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Abstract

In the paper, for d = 2tk, n = 2t(2k+q)+m and special k = 2w(20+
21 + · · ·+ 2s), we present that a majority of X(d, n) are not balanced.
The results include many cases wt(d) ≥ 3 and n ≡ 0, 1, 2, 3mod4. The
results are also parts of the conjecture that X(2t, 2t+1l − 1) is only
nonlinear balanced elementary symmetric Boolean function. Where
t ≥ 2, q ≥ 1, s ≥ 0, w ≥ 0 and m ≥ −1 are integers, and X(d, n) =⊕
1≤i1<···<id≤n

xi1 · · ·xid .

Keywords: Cryptograph, Boolean functions, balancedness, elemen-
tary symmetric.

1 Introduction

Symmetric Boolean function is a subclass of Boolean functions and their out-
puts only depend on the Hamming weifht of their inputs, namely, for Boolean
function f(x), inputs x and y, then f(x) = f(y) when wt(x) = wt(y).
They allow reducing memory spaces and gates of hardware implementation
and are of great interest to cryptography. Recent years, many significant
properties of symmetric Boolean functions have been studied in [1–7], in-
cluding balancedness, algebraic immunity, resiliency, nonlinearity and so on.
In [1–3], some symmetric Boolean functions with maximum algebraic immu-
nity were constructed. The [3] gave the enumeration of symmetric Boolean
functions with maximum algebraic immunity. In [4] and [5], it was proved
that the maximum nonlinearity of n-variable symmetric functions is respec-
tively 2n−1 − 2n/2−1 and 2n−1 − 2(n−1)/2 when n is respectively even and
odd. The [6] gave all balanced symmetric Boolean functions whose degrees
are smaller than 7. The [6] and [7] investigated the relationships among the
significant properties of symmetric Boolean functions.
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It is well known that balancedness is a primary requirement for Boolean
functions in cryptosystem. The balancedness of symmetric Boolean func-
tions should be firstly studied. For fixed algebraic degree, the [6] proved the
conjecture that there is not balanced symmetric Boolean function when n
grows. As a subclass of symmetric Boolean functions, elementary symmetric
Boolean function is basic unit composing of symmetric Boolean functions.
The balancedness of Elementary symmetric Boolean functions have been s-
tudied in [8–10]. The [8] prosed a conjecture that X(2t, 2t+1l − 1) is only
nonlinear balanced elementary symmetric Boolean function. The [9] proved
the conjecture holds when wt(d) < 3 and gave some cases that X(d, n) are
not balanced when wt(d) = 3. However, the [9] didn’t study further when
wt(d) > 3. In [10], for n = 2t+1l− 1 with odd l and 2t+1 - d, it showed that
X(d, n) is balanced if and only if d = 2k, 1 ≤ k ≤ t. Hence, for n = 2t+1l−1
with odd l, the only case left is 2t+1 | d. A majority of conjecture have
been proved when n ≡ 3mod4, however, there are not many results when
n ≡ 0, 1, 2mod4.

Since X(d, n) is not balanced when d > dn/2e [8], we consider special
elementary symmetric Boolean functions with forms d ≤ dn/2e. Combining
with [9] and [10], in the paper, we consider special forms 2t | d, n = 2tl+m
and d ≤ dn/2e. We assume that d = k2t and n = 2t(2k+q)+m. As the cases
wt(d) < 3 were discussed in [9] and the general cases wt(d) ≥ 3 are difficult
to be discussed, we consider special d whose ’1s’ are consecutive in the 2-adic
description. Namely, d = 2t+w(1 + 21 + · · · + 2s) and n = 2t+w+1(1 + 21 +
· · ·+ 2s) + 2tq +m. For the several kinds of elementary symmetric Boolean
functions, we give most cases that X(d, n) are not balanced. The results
include many cases wt(d) ≥ 3 and n ≡ 0, 1, 2, 3mod4.

2 Preliminaries

There are some general definitions about Boolean functions. Denote by
GF (2) the finite field with two elements 0 and 1, and denote by

⊕
the

addition over GF (2). We consider function f(x) called n-variable Boolean
function from GFn(2) to GF (2), where GFn(2) is the n-dimensional vector
space over GF (2) and x = (x1, x2, . . . , xn) ∈ GFn(2). f(x) can be repre-
sented as a polynomial, called its algebraic normal form (ANF):

f(x1, . . . , xn) =
⊕

u∈GFn(2)

λu(

n∏
i=1

xui
i ), λu ∈ GF (2).

The number of variables in the highest order product term with nonzero
coefficient is called its algebraic degree. The Hamming weight of a binary
vector x = (x1, x2, . . . , xn) is the number of its nonzero coordinates, denoted
by wt(x). Denote by | A | the size of the group A. | {x ∈ GFn(2)|f(x) = 1} |
is called the Hamming weight of Boolean function f(x), denoted by wt(f(x)).
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f(x) is called balanced if wt(f(x)) = 2n−1. Hence, | {x ∈ GFn(2)|f(x) =
0} | −wt(f(x)) = 2n−2wt(f(x)) can refer the balancedness of f(x), namely,
f(x) is balanced if and only if 2n − 2wt(f(x)) = 0.

An n-variable Boolean function f(x) is called symmetric if its output is
invariant under any permutation of its input bits. Equivalently, the output
of f(x) only depends on the Hamming weight of its input vector. The form
of elementary symmetric Boolean functions is as follows:

X(d, n) =
⊕

1≤i1<···<id≤n
xi1 · · ·xid .

Let Z(d, n) = 2n − 2wt(X(d, n)), then X(d, n) is balanced if and only
if Z(d, n) = 0. We write

(
n
i

)
as Ci

n for short, and it is easy to get X(d, n) =

[1− (−1)C
d
i ]/2 when x ∈ GFn(2) and wt(x) = i. Hence,

Z(d, n) = 2n − 2 ·
n∑

i=0

[Ci
n ·

1− (−1)C
d
i

2
]

=
d−1∑
i=0

Ci
n +

n∑
i=d

[Ci
n · (−1)C

d
i ]. (1)

Definition 1. [2] Let a = (a1, · · · , an) ∈ GFn(2), b = (b1, · · · , bn) ∈
GFn(2), we say a � b if ai ≤ bi for all 1 ≤ i ≤ n; we say a � b if
ai > bi for some i.

Lemma 1. [11] Let k and t be nonnegative integers, k ≥ t, their 2-adic
descriptions are a = (k0, k1, · · · , kl) and t = (t0, t1, · · · , tl), then

Ct
k ≡ C

t0
k0
Ct1
k1
· · ·Ctl

kl
≡
{

1mod2 , a � b
0mod2 , a � b

We get the following two lemmas from basic knowledge of mathematical.

Lemma 2. For fixed real number a > 1 and b, then ax > bx when x >
N(a, b), where N(a, b) is a real number and is only relative to a and b.

Lemma 3. For fixed real number a > 1, then xa−o(xa) > 0 when x > N(a),
where N(a) is a real number and is only relative to a. o(xa) is higher order
indefinite small than xa, namely, xa/o(xa)→∞ when x→∞.

3 When n = 2t+w+1(1 + 21 + · · ·+ 2s) + 2tq − 1

In the section, we discuss elementary symmetric Boolean functions with
form n = 2t+w+1(1 + 21 + · · ·+ 2s) + 2tq− 1 and d = 2w+t(1 + 21 + · · ·+ 2s).
Notice that n ≡ 3mod4, the section is further work of the [10].
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Theorem 1. Let q > 0, t > 1 , w and s be nonnegative integers, n =
2t+w+1(1 + 21 + · · ·+ 2s) + 2tq− 1 and d = 2w+t(1 + 21 + · · ·+ 2s). For fixed
s and q, then Z(d, n) < 0 when w ≥ N(s, q), where N(s, q) is a nonnegative
integer and is only relative to s and q.

Proof. Let S = 20+21+· · ·+2s, then d = 2w+tS and n = 2w+t+1S+2tq−1 =
2d + 2tq − 1. We have d � i when d ≤ i < d + 2w+t. Assume that 2w ≥ q,
then d � i when d + 2w+t ≤ i ≤ n. Since lemma 1, we have Cd

i ≡ 1mod2
when d ≤ i < d+ 2w+t and Cd

i ≡ 0mod2 when d+ 2w+t ≤ i ≤ n. Note that
Ci
n = Cn−i

n for all 0 ≤ i ≤ n. Hence,

Z(d, n) =

2w+tS−1∑
i=0

Ci
n −

2w+tS+2w+t−1∑
i=2w+tS

Ci
n +

n∑
i=2w+tS+2w+t

Ci
n

=

2w+tS+2tq−2w+t−1∑
i=0

Ci
n +

2w+tS−1∑
i=2w+tS+2tq−2w+t

Ci
n

−
(n−1)/2∑
i=2w+tS

Ci
n −

n−2w+tS∑
i=(n+1)/2

Ci
n

−
n−2w+tS−2tq+2w+t∑

i=n−2w+tS+1

Ci
n +

n∑
i=n−2w+tS−2tq+2w+t+1

Ci
n

= 2 · (
2w+tS+2tq−2w+t−1∑

i=0

Ci
n −

2w+tS+2t−1q−1∑
i=2w+tS

Ci
n). (2)

, 2(A−B)

For

C2w+tS+2t−1q−1
n

C2w+tS+2tq−2w+t−1
n

=
(2w+tS + 2w+t)× · · · × (2w+tS + 2t−1q + 1)

(2w+tS + 2t−1q − 1)× · · · × (2w+tS + 2tq − 2w+t)

≥ (
2w+tS + 2w+t

2w+tS + 2t−1q − 1
)2

w+t−2t−1q. (3)

And notice that 2w ≥ q,

2w+tS + 2w+t

2w+tS + 2t−1q − 1
=

S + 1

S + 2t−1q−1
2w+t

>
S + 1

S + 0.5
=

2S + 2

2S + 1
. (4)

Then, on the one hand, we have the following inequations from (3) and (4).

B > C2w+tS+2t−1q−1
n

> (
2S + 2

2S + 1
)2

w+t−2t−1qC2w+tS+2tq−2w+t−1
n , C. (5)
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on the other hand, we have the following inequations from 2w ≥ q.

A < (2w+tS + 2tq − 2w+t)C2w+tS+2tq−2w+t−1
n

≤ 2S(2w+t − 2t−1q)C2w+tS+2tq−2w+t−1
n , D. (6)

Since lemma 2, then there exists a positive real number N1(S) which is only
relative to S. When N1(S) ≥ 2w+t − 2t−1q, namely, we have the following
inequation when 2w ≥ N1(S)/2t + q/2,

(
2S + 2

2S + 1
)2

w+t−2t−1q ≥ 2S(2w+t − 2t−1q). (7)

Therefore, from (2), (5), (6) and(7), if 2w ≥ q and 2w ≥ N1(S)/2t+q/2 hold
at the same time, then

Z(d, n) = 2(A−B) < 2(D − C) < 0. (8)

Since N1(S)/2t + q/2 ≤ N1(S)/2 + q/2, if we let

N(s, q) = dmax{log2 q, log2 (N1(S)/2 + q/2)}e (9)

then Z(d, n) < 0 when w ≥ N(s, q).

Remark 1. In fact, according to theorem 1 and computer exhausting, Z(d, n) 6=
0 when s and q are enough small. Notice that N(s, q) = dlog2 qe when q ≥
N1(S), N(s, q) = dlog2 (N1(S)/2 + q/2)e < dlog2N1(S)e when q < N1(S).
We can let N(s, q) = dlog2N1(S)e when q < N1(S). The following table 1
presents the relationships clear. From the table 1, we notice that the rela-
tionship between s and N(s, q) is almost linearity when q < N1(S).

Table 1: The relationships among s, q and N(s, q)

s q < N(s, q) s q < N(s, q) s q < N(s, q)

0 11 4 7 7772 13 14 1665654 21
1 42 6 8 17068 15 15 3520258 22
2 115 7 9 37156 16 16 7417616 23
3 286 9 10 80318 17 17 15588014 24
4 676 10 11 172590 18 18 32679052 25
5 1554 11 12 368998 19 19 68359552 27
6 3500 12 13 785478 20 20 142713644 28

Theorem 2. The conditions are the same as theorem 1. For fixed w, q and
t, if 2w ≥ q, then Z(d, n) > 0 when s ≥ N(w, q, t), where N(w, q, t) is a
nonnegative integer and is only relative to w, q and t.
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Proof. We still let S = 20 + 21 + · · ·+ 2s, From the proof of the theorem 1,
we have

Z(d, n) = 2 · (
2w+tS+2tq−2w+t−1∑

i=0

Ci
n −

2w+tS+2t−1q−1∑
i=2w+tS

Ci
n)

> 2 · (
2w+tS+2tq−2w+t−1∑

i=2w+tS+2t−1q−2w+t−1

Ci
n − 2t−1qC2w+tS+2t−1q−1

n ) (10)

, E.

If we assume that
∏i−1

j=0(2
w+tS + 2w+t + 2t−1q − j) = 1 when i = 0, for any

0 ≤ i ≤ 2t−1q and k = i+ 2w+tS + 2t−1q − 2w+t − 1, then

Ck
n · (2w+tS + 2t−1q − 1)!(2w+tS + 2w+t + 2t−1q)!

(2w+t+1S + 2tq − 1)!

=

2w+t−i−1∏
j=0

(2w+tS + 2t−1q − 1− j) ·
i−1∏
j=0

(2w+tS + 2w+t + 2t−1q − j). (11)

Hence, we have the following equations from (10) and (11).

E · (2w+tS + 2t−1q − 1)!(2w+tS + 2w+t + 2t−1q)!

2 · (2w+t+1S + 2tq − 1)!

=

2t−1q∑
i=0

[
2w+t−i−1∏

j=0

(2w+tS + 2t−1q − 1− j) ·
i−1∏
j=0

(2w+tS + 2w+t + 2t−1q − j)]

−2t−1q
2w+t−1∏
i=0

(2w+tS + 2w+t + 2t−1q − i)

= (2t−1q + 1) · [S2w+t
+ o(S2w+t

)]− 2t−1q[S2w+t
+ o(S2w+t

)]

= S2w+t − o(S2w+t
). (12)

Note that the last two equations are relative to q, since lemma 3, then there
exists a positive real number N1(w, q, t) which is only relative to t, w and q.
S2w+t − o(S2w+t

) > 0 when S = 1 + 21 + 22 + · · ·+ 2s > N1(w, q, t). If we let

N(w, q, t) = dlog2(N1(w, q, t) + 1)− 1e (13)

then Z(d, n) > 0 when s ≥ N(w, q, t).

Remark 2. Note that w and t are variable in the theorem 1 and s is variable
in the theorem 2, although the d and n have the same forms in the two
theorems, the two theorems have different meanings. Z(d, n) < 0 in the
theorem 1 and Z(d, n) > 0 in the theorem 2. In fact, wt(X(d, n))/2n → 1
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when w →∞ in the theorem 1 and wt(X(d, n))/2n → 0 when s→∞ in the
theorem 2. The two theorems reveal the relationships among w, t, s, q and
Z(d, n). The two theorems gave some unbalanced Elementary Symmetric
Boolean Functions from two aspects.

4 When n = 2t+w+1(1 + 21 + · · ·+ 2s) + 2tq

In the section, we discuss elementary symmetric Boolean functions with
form n = 2t+w+1(1 + 21 + · · · + 2s) + 2tq and d = 2w+t(1 + 21 + · · · + 2s),
where n ≡ 0mod4. The following theorem 3 and theorem 4 are similar to
the theorem 1 and theorem 2.

Theorem 3. Let q > 0, t > 1 , w and s be nonnegative integers, n =
2t+w+1(1 + 21 + · · ·+ 2s) + 2tq and d = 2w+t(1 + 21 + · · ·+ 2s). For fixed s
and q, then Z(d, n) < 0 when w ≥ N(s, q), where N(s, q) is a nonnegative
integer and is only relative to s and q.

Proof. Let S = 20 + 21 + · · ·+ 2s, then d = 2t+wS and n = 2t+w+1S + 2tq.
Assume that 2w ≥ q + 1, similarly to the proof of the theorem 1, then

Z(d, n) =

2w+tS−1∑
i=0

Ci
n −

2w+tS+2w+t−1∑
i=2w+tS

Ci
n +

n∑
i=2w+tS+2w+t

Ci
n

= 2 · (
2w+tS+2tq−2w+t−1∑

i=0

Ci
n −

2w+tS+2t−1q−1∑
i=2w+tS

Ci
n)− C2w+tS+2t−1q

n

< 2 · (
2w+tS+2tq−2w+t−1∑

i=0

Ci
n −

2w+tS+2t−1q−1∑
i=2w+tS

Ci
n). (14)

And note that the inequation (14) is the same as the equation (2), similarly
to the proof of the theorem 1, if 2w ≥ q + 1 and 2w ≥ N1(S)/2 + q/2 hold
at the same time, then

Z(d, n)

< 2 · [2S(2w+t − 2t−1q)− (
2S + 2

2S + 1
)2

w+t−2t−1q] · C2w+tS+2tq−2w+t−1
n

< 0. (15)

N1(S) is a positive real number and is only relative to S. If we let

N(s, q) = dmax{log2 (q + 1), log2 (N1(S)/2 + q/2)}e (16)

then Z(d, n) < 0 when w ≥ N(s, q).
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Remark 3. Similarly to the theorem 1, note that N(s, q) = dlog2 (q + 1)e
when q ≥ N1(S) − 2, N(s, q) = dlog2 (N1(S)/2 + q/2)e < dlog2 (N1(S))e
when q < N1(S)− 2, therefore, N(s, q) is only relative to s or q. And note
aslo that t not be limited in the theorem 1.

Theorem 4. The conditions are the same as the theorem 3. For fixed w, q
and t, if 2w ≥ q + 1, then Z(d, n) > 0 when s ≥ N(w, q, t), where N(w, q, t)
is a nongetative integer and is only relative to w, q and t.

Proof. We still let S = 20+21+ · · ·+2s, then d = 2t+wS and n = 2t+w+1S+
2tq. From the the proof of the theorem 3, we have

Z(d, n) = 2 · (
2w+tS+2tq−2w+t−1∑

i=0

Ci
n −

2w+tS+2t−1q−1∑
i=2w+tS

Ci
n)− C2w+tS+2t−1q

n

> 2 ·
2w+tS+2tq−2w+t−1∑

i=2w+tS−2w+t+2t−1q−2

Ci
n − 2(2t−1q + 1)C2w+tS+2t−1q

n (17)

, F.

Similarly to the proof of the theorem 2, let
∏i−1

j=0(2
w+tS + 2w+t + 2t−1q +

2− j) = 1 when i = 0, then

F · (2w+tS + 2t−1q)!(2w+tS + 2w+t + 2t−1q + 2)!

2 · (2w+t+1S + 2tq)!

=

2t−1q+1∑
i=0

[
2w+t+1−i∏

j=0

(2w+tS + 2t−1q − j)

·
i−1∏
j=0

(2w+tS + 2w+t + 2t−1q + 2− j)]

−(2t−1q + 1)
2w+t+1∏
i=0

(2w+tS + 2w+t + 2t−1q + 2− i)

= (2t−1q + 2) · [S2w+t+2 + o(S2w+t+2)]

−(2t−1q + 1) · [S2w+t+2 + o(S2w+t+2)]

= S2w+t+2 − o(S2w+t+2). (18)

Since lemma 3, then there exists a positive real number N1(w, q, t) which is
only relative to w, q and t. S2w+t+2 − o(S2w+t+2) > 0 when S = 1 + 21 +
22 + · · ·+ 2s > N1(w, q, t). If we let N(w, q, t) = dlog2(N1(w, q, t) + 1)− 1e,
then Z(d, n) > 0 when s ≥ N(w, q, t).

Remark 4. For n = 2t+w+1(1 + 21 + · · · + 2s) + 2tq + m, d = 2w+t(1 +
21 + · · ·+ 2s), m ≡ pmod4, similarly to the proof of the case n = 2t+w+1(1 +
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21 + · · · + 2s) + 2tq − 1 if p is odd, similarly to the proof of the case n =
2t+w+1(1 + 21 + · · ·+ 2s) + 2tq if p is even, we can get similar results to the
foregoing 4 theorems.

5 Conclusion

The paper considers Unbalanced elementary symmetric Boolean functions
X(d, n) with special form d = 2t+w(1+21+· · ·+2s), n = 2t+w+1(1+21+· · ·+
2s)+2tq+m. For fixed s, q, or fixed w, q, t, we present a majority of X(d, n)
are not balanced. Our results include many X(d, n) that d ≡ 0, 1, 2, 3mod4,
which is supplement of only case d ≡ 3mod4. Our results are also parts of
the conjecture that X(2t, 2t+1l − 1) is only nonlinear balanced elementary
symmetric Boolean function. For others special forms X(d, n), we also can
give many similar results in the same method.
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