτ)|; (10)
follows from (9) by assuming without loss of generality that |V| ≤ tV(k + |y|) for all k and y; (11) follows
from (10) because all computations are bounded by some super-polynomial function in the security parame-
ter, say klog k, and hence can bound tV,C(|z|+|ĉ|+|cτ |) by klog k and thus log tV,C(|z|+|ĉ|+|cτ |) ≤ (log k)2

(see Remark 5.7); (12) follows from (11) because C is polynomially-balanced and thus |~zi| ≤ tC(|zo|).
Overall, from (12), we conclude that the total computation time of MV,C

(
(zo, ĉo, c

τ), (linp,~zi, ~πi,~̂ci)
)

can be bounded by tV,C(|zo|+ |ĉo|+ |cτ |) = (|zo|+ |ĉo|+ |cτ |)eV,C where eV,C is an exponent that can be
efficiently computed from tEvalek , V (and tV), and C (and tC). (Note that the running time of VeV,C is tV ,
which is is independent of eV,C; thus, there is no issue of circularity here; see Definition 4.4.)

6.2.2 Proof Of Security

We now show that (G,P,V) is a (designated-verifier) PCD system for constant-depth compliance predi-
cates. The completeness and efficiency properties of the PCD system immediately follow from those of the
SNARK. We thus concentrate on proving the adaptive proof of knowledge property. Let us fix a compliance
predicate C with constant depth d(C).

Our goal is (again) the following: for any (possibly malicious) polynomial-size prover P∗, we need to
construct a corresponding polynomial-size extractor EP∗ such that, when P∗ convinces VC that a message
zo is C-compliant, the extractor can find a C-compliant transcript T with output zo (which “explains” why
VC accepted). To achieve this goal, we employ a recursive extraction strategy similar to the one we used in
the publicly-verifiable case (see Section 6.1.2), which we now describe.

Given the prover P∗, we construct d(C) (families of) polynomial-size extractors E1, . . . , Ed(C), one for
each potential depth of the distributed computation. As before, to make notation lighter, we do not explicitly
write the auxiliary input z that may be given to P∗ and its extractor EP∗ (e.g., any random coins used

38

by P∗). Unlike before, however, when we run SNARK extractors, we will need to explicitly specifcy the
auxiliary input they get (in this case, an encryption of the verification state; see Remark 6.5). All mentioned
implications hold also with respect any auxiliary input distribution Z , provided the underlying SNARK is
secure with respect to the auxiliary input distribution Z .

Overall, the PCD extractor EP∗ is defined analogously to the case of publicly-verifiable SNARKs, except
that now statements refer to the new PCD machine as well as to ciphertexts ĉ of the aggregated verification
bits, and the encrypted verification state cτ .

• Use the PCD prover P∗ to construct the SNARK prover P∗1 that works as follows: on input (σ, cτ),
P∗1 computes (z1, π1, ĉ1) ← P∗(σ, cτ), constructs the instance y1 := (MV,C, (z1, ĉ1, c

τ), tV,C(|z1| +
|ĉ1|+ |cτ |)) and outputs (y1, π1). (We think of cτ as an auxiliary input to P∗1 .) Then define E1 := EP∗1
to be the SNARK extractor for the SNARK prover P∗1 . Like P∗1 , E1 also expects input (σ, cτ); E1
returns a string (linp1,~z2, ~π2,

~̂c2) that hopefully is (with all but negligible probability) a valid witness
for the SNARK statement y1, assuming that VC (and hence also VeV,C) accepts π1. (As we shall see
later on, showing the validity of such a witness will require invoking semantic security, because the
SNARK prover receives cτ as auxiliary input, while the guarantee of extraction is for when (σ, τ) are
drawn independently of the auxiliary input.)

• Use E1 to construct the new SNARK prover P∗2 that works as follows: on input (σ, cτ), P∗2 computes
(linp1,~z2, ~π2,

~̂c2) ← E1(σ, cτ) and then outputs (~y2, ~π2), where the vector of SNARK statements ~y2
contains an entry y(z,ĉ) := (MV,C, (z, ĉ, c

τ), tV,C(|z| + |ĉ| + |cτ |)) for each (z, ĉ) in (~z2,~̂c2). Then
define E2 := EP∗2 to be the SNARK extractor for the SNARK prover P∗2 . Given (σ, cτ), with all but
negligible probability, E2 should output a witness for each statement and convincing proof (y, π) in
(~y2, ~π2). (See Remark 4.6.)

• In general, for each 1 < j ≤ d(C), we similarly define P∗j and Ej := EP∗j .

We can now define the extractor EP∗ . On input (σ, cτ), EP∗ constructs a distributed computation transcript
T whose graph is a directed tree, by running E1, . . . , Ed(C) in order; each such extractor produces a corre-
sponding level in the distributed computation tree. Specifically, each witness (~z, ~π,~̂c, linp) extracted by Ej
corresponds to a node v on the j-th level of the tree, with local input linp(v) := linp and incoming messages
inputs(v) := ~z. The tree has a single sink s with only one edge (s′, s) going into it; the message on that edge
is data(s, s′) := z1. (Recall that z1 is the message output by EP∗ .) The leaves of the tree are the vertices for
which the extracted witnesses are (~z, ~π,~̂c, linp) = ⊥. (See Footnote 12.)

As before, because d(C) is constant, each Ej is of polynomial size, and thus EP∗ is of polynomial size.

Remark 6.5 (SNARK security with auxiliary input). We require that the underlying SNARK is secure with
respect to auxiliary inputs that are encryptions of random strings (independently of the state (σ, τ) sampled
by the SNARK generator). Using FHE schemes with pseudo-random ciphertexts (e.g., [BV11]), we can
relax the auxiliary input requirement to only hold for truly random strings (which directly implies security
with respect to pseudo-random strings).

We are left to argue that the transcript T extracted by EP∗ is C-compliant and has output z1:

Proposition 6.6. Let P∗ be a polynomial-size PCD prover, and let EP∗ be its corresponding polynomial-size
extractor as defined above. Then:

Pr

 VC(τ, sk, z1, π1, ĉ1) = 1(

out(T) 6= z1 ∨ C(T) 6= 1
)
∣∣∣∣∣∣

(
(σ, cτ), (τ, sk)

)
← G(1k)

(z1, π1, ĉ1)← P∗(σ, cτ)
T← EP∗(σ, c

τ)

 ≤ negl(k) .

39

Proof. By construction, out(T) = z1 always. We are left to prove that (with all negligible probability
whenever VC accepts) it holds that C(T) = 1. The proof is by induction in the level of the extracted tree
(going from root to leaves). Recall that there are at most d(C) = O(1) levels all together.

For the base case, we show that for all large enough k ∈ N, except with negligible probability, whenever
the prover P∗ convinces the verifier VC to accept (z1, π1, ĉ1), the extractor E1 outputs (linp1,~z2, ~π2,

~̂c2) such
that:

1. C(z1;~z2, linp1) = 1,

2. ĉ1 = Evalek

(∏
, (~̂c2,~̂cV)

)
, where each ĉV in ~̂cV corresponds to one (z, π, ĉ) in (~z2, ~π2,~̂c2) and is

the result of homomorphically evaluating VeV,C as required (i.e., ĉV = Evalek(VeV,C(·, y(z,ĉ), π), cτ),
where y(z,ĉ) := (MV,C, (z, ĉ, c

τ), tV,C(|z|+ |ĉ|+ |cτ |))),

3. for each ĉ in ~̂c2, it holds that Decsk(ĉ) = 1, and

4. for each (z, π, ĉ) in (~z2, ~π2,~̂c2), letting y(z,ĉ) := (MV,C, (z, ĉ, c
τ), tV,C(|z|+ |ĉ|+ |cτ |)), it holds that

VeV,C(τ, y(z,ĉ), π) = 1.

Consider the alternative experiment where the prover P∗, instead of receiving the encrypted verification
state cτ , receives an encryption of an arbitrary string, say 0|τ |, denoted by c0. We first argue that, in the al-
ternative experiment, whenever VC accepts (and except with negligible probability), the first two conditions
above must hold, and then (via semantic security) we deduce the same for the original experiment. Indeed, in
the the alternative experiment, the SNARK prover P∗1 is only given the auxiliary input c0, which is indepen-
dent of the verification state τ ; hence, the SNARK proof of knowledge can be invoked. Specifically, except
with negligible probability, whenever VC (and hence also VeV,C) accepts, it must be that the extractor E1 out-
puts a valid witness (~z2, ~π2,~̂c2, linp1) for the statement y(z1,ĉ1) = (MV,C, (z1, ĉ1, c

0), tV,C(|z1|+ |ĉ1|+ |c0|))
output by P∗1 (when given c0 rather than cτ). In particular, by construction of MV,C, we deduce that (~z2,

~π2,~̂c2, linp1) satisfies the first two conditions above. Next, note that the first two conditions above can be
efficiently tested given only (z1, π1, ĉ1,~z2, ~π2,~̂c2, linp1, c

0), by running the (deterministic) algorithms C and
Evalek. (In particular, neither sk nor τ are required for such a test.) We can thus deduce that in the original
experiment, where P∗1 and E1 are given cτ , the first conditions hold with all but negligible probability. (For,
otherwise, we could break the semantic security of the encryption scheme, by distinguishing encryptions of
a random τ from encryptions of 0|τ |.)

We have thus established that whenever VC accepts (and except with negligible probability), the first
two conditions above must hold. We now argue that whenever the second condition holds, we can deduce
the last two conditions. Indeed, since the statement y(z1,ĉ1) is accepted by V , we know that Decsk(ĉ1) = 1.
This and the correctness of Evalek implies that all ciphertexts in (~̂c2,~̂cV) must also decrypt to “1”.15 Hence,
we deduce the third property (all ciphertexts in ~̂c2 decrypt to “1”), and by invoking the correctness of Evalek
once more we can deduce the last property (namely, for each (z, π, ĉ) in (vadata2, ~π2,~̂c2), it holds that
VeV,C(τ, y(z,ĉ), π) = 1).

To complete the proof, we can proof in a similar manner the inductive step. That is, assuming that
conditions three and four are satisfied by the j-th level of the tree, we can deduce that conditions one
and two hold for level j + 1. This is done by first establishing conditions one and two in an alternative
experiment where cτ is replaced by c0, and then invoking semantic security to deduce the same for the

15We can assume without loss of generality that all ciphertexts are decrypted to “0” or “1”, either by using an encryption scheme
where any ciphertext can be interpreted as such, or by adding simple consistency checks to the evaluated circuit.

40

original experiment. We then deduce, from the second property, the last two properties as we did for the
base case. Overall, we can conclude that T is C-compliant.

7 Proof Of The Locally-Efficient RAM Compliance Theorem

We provide here the technical details for the high-level discussion in Section 2.4. Concretely, we prove the
Locally-Efficient RAM Compliance Theorem, which is one of the three tools we use in the proof of our main
result (discussed in Section 9). Throughout this section, it will be useful to keep in mind the definitions from
Section 3 (where random-access machines and the universal language LU are introduced) and Section 5.1
(where the notions of distributed computation transcripts, compliance predicates, and depth are introduced).

We prove that membership in LU of an instance y = (M,x, t) with t ≤ klog k can be “computationally
reduced” to the question of whether there is a distributed computation compliant with Chy whose output is
a predetermined value (e.g., the string “ok”), where Chy is a compliance predicate of depth t · poly(k) and
h is drawn from a collision-resistant hash-function family. Furthermore, it suffices to consider poly(k +
|y|)-bounded distributed computations (i.e, that are “locally-efficient”), and such a distributed computation
can be generated from the instance y and a witness w for y in time (|M| + |x| + t) · poly(k) and space
(|M|+ |x|+ s) · poly(k).

Theorem 7.1 (Locally-Efficient RAM Compliance Theorem). Let H = {Hk}k∈N be a collision-resistant
hash-function family. There exist functions Φ,Ψ0,Ψ1 : {0, 1}∗ → {0, 1}∗ such that:

1. Completeness: For every instance y = (M,w, t), witness w with (y, w) ∈ RU , k ∈ N with t ≤ klog k,
and h ∈ Hk, it holds that Chy(T) = 1 and out(T) = ok, where Chy := Φ(h, y) is a compliance
predicate and T := Ψ0(h, y, w) is a distributed computation transcript.

2. Proof of knowledge: For every polynomial-size adversary A and large enough security parameter
k ∈ N:

Pr

t ≤ klog k
Chy(T) = 1

out(T) = ok
(y, w) 6∈ RU

∣∣∣∣∣∣∣∣∣∣

h← Hk(
M,x, t,T

)
← A(h)

y ← (M,w, t)
Chy ← Φ(h, y)

w ← Ψ1(h, y,T)

≤ negl(k) .

3. Efficiency:

• d(Chy) ≤ t · poly(k);
• Φ(h, y) runs in linear time;
• Ψ0(h, y, w) is a poly(k+ |y|)-bounded distributed computation transcript whose graph is a path;

furthermore, Ψ0(h, y, w) outputs the transcript in topological order while running in time (|M|+
|x|+ t) ·poly(k) and space (|M|+ |x|+s) ·poly(k), where s is the space complexity of M(x,w);
• Ψ1(h, y,T) runs in linear time.

The Locally-Efficient RAM Compliance Theorem thus ensures a very efficient computational Levin re-
duction16 from verifying membership in LU to verifying certain local properties of distributed computations.

16Recall that a Levin reduction is a Karp (instance) reduction that comes with witness reductions going “both ways”; in the
theorem statement, the instance reduction is Φ, the “forward” witness reduction is Ψ0, and the “backward” witness reduction is Ψ1.
The soundness guarantee provided by Φ is only computational.

41

When invoking the reduction for a given instance y and then using a PCD system to enforce the com-
pliance predicate Chy , Ψ0 preserves the completeness property of the PCD prover, while Ψ1 ensures that the
proof-of-knowledge property of the PCD verifier is preserved. (Conversely, if the PCD system used does
not have a proof-of-knowledge property, then the Locally-Efficient RAM Compliance Theorem cannot be
used, as can be seen from the security guarantee of the theorem statement. See the proof of Theorem 4 for
more details.)

As discussed in Section 2.4, the proof of the Locally-Efficient RAM Compliance Theorem consists of
two steps, respectively discussed in the next two subsections (Section 7.1 and Section 7.2).

Remark 7.2 (recalling random-access machines). Random-access machines can be defined in many ways,
depending on the choice of architecture (e.g., stack, accumulator, load/store, register/memory, and so on). In
this work, we do not need to present a formal definition, but having a very rough idea of how random-access
machines work will be helpful towards a better understanding of the material discussed in this section. For
concreteness, our discussions assume random-access machines following the familiar load/store architec-
ture; also, we assume that the random-access machine has sequential access to two tapes, one for the input
and one for the witness. For additional details see, e.g., [BSCGT13].

7.1 Machines With Untrusted Memory

Ben-Sasson et al. [BSCGT13] observed that, provided collision-resistant hash functions exist, member-
ship of an instance y = (M,x, t) in the universal language LU can be “simplified” to membership of
a corresponding instance y′ = (M ′, x, t′) where M ′ is a machine with poly(k) space complexity and
t′ = t · poly(k), when t ≤ klog k. We briefly recall here their result, which follows from techniques for
online memory checking [BEG+91].17

Lemma 7.3 ([BSCGT13]). Let H = {Hk}k∈N be a collision-resistant hash-function family. There exist
functions Φ,Ψ0,Ψ1 : {0, 1}∗ → {0, 1}∗ and b : N2 → N such that:

1. Syntax: For every random-access machineM, k ∈ N, h ∈ Hk, Φ(h,M) is a random-access machine.

2. Witness Reductions:

• For every instance y = (M,x, t), witness w with (y, w) ∈ RU , k ∈ N with t ≤ klog k, and h ∈ Hk,
it holds that

(
(Φ(h,M), x, b(t, k)),Ψ0(h, y, w)

)
∈ RU .

• For every polynomial-size adversary A and sufficiently large k ∈ N,

Pr

t ≤ klog k(
(Φ(h,M), x, b(t, k)), w′

)
∈ RU

(y, w) 6∈ RU

∣∣∣∣∣∣∣∣

h← Hk
(M,x, t, w′)← A(h)

y ← (M,x, t)
w ← Ψ1(h, y, w

′)

 ≤ negl(k) .

3. Efficiency:

• Φ(h,M) is a poly(k)-space random-access machine and b(t, k) = t · poly(k);
• Φ(h,M) and Ψ1(h, y, w

′) run in linear time;
• Ψ0(h, y, w) runs in time (|M|+ |x|+ t) · poly(k) and space (|M|+ |x|+ s) · poly(k), where s is

the space complexity of M(x,w).

17Unlike in [BEG+91], in our work (as in [BSCGT13]) universal one-way hash functions [NY89, Rom90] do not suffice because
the machine M receives, besides the input x, a (potentially-malicious) witness w.

42

Remark 7.4. For computations that do not use more than poly(k) space, the RAM Untrusted Memory
Lemma is not needed and one can directly proceed to the next step (discussed in Section 7.2).

Proof sketch. The idea is to construct from M a new machine M ′ := Φ(h,M) that uses the hash function
h to delegate memory to “untrusted storage” by dynamically maintaining a Merkle tree over such storage.

More precisely, the program of M ′ is equal to the program of M after replacing every load and store
instruction with corresponding sequences of instructions (which include computations of h) that implement
secure loads and secure stores.18 This mapping from h and M to M ′ can be performed in linear time by a
function Φ.

The new machine M ′ always keeps in a register the most up-to-date root of the Merkle tree. Secure
loads and secure stores are not atomic instructions in the new machine M ′ but instead “expand” into macros
consisting of basic instructions (which include many “insecure” load and store instructions). Concretely,
a secure load for address i loads from memory a claimed value and claimed hash, and then also loads
all the other relevant information for the authentication path of the i-th leaf, in order to check the value
against the locally-stored Merkle root. A secure store for address i updates the relevant information for the
authentication path of the i-th leaf and then updates the locally-stored Merkle root. Because each secure
load and secure store takes poly(k) instructions to complete, the running time of M ′ increases only by a
multiplicative factor of poly(k).

The security property of h ensures that it is hard for the (efficient) untrusted storage to return inconsistent
values. By thinking of the sequence of accessed values during the computation of M ′ on (x,w) as part of
the new witness for M ′ (and not as part of memory), then we see that M ′ is “computationally equivalent”
to M, except that its space requirement is only poly(k).

Given a witness w for M, extending w to a witness w′ for M ′ (which includes all the memory accesses
of the computation) can be done in time (|M|+ |x|+ t) · poly(k) and space (|M|+ |x|+ s) · poly(k) by a
function Ψ0 by simply running the computation. Going from a witness w′ for M ′ to a witness w for M only
requires Ψ1 to take a prefix of w′, and thus can be done in linear time.

7.2 A Compliance Predicate for Checking RAM Computations

We show how membership of an instance y = (M,x, t) can be reduced to the question of whether there is
a distributed computation compliant with Cy whose output is a predetermined value (e.g., the string “ok”),
where Cy is a compliance predicate of depth O(t) that we call the RAM Checker for y. Furthermore, it
suffices to consider O(s + |y|)-bounded distributed computations whose graph is a path, where s is the
space complexity of M, and such a distributed computation can be generated from the instance y and a
witness w in time O(|M|+ |x|+ t) and space O(|M|+ |x|+ s).

Essentially, Cy forces any distributed computation compliant with it to check the computation of M on
x one step at a time, for at most t steps, and the only way such a distributed computation can produce the
message ok is to reach an accepting state.

In Remark 7.7 below we explain how Lemma 7.3 and Lemma 7.5 (which formalizes the aforementioned
reduction) can be combined to obtain the Locally-Efficient RAM Compliance Theorem (Theorem 7.1).

Lemma 7.5. There exist functions Φ,Ψ0,Ψ1 : {0, 1}∗ → {0, 1}∗ such that for every instance y = (M,x, t):

1. Syntax: Cy := Φ(y) is a compliance predicate.

18In fact, the computation of M ′ begins with an initialization stage during which M ′ computes a Merkle tree over a sufficiently-
large all-zero memory, and then proceeds to execute the (modified) program of M. One also needs to take care of additional
technical details, such as ensuring that M ′ has enough registers to compute h and the register width is large enough for images of h

43

2. Witness Reductions:

• For every witness w with (y, w) ∈ RU , Cy(Ψ0(y, w)) = 1 and out(Ψ0(y, w)) = ok.
• For every transcript T with Cy(T) = 1 and out(T) = ok, (y,Ψ1(y,T)) ∈ RU .

3. Efficiency:

• d(Cy) ≤ t+ 1;
• Φ(y) runs in linear time;
• Ψ0(y, w) is aO(s+|y|)-bounded distributed computation transcript whose graph is a path; further-

more, Ψ0(y, w) outputs the transcript in topological order while running in time O(|M|+ |x|+ t)
and space O(|M|+ |x|+ s), where s is the space complexity of M(x,w);
• Ψ1(y,T) runs in linear time.

Proof. We begin by giving the construction of the compliance predicate Cy from the instance y:

Construction 7.6. The RAM Checker Cy for an instance y = (M,x, t) is defined as follows:

Cy(zo;~zi, linp)
def
=

1. Verify that~zi = (zi) for some zi.
2. If zi = ⊥:

(a) Verify that linp = ⊥.
(b) Verify that zo = (τ ′, S′) for some timestamp τ ′ and state S′ of M.
(c) Verify that S′ is an initial state of M.

3. If zo = ok:
(a) Verify that linp = ⊥.
(b) Verify that zi = (τ, S) for some timestamp τ and state S of M.
(c) Verify that S is a final accepting state of M.

4. Otherwise:
(a) Verify that zi = (τ, S) for some timestamp τ and state S of M.
(b) Verify that zo = (τ ′, S′) for some timestamp τ ′ and state S′ of M.
(c) Verify that τ, τ ′ ∈ {0, 1, . . . , t}.
(d) Verify that τ ′ = τ + 1.
(e) Verify that executing a single step of M starting with state S results in state S′, when x is on the first

tape of M and by supplying linp as the answer to a read to the second tape (if such a read is made).

The state of a random-access machine contains the values of the registers and the program counter, the
position of the head on the two tapes, and the contents of random-access memory. It is thus easy to see
that Cy(zo;~zi, linp) runs in time O(s+ |y|), and thus it suffices to consider O(s+ |y|)-bounded distributed
computations.

Note that Case 1 ensures that~zi is a vector consisting of a single component; in particular, any distributed
computation that is compliant with Cy must be a collection of disjoint paths. Case 2 is triggered when
checking the first node of any such path (due to the condition zi = ⊥), and verifies that the output data
consists of a timestamped initial state of M. Case 3 is triggered whenever the output data is equal to ok (i.e.,
zo = ok), and verifies that the input data consists of a timestamped final and accepting state of M. Case 4 is
triggered at all other times; it verifies that both input and output data consist of timestamped states (so that, in
particular, if a path contains the message with data ok, that message is the single and last message), that the
timestamp grows by 1, and that M(x, ·) goes from one state to the next when using linp as nondeterminism.

The mapping from y to Cy from Construction 7.6 can be performed by a function Φ in linear time.

44

Also, the depth (see Definition 5.8) of Cy is bounded by the time bound: specifically, d(Cy) ≤ t + 1.
Indeed, as mentioned in Construction 7.6, any transcript that is compliant with Cy consists of disjoint paths.
Because Cy ensures, along any such path, that timestamps increase by 1 from one message to the next and
are bounded by t, the depth of Cy is at most t+ 1. (The “+1” comes from the ok message.)

Next, we discuss the witness reductions, by defining Ψ0 and Ψ1.
Define t̃ to be the number of steps that it takes for M(x,w) to halt (note that t̃ ≤ t), and S0, . . . , St̃ to

be the sequence of corresponding states. Define a = (ai)
t̃
i=1 so that ai is equal to the value read from the

second tape in the i-th step (or an arbitrary value if no value is read from there in the i-th time step).
Next, define T := (G, linp, data) whereG is the (directed) path graph of t̃+3 nodes labeled 0, . . . , t̃+2,

linp(0) := linp(t̃ + 1) := linp(t̃ + 2) := ⊥ and linp(i) := ai for i = 1, . . . , t̃, data(i, i + 1) := (i, Si)
for i = 0, 1, . . . , t̃, and data(t̃ + 1, t̃ + 2) := ok. In other words, T is the path whose vertices are labeled
with the sequence a (and the sink and the source are labeled with ⊥) and whose edges are labeled with the
timestamped sequence of states of M followed by ok. See Figure 5 for a diagram.

On input (y, w), a function Ψ0 can output T in topological order, in time O(|M| + |x| + t) and space
O(|M| + |x| + s), by simply simulating M(x,w) for at most t time steps, outputting labeled vertices and
edges as it proceeds from one state of M to the next, and then adding the message ok after M halts. If
(y, w) ∈ RU , it is easy to see that Cy holds everywhere in T (so that Cy(T) = 1) and, moreover, T has
output data ok (i.e., out(T) = ok).

?(y, w) 2 RU a1, a2, . . . , at̃
a1 a2 at̃

(0, S0) (1, S1) (2, S2) (t̃, St̃) ok
??a3 . . .$$ S0, S1, . . . , St̃

Figure 5: Constructing a Cy-compliant transcript T starting from (y, w) ∈ RU , and vice versa.

Now suppose that T is any transcript compliant with Cy and has output data ok (i.e., Cy(T) = 1 and
out(T) = ok). Because Cy disallows more than one message into a node, the graph of T is a set of disjoint
paths. By assumption, there is a path p where the input data to the sink is equal to ok. Now construct w
as follows. Let I be the subset of [t] consisting of those indices i for which M, at the state transition of
the (i + 1)-th node in T, reads the next value from the second tape. Define w := (linp(i))i∈I , where the
indexing is with respect to nodes in the path p. By compliance of T with Cy and because we know that the
path p ends with the message ok, we deduce that (y, w) ∈ RU . Once again see Figure 5.

Finally, on input (y,T), a function Ψ1 can output w in linear time.

Remark 7.7 (combining Lemma 7.3 and Lemma 7.5 to obtain Theorem 7.1). In Section 7.1 we discussed
how nondeterminism can be used to reduce the space complexity of a random-access machine to poly(k), by
only incurring in a blowup in running time of poly(k). When combining the reduction of Lemma 7.3 from
Section 7.1 with the reduction from Lemma 7.5 in this section, we obtain a proof to the Locally-Efficient
RAM Compliance Theorem (Theorem 7.1). Concretely, first an instance y is reduced to a new instance y′ by
using a collision-resistant hash function (via Lemma 7.3), and then y′ is reduced to Cy′ , the RAM Checker
for y′ (via Lemma 7.5).

8 Proof of The PCD Depth-Reduction Theorem

We provide here the technical details for the high-level discussion in Section 2.3. Concretely, we prove
the PCD Depth-Reduction Theorem, which is one of the three tools we use in the proof of our main result
(discussed in Section 9). Throughout this section, it will be useful to keep in mind the definitions from

45

Section 5.1 (where the notions of distributed computation transcripts, compliance predicates, and depth are
introduced).

Recall that the SNARK Recursive Composition Theorem (discussed at high level in Section 2.2 and
formally proved in Section 6) transforms any SNARK into a corresponding PCD system for (polynomially-
balanced) constant-depth compliance predicates. The Locally-Efficient RAM Compliance Theorem (dis-
cussed at high level in Section 2.4 and formally proved in Section 7) tells us that membership in LU of
an instance y = (M,x, t) with t ≤ klog k can be “computationally reduced” to the question of whether
there is a “locally-efficient” distributed computation compliant with Chy whose output is a predetermined
value (e.g., the string “ok”), where Chy is a compliance predicate of depth t · poly(k) and h is drawn from a
collision-resistant hash-function family.

Unfortunately, the depth of Chy is superconstant. Thus, it seems that we cannot benefit from the SNARK
Recursive Composition Theorem. (Unless we make stronger extractability assumptions; see Remark 6.3.)

To address the aforementioned problem and, more generally, to better understand the expressive power
of constant-depth compliance predicates, we prove in this section a “Depth-Reduction Theorem” for PCD:
a PCD system for constant-depth compliance predicates can be transformed into a corresponding path PCD
system for polynomial-depth compliance predicates; furthermore, the transformation preserves the verifia-
bility and efficiency properties of the PCD system. (This holds more generally; see Remark 8.8.)

Theorem 8.1 (PCD Depth-Reduction Theorem). Let H = {Hk}k∈N be a collision-resistant hash-function
family. There exists an efficient transformation DEPTHREDH with the following properties:

• Correctness: If (G,P,V) is a PCD system for constant-depth compliance predicates, then (G′,P′,
V′) = DEPTHREDH(G,P,V) is a path PCD for polynomial-depth compliance predicates.19

• Verifiability Properties:

– If (G,P,V) is publicly verifiable then so is (G′,P′,V′).
– If (G,P,V) is designated verifier then so is (G′,P′,V′).

• Efficiency: There exists a polynomial p such that the (time and space) efficiency of (G′,P′,V′) is the
same as that of (G,P,V) up to the multiplicative factor p(k).

The main claim behind the theorem is that we can achieve an exponential improvement in the depth of
a given compliance predicate C, while at the same time maintaining completeness for transcripts that are
paths, by constructing a new low-depth compliance predicate TREEC that is a “tree version” of C. One can
then construct a new PCD system (G′,P′,V′) that, given a compliance predicate C, appropriately uses the
old PCD system (G,P,V) to enforce TREEC.

The basic idea is that the new compliance predicate TREEC is to force any compliant distributed compu-
tation to build a Merkle tree of proofs with large in-degree r “on top” of the original distributed computation.
(This technique combines the ideas of proof trees of Valiant [Val08] and of wide Merkle trees used in the
security reduction of [BCCT12, GLR11].) As a result, the depth of the new compliance predicate will be
blogr d(C)c + 1; in particular, when d(C) is bounded by a polynomial in the security parameter k (as is
the case for the compliance predicate Chy produced by the Locally-Efficient RAM Compliance Theorem),
by setting r = k, the depth of TREEC becomes constant — and we can now benefit from the SNARK
Recursive Composition Theorem.

19Recall that a path PCD system is one where completeness does not necessarily hold for any compliant distributed computation,
but only for those where the associated graph is a path, i.e., each node has only a single input message. See Definition 5.9.

46

For expository purposes, in Section 8.1 give the intuition for the proof of the PCD Depth-Reduction
Theorem for the specific compliance predicate Chy produced by the Locally-Efficient RAM Compliance
Theorem. This concrete example, where we explain how to construct a Merkle tree of proofs on top of
the step-by-step computation of a random-access machine with poly(k) space complexity, will build the
necessary intuition for the more abstract setting of the general case (needed for our main theorem), which
we present in Section 8.2.

8.1 Warm-Up Special Case: Reducing The Depth Of RAM Checkers

As discussed, we sketch the proof of the PCD Depth-Reduction Theorem for the special case where the
desired compliance predicate is Chy ; recall that Chy is the compliance predicate generated by the Locally-
Efficient RAM Compliance Theorem (Theorem 7.1) when invoked on the instance y = (M,x, t). By relying
on certain properties of Chy , we are able to give a simpler proof sketch, and thereby build intuition for the
general case (discussed in Section 8.2). Thus, the goal for now is to construct a path PCD system for Chy ,
while only assuming the existence of PCD systems for constant-depth compliance predicates. Moreover, we
must ensure that the verifiability and efficiency properties of the new PCD system are essentially the same
as those of the PCD system we start with.

Step 1: Engineer a new compliance predicate. Recall from the proof of the Locally-Efficient RAM
Compliance Theorem (discussed in Section 7) that Chy = Cy′ (see Remark 7.7), where Cy′ is the RAM
Checker for the instance y′ = (M ′, x, t′), M ′ is a poly(k)-space machine, and t′ = t · poly(k) when
t ≤ klog k (see Section 7.1). Starting from Cy′ and an in-degree parameter r, we show how to construct a
new compliance predicate TREEC4̂ry′ with O(logr d(Cy′)) depth.

The intuition of the construction is for TREEC4̂ry′ to force any distributed computation that is compliant
with it to have the structure of an r-ary tree whose leaves form a path that is compliant with Cy′ . In
order to achieve this, TREEC4̂ry′ enforces data flowing through the distributed computation to carry certain
“metadata” information that helps TREEC4̂ry′ figure out “where” in the distributed computation a given piece
of data belongs. With this information available, TREEC4̂ry′ can then reason as follows (see Construction 8.2
below for reference):

• Leaf Node Stage: the input data to the node consists of two messages (0, τ1, S1) and (0, τ2, S2). Then
TREEC4̂ry′ interprets (τ1, S1) and (τ2, S2) as two timestamped states of M ′ and uses Cy′ to check that
τ2 = τ1 + 1 and that the state S2 follows from S1 in one time step; then TREEC4̂ry′ checks that the
output data is (1, τ1, S1, τ2, S2), which should be interpreted as claiming that the verification of the
time interval [τ1, τ2] for the machine M ′ took place.

• Internal Node Stage: the input data to the node consists of r messages (d, τi, Si, τ
′
i , S
′
i) each from a

node at “level d of the tree”. We interpret each message (d, τi, Si, τ
′
i , S
′
i) as claiming that verification

of the time intervals [τi, τ
′
i] of M ′ took place, and that the state of M ′ at time τi and τ ′i respectively

was Si and S′i; TREECy′ checks that these intervals are in fact contiguous and are accompanied by
consistent states of the machineM ′; then TREECy′ checks that the output data is (d+1, τ1, S1, τ

′
r, S
′
r),

that is, that it correctly “collapses” the r input messages.

• Output Stage: for some r′, the input data to the node consists of r′ messages (di, τi, Si, τ
′
i , S
′
i) each

from a node at “level di of the tree”. The fact that the messages are coming from different levels
of the tree signals that the node wants to claim that the computation of M ′ is done, and in this case
TREEC4̂ry′ verifies that the input messages carry consistent timestamps and states (as in the previous

47

case) and furthermore checks that τ1 = 0 and S′r′ = ok. Then TREEC4̂ry′ checks that the output data
is (data, ok).

Given the above rough description, the only way to produce the message ok in a distributed computation
compliant with TREEC4̂ry′ is for a distributed computation to separately check each step of M ′ and then
iteratively merge r intervals at a time, for a total of logr t

′ times, until it produces a root attesting to the
correct computation of M ′ for t′ steps. When t′ ≤ kc for some c, logr t

′ is constant by setting r = k. For
reference, we give the following more precise construction (which, for instance, also shows how to deal with
the nondeterminism of M ′):

Construction 8.2. Given r ∈ N and an instance y′ = (M ′, x, t′), define the following compliance predicate:

TREEC4̂ry′ (zo;~zi, linp)
def
=

1. Input Stage
If~zi = ⊥ and linp = ⊥:
(a) Verify that zo equals (0, τ, S) for some τ, S.
(b) If τ = 0, verify that Cy′((τ, S);⊥,⊥)

2. Leaf Node Stage

If zo = (1, τ, S, τ ′, S′) and~zi =
(
(0, τ1, S1), (0, τ2, S2)

)
for some τ, S, τ ′, S′, τ1, S1, τ2, S2:

(a) Verify that τ2 = τ1 + 1, τ = τ1, and τ ′ = τ2.
(b) Verify that S = S1 and S′ = S2.
(c) If S2 = ok, verify that Cy′(ok; ((τ1, S1)),⊥) accepts.
(d) Otherwise, verify that Cy′((τ2, S2); ((τ1, S1)), linp) accepts.

3. Internal Node Stage

If zo = (d+1, τ, S, τ ′, S′) and~zi =
(
(d, τi, Si, τ

′
i , S
′
i)
)r
i=1

for some d, τ, S, τ ′, S′, τ1, . . . , τr, S1, . . . , Sr:
(a) Verify that τ = τ1, τ ′1 = τ2, τ ′2 = τ3, and so on until τ ′r−1 = τr, τ ′r = τ ′.
(b) Verify that S = S1, S′1 = S2, S′2 = S3, and so on until S′r−1 = Sr, S′r = S′.

4. Output Stage

If zo = (data, ok) and~zi =
(
(di, τi, Si, τ

′
i , S
′
i)
)r′
i=1

for some z, d1, . . . , dr′ , τ1, . . . , τr′ , S1, . . . , Sr′ :
(a) Verify that τ ′1 = τ2, τ ′2 = τ3, and so on until τ ′r′−1 = τr′ .
(b) Verify that S′1 = S2, S′2 = S3, and so on until S′r′−1 = Sr′ .
(c) Verify that τ1 = 0 and S′r′ = ok.

5. If none of the above conditions hold, reject.

Recall from Lemma 7.5 that the depth of the old compliance predicate Cy′ could be as bad as t′ + 1.
Instead, as promised, the depth of the new compliance predicate TREEC4̂ry′ is much better:

Lemma 8.3. d
(
TREEC4̂ry′

)
≤ blogr(t

′ + 1)c+ 1.

Proof. Any transcript compliant with TREEC4̂ry′ consists of disjoint trees. In each such tree, nodes of
different heights are forced to directly point to the root of the tree, and other nodes of the same height are
grouped in sets of size r. Thus, the “worst possible height”, given that any tree can have at most t′+1 leaves,
is given by blogr(t

′ + 1)c+ 1 (achieved by making maximal use of merging nodes of the same height).

The depth reduction is meaningful because we can accompany it with guarantees that ensure that despite
the fact that we switched to a new compliance predicate, the “semantics” of the compliance predicate have
been preserved. Namely, given a transcript T compliant with Cy′ and with output data ok, we can efficiently

48

produce a new transcript T′ compliant with TREEC4̂ry′ and with output data (data, ok). Conversely, given
a transcript T′ compliant with TREEC4̂ry′ and with output data (data, ok), we can efficiently produce a new
transcript T compliant with Cy′ and with output data ok. Somewhat more precisely:

Lemma 8.4. There exist efficient functions Ψ0,Ψ1 : {0, 1}∗ → {0, 1}∗ such that:

• For every transcript T with Cy′(T) and out(T) = ok, it holds that TREEC4̂ry′ (T′) = 1 and out(T′) =
(data, ok), where T′ := Ψ0(y

′, r,T).

• For every transcript T′ with TREEC4̂ry′ (T′) = 1 and out(T′) = (data, ok), it holds that Cy′(T) and
out(T) = ok, where T := Ψ1(y

′, r,T′).

Proof. Let T be any path transcript that is compliant with Cy′ having output data ok. By construction of
Cy′ (see Section 7.2), T is a path with t̃ + 3 nodes for some t̃ ≤ t′. Let the t̃ + 2 messages in T be
(0, S0), . . . , (t̃, St̃), ok (i.e., all but the last message are timestamped states of the machine M ′); let the local
inputs in T be a1, . . . , at̃,⊥. Now construct a new transcript T′ as follows. (See Figure 6 for a diagram
of an example where r = 2 and t̃ = 4.) First create t̃ + 2 source nodes (necessarily labeled with ⊥), and
“above” them create t̃ leaf nodes; label the i-th leaf node with ai for i = 1, . . . , t̃ + 1 and the (t̃ + 1)-th
leaf node with ⊥. Then connect the first source node to the first leaf node, the last source node to the last
leaf node, and every intermediate source node to the two adjacent leaf nodes. Label the edge going from
the first source node to the first leaf node with (0, 0, S0), the edge going from the last source node to the
last leaf node with (0, t̃ + 1, ok), and the two outgoing edges of the i-th source node with (0, i − 1, Si−1)
for i = 2, . . . , t̃ + 1. We have now constructed the “base” of the tree of T′; we now iteratively construct
the rest of the tree by always trying to group sets of r consecutive nodes of the same height together under
a parent; when this cannot be done anymore, all the topmost nodes point directly to a root, which itself
points to a sink. More precisely, first group every consecutive set of r leaves (leaving any leftover leaves
alone) and give a single parent (i.e., first level node) to each set of r leaves; label every edge from a leaf
to its parent with (1, τ, S, τ ′, S′) where (0, τ, S) and (0, τ ′, S′) are the first and second messages into the
leaf. Then group every consecutive set r of first-level nodes (leaving any leftover first-level nodes alone)
and give a single parent (i.e., second-level node) to each set of r leaves; label every edge from a first-level
node to its parent with (2, τ1, S1, τ

′
r, S
′
r) where (1, τ1, S1, τ

′
1, S
′
1) and (1, τr, Sr, τ

′
r, S
′
r) are the first and last

messages into the first-level node; proceed in this manner, “merging” timestamp-state pairs of sets of r
nodes at the same level, until no more grouping can be performed. Then take all the top-level nodes of the
trees of different heights and make them all children of a new “root” node; these edges are again labeled
with suitable level numbers and two timestamp-state pairs. Every internal node is labeled with ⊥. Finally,
put an edge with the message (data, ok) connecting the root to a sink node (necessarily labeled with ⊥).
It is easy to see that T′ is compliant with TREEC4̂ry′ and indeed has output data (data, ok). Clearly, this
transformation can be performed efficiently by a function Ψ0.

Conversely, let T′ be any transcript that is compliant with respect to TREEC4̂ry′ and has output data
ok. We show how to “extract” a transcript T compliant with Cy′ having output data ok. According to
TREEC4̂ry′ , the only way to obtain the message (data, ok) is to receive messages (di, τi, Si, τ

′
i , S
′
i) with

consistent timestamp-state pairs, τ1 = 0, and S′r′ = ok. Again according to TREEC4̂ry′ , the only way to
obtain (di, τi, Si, τ

′
i , S
′
i) with di > 1 is to receive r messages of level di − 1 that correctly “collapse” to the

message; if instead di = 1, the only way to obtain the message is two receive two messages (0, τ, S) and
(0, τ ′, S′), consistent with the timestamps and states, such that Cy′((τ ′, S′); ((τ, S)), linp) and τ ′ = τ + 1
for some local input linp. Thus, the leaves of T′ essentially form a Cy′-compliant path transcript that ends
with message ok, so we can construct T from T′ by taking in order the messages we find at the leaves of the
tree T′. Clearly, this transformation can be performed efficiently by a function Ψ1.

49

?

a1 a2 a3

?

(1, 0, S0, 1, S1) (1, 1, S1, 2, S2) (1, 2, S2, 3, S3) (1, 3, S3, 4, S4)

? ? ?

a4

?

(0, 0, S0) (0, 1, S1) (0, 2, S2) (0, 3, S3) (0, 4, S4)

? ?

?

(2, 0, S0, 2, S2) (2, 2, S2, 4, S4)

?

(1, 4, S4, 5, ok)

?

?
(data, ok)

(0, 5, ok)

? a1 a2

(0, S0) (1, S1) (2, S2) ok
??a3 a4

(3, S3) (4, S4)

$

(3, 0, S0, 4, S4)

Figure 6: Going from T to T′ and vice versa, with in-degree r = 2 and a computation with t̃ = 4.

Step 2: Construct a new PCD system. Having shown how to construct TREEC4̂ry′ from Cy′ , we sketch
how to construct a PCD system that leverages TREEC4̂ry′ . Concretely, given a PCD system (G,P,V) for
constant-depth compliance predicates, we need to construct a path PCD system (G′,P′,V′) for Chy = Cy′
(over a random choice of h). Very roughly, the construction is as:

• The new generator G′, on input security parameter 1k and time bound B, draws h from H, runs
the old generator G on input (1k, B′) to obtain (σ, τ), and then outputs (σ′, τ ′) :=

(
(h, σ), (h, τ)

)
.

Intuitively, B′ has to be larger than B to ensure that the computation in TREEC4̂ry′ in addition to
computation of Cy′ (e.g., evaluations of h, consistency comparisons, and so on) can fit within the time
bound B′. So suppose that evaluating Cy′ at any node of a distributed computation transcript T takes
time at most B; then, evaluating TREEC4̂ry′ at any node of a corresponding distributed computation
transcript T′ (obtained following the proof of Lemma 8.4) takes time poly(k+ r+B). Thus picking
B′ = poly(k + r +B) for some poly that only depends onH suffices.

• The new prover P′, given reference string σ′, output data zo, local input linp, input data zi and proof
πi, proceeds as follows. First it parses σ′ as (h, σ) and uses h to construct TREEC4̂ry′ . Then parses
πi as (i,~z1, . . . ,~zD, ~π1, . . . , ~πD), where i is a counter indicating how many nodes have computed on
the path already, and the remaining vectors are data and proofs corresponding to a “vertical slice” of
a virtual tree on top of the computation path so far. Given this information and using σ, P′ invokes
PTREEC4̂r

y′
to first create a proof for the current node (which should be interpreted as a new leaf added

to the tree), and then, potentially, invoke PTREEC4̂r

y′
additional times to merge r nodes at the same

level of the tree, until there are no such nodes left. Having produced all these proofs, P′ updates
the information in ~z1, . . . ,~zD and ~π1, . . . , ~πD, and then outputs (i + 1,~z1, . . . ,~zD, ~π1, . . . , ~πD). In
sum, the “real” prover P′ is simulating in his mind many “virtual” provers PTREEC4̂r

y′
that maintain a

distributed computation over a growing tree.

50

• The new verifier V′, given verification state τ ′, data z, and proof π, proceeds as follows. First it
parses τ ′ as (h, τ) and uses h to construct TREEC4̂ry′ . Then uses τ to invoke VTREEC4̂r

y′
on z and the

appropriate subproof of π.

The above description is especially sketchy because for now we are avoiding the delicate issue of which
subproof the verifier should actually verify. We deal with this issue, and tackle other issues that do not
arise in the case of the compliance predicate Cy′ , in the general case, described in full details in the next
subsection.

8.2 General Case

The compliance predicate Cy′ is very specific: it is the RAM Checker of a poly(k)-space random access
machine. In Section 8.1 we explained how to convert Cy′ into a “semantically-equivalent” compliance
predicate TREEC4̂ry′ of much smaller depth, and then sketched how to construct a PCD system for Cy′
by using a path PCD system for TREEC4̂ry′ . In this section we generalize the ideas of Section 8.1 to any
(polynomial-depth) compliance predicate C. We again proceed in two steps:

1. First, we show how to transform any compliance predicate C to a “tree” version TREEC with much
smaller depth. To make this work in the general case we need to be more careful because the data in the
distributed computation may not be small. (In the case of Cy′ , the data was of length poly(k + |y′|).)
Thus, instead of comparing this data as we go up the tree, we compare hashes of data. Furthermore, we
also need to properly handle every potential output of the distributed computation, while in Section 8.1
we only showed how to handle the output ok of Cy′ .

2. Second, we construct a path PCD system (G′,P′,V′) for any polynomial-depth C. As before, the
idea is to map C to TREEC, which has constant depth, and use a PCD system for constant-depth
compliance predicates to enforce TREEC. In Section 8.1 we only sketched the construction for the
special case; here we shall give all the details for the general case.

Details follow.

Step 1: Engineer a new compliance predicate. We start again by giving the mapping from C to TREEC;
this construction will be quite similar to the one we gave in Construction 8.2, except that, as already men-
tioned, we will be comparing hashes of data when going up the tree, rather than the original data itself.

Construction 8.5. Let H be a collision-resistant hash function family. For any compliance predicate C,
h ∈ H, and r ∈ N, define the following compliance predicate:

TREE
h,4̂r
C (zo;~zi, linp)

def
=

1. Input State
If~zi = ⊥ and linp = ⊥:
(a) Verify that zo equals (0, τ, z) for some τ, z.
(b) If τ = 0, verify that C(z;⊥,⊥) accepts.

2. Leaf Node Stage

If zo = (1, τ, ρ, τ ′, ρ′) and~zi =
(
(0, τ1, z1), (0, τ2, z2)

)
for some τ, ρ, τ ′, ρ′, τ1, z1, τ2, z2:

(a) Verify that τ2 = τ1 + 1, τ = τ1, and τ ′ = τ2.
(b) Verify that ρ = h(z1) and ρ′ = h(z2).

51

(c) Verify that C(z2; (z1), linp) accepts.

3. Internal Node Stage

If zo = (d+ 1, τ, ρ, τ ′, ρ′) and~zi =
(
(d, τi, ρi, τ

′
i , ρ
′
i)
)r
i=1

for some τ, ρ, τ ′, ρ′, τ1, . . . , τr, z1, . . . , zr:

(a) Verify that τ = τ1, τ ′1 = τ2, τ ′2 = τ3, and so on until τ ′r−1 = τr, τ ′r = τ ′.
(b) Verify that ρ = ρ1, ρ′1 = ρ2, ρ′2 = ρ3, and so on until ρ′r−1 = ρr, ρ′r = ρ′.

4. Output Stage

If zo = (data, z) and~zi =
(
(di, τi, ρi, τ

′
i , ρ
′
i)
)r′
i=1

for some z, r′, d1, . . . , dr′ , τ1, . . . , τr′ , z1, . . . , zr′ :
(a) Verify that τ ′1 = τ2, τ ′2 = τ3, and so on until τ ′r′−1 = τr′ .
(b) Verify that ρ′1 = ρ2, ρ′2 = ρ3, and so on until ρ′r′−1 = ρr′ .
(c) Verify that τ1 = 0 and ρ′r′ = h(z).

5. If none of the above conditions hold, reject.

As promised, the depth of the new compliance predicate TREE
h,4̂r
C is much better than that of C:

Lemma 8.6. For any compliance predicate C, h ∈ H, and r ∈ N,

d
(

TREE
h,4̂r
C

)
≤ blogr d(C)c+ 1 .

Proof. Any transcript compliant with TREE
h,4̂r
C consists of disjoint trees. In each such tree, nodes of differ-

ent heights are forced to directly point to the root of the tree, and other nodes of the same height are always
grouped in sets of size r. Thus, the “worst possible height”, given that any tree can have at most d(C) leaves,
is given by blogr d(C)c+ 1 (achieved by making maximal use of merging nodes of the same height).

As in Section 8.1, the depth reduction is meaningful because we can accompany it with guarantees that
ensure that even if we switch to the new compliance predicate TREE

h,4̂r
C , the “semantics” of the compliance

predicate are preserved. Namely, given a transcript T compliant with C and with output data zo, we can effi-
ciently produce a new transcript T′ compliant with TREE

h,4̂r
C and with output data (data, zo). Conversely,

given a transcript T′ compliant with TREE
h,4̂r
C and with output data (data, zo), we can efficiently produce

a new transcript T compliant with C and with output data zo. More precisely, the reverse direction holds
provided that T′ is produced by an efficient adversary A (when given as input (C, h, r) for a random h),
because the guarantee relies on the adversary not being able to find collisions in h.

Lemma 8.7. There exist efficient functions Ψ0,Ψ1 : {0, 1}∗ → {0, 1}∗ such that for every compliance
predicate C and in-degree parameter r ∈ N:

• For every h ∈ H, output data zo, and path transcript T with C(T) and out(T) = zo, it holds that
TREE

h,4̂r
C (T′) = 1 and out(T′) = (data, zo), where T′ := Ψ0(C, h, r,T).

• For every polynomial-size adversary A and sufficiently large k ∈ N,

Pr

TREE
h,4̂r
C (T′) = 1

C(T) 6= 1 ∨ out(T) 6= zo

∣∣∣∣∣∣∣∣

h← Hk
T′ ← A(C, h, r)

T← Ψ1(C, h, r,T′)
(data, zo)← out(T′)

 ≤ negl(k) .

52

Proof. Let T be any path transcript that is compliant with C; T is a path with d̃+2 nodes for some d̃ ≤ d(C).
Let the messages in T be z0, . . . , zd̃; in particular, the output message zo := out(T) of T is equal to zd̃; let
the local inputs in T be linp1, . . . , linpd̃. Now construct a new transcript T′ as follows. (See Figure 7 for a
diagram of an example where r = 2 and d̃ = 5.) First create d̃ + 1 source nodes (necessarily labeled with
⊥), and “above” them create d̃ leaf nodes; label the i-th leaf node with linpi for i = 1, . . . , d̃. Then connect
the first source node to the first leaf node, the last source node to the last leaf node, and every intermediate
source node to the two adjacent leaf nodes. Label the edge going from the first source node to the first leaf
node with (0, 0, z0), the edge going from the last source node to the last leaf node with (0, d̃, zd̃), and the
two outgoing edges of the i-th source node with (0, i− 1, zi−1) for i = 2, . . . , d̃. We have now constructed
the “base” of the tree of T′; we now iteratively construct the rest of the tree by always trying to group sets
of r consecutive nodes of the same height together under a parent; when this cannot be done anymore, all
the topmost nodes point directly to a root, which itself points to a sink. More precisely, first group every
consecutive set of r leaves (leaving any leftover leaves alone) and give a single parent (i.e., first level node)
to each set of r leaves; label every edge from a leaf to its parent with (1, τ, h(z), τ ′, h(z′)) where (0, τ, z)
and (0, τ ′, z′) are the first and second messages into the leaf. Then group every consecutive set r of first-
level nodes (leaving any leftover first-level nodes alone) and give a single parent (i.e., second-level node)
to each set of r leaves; label every edge from a first-level node to its parent with (2, τ1, ρ1, τ

′
r, ρ
′
r) where

(1, τ1, ρ1, τ
′
1, ρ
′
1) and (1, τr, ρr, τ

′
r, ρ
′
r) are the first and last messages into the first-level node; proceed in this

manner, “merging” timestamp-hash pairs of sets of r nodes at the same level, until no more grouping can be
performed. Then take all the top-level nodes of the trees of different heights and make them all children of
a new “root” node; these edges are again labeled with suitable level numbers and two timestamp-hash pairs.
Every internal node is labeled with ⊥. Finally, put an edge with the message (data, zd̃) connecting the root
to a sink node (necessarily labeled with ⊥). It is easy to see that T′ is compliant with TREE

h,4̂r
C and indeed

has output data (data, zd̃). Clearly, this transformation can be performed efficiently by a function Ψ0.

?? ? ? ? ?

? ?

?

?

? ?

$

(0, 0, z0) (0, 1, z1) (0, 2, z2) (0, 3, z3) (0, 4, z4)

z0 z1 z2 z3 z4 z5

(data, z5)

(1, 0, ⇢0, 1, ⇢1) (1, 1, ⇢1, 2, ⇢2) (1, 2, ⇢2, 3, ⇢3)
�
1, 3, ⇢3, 4, ⇢4)

(2, 0, ⇢0, 2, ⇢2) (2, 2, ⇢2, 4, ⇢4)

(3, 0, ⇢0, 4, ⇢4)

(1, 4, ⇢4, 5, ⇢5)

(0, 5, z5)

?

linp1 linp2 linp3 linp4 linp5

linp1 linp2 linp3 linp4 linp5

Figure 7: Going from T to T′ and vice versa, with in-degree r = 2 and a computation with d̃ = 5.
Here ρi = h(zi) for i = 1, . . . , 5.

With all but negligible probability in k over a random choice of h inHk, on input (C, h, r), the adversary

53

A does not find any collisions for h. Conditioned on A not having found any collisions and outputting a
transcript T′ compliant with TREE

h,4̂r
C having output data (data, zo), we show how to “extract” a transcript

T compliant with C having output data zo. According to TREE
h,4̂r
C , the only way to obtain the message

(data, zo) is to receive messages (di, τi, ρi, τ
′
i , ρ
′
i) with consistent timestamp-hash pairs, τ1 = 0, and ρ′r′ =

h(zo). Again according to TREE
h,4̂r
C , the only way to obtain (di, τi, ρi, τ

′
i , ρ
′
i) with di > 1 is to receive r

messages of level di − 1 that correctly “collapse” to the message; if instead di = 1, the only way to obtain
the message is two receive two messages (0, τ, z) and (0, τ ′, z′), consistent with the timestamps and hashes,
such that C(z′; z, linp) and τ ′ = τ + 1 for some local input linp. Thus, the leaves of T′ essentially form a
C-compliant path transcript that ends with message zo, so we can construct T from T′ by taking in order the
messages we find at the leaves of the tree T′. Clearly, this transformation can be performed efficiently by a
function Ψ1.

Step 2: Construct a new PCD system. Having shown how to construct TREE
h,4̂r
C from C, we need to

construct a PCD system that leverages TREE
h,4̂r
C . Concretely, given a PCD system (G,P,V) for constant-

depth compliance predicates, we explain how to construct a path PCD system (G′,P′,V′) for polynomial-
depth compliance predicates. The high-level idea is as follows.

• The new generator G′, on input security parameter 1k and time bound B, draws h from H, runs the
old generator G on input (1k, B′) to obtain (σ, τ), and then outputs (σ′, τ ′) :=

(
(h, σ), (h, τ)

)
. As

explained in Section 8.1, B′ has to be larger than B, and picking B′ = poly(k + r + B) for some
poly that only depends onH suffices.

• Given a compliance predicate C, the new prover P′C, given reference string σ′, output data zo, local
input linp, input data zi and proof πi, proceeds as follows. First it parses σ′ as (h, σ) and uses h to
construct TREE

h,4̂r
C . Then it uses PTREE

h,4̂r
C

to generate a new leaf message and proof. Then it parses
πi as a vector of proofs, each corresponding to a tree root, and again uses PTREE

h,4̂r
C

to “merge” groups
of r message-proof pairs corresponding to the same level of the tree, until there are no such groups
to be found. Essentially, P′C is using PTREE

h,4̂r
C

to dynamically maintain a “vertical slice” of a tree-

like distributed computation compliance with TREE
h,4̂r
C , arising from a path distributed computation

compliant with C.

• Given a compliance predicate C, the new verifier V′C, given verification state τ ′, data z, and proof π,
proceeds as follows. First it parses τ ′ as (h, τ) and uses h to construct TREE

h,4̂r
C . Then uses τ to

invoke VTREE
h,4̂r
C

on z and the appropriate subproof of π.

The above sketch leaves out many details; see Figure 8 for a detailed construction.

54

Ingredients. A PCD system (G,P,V) for constant-depth compliance predicates and a collision-resistant hash-
function familyH. In the construction, one should take the in-degree parameter r to equal k.
Output. A path PCD system (G′,P′,V′) for polynomial-depth compliance predicates. (In particular, P′ expects
only a single proof-carrying message.)
The new generator G′. Given security parameter 1k and time bound B, G′ proceeds as follows:

1. h← Hk;
2. (σ, τ)← G(1k,poly(k + r +B)), where poly only depends onH;
3. σ′ := (h, σ);
4. τ ′ := (h, τ);
5. output (σ′, τ ′).

The new prover P′. Given a polynomial-depth compliance predicate C, reference string σ′, output data zo, local
input linp, input data zi and proof πi, P′C proceeds as follows:

1. parse σ′ as (h, σ) and construct TREEh,4̂rC (see Construction 8.5);
2. parse πi as (πall, i,~z1, . . . ,~zD, ~π1, . . . , ~πD);
3. set z′i := (0, i, zi) and compute π0,i ← PTREE

h,4̂r
C

(σ, z′i ,⊥,⊥,⊥);
4. set z′o := (0, i+ 1, zo) and compute π0,i+1 ← PTREE

h,4̂r
C

(σ, z′o,⊥,⊥,⊥);
5. ρi ← h(zi);
6. ρi+1 ← h(zo);
7. π1,i+1 ← PTREE

h,4̂r
C

(σ, (1, i, ρi, i+ 1, ρi+1), linp, (z′i , z
′
o));

8. add an extra coordinate to the end of~z1 and set it to (1, i, ρi, i+ 1, ρi+1);
9. add an extra coordinate to the end of ~π1 and set it to π1,i+1;

10. for d = 1, . . . , D (in this order), if there are r coordinates in~zd then:
(a) parse~zd as

(
(d, τj , ρj , τ

′
j , ρ
′
j)
)r
j=1

;
(b) πd+1,i+1 ← PTREE

h,4̂r
C

(σ, (d+ 1, τ1, ρ1, τ
′
d, ρ
′
d),⊥,~zd, ~πd);

(c) set~zd and ~πd to be the vector with zero coordinates;
(d) add an extra coordinate to the end of~zd+1 and set it to (d+ 1, τ1, ρ1, τ

′
d, ρ
′
d);

(e) add an extra coordinate to the end of ~πd+1 and set it to πd+1,i+1;
11. πall ← PTREE

h,4̂r
C

(σ, zo,⊥,~z1 ◦ · · · ◦~zD, ~π1 ◦ · · · ◦ ~πD);
12. output (πall, i+ 1,~z1, . . . ,~zD, ~π1, . . . , ~πD).

The new verifier V′. Given a polynomial-depth compliance predicate C, verification state τ ′, data z, and proof
π, V′C proceeds as follows:

1. parse τ ′ as (h, τ) and construct TREEh,4̂rC (see Construction 8.5);
2. parse πi as (πall, i,~z1, . . . ,~zD, ~π1, . . . , ~πD);
3. b← VTREE

h,4̂r
C

(τ, z, πall);
4. output b.

Figure 8: The transformation DEPTHREDH, which constructs (G′,P′,V′) from (G,P,V).

Remark 8.8 (depth reduction beyond paths). Focusing on paths yields the simplest example of a PCD
Depth-Reduction Theorem. We could modify the mapping from C to TREEC, as well as the corresponding
construction of (G′,P′,V′), to also support distributed computations that evolve over graphs that are not just
paths. For example, we could have a PCD Depth-Reduction Theorem for graphs that have the shape of a
“Y ” instead of for paths, by building a wide Merkle tree independently on each of the three segments of
the “Y ”. More generally, the PCD Depth-Reduction Theorem works at least for graphs satisfying a certain
property that we now formulate. Let G be a directed acyclic graph with a single sink s; for a vertex v in
G, define φ(v) := 0 if v is a source and φ(v) := (deg(v) − 1) +

∑
p parent of v φ(p) otherwise; then define

55

Φ(G) := φ(s). Essentially, Φ(G) measures how “interactive” is the graph G when viewed as a distributed
computation; see Figure 9 for examples. Having defined this measure of interactivity, one can verify that the
PCD Depth-Reduction Theorem holds for all graphs G for which Φ(G) is a fixed polynomial in the security
parameter k: namely, assuming that collision-resistant hash functions exist, any PCD system for constant-
depth compliance predicates can be efficiently transformed into a corresponding “C-graph PCD system” for
polynomial-depth compliance predicates, where C is the class of graphs G for which Φ(G) = poly(k).
(And, as in the basic case, the verifiability properties carry over, as do efficiency properties.) }`

Figure 9: For the path graph, Φ = 0; for the “Y ” graph, Φ = 1; for the “braid” graph, Φ =
2`+1 − 1. The first two graphs are not very “interactive”, whereas the last one is.

9 Putting Things Together

In Section 2.5 we explained at high level how our three main tools can be combined to obtain our main
theorem. In Sections 6, 7, and 8, we have provided details for each of our three tools; we now provide
additional details for how these tools come together to obtain our main theorem.

Theorem 9.1 (Main Theorem (Theorem 4 restated)). LetH be a collision-resistant hash-function family.

1. Complexity-Preserving SNARK from any SNARK. There is an efficient transformation TH such that for
any publicly-verifiable SNARK (G,P,V) there is a polynomial p for which (G?,P?,V?) := TH(G,P,
V) is a publicly-verifiable SNARK that is complexity-preserving with a polynomial p (see Definition 4.2),
i.e.,

• the generator G?(1k) runs in time p(k) (in particular, there is no expensive preprocessing);
• the prover P?(σ, (M,x, t), w) runs in time (|M| + |x| + t) · p(k) and space (|M| + |x| + s) · p(k)

when proving that a t-time s-space NP random-access machine M accepts (x,w);
• the verifier V?(τ, (M,x, t), π) runs in time (|M|+ |x|) · p(k).

2. Complexity-Preserving PCD from any SNARK. There is an efficient transformation T′H such that for
any publicly-verifiable SNARK (G,P,V) there is a polynomial p for which (G?,P?,V?) := T′H(G,P,
V) is a publicly-verifiable PCD for constant-depth compliance predicates that is complexity-preserving
with polynomial p (see Definition 5.12), i.e., for every constant-depth compliance predicate C,

• the generator G?(1k) runs in time p(k);
• the prover P?C(σ, zo, linp,~zi, ~πi) runs in time (|C|+ t) · p(k) and space (|C|+ s) · p(k) when proving

that a message zo is C-compliant, using local input linp and received inputs~zi, and evaluating C(zo;
linp,~zi) takes time t and space s;
• the verifier V?C(τ, z, π) runs in time (|C|+ |z|) · p(k).

56

Assuming a fully-homomorphic encryption scheme E , there exist analogous transformations TH,E and T′H,E
for the designated-verifier case.

Proof. Let (G,P,V) be any SNARK, and assume (for the worst) that it is a preprocessing SNARK. In
particular, there are (potentially large) polynomials p and q such that the following holds. The generator
G(1k, B) runs in time p(B + k), and produces a reference string and verification state that allow proving
and verifying statements y = (M,x, t) with t ≤ B. The prover P(σ, (M,x, t), w) runs in time p(|M| +
|x|+B + k) and space q(|M|+ |x|+B + k). The verifier V(τ, (M,x, t), π) runs in time p(|y|+ k).

We invoke the SNARK Recursive Composition Theorem on (G,P,V) to obtain a corresponding PCD
system (G,P,V) for constant-depth compliance predicates, and then the PCD Depth-Reduction Theorem to
obtain a corresponding path PCD system (G′,P′,V′) for polynomial-depth compliance predicates.

The efficiency of the PCD system (G′,P′,V′) is comparable to that of the SNARK (G,P,V) we started
with. In other words, there is an “overhead polynomial” p′ such that the following holds. The PCD generator
G′(1k, B) runs in time p(B+k)·p′(k), and produces a reference string and verification state that only for for
B-bounded (path) distributed computations (see Definition 5.6): namely, they allow proving and verifying
compliance of path distributed computations where computing C at each node’s output takes time t ≤ B.
The PCD prover P′C(σ, zo, linp,~zi, ~πi) runs in time p(|C|+B+k)·p′(k) and space q(|C|+B+k)·p′(k). The
PCD verifier V′C(τ, z, π) runs in time p(|C|+ |z|+ k) · p′(k). In addition, if (G,P,V) is publicly-verifiable
then so is (G′,P′,V′); if (G,P,V) is designated-verifier then so is (G′,P′,V′).

Given the PCD system (G′,P′,V′), we construct a complexity-preserving SNARK (G?,P?,V?) as
follows. The new generator G?, given input 1k, outputs (σ′, τ ′) := ((h, σ), (h, τ)), where h ← Hk,
(σ, τ) ← G′(1k, kc), and c is a constant that only depends on H (see below). The new prover P?, given a
reference string σ′ = (h, σ), instance y = (M,x, t), and a witness w, computes the compliance predicate
Chy given by the Locally-Efficient RAM Compliance Theorem and, using the prover P′, computes a proof
for each message in the path distributed computation obtained from (M,x, t) and w (each time using the
previous proof); it outputs the final such proof as the SNARK proof. The time required to compute Chy at any
node is only poly(k + |y|) where poly only depends on H. We can assume, without loss of generality, that
|M| and |x| are bounded by a fixed poly(k). (If that is not the case (e.g., M encodes a large non-uniform
circuit), P? can work with a new instance (Uh, x̃, poly(k) + t), where Uh is a universal random-access
machine that, on input (x̃, w̃), parses w̃ as (M,x, t, w), verifies that x̃ = h(M,x, t), and then runs M(x,w)
for at most t steps.) Thus, poly(k + |y|) = kc for a constant c that only depends on H; kc determines
the “preprocessing budget” chosen above in the construction of G?. Finally, the new verifier V? similarly
deduces Chy and uses V′ to verify the proof.

Recall that, when applying the Locally-Efficient RAM Compliance Theorem, the messages and local
inputs for the path distributed computation are computed from (M,x, t) and w on-the-fly, one node a time in
topological order, using the same time and space as M does (up to a fixed poly(k) factor). Thus overall, we
have “localized” the use of the (inefficient) PCD system (G′,P′,V′) (obtained from the inefficient SNARK
(G,P,V)). Thus, the new SNARK (G?,P?,V?) is complexity preserving: the generator G? runs in time
p(kc+k)·p′(k), the prover P? runs in time t·poly(k)·p(kc+k)·p′(k) and space s·poly(k)·q(kc+k)·p′(k)
(so time and space are preserved up to fixed poly(k) factors), and the verifier V? runs in time |y| · poly(k).

The proof of knowledge property of (G?,P?,V?) follows from the proof of knowledge property of (G′,
P′,V′) and the guarantee of the Locally-Efficient RAM Compliance Theorem. Concretely, except with
negligible probability over a random choice of (σ′, τ ′), if a polynomial-size prover P∗, on input σ′, outputs
(y, π) such that V?(τ ′, y, π) = 1 (and thus, such that V′Ch

y
(τ, ok, π) = 1), we can efficiently extract from P∗

an entire Chy -compliant distributed computation transcript T with out(T) = ok, and then (by the Locally-
Efficient RAM Compliance Theorem) we can efficiently extract from T a witness w such thatM(x,w) = 1.

57

To prove the second item of the theorem (namely, obtaining a complexity-preserving PCD system), we
invoke again the SNARK Recursive Composition Theorem and the PCD Depth-Reduction Theorem, but
this time we start with the complexity-preserving SNARK (G?,P?,V?); the resulting PCD systems are
complexity preserving.

Acknowledgments

We are grateful to Daniel Wichs for valuable discussions, in the early stages of this work, about under-
standing the construction of [Gro10] as a preprocessing SNARK. We also thank Daniel for pointing out a
mistake, in an earlier draft of this paper, about a designated-verifier variant of [Gro10]. We also thank Yuval
Ishai for valuable comments and discussions.

58

References
[ABOR00] William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan. Fast verification of any

remote procedure call: Short witness-indistinguishable one-round proofs for NP. In Proceedings of the 27th Interna-
tional Colloquium on Automata, Languages and Programming, ICALP ’00, pages 463–474, 2000.

[AV77] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and matchings. In Pro-
ceedings on 9th Annual ACM Symposium on Theory of Computing, STOC ’77, pages 30–41, 1977.

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive proofs and their efficiency
benefits. In Proceedings of the 32nd Annual International Cryptology Conference, CRYPTO ’12, pages 255–272,
2012.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. Journal of Computer
and System Sciences, 37(2):156–189, 1988.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to succinct non-
interactive arguments of knowledge, and back again. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, ITCS ’12, pages 326–349, 2012.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-interactive arguments
via linear interactive proofs. In Proceedings of the 10th Theory of Cryptography Conference, TCC ’13, pages ???–???,
2013.

[BEG+91] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the correctness of memories.
In Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, FOCS ’91, pages 90–99, 1991.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylogarithmic time.
In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC ’91, pages 21–32, 1991.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM Journal on Computing,
38(5):1661–1694, 2008. Preliminary version appeared in CCC ’02.

[BHZ87] Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-NP have short interactive proofs? Information Pro-
cessing Letters, 25(2):127–132, 1987.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of Com-
puting, STOC ’88, pages 1–10, 1988.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols.
In Proceedings of the 24th Annual International Cryptology Conference, CRYPTO ’04, pages 273–289, 2004.

[BSCGT12] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete-efficiency threshold of
probabilistically-checkable proofs, 2012. Electronic Colloquium on Computational Complexity, TR12-045.

[BSCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs to delegatable
succinct constraint satisfaction problems. In Proceedings of the 4th Innovations in Theoretical Computer Science
Conference, ITCS ’13, pages ???–???, 2013.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: Homomorphic encryption for restricted computa-
tions. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 350–366,
2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In Pro-
ceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, FOCS ’11, 2011.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation using fully homomorphic en-
cryption. In Proceedings of the 30th Annual International Cryptology Conference, CRYPTO ’10, pages 483–501,
2010.

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In Proceedings of the 4th Annual
ACM Symposium on Theory of Computing, STOC ’72, pages 73–80, 1972.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from signature cards. In Proceedings
of the 1st Symposium on Innovations in Computer Science, ICS ’10, pages 310–331, 2010.

[CT12] Alessandro Chiesa and Eran Tromer. Proof-carrying data: Secure computation on untrusted platforms (high-level
description). The Next Wave: The National Security Agency’s review of emerging technologies, 19(2):40–46, 2012.

59

[Dam92] Ivan Damgård. Towards practical public key systems secure against chosen ciphertext attacks. In Proceedings of the
11th Annual International Cryptology Conference, CRYPTO ’92, pages 445–456, 1992.

[DCL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an extractability assumption. In Proceedings
of the 4th Conference on Computability in Europe, CiE ’08, pages 175–185, 2008.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low communication. In
Proceedings of the 9th Theory of Cryptography Conference, TCC ’12, pages 54–74, 2012.

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold. Succinct NP proofs and spooky
interactions, December 2004. Available at www.openu.ac.il/home/mikel/papers/spooky.ps.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, 1985.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature problems. In
Proceedings of the 6th Annual International Cryptology Conference, CRYPTO ’87, pages 186–194, 1987.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC ’09, pages 169–178, 2009.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: outsourcing computation
to untrusted workers. In Proceedings of the 30th Annual International Cryptology Conference, CRYPTO ’10, pages
465–482, 2010.

[GGPR12] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct NIZKs
without PCPs. Cryptology ePrint Archive, Report 2012/215, 2012.

[GH98] Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with bounded communication. Information
Processing Letters, 67(4):205–214, 1998.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive proofs for Mug-
gles. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC ’08, pages 113–122,
2008.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without rejection problem from
designated verifier CS-proofs. Cryptology ePrint Archive, Report 2011/456, 2011.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1):186–208, 1989. Preliminary version appeared in STOC ’85.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness theorem
for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
STOC ’87, pages 218–229, 1987.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceedings of the 16th International
Conference on the Theory and Application of Cryptology and Information Security, ASIACRYPT ’10, pages 321–340,
2010.

[GS89] Yuri Gurevich and Saharon Shelah. Nearly linear time. In Logic at Botik ’89, Symposium on Logical Foundations of
Computer Science, pages 108–118, 1989.

[GVW02] Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs with a laconic prover. Computational
Complexity, 11(1/2):1–53, 2002.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC ’11, pages 99–108, 2011.

[IKO05] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient conditions for collision-resistant hashing. In Proceed-
ings of the 2nd Theory of Cryptography Conference, TCC ’05, pages 445–456, 2005.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, STOC ’92, pages 723–732, 1992.

[KR06] Yael Tauman Kalai and Ran Raz. Succinct non-interactive zero-knowledge proofs with preprocessing for LOGSNP.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 355–366, 2006.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Proceedings of the 29th Annual Interna-
tional Cryptology Conference, CCC ’09, pages 143–159, 2009.

60

www.openu.ac.il/home/mikel/papers/spooky.ps

[KY86] Anna R. Karlin and Andrew C. Yao. Probabilistic lower bounds for byzantine agreement. Unpublished manuscript,
1986.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In
Proceedings of the 9th Theory of Cryptography Conference, TCC ’12, pages 169–189, 2012.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298, 2000. Preliminary
version appeared in FOCS ’94.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. Journal of Mathematical Cryptology, 2(4):343–363, 2008.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Proceedings of the 23rd Annual International Cryptol-
ogy Conference, CRYPTO ’03, pages 96–109, 2003.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applications. In Proceedings
of the 21st Annual ACM Symposium on Theory of Computing, STOC ’89, pages 33–43, 1989.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, STOC ’90, pages 387–394, 1990.

[RV09] Guy N. Rothblum and Salil Vadhan. Are PCPs inherent in efficient arguments? In Proceedings of the 24th IEEE
Annual Conference on Computational Complexity, CCC ’09, pages 81–92, 2009.

[Sch78] Claus-Peter Schnorr. Satisfiability is quasilinear complete in NQL. Journal of the ACM, 25:136–145, January 1978.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In Proceed-
ings of the 5th Theory of Cryptography Conference, TCC ’08, pages 1–18, 2008.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In Proceedings of the 32nd International Colloquium on Au-
tomata, Languages and Programming, ICALP ’05, pages 140–152, 2005.

61

	Abstract
	Contents
	1 Introduction
	1.1 Motivating Questions
	1.2 Our Results
	1.3 More on Proof-Carrying Data and Compliance Engineering
	1.4 The Ideas In A Nutshell
	1.5 Roadmap

	2 Overview of Results
	2.1 SNARKs and Proof-Carrying Data
	2.2 The SNARK Recursive Composition Theorem
	2.3 The PCD Depth-Reduction Theorem
	2.4 The Locally-Efficient RAM Compliance Theorem
	2.5 Putting Things Together: A General Technique for Preserving Complexity

	3 The Universal Language on Random-Access Machines
	4 SNARK s
	5 Proof-Carrying Data
	5.1 Distributed Computations And Their Compliance With Local Properties
	5.2 Proof-Carrying Data Systems

	6 Proof Of The SNARK Recursive Composition Theorem
	6.1 Recursive Composition For Publicly-Verifiable SNARKs
	6.2 Recursive Composition For Designated-Verifier SNARKs

	7 Proof Of The Locally-Efficient RAM Compliance Theorem
	7.1 Machines With Untrusted Memory
	7.2 A Compliance Predicate for Checking RAM Computations

	8 Proof of The PCD Depth-Reduction Theorem
	8.1 Warm-Up Special Case: Reducing The Depth Of RAM Checkers
	8.2 General Case

	9 Putting Things Together
	Acknowledgments
	References

