
The Collision Security of MDC-4

Ewan Fleischmann, Christian Forler, Stefan Lucks, and Jakob Wenzel

Bauhaus-University Weimar, Germany.
email: {ewan.fleischmann,christian.forler,stefan.lucks,jakob.wenzel}@uni-weimar.de

Abstract. There are four somewhat classical double length block cipher based compression func-
tions known: MDC-2, MDC-4, Abreast-DM, and Tandem-DM. They all have been developed
over 20 years ago. In recent years, cryptographic research has put a focus on block cipher based hash-
ing and found collision security results for three of them (MDC-2, Abreast-DM, Tandem-DM).
In this paper, we add MDC-4, which is part of the IBM CLiC cryptographic module1, to that list
by showing that – ’instantiated’ using an ideal block cipher with 128 bit key/plaintext/ciphertext
size – no adversary asking less than 274.76 queries can find a collision with probability greater than
1/2. This is the first result on the collision security of the hash function MDC-4.
The compression function MDC-4 is created by interconnecting two MDC-2 compression functions
but only hashing one message block with them instead of two. The developers aim for MDC-4

was to offer a higher security margin, when compared to MDC-2, but still being fast enough for
practical purposes.
The MDC-2 collision security proof of Steinberger (EUROCRYPT 2007) cannot be directly applied
to MDC-4 due to the structural differences. Although sharing many commonalities, our proof for
MDC-4 is much shorter and we claim that our presentation is also easier to grasp.
Keywords: MDC-4, cryptographic hash function, block-cipher based, proof of security, double
length, ideal cipher model.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary length to an output
of fixed length. It should satisfy at least collision-, preimage- and second-preimage resistance
and is one of the most important primitives in cryptography [23]. In recent years, most of the
functions in the widely used MD4-family (e.g., MD4 [29], MD5 [30], RIPEMD [11], SHA-1 [27],
SHA-2 [28]) have been successfully attacked in several ways [5, 10, 33, 34] which has stimulated
researchers to look for alternatives. Block cipher based constructions seem promising since they
are very well known – they even predate the MD4-approach [22]. One can easily create a hash
function using, e.g., the Davies-Meyer [35] mode of operation and the Merkle-Damg̊ard transform
[4, 24]. Also, many of the proposed SHA-3 designs like Skein [7], SHAvite-3 [1], and SIMD [21]
use block cipher based instantiations. Another reason for the resurgence of interest in block
cipher based hash functions is due to the rise of resource restricted devices such as RFID tags
or smart cards. A hardware designer only needs to implement a block cipher in order to obtain
an encryption function as well as a hash function. However, due to the short output length
of most practical block ciphers, one is mainly interested in sound design principles for double
length (DL) hash functions. Such double length hash functions use a block cipher with n-bit
output as the building block by which it maps possibly long strings to 2n-bit hash values. DL
compression functions can be parted by the type of block cipher they need to operate: The
first group, (group-1), uses an internal block cipher with an n-bit plaintext/ciphertext/key, the
second group, (group-2), uses a block cipher with an n-bit plaintext/ciphertext and a k-bit key,
k > n. DL compression functions in the first group are few. Currently, there are only three

1 FIPS 140-2 Security Policy for IBM CrytoLite in C, October 2003

Function Security (Collision) Attack (Collision) Attack (Preimage)

MDC-2 274.91 [32] 2121 [13] 22n (time · space) [13, 16]

MDC-4 274.76 (this paper) 296 [14] (only CF) 2224 [14]

MJH [18] 278.33 (no results known) (no results known)

Table 1. List of known group-1 hash functions, values evaluated for an internal block cipher with 128 bit plain-
text/ciphertext/key [Notation: CF = compression function]

known candidates in literature: MDC-2, MDC-4 and a most recent variant of MDC-2: MJH
[18]. Group-2 examples are Abreast-DM Tandem-DM, Cyclic-DM [16, 9], etc. The security
of group-2 functions is relatively well understood.

MDC-4 is a acronym for Modification Detection Code with ratio 1/4, and was developed at
IBM in the late eighties by Meyer and Schilling [25]. The ratio indicates the number of block
cipher calls that are required to process a single message block. MDC-4 was originally specified
for the 64-bit block cipher DES [26].

Our Contribution. In this paper, we give the first collision security bound for the hash function
MDC-4, a block cipher based hash function that has been publicly known for more than 20
years. In our proof, we use many of the techniques that have been applied in the MDC-2

collision security proof [32]. Our proof is in the ideal cipher model, too. However, we consider
MDC-4 using an ideal n-bit block cipher accepting n-bit keys. Furthermore, as in [32], we also
ignore an additional bit-fixing step that was used back than as an additional security measure
to avoid some DES specific key issues.

In this paper we show, assuming a hash output length of 256 bits, that any adversary asking
less than 274.76 queries to the block cipher cannot find a collision for the hash function MDC-4

with probability greater than 1/2. Note that the optimal security bound for collisions for 256 bit
hash functions is about 2128. For MDC-2 (ratio 1/2) and MJH (ratio 1/2), the trivial collision
resistance bound is 264, since they both internally use a Davies-Meyer compression function.
Although MDC-4 also uses Davies-Meyer type functions inside, even such a trivial bound is not
so easy to see.

Related Work. For group-2 functions, there has been a lot of research in recent years, e.g.
[8, 9, 15, 16, 17, 19, 20]. As a result, there are group-2 compression functions known that are
’provably optimal’. This is in stark contrast to the known results for group-1 functions which
are summarized in Table 1.

Outline. The paper is organized as follows: Section 2 includes formal notations and definitions.
In Section 3 we prove that an adversary asking less than 274.76 oracle queries has the threshold
probability 1/2 finding a collision for the MDC-4 hash function.

2 Preliminaries

2.1 General Notations

An n-bit block cipher is a keyed family of permutations consisting of two paired algorithms
E : {0, 1}n×{0, 1}n → {0, 1}n and E−1 : {0, 1}n×{0, 1}n → {0, 1}n both accepting a key of size
n bits and an input block of size n bits for some n > 0. Let Block(n) be the set of all n-bit block

2

S TM

OL OR PL PR

OL PR PL OR

U V

E
[TL]

E
[TR]

E
[BL]

E
[BR]

Figure 1. The double-length compression function HE where E is an n-bit block cipher. The black bar inside
the cipher indicates the key input.

ciphers. For any E ∈ Block(n) and any fixed key K ∈ {0, 1}n, decryption E−1
K := E−1(K, ·)

is the inverse function of encryption EK := E(K, ·), so that E−1
K (EK(X)) = X holds for any

input X ∈ {0, 1}n. In the ideal cipher model E is modeled as a family of random permutations
{EK} whereas the random permutations are chosen independently for each key K [2, 6, 12], i.e.,
formally E is selected randomly from Block(n). If Y = EK(X) we call the value Z = X ⊕ Y
the XOR-output of a query (K,X, Y).

We use the convention to write oracles, that are provided to an algorithm, as superscripts.
For example AE is an algorithm A with oracle access to E to which A can request forward and
backward queries. For ease of presentation, we identify the sets {0, 1}a+b and {0, 1}a × {0, 1}b.
Similarly, for A ∈ {0, 1}a and B ∈ {0, 1}b, the concatenation of these bit strings is denoted by
A||B ∈ {0, 1}a+b = {0, 1}a × {0, 1}b.

A compression function is a mapping H : {0, 1}m × {0, 1}r → {0, 1}r for some m, r > 0. A
block cipher-based compression function is a mapping HE : {0, 1}m × {0, 1}r → {0, 1}r that,
given an r-bit state R and an m-bit message M , computes HE(M,R) using oracle access to
some E ∈ Block(n).

2.2 The MDC-4 Compression Function

The MDC-4 compression function HE (cf. Figure 1) takes an n-bit message M , a 2n-bit state
(S, T) and outputs a new 2n-bit state (U, V) as follows:
1. Compute O = (OL||OR) = ES(M)⊕M ,
2. compute P = (PL||PR) = ET (M)⊕M ,

3

3. compute U = EOL||PR(T)⊕ T ,
4. compute V = EPL||OR(S)⊕ S,
5. output (U, V).

The superscript L denotes the left n/2 bits of an expression, and the superscript R denotes
the right n/2 bits of an expression.

The original MDC-4 specification [25] swaps the right halves of U and V . But, since we are
in the ideal cipher model, this operation does not change the distribution of the output and
neither our collision security analysis. So, for ease of presentation, we omitted this additional
step.

Our analysis is for the MDC-4 hash function HE which is obtained by a simple iteration
of the MDC-4 compression function HE in the obvious manner: Given some n · ℓ-bit message
(M1, . . . ,Mℓ), Mj ∈ {0, 1}

n for j = 1, . . . , ℓ and an initial value (S0, T0) ∈ {0, 1}
2n it works by

computing (Si, Hi) = HE(Mi, Si−1, Ti−1) for i = 1, . . . , ℓ. The hash value is (Sℓ, Tℓ).

2.3 Security of the MDC-4 compression function and the MDC-4 hash function

Generally, insecurity is quantified by the success probability of an optimal resource-bounded
adversary. The resource is the number of backward and forward queries to the block cipher E.

For a set C, let Y
$
← C represent random sampling from C under the uniform distribution. For

a probabilistic algorithm D, let Y
$
← D mean that Y is an output of D and its distribution is

based on the random choices of D.
In our case, an adversary is a computationally unbounded collision-finding algorithm AE

with access to E ∈ Block(n). We assume that AE is deterministic. The adversary may make a
forward query (K,X)f to discover the corresponding value Y = EK(X), or the adversary may
make a backward query (K,Y)b, so as to learn the corresponding value X = E−1

K (Y) such that
EK(X) = Y . Either way, the result of the query is stored in a triple (Ki, Xi, Yi) := (K,X, Y)
and the query history Q is the tuple (Q1, . . . , Qq) where Qi = (Ki, Xi, Yi) and q is the total
number of queries made by the adversary.

Without loss of generality, we assume that AE asks at most only once on a triplet of a key
Ki, a plaintext Xi and a ciphertext Yi obtained by a query and the corresponding reply.

Collision Resistance of the MDC-4 compression function. There is a very simple attack on
the compression function which only requires about 2n/2 invocations of the E oracle: Let the
adversary find values K,K ′,M,M ′ ∈ {0, 1}n such that EK(M) = EK′(M ′). This requires about
2n/2 E-oracle queries. Then, by

HE(M,K,K) = HE(M ′,K ′,K ′),

a collision for the full MDC-4 compression function has been found. So our analysis will be for
the MDC-4 compression function in the iteration. This attack is only possible if the the chaining
values are equal.

3 Proof of Collision Resistance

3.1 Proof Model

Our analysis is for the MDC-4 hash function HE assuming that the initial chaining values are
different, i.e., S0 6= T0. The goal of the adversary is to output two messagesM1 ∈ {0, 1}

n·ℓ and
M2 ∈ {0, 1}

n·ℓ′ such that H(M1) = H(M2) for some non-zero integers ℓ, ℓ′.

4

In our analysis, we dispense the adversary from returning these two messages. Instead we
upper bound his success probability by giving the attack to him if

(i) he has found an ’internal’ collision, i.e., (M,S, T) such that (U, V) = HE(M,S, T) with
U = V for some U, V ∈ {0, 1}n or

(ii) case (i) is not true but he has either found a collision in the compression function HE , i.e.,
(M,S, T) and (M ′, S′, T ′), such that HE(M,S, T) = HE(M ′, S′, T ′) or

(iii) cases (i), (ii) are not true but he has found values (M,S, T) such that (S0, T0) = HE(M,S, T).
Note that this requirement essentially models the preimage resistance of the MDC-4 com-
pression function.

The proof is simple and straightforward. Assume a collision for HE has been found using
two not necessarily equal-length messages M and M′, i.e., HE(M) = HE(M′). Also assume
that the collision is the earliest possible. Then the adversary has either found (i) or (ii). For
case (iii), we also give the attack to the adversary, particularly for reasons already discussed in
Section 2.3.

For our analysis, we impose the reasonable condition that the adversary must have made
all queries necessary to compute the results. We determine whether the adversary has been
successful or not by examining the query history Q. Formally, we say that Coll(Q) holds if
there is such a collision and Q contains all the queries necessary to compute it.

We now define what we formally mean by a collision of the MDC-4 compression function.

Definition 1. (Collision resistance of the MDC-4 compression function) Let HE be a
MDC-4 compression function. Fix an adversary A. Then the advantage of A in finding collisions
for HE is the real number

AdvColl

HE (A) = Pr[E
$
← Block(n); ((M,S, T), (M ′, S′, T ′))

$
← AE,E−1

:

((M,S, T) 6= (M ′, S′, T ′)) ∧HE(M,S, T) = HE(M ′, S′, T ′)].

For q ≥ 1 we write

AdvColl

HE (q) = max
A
{AdvColl

HE (A)},

where the maximum is taken over all adversaries that ask at most q oracle queries, i.e., forward
and backward queries to E.

Since our analysis in the next sections is for HE , we informally say that the probability of a
collision of HE is upper bounded by using a union bound for the cases (i), (ii) and (iii). This is
part of the formalization in Theorem 1.

3.2 Our Results

We now give our main result. Although having a substantial complexity on the first sight in its
general form, we can easily evaluate it to numerical terms (cf. Corollary 1).

Theorem 1. Fix some initial values S0, T0 ∈ {0, 1}
n with S0 6= T0 and let HE be the MDC-4

hash function as given in Section 2.2. Let α, β, γ be constants such that eq2n/2/(2n − q) ≤ α,

5

q AdvColl

HE (q) ≤ α β γ

264 7.18 · 10−7 42 4.0 2 · 106

268.26 10−4 126 4.0 6 · 106

272.19 1/100 900 4.0 1.3 · 107

273.84 1/10 2600 4.0 1.4 · 107

274.40 1/4 3780 4.0 1.5 · 107

274.76 1/2 4900 4.0 1.5 · 107

Table 2. Upper bounds on AdvColl

HE (q) as given by Theorem 1

eq/(2n − q) ≤ β and let Pr[Lucky(Q)] as in Proposition 5 (Appendix A). Then

AdvColl

HE (q) ≤q

(

α2 + γ

2n − q
+

αβ

(2n − q)(2n/2 − α)
+

α

2n − 2n/2α
+

β2 + 4

2n − q
+

β

2n − q

)

+2q

(

α2(α2 + 2γ + 1) + αγ + α

2n − q
+

α3 + 2α2 + α

(2n/2 − α)2

)

+q

(

γα2 + γ2

2n − q
+

2α

(2n/2 − α)2

)

+ Pr[Lucky(Q)]. (1)

The proof of Theorem 1 is developed throughout the following discussion and explicitly
stated in Section 3.5. As mentioned before, our bound is rather non-transparent, so we discuss
it for n = 128. We evaluate the equation above such that the adversary’s advantage is upper
bounded by 1/2 – thereby maximizing the value of q by numerically optimizing the values of α,
β and γ. Our result is the following corollary.

Corollary 1. No adversary asking less than 274.76 queries can find a collision for the MDC-4

hash function with probability greater than 1/2.

An overview of the behavior of our upper bound is given in Table 2. Note that for other values
of (α, β, γ) the bound stays correct but worsens numerically (as long as the conditions given in
Theorem 1 hold).

3.3 Proof Preliminaries

Overview. Our discussion starts with case (ii). We analyze whether the list of oracle queries to
E made by the adversary can be used for a collision of the MDC-4 compression function HE .
For a collision, there are eight – not necessarily distinct – block cipher queries necessary (cf.
Figure 2).

To upper bound the probability of the adversary obtaining queries that can be used for a
collision, we upper bound the probability of the adversary making a final query that can be
used as the last query to complete such a collision. Let Qi denote the set of the first i queries
(K1, X1, Y1), ..., (Ki, Xi, Yi) (either forward or backward) made by the adversary. Furthermore
we denote by the term last query the latest query made by the adversary. This query has always
index i. Therefore, for each i with 1 ≤ i ≤ q, we upper bound the success probability of an
adversary to use the i-th query to complete the collision.

6

S T S′ T ′M M ′

OL OR PL PR
WL WR RL RR

OL PR PL OR
WL RR RL WR

U V U ′ V ′

E
[1TL]

E
[1TR]

E
[1BL]

E
[1BR]

E
[2TL]

E
[2TR]

E
[2BL]

E
[2BR]

Figure 2. The double-length MDC-4 compression function HE , where E is a (n, n)-block cipher. If (S,M, T) 6=
(S′,M ′, T ′) but (U, V) = (U ′, V ′) then the adversary has found a collision for HE . The black beam inside the
cipher indicates the key input. For later reference, the different positions a query can be used in are denoted by
1TL, 1TR, . . . , 2BR.

As the probability depends on the first i − 1 queries, we have to put some restrictions on
these and also upper bound the probability that these restrictions are not met by an adversary.
One example of such a restriction is to assume that, e.g., the adversary has to find too many
collisions for the underlying component function EK(X)⊕X.

Thus, our upper bound breaks down into two parts: an upper bound for the probability of
an adversary not meeting our restrictions and the probability of an adversary ever making a
successful i-th query, conditioned on the fact that the adversary does meet our restrictions and
has not been successful by its (i− 1)-th query. We use some notations that are given in Figure
2, e.g., the statement 1BL 6= 2BL means that the query used in the bottom left of the ’left’ side
is not the same as the query used in the bottom left of the ’right’ side.

3.4 Details.

We say Coll(Q) if the adversary wins. Note that winning does not necessarily imply, that the
adversary has found a collision. It might be that the adversary got lucky and does not meet our
restrictions any more. But in the case of a collision Coll(Q) always holds.

Proposition 1.

Coll(Q) =⇒
Lucky(Q) ∨ InternalColl(Q) ∨CollTopRows(Q) ∨CollLeftColumns(Q) ∨

CollRightColumns(Q) ∨CollBothColumns(Q) ∨ Preimage(Q).

7

We now define the involved predicates of Proposition 1 and then give a proof. The predicates
on the ’right’ side are made mutually exclusive meaning that if the left side is true it follows
that exactly one of the predicates on the right side is true. By upper bounding separately the
probabilities of these predicates on the right side it is easy to see that the union bound can be
used to upper bound the probability of Coll(Q) as follows:

Pr[Coll(Q)] ≤Pr[Lucky(Q)] + Pr[InternalColl(Q)] + Pr[CollTopRows(Q)]

+ Pr[CollLeftColumns(Q)] + Pr[CollRightColumns(Q)]

+ Pr[CollBothColumns(Q)] + Pr[Preimage(Q)].

To state the predicate Lucky(Q), we give some helper definitions that are also used as restric-
tions for the other predicates. Let NumEqual(Q) be a function defined on the query set Q, |Q| = q
as follows:

NumEqual(Q) = max
Z∈{0,1}n

|{i : EKi(Xi)⊕Xi = Z}|.

It is the maximum size of a set of queries in Q whose XOR-outputs are all the same. Similarly,
we define NumEqualHalf(Q) as the maximum size of a set of queries whose XOR-outputs either
share the same left half or the same right half. Let

NEH-L(Q) = max
Z∈{0,1}n/2

|{i : (EKi(Xi)⊕Xi)
L = Z}|,

NEH-R(Q) = max
Z∈{0,1}n/2

|{i : (EKi(Xi)⊕Xi)
R = Z}|,

then NumEqualHalf(Q) = max(NEH-L(Q), NEH-R(Q)). Let NumColl(Q) be also defined on a query
set Q, |Q| = q, as

NumColl(Q) = |{(i, j) ∈ {1, . . . , q}2 : i 6= j, EKi(Xi)⊕Xi = EKj (Xj)⊕Xj}|.

It outputs the number of ordered pairs of distinct queries in Q which have the same XOR-
outputs.
We now define the event Lucky(Q) as

Lucky(Q) =(NumEqualHalf(Q) > α) ∨ (NumEqual(Q) > β) ∨ (NumColl(Q) > γ),

where α, β and γ are the constants from Theorem 1. These constants are chosen depending on
n and q by a simple numerical optimization process such that the upper bound of the advantage
of an adversary is minimized for given values of n, q.

We now give the definitions of the other predicates.

FitInternalColl(Q). The adversary has found four – not necessarily distinct – queries such
that HE(M,S, T) can be computed and HE(M,S, T) = (U,U) holds for some arbitrary U
with S 6= T .

FitCollLeftColumns(Q). The adversary has found eight – not necessarily distinct – queries
such that (U, V) = HE(M,S, T) and (U ′, V ′) = HE(M ′, S′, T ′) can be computed with
U = U ′, 1BL 6= 2BL and 1BR = 2BR.

8

FitCollRightColumns(Q). The adversary has found eight – not necessarily distinct – queries
such that (U, V) = HE(M,S, T) and (U ′, V ′) = HE(M ′, S′, T ′) can be computed with
V = V ′, 1BR 6= 2BR and 1BL = 2BL.

FitCollTopRows(Q). The adversary has found four – not necessarily distinct – queries such
that

(ES(M)⊕M,ET (M)⊕M) = (ES′(M ′)⊕M ′, ET ′(M ′)⊕M ′)

for S 6= T , S′ 6= T ′, 1BL = 2BL and 1BR = 2BR.

FitCollBothColumns(Q). In this case we assume ¬FitCollLeftColumns(Q) and
¬FitCollRightColumns(Q). The adversary has found eight – not necessarily distinct –
queries such that (U, V) = HE(M,S, T) and (U ′, V ′) = HE(M ′, S′, T ′) can be computed
with U = U ′, V = V ′, 1BL 6= 2BL and 1BR 6= 2BR.

FitPreimage(Q). This formalizes case (iii). The adversary has found four – not necessarily
distinct – queries used in HE in positions 1TL, 1TR, 1BL, 1BR such that the output of
HE is equal to (S0, T0), i.e., the initial chaining values of the MDC-4 hash function.

For practical purposes we derive our predicates as follows.

InternalColl(Q) = ¬Lucky(Q) ∧ FitInternalColl(Q),

CollLeftColumns(Q) = ¬(Lucky(Q) ∨ FitInternalColl(Q)) ∧ FitCollLeftColumns(Q),

CollRightColumns(Q) = ¬(Lucky(Q) ∨ FitInternalColl(Q) ∨ FitCollLeftColumns(Q))

∧ FitCollRightColumns(Q),

CollTopRows(Q) = ¬(Lucky(Q) ∨ FitInternalColl(Q) ∨ FitCollLeftColumns(Q)

∨ FitCollRightColumns(Q)) ∧ FitCollTopRows(Q),

CollBothColumns(Q) = ¬(Lucky(Q) ∨ FitInternalColl(Q)

∨ FitCollLeftColumns(Q) ∨ FitCollRightColumns(Q)

∨ FitCollTopRows(Q)) ∧ FitCollBothColumns(Q),

Preimage(Q) = ¬(Lucky(Q) ∨ FitInternalColl(Q)

∨ FitCollLeftColumns(Q) ∨ FitCollRightColumns(Q)

∨ FitCollTopRows(Q) ∨ FitCollBothColumns(Q))

∧ FitPreimage(Q).

Proof of Proposition 1. Assume that the adversary is not lucky, i.e., ¬Lucky(Q). Then it is
easy to see that

FitInternalColl(Q) ∨ FitCollLeftColumns(Q) ∨ FitCollRightColumns(Q) ∨
FitCollTopRows(Q) ∨ FitCollBothColumns(Q) ∨ FitPreimage(Q)

=⇒
InternalColl(Q) ∨CollLeftColumns(Q) ∨CollRightColumns(Q) ∨

CollTopRows(Q) ∨CollBothColumns(Q) ∨ Preimage(Q)

9

holds. Therefore it is sufficient to show that

Coll(Q) =⇒ FitInternalColl(Q) ∨ FitCollLeftColumns(Q)

∨ FitCollRightColumns(Q) ∨ FitCollTopRows(Q)

∨ FitCollBothColumns(Q) ∨ FitPreimage(Q).

To ensure that the chaining values are always different, we give the attack to the adversary if
these values collide, i.e., U = V or U ′ = V ′. Note that this is usually not a real collision, but
we can exclude this case in our analysis. We call this InternalColl(Q). This corresponds to
case (i) in Section 3.1.

For the case (ii), we assume that a collision for the MDC-4 compression function HE can be
constructed from the queries in Q. Then there are inputs M,M′ ∈ ({0, 1}n)+, M 6=M′ such
that H(M) = H(M′). In particular, there are M,M ′ ∈ {0, 1}n and (S, T), (S′, T ′) ∈ {0, 1}2n,
(S, T,M) 6= (S′, T ′,M ′), such that HE(S, T,M) = HE(S′, T ′,M ′).

For the following analysis we have ¬InternalColl(Q), i.e., S 6= T , S′ 6= T ′. Our case
differentiation is based on the disposal of queries in the bottom row. First assume that 1BL =
2BL and 1BR = 2BR. Then CollTopRows(Q). Now assume that 1BL = 2BL and 1BR 6=
2BR. Then CollRightColumns(Q). Conversely, if 1BL 6= 2BL and 1BR = 2BR, we say
CollLeftColumns(Q). The only missing case, 1BL 6= 2BL and 1BR 6= 2BR, is denoted by
CollBothColumns(Q). Preimage(Q) formalizes case (iii) of Section 3.1 and corresponds to
FitPreimage(Q). ⊓⊔

General Remarks. The strategy for the other predicates is to upper bound the probability of
the last query being successful conditioned on the fact that the adversary has not yet been
successful in previous queries. We say that the last query is successful if the output is such that
NumEqualHalf(Q) < α, NumEqual(Q) < β, NumColl(Q) < γ and that one of the predicates is
true.

Proposition 2 (InternalColl(Q)).

Pr[InternalColl(Q)] ≤ q

(

α2 + γ

2n − q
+

αβ

(2n − q)(2n/2 − α)
+

α

2n − 2n/2α

)

Proof. The adversary can use the last query Qi either once or twice. When Qi is used three
times or more then it must occur twice either in the top- or bottom row. But this would imply
S = T .

In the case that the query is used once it can either be used in the top or bottom row. Due
to the symmetric structure of MDC-4, we can assume WLOG that the last query Qi is either
used in position TL or BL2. The success probability is analyzed in Lemma 1.

In the case that Qi is used twice, it must be used once in the top and once in the bottom
row. We again assume that the last query is WLOG used in TL and BL or TL and BR. The
success probability is analyzed in Lemma 2. ⊓⊔

Lemma 1. Let S 6= T and Qi−1 the query list not containing the last query Qi. Assume that
Qi is used once in the MDC-4 compression function HE. Then

Pr[(U,U) = HE(S, T,M)] ≤ q

(

α2 + γ

2n − q

)

.

2 In this case we only consider the ’left’ side of Figure 2 and denote 1TL by TL, 1TR by TR, 1BL by BL and
1BR by BR.

10

Proof.

Case 1: Assume first that Qi = (KL
i ||K

R
i , Xi, Yi) is used in position BL. It follows that KL

i

must be equal to the XOR-output ZL
TL of the query in TL. It follows that there are at

most α different candidates for the query in TL in the query history Qi−i. Similarly, because
KR

i must be equal to the right half of the XOR-output of TR, ZR
TR, there are at most α

candidates for that can be used in TR. For the query in BR, there are at most α2 possible key
inputs, the ciphertext input of BR is determined by the query used in TL. So the probability
that there is a query in Qi such that U = V is upper bounded by α2/(2n− q). For q queries,
the total chance of success is ≤ qα2/(2n − q).

Case 2: Now assume that Qi is used in position TL. Since S 6= T it follows that BL 6= BR. So
there are at most γ ordered pairs of queries that can be used in BL and BR such that their
XOR-output collides. Fixing one of these, it fully determines the XOR-output TL. So, for
q queries, Qi has at most a chance of qγ/(2n − q). ⊓⊔

Lemma 2. Let S 6= T and Qi−1 the query list not containing the last query Qi. Assume that
Qi is used twice in the MDC-4 compression function HE. Then

Pr[(U,U) = HE(S, T,M)] ≤ q

(

αβ

(2n − q)(2n/2 − α)
+

α

2n − 2n/2α

)

.

Proof. By symmetry arguments, we assume WLOG that the last query Qi is used in position
TL. Since S 6= T , the last query can only appear a second time in position BL, or BR but not
in TR.

Case 1: Assume Qi is used in position TL and BL. This query can be used in these positions
if the randomly determined left-side XOR-output ZL

i is equal to the left-side of the key
KL

i . This event is called PK and its probability of success can be upper bounded for Qi by
Pr[PK] ≤ α/(2n/2−α). We now upper bound the number of queries that can be used in BR

conditioned on the fact that PK is successful. There are at most α queries that can be used
in TR, since now the key input of BL is fixed. As the ciphertext input of BR is now also
fixed by TL, there are at most β possibilities for BR. So the chance of success for the i-th
query in this case is ≤ β

2n−q · Pr[PK]. So for q queries the bound becomes qαβ
(2n−q)(2n/2−α)

.

Case 2: Assume Qi is used in position TL and BR. Then, Ki = Xi. The query Qi can be used
in these two positions at the same time if the randomly determined right-half XOR-output
ZR
i is equal to the right-half of the key, KR

i = XR
i . This event is called OK and its probability

of success can be upper bounded for Qi by Pr[OK] ≤ 1
2n/2 .

We now upper bound the number of queries that can be used in TR conditioned on the
fact the OK is successful. There are at most α queries that can be used in TR such that
ZL
TR = KL

i holds. Hence, there are at most α queries that can be used in BL. We denote the
chance that ZL

BL = ZL
i for the i-the query as Pr[ZL

i]. This event can thus be upper bounded
by α

2n/2−α
· Pr[OK] ≤ α

2n−2n/2α
. For q queries we can upper bound this case by qα

2n−2n/2α
. ⊓⊔

Proposition 3 (CollTopRows(Q)).

Pr[CollTopRows(Q)] ≤
qβ

2n − q

11

Proof. In this case we consider a collision in the top row, with 1BL = 2BL and 1BR = 2BR.
This implies S = S′ and T ′ = T . Furthermore it implies M 6= M ′, because otherwise we would
have 1TL = 2TL and 1TR = 2TR. Regarding to this constraints we have to upper bound the
probability that the i-th query can be used such that

(ES(M)⊕M,ET (M)⊕M) = (ES′(M ′)⊕M ′, ET ′(M ′)⊕M ′).

Note, that no internal collision has happened before, i.e., ¬InternalColl(Q), and therefore
the chaining values are always different. First assume that the last query is used twice or more.
In order to find a collision in the top-row, the last query must be used in the top-row or
otherwise the success probability is zero. The last query cannot be used in 1TL and 2TL or else
1TL = 2TR and M = M ′ would follow. The last query also cannot be used in 1TL and 2TR

or else S = T ′ = S′ = T would follow.
Now assume that Qi is used once, WLOG in 1TL. Then there are at most β pairs of queries

for 1TR, 2TR that form a collision. So there are at most β queries that can be used in 2TL

that may form a collision with the XOR-output of the last query used in 1TL. The success
probability for q queries can therefore be upper bounded by qβ/(2n − q). ⊓⊔

Proposition 4 (Preimage(Q)).

Pr[Preimage(Q)] ≤
q(4 + β2)

2n − q

Proof. The adversary can use the last query either once or twice. If it is used twice, it is used
at least once in the bottom row.

Case 1: Assume first, that the last query is used once and that it is used in the top row. Assume
WLOG that it is used in 1TL. Since there are at most β queries that can be used in 1BL

and also at most β queries for 1BR, the success probability is upper bounded for q queries
by qβ2/(2n − q).
Now assume that the last query is used once and that it is used in the bottom row. Whether
it is used in 1BL or 1BR, the success probability in each case for one query is ≤ 1/(2n− q).
So the total success probability for q queries for this case is upper bounded by q(2+β2)/(2n−
q).

Case 2: Now, assume that the last query is used twice. So it is used exactly once in the bottom
row and the analysis of Case 1 (bottom row) gives an upper bound of 2q/(2n − q).

⊓⊔

3.5 Proof of Theorem 1

The proof of Theorem 1 now follows with Proposition 1 by adding up the individual results from
Propositions 2 - 4. Proposition 5 is given in Appendix A, Propositions 6 and 7 in Appendix B
and Proposition 8 in Appendix C.

4 Conclusion

We have derived the first collision security bound for MDC-4, a double length block cipher
based compression function which takes 4 calls to hashing a message block using a (n, n) block-
cipher. Although MDC-4 is structurally quite different from MDC-2, it is somewhat surprising

12

that the result given by Steinberger for MDC-2 (274.91) and our result for MDC-4 (274.76) are
numerically quite similar – although we have applied much more economical proof techniques.
This leads to open questions we have not been able to find satisfying answers for as, e.g., why
are these results so similar? One possible answer is, that MDC-2 and MDC-4 are security-wise
very similar. This would lead to the conclusion that MDC-4 is totally dominated by MDC-2.
Another answer might be that the limitations are due to the applied techniques in the proofs.
Then it would be interesting and important to find new proof methods that help overcome these.

References

[1] Eli Biham and Orr Dunkelman. The SHAvite-3 Hash Function. Submission to NIST (Round 2), 2009.
[2] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the Block-Cipher-Based

Hash-Function Constructions from PGV. In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in

Computer Science, pages 320–335. Springer, 2002.
[3] Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Con-

ference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in

Computer Science. Springer, 1990.
[4] Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [3], pages 416–427.
[5] Bert den Boer and Antoon Bosselaers. Collisions for the Compressin Function of MD5. In EUROCRYPT,

pages 293–304, 1993.
[6] Shimon Even and Yishay Mansour. A Construction of a Cipher From a Single Pseudorandom Permutation.

In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, ASIACRYPT, volume 739 of Lecture
Notes in Computer Science, pages 210–224. Springer, 1991.

[7] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas,
and Jesse Walker. The Skein Hash Function Family. Submission to NIST (Round 2), 2009.

[8] Ewan Fleischmann, Christian Forler, Michael Gorski, and Stefan Lucks. Collision Resistant Double-Length
Hashing. In ProvSec, pages 102–118, 2010.

[9] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Security of Cyclic Double Block Length Hash Func-
tions, booktitle = IMA Int. Conf. pages 153–175, 2009.

[10] H. Dobbertin. The status of MD5 after a recent attack, 1996.
[11] Hans Dobbertin, Anton Bosselaers, Bart Preneel. RIPEMD (RACE integrity primitives evaluation message

digest), 1996.
[12] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search. In Neal Koblitz,

editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 252–267. Springer, 1996.
[13] Lars R. Knudsen, Florian Mendel, Christian Rechberger, and Søren S. Thomsen. Cryptanalysis of MDC-2.

In Antoine Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 106–120.
Springer, 2009.

[14] Lars R. Knudsen and Bart Preneel. Fast and Secure Hashing Based on Codes. In CRYPTO, pages 485–498,
1997.

[15] Matthias Krause, Frederik Armknecht, and Ewan Fleischmann. Preimage Resistance Beyond the Birthday
Bound: Double-Length Hashing Revisited. Cryptology ePrint Archive, Report 2010/519, 2010. http://

eprint.iacr.org/.
[16] Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers. In EUROCRYPT, pages 55–70,

1992.
[17] Jooyoung Lee and Daesung Kwon. The security of abreast-dm in the ideal cipher model. Cryptology ePrint

Archive, Report 2009/225, 2009. http://eprint.iacr.org/.
[18] Jooyoung Lee and Martijn Stam. MJH: A Faster Alternative to MDC-2. In Aggelos Kiayias, editor, CT-RSA,

volume 6558 of Lecture Notes in Computer Science, pages 213–236. Springer, 2011.
[19] Jooyoung Lee, Martijn Stam, and John Steinberger. The collision security of tandem-dm in the ideal cipher

model. Cryptology ePrint Archive, Report 2010/409, 2010. http://eprint.iacr.org/.
[20] Jooyoung Lee, Martijn Stam, and John Steinberger. The preimage security of double-block-length compres-

sion functions. Cryptology ePrint Archive, Report 2011/210, 2011. http://eprint.iacr.org/.
[21] Gatan Leurent, Charles Bouillaguet, and Pierre-Alain Fouque. SIMD Is a Message Digest. Submission to

NIST (Round 2), 2009.
[22] M. Rabin. Digitalized Signatures. In R. DeMillo, D. Dobkin, A. Jones and R.Lipton, editors, Foundations

of Secure Computation, Academic Press, pages 155–168, 1978.

13

[23] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

[24] Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [3], pages 428–446.
[25] C.H. Meyer and M. Schilling. Secure program load with manipulation detection code. In SECURICOM’88,

pages 111–130, France, 1988. Paris.
[26] National Bureau of Standards. FIPS Publication 46-1: Data Encryption Standard, January 1988.
[27] NIST National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard. April 1995. See

http://csrc.nist.gov.
[28] NIST National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard. April 1995. See

http://csrc.nist.gov.
[29] Ronald L. Rivest. The MD4 Message Digest Algorithm. In Alfred Menezes and Scott A. Vanstone, editors,

CRYPTO, volume 537 of Lecture Notes in Computer Science, pages 303–311. Springer, 1990.
[30] Ronald L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities Board, April 1992.
[31] John P Steinberger. The Collision Intractability of MDC-2 in the Ideal Cipher Model. Cryptology ePrint

Archive, Report 2006/294, 2006. http://eprint.iacr.org/.
[32] John P. Steinberger. The Collision Intractability of MDC-2 in the Ideal-Cipher Model. In EUROCRYPT,

pages 34–51, 2007.
[33] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the Hash Functions

MD4 and RIPEMD. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer

Science, pages 1–18. Springer, 2005.
[34] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In Victor Shoup,

editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 17–36. Springer, 2005.
[35] Robert S. Winternitz. A Secure One-Way Hash Function Built from DES. In IEEE Symposium on Security

and Privacy, pages 88–90, 1984.

A Lucky(Q)

Proposition 5. Let n, q ∈ N, n ≥ q. Let α, β, and γ be as in Theorem 1 with eq2n/2/(2n−q) ≤ α

and eq/(2n − q) ≤ β. Set τ = α(2n−q)

q2n/2 and ν = β(2n−q)
q . Then

Pr[Lucky(Q)] ≤
q2

γ(2n − q)
+ 2q2n/2eq2

n/2τ(1−ln τ)/(2n−q) + q2neq2
nν(1−ln ν)/(2n−q).

A proof can be found in [31, Appendix B].

B CollLeftColumns(Q) and CollRightColumns(Q)

Proposition 6 (CollLeftColumns(Q)).

Pr[CollLeftColumns(Q)] ≤ q

(

α2(α2 + 2γ + 1) + αγ + α

2n − q
+

α3 + 2α2 + α

(2n/2 − α)2

)

Proof. We first assume that the adversary uses the last query once for a collision. So, by sym-
metry, Qi is either used in 1TL, 1TR or 1BL, but not in 1BR since 1BR = 2BR. The success
probability for this case is upper bounded by Lemma 3.

Now assume that the adversary uses the last query twice or more for a collision. By Lemma
4, we upper bound the two cases where Qi is at least used in either 1TL and 2TL or in 1TR

and 2TR.
Finally, Lemma 5 upper bounds the case where the last query is used in 1TL but not in

2TL and the case where the last query is used in 1TR but not in 2TR. Since there are no cases
left, the union bound gives our claim. ⊓⊔

14

Lemma 3. Let S 6= T , S′ 6= T ′, Qi−1 the query list not containing the last query Qi, 1BL 6=
2BL and 1BR = 2BR. Assume that the last query Qi is used once in the MDC-4 compression
function HE. Then

Pr[HE(S, T,M) = HE(S′, T ′,M ′)] ≤ q
α2(α2 + 2γ)

2n − q

Proof. We can WLOG assume that the last query is used in word 1.

Case 1: The last query is used in position 1BL. We now upper bound the number of queries
that can be used in 2BL.
The key Ki of Qi = (Ki, Xi, Yi) uniquely determines OL and PR. There are at most α
possible choices of OR and at most α possible choices for PL. Since RL = PL and QR = OR

we can use the same argument again and upper bound the number of possible values for QL

by α2 (since there are α possible values of QR) and state the same bound for the number
of possible values for RR. So there are at most α4 queries that can be used in 2BL as
the plaintext input is also fixed by the choice of the query 2TR. For q queries, the total
probability of success is then upper bounded by qα4/(2n − q).

Case 2: The last query is used in position 1TL. Since the XOR-values of the queries 1BL and
2BL collide, there are most γ possible pairs of queries such that U = U ′. So there are at
most γ possible values for OL, PR. For each OL, the values of RR and QL are also uniquely
determined. For a fixed query pair (1BL, 2BL), there are α possible queries for 2TL and
α possible queries for 2TR and therefore α2 possible queries for 2BR. Since 1BR = 2BR

there are in total at most α2 · γ that can be used for (OL||OR) and therefore, for q queries
the total probability of success is upper bounded by qγα2/(2n − q).

Case 3: The last query is used in position 1TR. The same arguments as in Case 2 can be
applied delivering the same bound.

⊓⊔

Lemma 4. Let HE be a MDC-4 compression function and assume 1BR = 2BR. By Qi−1 we
denote the query list not containing the last query Qi. Further assume that Qi is either used
in position 1TL and 2TL or in position 1TR and 2TR. The query Qi may be used in other
positions as well. Then

Pr[HE(S, T,M) = HE(S′, T ′,M ′)] ≤ q

(

αγ + α2

2n − q
+

2α2

(2n/2 − α)2

)

where the probability is measured over arbitrary inputs of HE.

Proof. We only discuss the case where the last query is at least in 1TL, 2TL since the case
where it is used in 1TR, 2TR is essentially the same. The bound is derived by doubling our
result, i.e., we apply the union bound.

Since 1TL = 2TL, it follows 1TR 6= 2TR. If there is such a collision, then the adversary must
have found four queries previously for (i) 1TR, 1BL, 2TR, 2BL or (ii) 1TL, 1BL, 2TL, 2BL

such that the XOR-output of 1BL and 2BL is equal, i.e., a collision has been found in the left
column. It suffices to upper bound (i) since - due to the symmetric structure of MDC-4 - (i) and
(ii) are equivalent.

Case 1. The last query is used once. We WLOG assume that it is used in either 1TR or 1BL.

15

Subcase 1.1. The last query is used in 1TR. As the queries in the bottom row, 1BL and
2BL, collide, there are at most γ pairs of queries in Qi−1 that can be used. For any query
in 2BL, there are at most α matching queries for 2TR. As the output of the last query
is fully determined by 1BL and 2TR– since 1BR = 2BR and therefore their inputs are
also equal – the last query has a chance of being successful ≤ αγ/(2n − q) and for q
queries the total chance of success is ≤ qαγ/(2n − q).

Subcase 1.2. The last query is used at position 1BL. By the key input of this query, there
are at most α queries that can be used in 1TR. For each query in 1TR, there are at most
α possibilities for queries in 2TR as the queries in 1TR and 2TR share the left XOR-
output. Since 1TL = 2TL, There are α2 possible key inputs for 2BL. The plaintext
input of 2BL is also uniquely determined by the chosen query 2TR. So for q queries the
total chance of success is ≤ qα2/(2n − q).

Case 2. The last query is used twice or more in 1TR, 1BL, 2TR, 2BL. So the last query must
be used exactly twice, otherwise we would have already had a collision, because in that case
is S=S’, M=M’, and T=T’ . We assume WLOG that it is either used in 1TR, 1BL or in
1TR, 2BL.
Subcase 2.1: The last query is used in 1TR and 1BL. The right half of the query output

must match the key input. The success is upper bounded by ≤ 1/(2n/2 − α). If the right
half is successful, then there are at most α queries in 2BL that have the same right
half XOR-output as the last query. And for any query in 2BL there are again at most α
queries that can be used for 2TR. Since the left half of the XOR-output of the last query
must match the left half of the XOR-output of 2TR, the chance can upper bounded by
α2/(2n/2 − α). So for q queries, the total chance of success is ≤ qα2/((2n/2 − α)2).

Subcase 2.2: The last query is used in 1TR and 2BL. Then there are at most α queries
that can be used in 2TR given the key input of the last query. Since the left half of the
XOR-output of 2TR must be equal to the left half of the XOR-output of 1TR, the
chance of success in this case is upper bounded by α/(2n/2−α). If this half is successful,
then there are at most α values that can be used in 1BL, so the right half of the XOR-
output has a chance of success of ≤ α/(2n/2−α). For q queries, the total chance of success
is ≤ qα2/(2n/2 − α)2. ⊓⊔

Lemma 5. Let HE be a MDC-4 compression function and assume 1BR = 2BR and 1BL 6=
2BL. By Qi−1 we denote the query list not containing the last query Qi. Further assume that
Qi is either used in position 1TL but not 2TL or in position 1TR but not 2TR. The query Qi

may be used in other positions as well. Then

Pr[HE(S, T,M) = HE(S′, T ′,M ′)] ≤ q

(

α+ α3

(2n/2 − α)2
+

α

2n − q

)

where the probability is measured over arbitrary inputs of HE.

Proof. We upper bound the case where the last query is used in 1TL but not in 2TL since the
other case is equivalent. As always, we assume 1TL 6= 1TR. Note that the last query cannot
be used in 1BR and 2BR since the case would have been upper bounded by Lemma 4. By this
Lemma we also have already upper bounded the case where the last query is only used in 1TL.
So the following three cases remain to be upper bounded.

Case 1: The last query also appears in position 1BL. The success chance that the left half of
the XOR-output matches the left half of the key input is ≤ 1/(2n/2 − α). Now assume that

16

that this ’match’ is successful, i.e., our discussion now is based on this fact. Since the XOR-
outputs of 1BL and 2BL must be equal, we already know the left half of the XOR-output
of 2BL. There are at most α matching queries that can be used in 2BL in order to form a
collision. So (assuming our fact) the probability of a collision is ≤ α/(2n/2−α). For q queries,
the total chance of success for an adversary is ≤ qα/(2n/2 − α)2.

Case 2: The last query also appears in position 2BL. Given the key input of 2BL, there are at
most α different queries for position 2TL and α different queries for 2TR. So the number
of queries for 2BR is upper bounded by α2. Since 1BR = 2BR the right half of the XOR-
output of 1BL has a chance of success of α2/(2n/2 − α). Conditioned on the fact that this
right half is successful we have also fixed the right half of the XOR-output of 2BL. So there
are at most α possible queries for 1BR and the left half of the output of 1TL has a chance
of success of ≤ α/(2n/2 − α). For q queries our bound is therefore ≤ qα3/(2n/2 − α)2.

Case 3: The last query also appears in position 2TR, and does not appear in position 1BL

or 2BL, else we can revert to Case 1 or Case 2. Then there are at most α possibilities for
position 1BL and 2BL. So the last query has chance of succeeding of ≤ α/(2n − q) and for
q queries ≤ qα/(2n − q).

Proposition 7 (CollRightColumns(Q)).

Pr[CollRightColumns(Q)] ≤ q

(

α2(α2 + 2γ + 1) + αγ + α

2n − q
+

α3 + 2α2 + 1

(2n/2 − α)2

)

Proof. Due to the symmetric structure of MDC-4 this proof is essentially the same as for
proposition 6. ⊓⊔

C CollBothColumns(Q)

Proposition 8 (CollBothColumns(Q)).

Pr[CollBothColumns(Q)] ≤ q

(

γα2 + γ2

2n − q
+

2α

(2n/2 − α)2

)

Proof. In case 1, we discuss the implication if the last query is only used once, the cases 2-4 give
bounds if the last query is used at least twice.

Case 1: The last query is used exactly once. We can WLOG assume the it is either used in
1TL or 1BL.

Subcase 1.1: The last query is used in position 1BL. Since 1BR = 2BR, there are at most
γ pairs of queries in the query history that can be used for position 1BR, 2BR. Now, for
any one query 2BR, there are at most α matching queries in position 2TL and at most
α matching queries in 2TR. Since the queries in 2TL and 2TR uniquely determine the
query 2BL, there are at most γα2 queries that can be used for 2BL. Therefore the last
query has a chance of being successful of ≤ γα2/(2n − q). For q queries, the total chance
of success in this case is ≤ qγα2/(2n − q).

Subcase 1.2: The last query is used in position 1TL. There are at most γ possible pairs
of queries that can be used for 1BL and 2BL and there are at most γ possible queries
that can be used for 1BR and 2BR. We now upper bound the probability that the last
query can be used in 1TL assuming a collision. There are at most γ2 pairs of queries
that can be used for 1BL and 1BR. Therefore the success probability of the last query
can be upper bounded by ≤ γ2/(2n − q) and for q queries by qγ2/(2n − q).

17

Case 2: The last query is only used in the bottom row. Then it is used exactly twice, WLOG
in positions 1BL and 2BR. This would imply U = V ′ which then – in the case of success –
implies InternalColl(Q).

Case 3: The last query is only used in the top row. We can WLOG assume it is used in 1TL.
We can use the same reasoning as in Subcase 1.2 and therefore extend Subcase 1.2 to also
handle this slightly more general situation here.

Case 4: The last query is used at least once in the bottom row and at least once in the top
row. We can WLOG assume that it is used in position 1TL. Using the same argument as
for Case 2, the last query must then appear exactly once in the bottom row. The following
four subcases discuss the implications of the last query being also used in 1BL, 1BR, 2BL

and 2BR. Note that the adversary may use it also a second time – apart from 1TL– in the
top row but this does not change our bounds.

Subcase 4.1: The last query is also used in 1BL. The left half of the XOR-output of 1TL

has a chance of being equal to its key input (i.e., the key input of 1BL) of ≤ 1/(2n/2−α).
The following analysis is now based on the fact the the left half of the XOR-output has
matched the left half of the key input. Since we now also know the left half of the XOR-
output of 2BL, there are at most α queries that can be used in 2BL. The chance that the
right half of the XOR-output of 2BL matches the right half of the XOR-output of 1BL

is therefore ≤ α/(2n/2−α). So for q queries the total chance of success is ≤ qα/(2n/2−α)2.
Subcase 4.2: The last query is also used in 1BR. The same arguing as for Subcase 4.1 can

be used (apart from exchanging ’left’ and ’right’) and the bound for q queries is again
≤ α/(2n/2 − α)2.

Subcase 4.3 The last query is also used in position 2BL. There are at most γ possible
pairs of query in the query history that can be used for the pair 1BR, 2BR that form a
collision. The probability that the right half of theXOR-output of 1TLmatches the right
half of its key input (i.e., for the last query being also used in 1BR) is ≤ 1/(2n/2 − α).
Conditioned on the fact that the right half of the XOR-output is now fixed there are at
most α queries that can be used in 1BL such that the XOR-outputs of 1BL and 2BL

collides. The probability that the left half of the XOR-output of 1TL is equal to the left
half of the key of 1BL is therefore ≤ α/(2n/2 − α) and the total chance of success for q
queries is ≤ qα/(2n/2 − α)2.

Subcase 4.4 The last query is also used in 2BR. The same arguing as for Subcase 4.3 can
be used (apart from exchanging ’left’ and ’right’) and the bound for q queries is again
≤ qα/(2n/2 − α)2. ⊓⊔

18

