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1. Introduction

Integer factorization and primality testing are two well-known computational problems,
and the later had been proven to be an ’easy’ problem by Agrawal, Kayal and Saxena
[1] in 2004. However, integer factorization is much more hard, there are several modern
methods such as continued fraction method, class group method, elliptic curve method,
quadratic sieve and number field sieve, etc. For the details of these methods, see [3, 4, 5]
and the references therein. The best known method on integer factorization problem is
the general number field sieve [5] and its running time is sub-exponential.

Since the invention of the general number field sieve in 1993, there is no substantial
progress on this problem. There is no new method to appear for a long time. In this paper,
we propose an alternate algorithm for factoring a composite number. Our method seems
new to the best of our knowledge and maybe this is a new idea on integer factorization
problem, although the asymptotic computational complexity of our method is unknown.
We suspect that the tight asymptotic complexity of our method is hard to obtain, and it
may be related with some deep unknown mathematical theory.

We implemented our method on a PC using Shoup’s NTL library version 5.4.1 [7].
Unfortunately, we have to say that the practical effect of our method is not good on a
single PC, it is worse than many known algorithms on this problem. However, we believe
that our method yields interesting phenomena, and it is worth for further study.

The paper is organized as follows. We give the necessary mathematical knowledge of
our method and we describe the basic form of our algorithm in Section 2. We give some
possible variants of our method in Section 3. We consider factorization of RSA moduli
using our method in Section 4. We give some partial experimental results about our
method in Section 5. Finally, some open problems and a short conclusion are given.

1



2. Basic Principle

2.1. Using general a with gcd(n, a) = 1

Let n ∈ Z, n > 1 be a composite. We want to find a non-trivial divisor of n, i.e. a divisor
d | n with 1 < d < n. The following is a key observation.

Proposition 2.1. There exists an integer j such that 1 < j < n − 1 and 1 <
gcd(n,

(
n
j

)
) < n.

Proof. We distinguish two cases:
Case (i): n has a square divisor.
Then n has a prime divisor p such that pk ∥ n with k > 1. Since(

n

p

)
=

n(n− 1)(n− 2) · · · (n− p+ 1)

p!

and p - (n− i) for 1 6 i 6 p− 1, we have pk−1 ∥
(
n
p

)
. Hence 1 < gcd(n,

(
n
p

)
) < n.

Case (ii): n is square-free.
Then n has two prime divisors p and q with p < q. Obviously q |

(
n
p

)
. Hence 1 <

gcd(n,
(
n
p

)
) < n.

By Proposition 2.1, to obtain a non-trivial divisor of n, a natural way is to expanding
the polynomial (X + 1)n, then computing the gcd’s of the coefficients with n. However,
this will take exponential time. We can do similarly as in Agrawal, Kayal and Saxena [1],
and this leads to the following definition.

Definition 2.2. Let a ∈ Z be an integer with gcd(n, a) = 1. Let r be a positive
integer. Suppose

(X + a)n ≡
r−1∑
i=0

aiX
i mod(Xr − 1, n)

with ai ∈ Z and 0 6 ai 6 n− 1 for 0 6 i 6 r − 1. Here X is an indeterminate over Z. If
there is an i such that 0 6 i 6 r − 1 and gcd(n, ai) is a non-trivial divisor of n, then we
call that r is a factorization-friendly number of n with respect to a.

Proposition 2.3. n− 1 is a factorization-friendly number of n with respect to arbi-
trary a with gcd(n, a) = 1.

Proof. Since

(X + a)n =
n∑

i=0

(
n

i

)
an−iXi,

so

(X + a)n ≡ (na+ an) + (1 + nan−1)X +
n−2∑
i=2

(
n

i

)
an−iXi mod(Xn−1 − 1, n).

Now the result follows from Proposition 2.1.
Definition 2.4. The least factorization-friendly number of n with respect to a is

called the factorization number of n with respect to a and is denoted by FAC(n, a). So by
Proposition 2.3, we have FAC(n, a) 6 n− 1.
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We have done numerous experiments, these experiments show a remarkable fact that
the FAC(n, a), even FAC(n, 1), are surprisingly small relative to n. They grow very slowly
with n.

Question: How small FAC(n, a) can be for some fixed a (e.g. for a = 1 or a = −1)?
How small MinaFAC(n, a) can be, where a is taken from some specific set?

Definition 2.5. Let m and r be two positive integers. Let i and a be two integers.
We define [

m
i

]a
r

=
∑

0 6 k 6 m
k ≡ i( mod r)

(
m

k

)
am−k.

So, in Definition 2.2, we have ai ≡
[
n
i

]a
r

( mod n) for 0 6 i 6 r − 1. We denote

[
m
i

]
r

=

[
m
i

]1
r

=
∑

0 6 k 6 m
k ≡ i( mod r)

(
m

k

)
.

Lemma 2.6. Let ζ ∈ C be a primitive r−th root of unity. Then, for 0 6 i 6 r − 1,
we have [

m
i

]a
r

=
1

r

r−1∑
j=0

(ζj + a)m(ζj)−i.

Proof. Since (X + a)m =
∑m

i=0

(
m
i

)
am−iXi, we have

r−1∑
j=0

(ζj + a)m(ζj)−i =

r−1∑
j=0

[
m∑
s=0

(
m

s

)
ζjsam−s

]
(ζj)−i

=
m∑
s=0

(
m

s

)
am−s

r−1∑
j=0

ζ(s−i)j = r ·
∑

0 6 s 6 m
s ≡ i( mod r)

(
m

s

)
am−s.

2.2. Using a = 1

In this sub-section, we suppose a = 1. Let

(X + 1)n ≡
r−1∑
i=0

aiX
i mod(Xr − 1, n),

where ai ≡
[
n
i

]
r

( mod n) for 0 6 i 6 r − 1.
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For r = 1, we have a0 ≡ 2n( mod n). For r = 2, we have a0 = a1 ≡ 2n−1( mod n).
Therefore, if n is even and n is not a power of 2, we have FAC(n, 1) = 1; if n is odd or n
is a power of 2, we have FAC(n, 1) > 3.

Proposition 2.7. We have[
n
0

]
3

=
1

3

(
2n + 2 cos

(nπ
3

))
,

[
n
1

]
3

=
1

3

(
2n + 2 cos

(
(n− 2)π

3

))
,

[
n
2

]
3

=
1

3

(
2n + 2 cos

(
(n+ 2)π

3

))
.

Proof. Set i =
√
−1. By Lemma 2.6, let r = 3, and so ζ = ei

2π
3 = −1

2 +
√
3
2 i, ζ2 =

−1
2−

√
3
2 i, 1+ζ = 1

2+
√
3
2 i = ei

π
3 , 1+ζ2 = 1

2−
√
3
2 i = e−iπ

3 , (1+ζ)n = ei
nπ
3 , (1+ζ2)n = e−inπ

3 ,
thus we have[

n
0

]
3

=
1

3

2∑
j=0

(1 + ζj)n =
1

3

(
2n + ei

nπ
3 + e−inπ

3

)
=

1

3

(
2n + 2 cos

(nπ
3

))
,

[
n
1

]
3

=
1

3

2∑
j=0

(1 + ζj)nζ−j =
1

3

(
2n + 2 cos

(
(n− 2)π

3

))
,

[
n
2

]
3

=
1

3

2∑
j=0

(1 + ζj)nζ−2j =
1

3

(
2n + 2 cos

(
(n+ 2)π

3

))
.

Proposition 2.8. If n is even and n is not a power of 2, then FAC(n, 1) = 1; if n is
a power of 2, then FAC(n, 1) = 3.

Proof. Suppose n is a power of 2, i.e. n = 2m,m > 1. Ifm is even, then n ≡ 1(mod 3),

and n+2
3 is even, so a2 ≡

[
n
2

]
3

≡ 1
3(2

n + 2)(mod n), thus gcd(n, a2) = 2. If m is odd,

similarly, we have gcd(n, a1) = 2.
Of course, we do not need to factorize an even composite number, Proposition 2.8 just

illustrates a fact that the FAC(n, 1) are very small.
Proposition 2.9. Let m, r be two positive integers, and let i be an integer. Then

we have [
m
i

]
r

=

[
m

m− i

]
r

.

Proof. We have [
m

m− i

]
r

=
∑

0 6 k 6 m
k ≡ m− i( mod r)

(
m

k

)
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=
∑

0 6 m− k 6 m
m− k ≡ i( mod r)

(
m

m− k

)
=

[
m
i

]
r

.

2.3. Using a = −1

In this sub-section, we suppose a = −1. We have

(X − 1)n ≡
r−1∑
i=0

aiX
i mod(Xr − 1, n),

where

ai ≡
[
n
i

]−1

r

≡
∑

0 6 k 6 n
k ≡ i( mod r)

(
n

k

)
(−1)n−k(mod n)

for 0 6 i 6 r − 1.
Obviously, for r = 1, we have a0 = 0, so FAC(n,−1) > 2 for all n. For r = 2, we

have a0 ≡ (−1)n2n−1(mod n) and a1 ≡ (−1)n+12n−1(mod n). Hence, if n is even and n
is not a power of 2, we have FAC(n,−1) = 2; if n is a power of 2 or n is odd, we have
FAC(n,−1) > 3.

Proposition 2.10. We have

[
n
0

]−1

3

= 3
n
2
−1 · 2 cos

(
5nπ

6

)
,

[
n
1

]−1

3

= 3
n
2
−1 · 2 cos

(
(5n− 4)π

6

)
,

[
n
2

]−1

3

= 3
n
2
−1 · 2 cos

(
(5n− 8)π

6

)
.

Proof. Set i =
√
−1. By Lemma 2.6, let r = 3, and so ζ = ei

2π
3 = −1

2 +
√
3
2 i, ζ2 =

−1
2 −

√
3
2 i, ζ − 1 = −3

2 +
√
3
2 i =

√
3ei

5π
6 , ζ2 − 1 = −3

2 −
√
3
2 i =

√
3e−i 5π

6 , (ζ − 1)n =
√
3nei

5nπ
6 , (ζ2 − 1)n =

√
3ne−i 5nπ

6 , thus we have

[
n
0

]−1

3

=
1

3
((ζ − 1)n + (ζ2 − 1)n) = 3

n
2
−1 · 2 cos

(
5nπ

6

)
,

[
n
1

]−1

3

=
1

3
((ζ − 1)nζ−1 + (ζ2 − 1)nζ−2) = 3

n
2
−1 · 2 cos

(
(5n− 4)π

6

)
,
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[
n
2

]−1

3

=
1

3
((ζ − 1)nζ−2 + (ζ2 − 1)nζ−4) = 3

n
2
−1 · 2 cos

(
(5n− 8)π

6

)
.

Proposition 2.11. If n is even and n is not a power of 2, then FAC(n,−1) = 2; if n
is a power of 2, then FAC(n,−1) = 3.

Proof. Suppose n is a power of 2, i.e. n = 2m,m > 1. Then 5n−4
6 = 5·2m−1−2

3 and

5n−8
6 = 5·2m−1−4

3 , so 5n−4
6 or 5n−8

6 must be even, thus

[
n
1

]−1

3

or

[
n
2

]−1

3

is 2 · 32m−1−1.

Hence we have gcd(n, a1) = 2 or gcd(n, a2) = 2.
Proposition 2.12. Let m, r be two positive integers, and let i be an integer. Then

we have [
m
i

]−1

r

= (−1)m ·
[

m
m− i

]−1

r

.

Proof. We have

[
m

m− i

]−1

r

=
∑

0 6 k 6 m
k ≡ m− i( mod r)

(
m

k

)
(−1)m−k

=
∑

0 6 m− k 6 m
m− k ≡ i( mod r)

(
m

m− k

)
(−1)k · (−1)m−2k = (−1)m ·

[
m
i

]−1

r

.

2.4. An algorithm for factoring integers

Now suppose n is an odd composite number. The following algorithm will find a non-trivial
divisor of n. Set log n = log2 n.

Algorithm A:
Input: An odd composite n.
Output: A non-trivial divisor of n.
1. For r = 3 to n− 1 do
2. Compute

∑r−1
i=0 aiX

i = (X + 1)n mod (Xr − 1, n)
3. For i = 0 to r − 1 do
4. Compute di := gcd(n, ai)
5. If 1 < di < n, then output it and halt
The correctness of the algorithm is obvious. Now we analyze computational complexity

of Algorithm A. First, Algorithm A will terminate when r attains to r = FAC(n, 1). For
a fixed r, Step 2 will take O˜(r log2 n) time ([9] Corollary 8.27, p.233). In Step 4, one gcd
computation will take O˜(log2 n) time, so computing r gcd’s will take O˜(r log2 n) time.
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Hence, for a fixed r, Algorithm A takes O˜(r log2 n) time. The total time complexity of
Algorithm A is O˜(FAC(n, 1)2 log2 n).

Of course, using Proposition 2.9, one needs only to compute r
2 gcd’s in Step 4 of

Algorithm A.

3. Some Variants

3.1. Randomized algorithms

We can use some randomized numbers to modify Algorithm A. For example, we can
first select randomly a number a with gcd(n, a) = 1, then we perform the computation∑r−1

i=0 aiX
i = (X + a)n mod (Xr − 1, n) for all r in some range and then we compute r

gcd’s just as in Algorithm A. The formal description is as follows.
Algorithm B:
Input: An odd composite n.
Output: A non-trivial divisor of n.
1. Selectly a randomly with 1 6 a 6 n− 1
2. If 1 < gcd(n, a) < n, then output it and halt
3. For r = 1 to n− 1 do
4. Compute

∑r−1
i=0 aiX

i = (X + a)n mod (Xr − 1, n)
5. For i = 0 to r − 1 do
6. Compute di := gcd(n, ai)
7. If 1 < di < n, then output it and halt
Algorithm B will terminate when r attains to r = FAC(n, a), so the time complexity of

Algorithm B will depend on the size of FAC(n, a). Our experiments show that FAC(n, a)
is much less than FAC(n, 1) for some a.

We can also select some r randomly with r not too big when we expand the polynomial
(X+a)n mod (Xr−1, n). If we fail to find a non-trivial divisor of n, we can try another
r.

Furthermore, we can select a polynomial f(X) randomly in Z[X], then we perform the
computation f(X)n mod (Xr − 1, n). Our experiments show that this works well also.

3.2. Deterministic bounded algorithm

We use two bounds A and R, where A ∈ Z, 0 < A 6 n−1
2 and R ∈ Z, 0 < R 6 n− 1.

Algorithm C:
Input: An odd composite n.
Output: A non-trivial divisor of n.
1. For a = 1 to A do
2. If 1 < gcd(n, a) < n, then output it and halt
3. For r = 1 to R do
4. Compute

∑r−1
i=0 aiX

i = (X + a)n mod (Xr − 1, n)
5. For i = 0 to r − 1 do
6. Compute di := gcd(n, ai)
7. If 1 < di < n, then output it and halt
8. Compute

∑r−1
i=0 aiX

i = (X − a)n mod (Xr − 1, n)
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9. For i = 0 to r − 1 do
10. Compute di := gcd(n, ai)
11. If 1 < di < n, then output it and halt
Of course, if the algorithm fails to find a non-trivial divisor of n, we can increase the

bound A or R.
We can also run Algorithm C for a ∈ A and r ∈ R, where A ⊆ {1, . . . , n − 1}, R ⊆

{1, . . . , n− 1} are two specific subsets.

3.3. Using polynomials of several variables

We can also use polynomials of several variables f(X,Y, . . . , Z) ∈ Z[X,Y, . . . , Z], then we
perform the computation f(X,Y, . . . , Z)n mod (Xrx − 1, Y ry − 1, . . . , Zrz − 1, n), where
rx, ry, . . . , rz are positive integers, not necessarily the same, and then we compute the
gcd’s of the coefficients and n to find a non-trivial divisor of n. Our experiments show
that this works well also.

4. Factoring RSA modulus

Now we suppose n = pq be a RSA modulus, where p < q are two distinct odd primes. In
this section we provide some upper bounds for FAC(n, 1) with RSA modulus n. We have
to say that these bounds are rather rough, see the following Section 5.

Lemma 4.1. Let m > 1 be a positive integer and let k be an integer with 0 < k < m
and gcd(m, k) = 1. Then we have m |

(
m
k

)
.

Proof. Since(
m

k

)
=

m!

k!(m− k)!
=

m

k
· (m− 1)!

(k − 1)!(m− k)!
=

m

k
·
(
m− 1

k − 1

)

is an integer and
(
m−1
k−1

)
is also an integer, we have k | m

(
m−1
k−1

)
. As gcd(m, k) = 1, hence

k |
(
m−1
k−1

)
, and so m |

(
m
k

)
.

Now for 0 6 k 6 n, if gcd(n, k) = 1, i.e. p - k and q - k, by Lemma 4.1, we have n |
(
n
k

)
.

So we need only to consider k = 0 or k = n or k = pi(0 < i < q) or k = qj(0 < j < p).
Lucas’ Theorem. (See [2] p.28) Let p be a prime, and let a = a0 + a1p + · · · +

akp
k, b = b0 + b1p+ · · ·+ bkp

k, where 0 6 ai, bi < p for i = 0, 1, . . . , k. Then

(
a

b

)
≡

k∏
i=0

(
ai
bi

)
(mod p).

Since q - pi for 0 < i < q, by Lucas’ Theorem, we have q |
(
n
pi

)
. Similarly, we have

p |
(
n
qj

)
for 0 < j < p. By Lucas’ Theorem, we have

(
n
qj

)
≡
(
p
j

)
(mod q) for 0 < j < p.

Since p < q, then q -
(
p
j

)
, so q -

(
n
qj

)
for 0 < j < p.

Proposition 4.2. p is a factorization-friendly number of a RSA modulus n = pq
with respect to 1, so FAC(n, 1) 6 p <

√
n.
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Proof. Write q = ap + k with a > 0 and 0 < k < p. Set I = {k + ps | s > 0}.
Obviously, 0, n and pi(0 < i < q) are all not in I and q is in I. If qj is in I for some
j with 0 < j < p, i.e. qj = k + ps for some s > 0. Then k ≡ qj ≡ kj (mod p), thus
j ≡ 1 (mod p), so j = 1. Hence[

n
k

]
p

=
∑

0 6 t 6 n
t ≡ k( mod p)

(
n

t

)
≡
(
n

q

)
(mod n).

By above analysis, we have p |
(
n
q

)
and q -

(
n
q

)
, hence

gcd

(
n,

[
n
k

]
p

)
= p.

Therefore p is a factorization-friendly number of a RSA modulus n = pq with respect to
1.

The upper bound for FAC(n, 1) in Proposition 4.2 is rather rough, in fact, our exper-
iments show that FAC(n, 1) is much less than p, see the following Section 5. We have
FAC(3q, 1) = 3 for an odd prime q > 3 from Proposition 4.2.

Proposition 4.3. Let n = pq be a RSA modulus with p < q < 2p. Write q = p+ k
with 0 < k < p. Let c be a positive integer. Suppose k 6 p − 3c − 1. Then p − c is a
factorization-friendly number of n with respect to 1, so FAC(n, 1) 6 p− c.

Proof. Since k is even, we have p > 3c+ 3, so c+ 1 < p− c and k + c < p− c. Since
(p− c)+ c = p is a prime, we have gcd(p− c, c) = 1. Similarly, gcd(p− c, k+ c) = 1. So the
sets {−ci( mod (p− c)) | i = 1, 2, . . . , c+ 1} and {(k + c)j( mod (p− c)) | j = 1, 2, . . . , c}
have c+1 elements and c elements, respectively. So we can choose an element a from the
first set such that a is not in the second set. Let a ≡ −ci1( mod (p−c)) with 1 6 i1 6 c+1
and 0 < a < p− c.

Set I = {a+(p− c)s | s > 0}. Obviously, 0 /∈ I. Since n = pq ≡ c(k+ c)( mod (p− c))
and by the choice of a, we have n /∈ I. For pi(0 < i < q), if pi ∈ I, i.e. pi ≡ a( mod (p−c)),
i.e. ci ≡ −ci1( mod (p− c)), we have i ≡ −i1( mod (p− c)). Hence i = p− c− i1 + (p−
c)s, s > 0. Since p − c − i1 + p − c = 2p − 2c − i1 > 2p − 3c − 1 > p + k = q, we
have i = p − c − i1 := i0. For qj(0 < j < p), if qj ∈ I, i.e. qj ≡ a( mod (p − c)), i.e.
(k+ c)j ≡ a( mod (p− c)), this equation has a unique solution j0 with 0 6 j0 < p− c and
j ≡ j0( mod (p − c)). By the choice of a, we have j0 > c + 1. Because j0 + p − c > p, so
j = j0. Thus, we have [

n
a

]
p−c

≡
(

n

pi0

)
+

(
n

qj0

)
( mod n).

Obviously,

q -
[
n
a

]
p−c

.
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Since q − i0 + 1 6 p, we have p |
(

n
pi0

)
, thus

p |
[
n
a

]
p−c

.

Hence

gcd

(
n,

[
n
a

]
p−c

)
= p.

Therefore p− c is a factorization-friendly number of n with respect to 1.
Corollary 4.4. Let n = pq be a RSA modulus with p < q < 2p. Write q = p+k with

0 < k < p. Suppose k < εp, 0 < ε < 1. Suppose p > 3
1−ε . Then FAC(n, 1) 6 p− ⌊1−ε

3 p⌋ ≈
2+ε
3 p.
Proof. Put c = ⌊1−ε

3 p⌋. The result then follows from Proposition 4.3.
Proposition 4.5. Let n = pq be a RSA modulus with p < q < 2p. Write q = p+ k

with 0 < k < p. Suppose n ≡ −1( mod 4). Suppose 2 < k < 2
3p. Then r := p

2 + 3
4k is a

factorization-friendly number of n with respect to 1, so FAC(n, 1) 6 p
2 + 3

4k.
Proof. Since n ≡ −1( mod 4), then p and q must be the case: the one is ≡ 1( mod 4)

and the other is ≡ −1( mod 4). So k ≡ 2( mod 4), thus r is a positive integer and r < p.
Let a ∈ Z with 0 6 a < r and a ≡ (r − 1)p( mod r). Since r > 1, we have a > 0. Set
I = {a+ rs | s > 0}. A similar analysis as the proof of Proposition 4.3, we have 0, n /∈ I
and only p(r − 1) and q(r − 3) are in I. Thus[

n
a

]
r

≡
(

n

p(r − 1)

)
+

(
n

q(r − 3)

)
( mod n).

Similarly, we have

gcd

(
n,

[
n
a

]
r

)
= p.

Therefore r is a factorization-friendly number of n with respect to 1.
Corollary 4.6. Keeping the notations in Proposition 4.5, further suppose k < εp, 0 <

ε 6 2
3 , then FAC(n, 1) 6 (12 + 3

4ε)p.
Remark. Comparing Corollaries 4.4 and 4.6, it is easy to see that, when ε = 2

5 , then
2+ε
3 = 1

2 + 3
4ε; when ε > 2

5 , then
2+ε
3 < 1

2 + 3
4ε; when ε < 2

5 , then
2+ε
3 > 1

2 + 3
4ε.

Obviously, all the above bounds for FAC(n, 1) hold also for FAC(n, a) with arbitrary
a such that gcd(n, a) = 1. We conclude this section by giving the following interesting
result. This seems mean that an easily factorized number is also easily factorized by our
method.

Proposition 4.7. Let n = pq be a RSA modulus. Suppose q = p + 2, i.e. p and q
are twin primes. Then FAC(n, 1) 6 6.

Proof. Since FAC(15, 1) = 3, we may assume p > 5. It is easy to see that, there is a
positive integer k such that p = 6k − 1 and q = 6k + 1. An easy analysis shows that[

n
2

]
6

≡
∑

0 < i < q
i ≡ 4( mod 6)

(
n

pi

)
+

∑
0 < j < p

j ≡ 2( mod 6)

(
n

qj

)
( mod n).
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It is easy to see that

p |
[
n
2

]
6

.

By a result of Sun [8], we have[
p
2

]
6

=
1

6
(1 + 2p − 3

p+1
2 ), for even k,

[
p
2

]
6

=
1

6
(1 + 2p + 3

p+1
2 ), for odd k.

Since 3
p+1
2 = 3

q−1
2 ≡

(
3
q

)
( mod q), in both cases, we have

[
p
2

]
6

≡ 1

6
· 2p( mod q).

Hence

q -
[
n
2

]
6

.

Therefore

gcd

(
n,

[
n
2

]
6

)
= p.

5. Experimental Results

5.1. Some values of FAC(n, 1) and FAC(n, a) for RSA moduli n

We have done numerous experiments, these experiments show a remarkable fact that the
FAC(n, a), even FAC(n, 1), are surprisingly small relative to n. They grow very slowly
with n. We list the partial values of FAC(n, 1) for RSA moduli n = pq such that p and q
have three digits and some partial values of FAC(n = pq, a) with 5 or 6 digits of p and q
(see Tables 1 and 2).

5.2. Comparison of FAC(n, 1) and FAC(n, a) for RSA moduli n

For a fixed n, different choice of a will in general give distinct FAC(n, a). Usually, for some
a’s, FAC(n, a) will remarkably be less than FAC(n, 1). This indicates, when we choose
such a, we can reduce the time complexity of Algorithm B. We list some such examples,
see Table 3.
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5.3. Some experiments for polynomials of several variables or of high
degrees

We can use some polynomial of degree two or three instead of linear polynomial. For
example, we use polynomials f(X) = X2 + X + 1 and f(X) = X3 + X2 + X + 1, then
compute f(X)n mod (Xr − 1, n), and compute the gcd’s of the coefficients and n to find
a non-trivial divisor of n. We also denote the smallest r by FACS(n) and FACC(n)
respectively and list some such examples, see Table 4.

We can also use polynomials of several variables instead of polynomials of one variable.
The algorithms work well also. For example, we use polynomial f(X,Y ) = X + Y + 1,
compute f(X,Y )n mod (Xr − 1, Y r − 1, n), and compute the gcd’s of the coefficients
and n to find a non-trivial divisor of n. We denote the smallest r by FACB(n). We also
compute f(X,Y )n mod (Xr1 −1, Y r2 −1, n) and denote the first sequence (r1, r2) we get
by FACB(n, r1, r2). In addition, we use polynomial f(X,Y, Z) = X +Y +Z +1, compute
f(X,Y, Z)n mod (Xr − 1, Y r − 1, Zr − 1, n), and denote the smallest r by FACT (n).
Similarly, we compute f(X,Y, Z)n mod (Xr1 −1, Y r2 −1, Zr3 −1, n) and denote the first
sequence (r1, r2, r3) by FACT (n, r1, r2, r3). We list some such examples, see Table 5.

5.4. The practical effect of our method

The practical effect of Algorithm A is not good on a single PC. For example, it takes about
six hours to factorize a number with 15 digits, however, it takes about one hour and 30
minutes to factorize the same number when using Algorithm B. However, our method has
two advantages, one is its simplicity, and the other is its parallelism. It is easily adapted
to run simultaneously on many computers, e.g. on Internet. We do not perform such
experiments.

6. Open Problems and Conclusion

Of course, one open problem is to obtain better theoretic estimate for FAC(n, 1), even
for RSA modulus n, than the estimate given in Proposition 4.2. Another open problem
is to give explicit bounds for A and R in Algorithm C which guarantees Algorithm C
always find a non-trivial divisor of n. Since the computational complexity of our method
depends directly on the size of FAC(n, 1) or of FAC(n, a) for some specific a’s, so the most
interesting thing is to obtain asymptotic tight upper bounds for these numbers.

Integer factorization is a very important computational problem, and it is the founda-
tion stone of the famous RSA cryptosystem [6]. Since the invention of the general number
field sieve in 1993, there is no substantial progress on this problem. There is no new
method to appear for a long time. Our method seems new to the best of our knowledge
and maybe this is a new idea on integer factorization problem.
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A Some tables

Table 1 The partial values of FAC(n = pq, 1) with 3 digits of p and q

n = pq FAC(n, 1) n = pq FAC(n, 1) n = pq FAC(n, 1)
10403=101*103 5 10807=101*107 8 11009=101*109 13
11413=101*113 17 12827=101*127 21 13231=101*131 8
13837=101*137 22 14039=101*139 12 15049=101*149 21
15251=101*151 17 15857=101*157 18 16463=101*163 9
16867=101*167 15 17473=101*173 21 18079=101*179 12
18281=101*181 22 19291=101*191 20 19493=101*193 9
19897=101*197 13 20099=101*199 12 21311=101*211 9
251659=359*701 38 254531=359*709 17 258121=359*719 5
235247=367*641 20 235981=367*643 9 237449=367*647 12
255067=379*673 33 256583=379*677 51 258857=379*683 36
409763=593*691 25 415693=593*701 7 420437=593*709 15
563903=607*929 24 571187=607*941 43 586969=607*967 60
621787=701*887 52 536713=709*757 59 750187=757*991 72
812909=853*953 17 756731=857*883 33 782549=859*911 61
921551=953*967 17 936799=953*983 34 988027=991*997 9

Table 2 The partial values of FAC(n = pq, a) with 5 or 6 digits of p and q

n = pq a FAC(n, a)
323910211=16453*19687 224606094 25
401112223=16487*24329 254658360 62
556453211=20333*27367 501040105 23
1359410777=32969*41233 1 80
1695762151=35027*48413 278073557 30
2517939323=44351*56773 1970421086 29
2708129327=50753*53359 565530478 91

19366566407=134753*143719 8354295828 16
22473158221=145577*154373 2247187015 207
27367072697=131701*207797 9716426496 80
43567492823=183059*237997 5778311349 40
45444818857=179687*252911 43931485047 29
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Table 3 The partial values of FAC(n, 1) and FAC(n, a)

n = pq FAC(n, 1) a FAC(n, a)
323910211=16453*19687 266 224606094 25
401112223=16487*24329 266 254658360 62
481118119=18371*26189 260 447652040 16
556453211=20333*27367 39 501040105 23
580839353=20201*28753 209 494398594 17
712415273=25237*28229 113 395527894 47

89441974637=276839*323083 712 49599857930 68
91457375567=300721*304127 584 41380446395 123
154709636971=332933*464687 1161 16603703892 162
408187969489=531911*767399 1025 142966224429 67
702358343579=733003*958193 2467 413854661934 245

1039342803007=1012751*1026257 1771 176505030244 198

Table 4 The partial values when using polynomials of high degree

n = pq FAC(n, 1) FACS(n) FACC(n)
399947791=18049*22159 34 150 40
438232609=20731*21139 234 165 43
466390553=16417*28409 132 212 104
540517409=18089*29881 221 100 289
702477619=23057*30467 118 300 109
850932143=28901*29443 148 197 47

437164210933=602489*725597 737 939 1938
588372701219=564701*1041919 1627 2453 1311
617840467649=618571*998819 1886 509 257
626909223527=642937*975071 2073 2938 1359
674776379579=780721*864299 1251 1442 1183
735474271523=857357*857839 507 966 431

Table 5 The partial values when using polynomials of several variables

n = pq FAC(n, 1) FACB(n)
FACB(n, r1, r2) FACT (n)

FACT (n, r1, r2, r3)
r1 r2 r1 r2 r3

360379=557*647 45 13 6 2 11 3 3 2
581897=659*883 15 23 6 5 11 6 5 5
599197=601*997 17 17 8 7 6 5 4 4

1685069=1171*1439 45 19 12 5 13 6 4 3
2399219=1231*1949 32 14 8 3 10 8 6 4
2581903=1483*1741 35 12 9 8 17 5 5 4
3202781=1721*1861 70 17 7 3 10 7 6 2
8381519=2069*4051 79 32 11 10 10 6 3 3
10007717=2953*3389 66 41 8 5 6 5 4 2
11963789=3259*3671 17 15 10 7 20 6 5 5
12374501=3079*4019 27 31 11 7 15 7 5 5
13451593=3347*4019 71 26 12 3 17 6 5 3
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