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Abstract

Motivated by recent developments in fully homomorphic encryption, we consider the
folklore conjecture that every semantically-secure bit-encryption scheme is circular secure,
or in other words, that every bit-encryption scheme remains secure even when the adversary
is given encryptions of the individual bits of the private-key. We show the following obstacles
to proving this conjecture:

1. We construct a public-key bit-encryption scheme that is plausibly semantically secure,
but is not circular secure. The circular security attack manages to fully recover the
private-key.

The construction is based on an extension of the Symmetric External Diffie-Hellman
assumption (SXDH) from bilinear groups, to `-multilinear groups of order p where
` ≥ c · log p for some c > 1.

While there do exist `-multilinear groups (unconditionally), for ` ≥ 3 there are no
known candidates for which the SXDH problem is believed to be hard. Nevertheless,
there is also no evidence that such groups do not exist. Our result shows that in order
to prove the folklore conjecture, one must rule out the possibility that there exist
`-multilinear groups for which SXDH is hard.

2. We show that the folklore conjecture cannot be proved using a black-box reduction.
That is, there is no reduction of circular security of a bit-encryption scheme to semantic
security of that very same scheme that uses both the encryption scheme and the
adversary as black-boxes.

Both of our negative results extend also to the (seemingly) weaker conjecture that every
CCA secure bit-encryption scheme is circular secure.

As a final contribution, we show an equivalence between three seemingly distinct notions
of circular security for public-key bit-encryption schemes. In particular, we give a general
search to decision reduction that shows that an adversary that distinguishes between en-
cryptions of the bits of the private-key and encryptions of zeros can be used to actually
recover the private-key.
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1 Introduction

Modern cryptographic applications, both practical and theoretical, have led to the study of
increasingly complex types of attacks on encryption schemes. For example, challenge plaintext
attacks (CPA) and challenge ciphertext attacks (CCA) extend the classical notion of semantic
security [GM84] by allowing an attacker access to encryptions of arbitrary messages of its choice
(in the CPA model) and to a decryption oracle (in the CCA model).

A different type of attack that has been recently considered is when the attacker manages
to obtain encryptions of messages that are related to the (private) decryption-key. The notion
of key dependent message (KDM) security was first considered by Camenisch and Lysyanskaya
[CL01] and (independently) by Black et al.[BRS02]. Informally, an encryption scheme is KDM
secure for a class of functions F if it is infeasible to distinguish between an oracle that on input
f ∈ F outputs an encryption of f evaluated on the decryption-key and an oracle that just
returns encryptions of zeros.

Perhaps the most basic type of KDM attack is one in which the attacker is just given an
encryption of the entire decryption-key. Security with respect to such a KDM attack is also
known as “circular security” since the key encrypts itself.1

While some encryption schemes have been proved to be circular secure under plausible
cryptographic assumptions (e.g., [BHHO08, ACPS09]), it is natural to ask whether semantic
security actually guarantees circular security. A folklore example shows that this is not the case:
given any private-key encryption scheme we can slightly modify the encryption algorithm by
checking if the input message is the (symmetric) key itself or not. If not, then the encryption
proceeds as usual. But, if the input message equals the key, then the encryption algorithm is
modified to output the key in the clear. The resulting scheme is still semantically secure2 and
yet it is not circular secure, since an adversary that gets an encryption of the key trivially breaks
security. The counterexample can be easily extended to the public-key setting by having the
encryption algorithm check whether a given input message functions as a “good” decryption-
key.3

The foregoing counterexample shows that, in general, semantic security does not suffice
for circular security. Motivated by recent developments in fully homomorphic encryption (see
Section 1.2), we restrict our attention to a specific class of encryption schemes - those that
encrypt their input bit-by-bit (also called bit-encryption schemes).4 Thus, we ask whether every
bit-encryption scheme that is semantically secure is also circular secure. An alternative way
to phrase the question is whether every semantically secure (either private-key or public-key)
encryption scheme remains secure even if the adversary is given encryptions of the individual
bits of the decryption-key (in order, of course).

At this point it is worthwhile to point out two ways in which the counterexample (for full
fledged encryption schemes) uses the fact that the encryption algorithm is given the entire
decryption-key as its message:

1. It is easy to identify when the decryption-key is given as the input message to the encryp-

1Circular security may also refer to larger key cycles were there are t keys arranged in a directed cycle and
the adversary sees encryptions under every key of its next neighbor’s key. We only consider the case t = 1.

2Semantic security follows from the fact that the probability that the message (which is selected before the
keys) equals the key is negligible.

3The (public-key) encryption algorithm can do so by encrypting sufficiently many random messages and
checking whether the given input message (used as a decryption-key) correctly decrypts these ciphertexts.

4We assume that the encryption algorithm does not maintain a state between executions. Note that the
folklore counterexample for full fledged encryption can be adapted to stateful bit-encryption schemes by having
the encryption algorithm record its last n (single-bit) messages in a buffer (where n is the length of the decryption-
key), and outputting the decryption-key in the clear whenever the buffer equals the decryption-key.
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tion algorithm (trivially in the private-key setting and almost as easily in the public-key
setting); and

2. In the semantic security setting, the event that the message equals the decryption-key is
sufficiently rare that we can modify the encryption algorithm to handle this event in a
special way without jeopardizing security.

In the case of bit-encryption schemes both properties no longer hold and constructing a
counterexample seems to be more difficult.5 In fact, the above has led to a folklore conjecture,
which we call the bit-encryption conjecture, that every secure bit-encryption scheme (either
private-key or public-key) is in fact circular secure. Let us state this as:

Conjecture 1 (Bit-Encryption Conjecture). Every semantically secure public-key bit-encryption
scheme is circular secure.

The focus of this work is to show obstacles to proving the validity of this conjecture. Focusing
on the public-key case only strengthens our negative results since every public-key scheme is
also a private-key scheme. (In Section 1.4 we also discuss the (seemingly) weaker conjecture
that every CCA secure bit-encryption scheme is circular secure.)

1.1 Our Results

We address the question of circular security for bit-encryption schemes and show the following
results:

A circular insecure bit-encryption scheme based on `-multilinear maps. We con-
struct a (plausibly) semantically secure public-key encryption scheme for which, given encryp-
tions of the bits of the decryption-key, it is possible to fully recover the decryption-key (i.e., the
strongest type of attack). The security of our construction is based on an extension of the Sym-
metric External Diffie-Hellman (SXDH) assumption (see [BGdMM05, FGHP09]) to multilinear
groups, which we describe next.

An `-multilinear map is a (non-degenerate) mapping e : G1×· · ·×G` → GT where G1, . . . , G`
and GT are cyclic groups of prime order p, such that for every g1 ∈ G1, . . . , g` ∈ G`, every i ∈ [`]
and a ∈ Zp it holds that

e(g1, . . . , g
a
i , . . . , g`) = e(g1, . . . , g`)

a.

Recall that, informally, the Decisional Diffie Hellman (DDH) assumption is said to hold in
the cyclic group G if it is infeasible to distinguish between g, ga, gb, gab and g, ga, gb, gc where
g is a generator of G and a, b and c are random exponents. The standard SXDH assumption
extends the DDH assumption to 2-multilinear (a.k.a bilinear) groups by stating that there exist
groups (G1, G2) equipped with a bilinear map for which the DDH assumption holds (separately)
for each one of the groups G1 and G2. We further extend the SXDH assumption by assuming
that there exist `-multilinear groups for which DDH is hard in each one of the ` groups. For
our result to hold we need ` ≥ c · log p for some c > 1.

Since, for ` > 2, we do not have candidate `-multilinear groups for which we conjecture
SXDH to be hard, we do not interpret our construction as a counterexample, but rather as an
obstacle to proving the bit-encryption conjecture (Conjecture 1). Our construction shows that

5In fact, for the very same reasons, even constructing an encryption scheme for logarithmically long messages
that is semantically secure but circular insecure seems to be difficult. We note that our negative results extend
also to this case but in this work we only discuss the single bit case.
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in order to prove that every semantically secure bit-encryption scheme is circular secure one
would have to rule out the existence of `-multilinear groups for which SXDH is hard.

The possibility of constructing `-multilinear group schemes for which discrete log is hard was
previously considered by Boneh and Silverberg [BS03], who showed cryptographic applications
of multilinear maps as well as difficulties in constructing such group schemes based on known
techniques in algebraic geometry. We note that [BS03] only considered the special case of
G1 ≡ . . . ≡ G` and the hardness of discrete log for G1 (in fact, if G1 ≡ . . . ≡ G` then SXDH
becomes trivially easy6).

Impossibility of black-box reductions. We show that a black-box reduction cannot be
used to prove the bit-encryption conjecture. Our black-box impossibility result differs from
standard black-box impossibility results in that we do not consider the possibility of constructing
a circular secure bit-encryption from any semantically-secure bit-encryption but rather the
question of whether every semantically secure bit-encryption is by itself already circular secure.

In other words, we prove that there cannot exist a general black-box reduction that trans-
forms any circular security attack into a semantic security attack. By black-box we mean that
the reduction uses both the attack and the primitive (in our case the encryption scheme) in a
black-box manner (for a discussion of different types of black-box separations, see [RTV04]).

From indistinguishability to key-recovery. We show an equivalence between three natural
notions of circular security for public-key bit-encryption schemes. In all three scenarios we give
the adversary access to an oracle that on input i returns an encryption of the i-th bit of the
decryption-key. We refer to this oracle as the KDM oracle. The three security notions differ in
the task that a hypothetical adversary, which has access to the KDM oracle, has to accomplish
in order to be deemed successful (i.e., break security). We consider the following possible tasks:

1. The adversary needs to fully recover the decryption-key.

2. The adversary gets as input an encryption of a random bit and needs to guess the value
of this bit.

3. The adversary is given access to either the KDM oracle or an oracle that always returns
encryptions of 0 and needs to distinguish in which of the two cases it is. This is the
standard notion of circular security as defined in [CL01, BRS02].

We show that the three foregoing notions are actually equivalent. In particular, this result
implies a general search to decision reduction that transforms any circular security distinguisher
into an adversary that, given access to the KDM oracle, can fully recover the decryption-key
d. (In contrast, in the setting of semantic security, finding the key can be a much harder task
than recovering the message from the ciphertext.)

1.2 Connection to Fully Homomorphic Encryption and Full KDM Security

Other than being an interesting and natural question on its own, the question of circular security
for bit-encryption schemes is further motivated by recent breakthroughs in the construction of
fully homomorphic encryption schemes (FHE) and fully KDM secure encryption schemes.

6Using the fact that the groups are equals, we can solve DDH in G1. Specifically, given g, ga, gb, gc ∈ G1 just
compare e(ga, gb, g, . . . , g) and e(gc, g, . . . , g), where we use the fact that gb ∈ G2 = G1. If c = ab then equality
holds but if c is random then the two values are different with overwhelming probability.
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Fully Homomorphic Encryption. Informally, an FHE is an encryption scheme for which
given an encryption of a message m and any circuit C, one can compute an encryption of C(m)
without knowing the decryption-key.

Gentry [Gen09] constructed the first FHE and gave a general technique called bootstrapping
for the construction of FHE schemes. Gentry’s idea is to first construct an encryption scheme
that is somewhat homomorphic (that is, homomorphic with respect to some limited class of
circuits), and then, using the bootstrapping technique, to transform it into an FHE. The boot-
strapping technique inherently uses the assumption that the underlying somewhat homomorphic
encryption is circular secure.7 Since most of these schemes are bit encryption schemes and their
circular security is only conjectured and not proved (based on their semantic security), the
question of circular security for bit-encryption is especially important for the construction of
secure FHE. In particular, proving the bit-encryption conjecture would establish the existence
of an FHE based solely on (say) the hardness of the learning with errors (LWE) problem (see
[BV11]).

Our KDM equivalence theorem for bit-encryption (see end of Section 1.1) is also of particular
interest to the current candidate FHE schemes. As alluded to above, the theorem implies that
a KDM distinguisher can be used to construct an attacker that given access to the KDM oracle
actually finds the decryption-key. However, for the current candidate fully homomorphic bit-
encryption schemes, the KDM oracle can actually be simulated using only the public-key.8

Thus, the equivalence theorem gives a generic (and simple) search to decision reduction for
these schemes that transforms any attack that breaks semantic security into an attack that
finds the decryption-key (without using an external KDM oracle).

Full KDM Security from Semantic Security. An additional motivation for the study
of the circular security of bit-encryption schemes arises from the recent work of Applebaum
[App11] (following [BHHI10, BGK11]) who showed an amplification theorem for KDM security.
Specifically, [App11] showed that an encryption scheme that is KDM secure for any fixed class
of polynomial-size circuits, can be constructed from an encryption scheme that is KDM secure
only with respect to the class of projections and negation of projections (i.e., any function f
of the form f(d) = di or f(d) = 1 − di). Thus, proving a slightly stronger variant of the
bit-encryption conjecture would imply that semantic security is a sufficient assumption for the
construction of a very strong form of KDM security.

1.3 Comparison of our Black-Box Impossibility Result with [HH09]

Haitner and Holenstein [HH09] gave the following two black-box impossibility results regarding
the construction of KDM secure encryption schemes:

1. There exists no fully black-box reduction from an encryption scheme that is secure for
a class of KDM functions to a collection of trapdoor permutations, if the class of KDM
functions contains a collection of poly(n)-wise independent hash functions.

7Actually, there are two variants of the bootstrapping technique. The one that we refer to assumes circular
security and constructs an FHE. The other variant does not assume circular security but only achieves leveled
FHE (i.e., an encryption scheme that is homomorphic with respect to any circuit of some apriori fixed depth)
and also expands the public-key by a multiplicative factor that is linear in the depth of supported circuits.

8This follows from the facts that (1) the public-key of these schemes actually contains encryptions of the bits
of the decryption-key (for bootstrapping), and (2) ciphertexts can be re-randomized. An oracle query for the
i-th bit of the decryption-key can be simulated by re-randomizing the ciphertext in the public-key that is an
encryption of the i-th bit of the decryption-key.
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2. There exists no fully black-box construction of an encryption scheme that is secure for
a class of KDM functions to any cryptographic game, if the reduction treats the KDM
functions as a black-box.

Circular security of bit-encryption corresponds exactly to KDM security with respect to
the class of projection functions. The results of [HH09] do not apply to this class of KDM
functions because (1) the class of projection functions does not include a collection of poly(n)-
wise independent hash functions, and (2) we consider a concrete class of KDM functions and the
reduction may make arbitrary (non-black-box) use of these functions. Therefore our black-box
impossibility is not covered by the results of [HH09].

We also wish to point out that [HH09] ruled out a wide range of constructions of KDM
secure encryption schemes. Our black-box impossibility result, on the other hand, only rules
out the possibility of proving (via a black-box reduction) that every semantically secure bit-
encryption scheme is also circular secure without any modification to the encryption scheme. In
other words, we do not rule out the possibility that there exists a black-box construction of a
circular secure bit-encryption scheme from any semantically secure bit-encryption scheme.

1.4 Chosen Ciphertext Security vs. Circular Security

Recall that an encryption scheme is CCA-2 secure if it is semantically secure even when the
attacker has access to a decryption oracle that decrypts any ciphertext other than the challenge
ciphertext.

Since we show difficulties to proving that every semantically secure bit-encryption is circular
secure, it is natural to ask whether a stronger notion of security, such as CCA security, might
instead suffice. We first note that our black-box impossibility result extends also to this case.
That is, we show that there is no blackbox reduction of circular-security even to CCA-2 security.

Actually, assuming the existence of doubly-enhanced trapdoor permutations, the conjecture
that every CCA bit-encryption scheme is circular-secure is equivalent to the bit encryption con-
jecture. This equivalence follows from the fact that the Naor-Yung paradigm [NY90] transforms
a semantically secure but circular insecure scheme into a CCA secure but circular insecure one.9

Using this observation we can extend our construction of a circular-insecure bit-encryption
scheme (based on multilinear SXDH, see Section 3) to a CCA-2 secure but circular-insecure
bit-encryption scheme (assuming, in addition to multilinear SXDH, the existence of doubly-
enhanced trapdoor permutations).10

Remark. We also mention that the converse direction that asks whether every circular secure
bit-encryption scheme is also CCA secure is in fact false (assuming that there exist circular
secure bit-encryption schemes at all). For example, taking any circular secure scheme and
modifying it by adding to the public-key an encryption of the decryption-key, yields a scheme
that is circular secure but is not even CCA-1 secure.

9Recall that the Naor-Yung paradigm consists of a double encryption of the plaintext using independent keys
and a non-interactive zero-knowledge (NIZK) proof of consistency. A circular security attack on the underlying
scheme immediately translates into a circular security attack on the constructed CCA secure scheme. Note that
the Naor-Yung transformation can be made to achieve not only CCA-1 security but even CCA-2 security (see
[Sah99] or [Lin06]).

10We note that this equivalence does not directly imply the extension of our black-box result to the CCA case
because the Naor-Yung transformation makes non black-box use of the encryption scheme. Instead we prove
the extension of the black-box result directly (without even assuming the existence of doubly-enhanced trapdoor
permutations).
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Organization

In Section 2 we define KDM security and the cryptographic assumptions that we will use. In
Section 3 we present our “multilinear map” based circular insecure bit-encryption scheme. In
Section 4 we prove the equivalence of three notions of KDM security. Finally, in Section 5, we
present our black-box impossibility result.

2 Preliminaries

We denote by x ∈R S a random variable x that is uniformly distributed in the set S.

2.1 Public-Key Encryption

A public-key encryption scheme consists of three probabilistic polynomial-time algorithmsKeyGen,
Enc and Dec. The key generation algorithm, KeyGen, when given as input a security parame-
ter 1n, outputs a pair (e, d) of poly(n)-bit long encryption and decryption keys. The encryption
algorithm, Enc, on input an encryption-key e and a message m ∈ {0, 1}∗, outputs a ciphertext
c, whereas the decryption algorithm, Dec, when given the ciphertext c and the decryption-key
d, outputs m. We say that the encryption scheme is correct if for every message m and every
valid key-pair (e, d) it holds that Decd(Ence(m)) = m.

In this work we restrict our attention to bit-encryption scheme (i.e., m ∈ {0, 1}). We first
define the classical notion of semantic security restricted to single-bit encryption:

Definition 2. A public-key bit-encryption scheme is semantically-secure if for every probabilis-
tic polynomial-time adversary A it holds that

Pr
(e,d)←KeyGen(1n)

b∈R{0,1}

[A(e, Ence(b)) = b] <
1

2
+ neg(n).

Next, we define chosen ciphertext attack (CCA) security for bit-encryption. In this work
we only consider the stronger notion of CCA-2:

Definition 3. A public-key bit-encryption scheme is CCA-2 secure if for every probabilistic
polynomial-time adversary A it holds that

Pr
(e,d)←KeyGen(1n)

b∈R{0,1}

[
ADec

′
d(e, Ence(b)) = b

]
<

1

2
+ neg(n)

where Dec′d is an oracle that on input c returns ⊥ if c = Ence(b) is the challenge ciphertext and
otherwise returns Decd(c) (i.e., decrypts the ciphertext).

2.2 KDM and Circular Security for Bit-Encryption

To model KDM security we need to specify what information is given to the adversary and
what it means for the adversary to break security. The former is the simpler of the two -
we simply give the adversary access to an oracle (henceforth called the KDM oracle) that on
input i returns an encryption of the i-th bit of the decryption-key. Formally, for a pair (e, d)
of encryption and decryption keys, we define an oracle Oe,d(i) which on input i ∈ [|d|] returns
Ence(di).

Turning to the second part of the definition, we consider three possible ways in which an
adversary can break security. The strongest type of attack (which corresponds to the weakest
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definition of security) that we consider is full key recovery. Security against this type of attack
means that no efficient adversary, which gets encryptions of the individual bits of the decryption-
key, can find the entire decryption-key. Using the definition of the oracle Oe,d we can define
circular security of bit-encryption with respect to key-recovery:

Definition 4. A public-key bit-encryption scheme (KeyGen,Enc,Dec) is circular secure with
respect to key recovery if for every probabilistic polynomial-time oracle machine A it holds that

Pr
(e,d)←KeyGen(1n)

[
AOe,d(e) = d

]
< neg(n).

It is worth noting that, in contrast to the semantic security setting, in the KDM setting
the decryption-key is information theoretically determined and therefore there is at least some
hope to recover the actual decryption-key used by the scheme.11

Next, we consider an adversary that is given an encryption of a random bit, as well as access
to the KDM oracle, and needs to guess the value of the bit:

Definition 5. A public-key bit-encryption scheme is circular secure with respect to message
recovery if for every probabilistic polynomial-time oracle machine A it holds that

Pr
(e,d)←KeyGen(1n),

b∈R{0,1}

[
AOe,d(e, Ence(b)) = b

]
<

1

2
+ neg(n).

Lastly, we consider the standard definition of circular security as put forth by [CL01, BRS02].
Their definition requires that if be infeasible for an adversary to distinguish between the KDM
oracle and an “all zeros” oracle that always returns encryptions of 0. Formally, for an encryption-
key e, we define Je to be an oracle that on input i just returns Ence(0) (i.e., an encryption
under e of the bit 0). In contrast to the two prior definitions, indistinguishability of oracles does
not inherently imply semantic security and therefore we explicitly add this requirement.

Definition 6. A semantically-secure public-key bit-encryption scheme is circular secure with
respect to indistinguishability of oracles if for every probabilistic polynomial-time oracle machine
A it holds that∣∣∣∣ Pr

(e,d)←KeyGen(1n)

[
AOe,d(e) = 1

]
− Pr

(e,d)←KeyGen(1n)

[
AJe(e) = 1

]∣∣∣∣ < neg(n).

In Section 4 we show that the three notions of circular security presented above are actually
equivalent.

2.3 Hardness assumptions in bilinear and `-multilinear groups

We first define bilinear and `-multilinear maps and then define the computational assumptions
that we use.

An `-multilinear map is a non-degenerate12 function e : G1 × · · · × G` → GT , where
G1, . . . , G`, GT are cyclic groups of prime order p such that for every g1 ∈ G1, . . . , g` ∈ G`,
every i ∈ [`] and a ∈ Zp, it holds that:

e(g1, . . . , g
a
i , . . . , g`) = e(g1, . . . , g`)

a.

11In the semantic security model, there may be many decryption keys corresponding to the same encryption-
key and a semantic security adversary (which only has access to functions of the encryption-key) cannot hope to
always find the particular decryption-key being used.

12Where by degenerate we mean a function that maps all inputs to the identity element of GT .
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An `-multilinear group scheme is an algorithm that for every security parameter n produces
a description of `+ 1 groups of order p (where p is an n-bit prime) together with an efficiently
computable `-multilinear map that maps the first ` groups to the (`+ 1)-th group:

Definition 7. Let ` = `(n) be a polynomially bounded function. An `-multilinear group
scheme is a probabilistic polynomial-time algorithm GS that on input 1n outputs the param-
eters params = (p, (G1, . . . , G`, GT ), (g1, . . . , g`, gT ), e) where 2n−1 < p < 2n is an n-bit prime,
G1, . . . , G` and GT are concise descriptions of `+1 groups of order p (that allow efficient evalu-
ation of the group operation), with the respective generators g1, . . . , g`, gT and e : G1×· · ·×G` →
GT is a concise description of an efficiently computable `-multilinear map.

For every ` there exist trivial examples of `-multilinear group schemes. However, our com-
putational hardness assumptions do not hold for these trivial examples.13 In fact, for ` ≥ 3 we
do not know of a candidate `-multilinear group scheme for which the discrete log problem is
believed to be hard (in any of the groups). Nevertheless, there is also no negative evidence that
such group schemes do not exist. For ` ≤ 2 there do exist candidate group schemes for which
discrete log is conjectured to be hard (discussed next).

Computational Assumptions. Loosely speaking, the DDH assumption for a cyclic group G
states that the distributions (g, ga, gb, gab) and (g, ga, gb, gc) are computationally indistinguish-
able, where g is a generator of G and a, b and c are random exponents. The SXDH assumption
(introduced by [BGdMM05, FGHP09]) extends DDH to 2-multilinear (a.k.a bilinear) groups by
assuming that there exist groups G1, G2 equipped with a bilinear map such that the DDH as-
sumption holds for both G1 and G2 (separately). We further extend SXDH to the `-multilinear
SXDH assumption which states that there exists an `-multilinear group scheme for which DDH
is hard for all ` groups G1, . . . , G`. Note that 1-multilinear SXDH corresponds exactly to DDH
and that 2-multilinear SXDH corresponds to the standard SXDH assumption. We emphasize
that we only have candidate group schemes for which the `-multilinear SXDH assumption is
conjectured to hold for ` ≤ 2 (see [BGdMM05, FGHP09]).

Definition 8. The `-multilinear SXDH assumption states that there exists an `-multilinear
group scheme GS such that for every function i : N → N for which i(n) ∈ [`(n)], the following
ensembles are computationally indistinguishable:

1. {params, i(n), gai(n), g
b
i(n), g

ab
i(n)}n∈N; and

2. {params, i(n), gai(n), g
b
i(n), g

ab
i(n)}n∈N

where in both cases a, b, c ∈R Zp and params
def
= (p, (G1, . . . , G`, GT ), (g1, . . . , g`, gT ), e) is dis-

tributed as GS(1n).

3 A Circular Insecure Bit-Encryption Scheme

In this section we show a construction of a bit-encryption scheme (KeyGen,Enc,Dec) that
is (plausibly) semantically secure but is not circular secure. In Section 3.1 we present the
construction. In Section 3.2 we prove that the construction is correct and semantically secure

13A trivial example of an `-multilinear group scheme is when G1, . . . , G` are all the additive group mod
p. Since exponentiation in the additive group corresponds to modular multiplication, being multilinear means
that for every a, z1, . . . , z` ∈ Zp it holds that e(z1, . . . , a · zi, . . . , z`) = a · e(z1, . . . , z`). Hence, the mapping
e(z1, . . . , z`) =

∏`
i=1 zi mod p is a multilinear map for these groups. Note however that discrete log in the

additive group is equivalent to modular division and can therefore be efficiently computed.
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(based on the hardness of `-multilinear SXDH, for ` ≥ c · log p for some constant c > 1). In
Section 3.3 we use the multilinear map to show a circular security attack on the scheme.

Notation. For a matrix X, we let X[i, j] denote the (i, j)-th entry of X.

3.1 The Encryption Scheme

Let GS be any `-multilinear group scheme (as in Definition 7).

Construction 9. Consider the following public-key bit-encryption scheme (KeyGen,Enc,Dec):

KeyGen(1n)

1. Invoke the group scheme algorithm to obtain params ← GS(1n) (where params =
(p, (G1, . . . , G`, GT ), (g1, . . . , g`, gT ), e)).

2. Select X ∈R Z2×`
p (i.e., a 2× ` matrix with random entries in Zp).

3. Set U =

[
g
X[0,1]
1 g

X[0,2]
2 . . . g

X[0,`]
`

g
X[1,1]
1 g

X[1,2]
2 . . . g

X[1,`]
`

]
.

4. Select s ∈R {0, 1}` and set α =
∑`

i=1X[si, i] mod p.

5. The (public) encryption-key is (params,U, α) and the (private) decryption-key is
(X, s).

Enc(params,U,α)(σ) (where σ ∈ {0, 1})

1. Select at random r1, . . . , r` ∈R Zp.
2. Output (gr11 , (U [σ, 1])r1), . . . , (gr`` , (U [σ, `])r`).

Dec(X,s)((c1, d1), . . . , (c`, d`))

1. If c
X[0,1]
1 = d1 output 0 and otherwise output 1.

Before proceeding to the proof of correctness and security, we wish to highlight a few points.
First, we note that both α and s are not used by the encryption or decryption algorithms and
seem unneeded. Second, we note that (ignoring the presence of α in the public-key) even by
setting ` = 1 we obtain a secure encryption scheme (under DDH) and it is not clear why we
need a larger ` (recall that we need ` >> log p).

The reason for the existence of α and s is (solely) to help the KDM attacker whereas the
large value of ` helps maintain semantic security despite the fact that α is revealed in the
public-key.14 The key idea is that in the semantic security setting, an attacker has essentially
no information about s (because ` is sufficiently large that α looks random) whereas, in the
KDM setting, the attacker can obtain additional information about s (specifically encryptions
of the bits of s) and can use this additional information to verify that α is consistent with s.

The above gives us a way to distinguish between the KDM oracle and the all zeros oracle
thereby breaking circular security with respect to indistinguishability of oracles. (Using the
results of Section 4 this attack can be transformed into a full key-recovery attack.)

14Note that when using small values of ` (in particular using ` = 1), the fact that α is revealed in the public-key
makes the scheme totally insecure.
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3.2 Correctness and Semantic Security of Construction 9

In this section we show that Construction 9 is both correct (i.e., the decryption of an encryption
recovers the original message) and semantically secure.

Correctness. Consider a pair of encryption and decryption keys ((params,U, α), (X, s)) and

let ((c1, d1), . . . , (c`, d`)) be an encryption of a bit σ ∈ {0, 1}. If σ = 0 then d1 = c
X[0,1]
1 and

the ciphertext decrypts correctly to 0. If σ = 1 then d1 = c
X[1,1]
1 and therefore, except with

negligible probability, d1 6= c
X[0,1]
1 . Hence, the ciphertext decrypts correctly to 1 (except with

negligible probability).
Note that we can easily eliminate the negligible decryption error by sampling X from a

statistically close distribution in which X[0, 1] 6= X[1, 1].

Semantic Security. An adversary attempting to break the semantic security of Construc-
tion 9 sees the public-key (params,U, α) and an encryption of a random bit σ and needs to
find σ (with non-negligible advantage). As a first step to proving semantic security, consider
replacing the selection of α in the key generation process by a uniform random β ∈R Zp (instead
of the sum of a random subset). We show that view of the adversary in the resulting scheme is
statistically close to its view in the original scheme.

Claim 10. For every n ∈ N, the distribution (X,α) and (X,β) are 1
2

√
p
2`

-close in statistical dis-

tance where p,X and α are distributed as in the key generation process and β is an independent
random number in Zp.

Proof. Follows directly from the leftover hash lemma15 [HILL99] by observing that the family
of functions {HX : {0, 1}` → Zp}X defined as HX(s) =

∑`
i=1X[si, i] mod p is a universal hash

function family.

Since an adversary attempting to break the security of the scheme does not see any infor-
mation on s, it is enough to prove that the scheme is secure if α were replaced by β ∈R Zp.
Note that we crucially use the fact that information theoretically s is completely undetermined
by the view of the adversary. In contrast, in the KDM setting, where the adversary can see
encryptions of the bits of s this fact no longer holds and our attack exploits this to break the
KDM security of the scheme (see Section 3.3).

Lemma 11. Assuming the `-multilinear SXDH assumption, for ` ≥ c · log p for some c > 1,
it holds that for every σ ∈ {0, 1}, the following two distributions are computationally indistin-
guishable:

• params,U, β, (gr11 , (U [σ, 1])r1), . . . , (gr`` , (U [σ, `])r`); and

• params,U, β, (gr11 , g
s1
1 ), . . . , (gr`` , g

s`
` )

where params and U are selected as in the key-generation process and β, r1, . . . , r`, s1, . . . , s` ∈R
Zp.

Note that the by Claim 10 (and since ` > c · log p for some constant c > 1), the first
distribution is statistically close to a public-key of the scheme together with an encryption of a
bit σ and the second distribution contains no information about σ. Hence, the semantic security
of the scheme follows directly from Lemma 11.

15A simplified version of the leftover hash lemma states that if h is selected at random from a universal hash

function family from X to Y then the distribution (h, h(x)) and the distribution (h, y) are 1
2

√
|Y|
|X| -close, where x

and y are uniformly distributed in X and Y (see, e.g., [Gol08, Appendix D]).
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Proof. The straightforward proof is by a hybrid argument and an application of the `-multilinear
SXDH assumption. Details follow.

For a bit σ ∈ {0, 1}, let H
(i)
n denote the hybrid distribution:

H(i)
n

def
= params,U, β, (gr11 , (U [σ, 1])r1), . . . , (grii , (U [σ, i])ri), (g

ri+1

i+1 , g
si+1

i+1 ), . . . , (gr`` , g
s`
` )

Note that the two extreme hybrids H
(0)
n and H

(`)
n correspond exactly to the distributions of

Lemma 11. Suppose toward a contradiction that there exists a probabilistic polynomial-time
distinguisher D that distinguishes between the two distributions. In other words:

∣∣∣Pr[D(H(0)
n ) = 1]− Pr[D(H(`)

n ) = 1]
∣∣∣ > 1

poly(n)
(1)

Therefore, there must exist j ∈ [`] such that D distinguishes between the two neighboring

hybrid distributions H
(j−1)
n and H

(j)
n :

∣∣∣Pr[D(H(j−1)
n ) = 1]− Pr[D(H(j)

n ) = 1]
∣∣∣ > 1

poly(n)
(2)

We use D to break the `-multilinear SXDH assumption. To do so we need to show a polynomial-
time distinguisher D′ and a function i : N→ N (with i(n) ∈ [`(n)]) for which∣∣∣∣∣Pr

[
D′(params, i(n), gai(n), g

b
i(n), g

ab
i(n)) = 1

∣∣∣ params← GS(1n), a, b ∈R Zp
]

−Pr
[
D′(params, i(n), gai(n), g

b
i(n), g

c
i(n)) = 1

∣∣∣ params← GS(1n), a, b, c ∈R Zp
] ∣∣∣∣∣ < neg(n)

(That is, D′ gets as input (params, i(n), gi(n), g
a
i(n), g

b
i(n), g

c
i(n)) and needs to decide whether

c = ab or is an independent random number in Zp.)
Consider the function i that for every n in the infinite set of n’s for which D distinguishes

between the (j − 1)-th hybrid and the j-th hybrid just equals j (and for other n equals some

arbitrary value). For sake of simplicity we write i
def
= i(n) in the following.

In order to distinguish, D′ first generates a matrix U as in the key generation of the scheme
with respect to params (which are part of its input) by taking random exponents of g1, . . . , g`.
From U , the distinguisher generates a matrix U ′ which is the same as U ′ except that the (σ, i)-
th entry of U is replaced with gai (note that U ′ is still distributed identically to a matrix U of
the encryption-scheme). The distinguisher D′ then selects β, r1, . . . , r`, si+1, . . . , s` ∈R Zp and
outputs D(params,U ′, β, µ) where

µ =

(
gr11 , (U

′[σ, 1])r1
)
, . . . ,

(
g
ri−1

i−1 , (U
′[σ, i− 1])ri−1

)
,

(
gbi , g

c
i

)
,

(
g
ri+1

i+1 , g
si+1

i+1

)
, . . . ,

(
gr`` , g

s`
`

)
.

Observe that in that case c = ab the input to D is identically distributed to H
(i)
n and in the

case that c is random in Zp the input is identically distributed to H
(i−1)
n . Thus, for the infinite

set for which Eq. (2) holds, D′ distinguishes between the two distributions.

Remark. We can extend Construction 9 also to the case ` = c · log p for 0 < c < 1, assuming
that the subset sum assumption holds. Specifically, using the fact that subset sum is a pseu-
dorandom generator (if it is one-way, see [IN89]), we can replace the use of the leftover hash
lemma in the proof of semantic security with the subset sum assumption over Zp (assuming
that subset sum is one-way for the specific setting of parameters).
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3.3 The KDM Attack

We show a distinguisher that breaks the circular security with respect to indistinguishability of
oracles (Definition 6) of Construction 9. Using Theorem 12, we can obtain a KDM attack that
breaks circular security with respect to key recovery (Definition 4).

Our distinguisher gets as input a public-key and has access to either the KDM oracle that
on input i returns an encryption of the i-th bit of the decryption-key or to the all-zeros oracle
that always returns an encryption of 0. The goal of the distinguisher is to distinguish between
the two cases.

Consider the following distinguisher which has access to an alleged KDM oracle and gets as
input an encryption-key (params,U, α):

1. For i = 1, . . . , `:

(a) Query the oracle for an encryption ((c1, d1), . . . , (c`, d`)) of si (the i-th bit of s).

(b) Set yi = ci and zi = di.

2. If e(y1, . . . , y`)
α ≡p

∏`
i=1 e(y1, . . . , yi−1, zi, yi+1, . . . , y`) then output 1 and otherwise out-

put 0 (where ≡p denotes congruence mod p).

We first show that when using the KDM oracle, the distinguisher always outputs 1. Indeed, in

this case yi = grii and zi = g
ri·X[si,i]
i . Therefore,

∏̀
i=1

e(y1, . . . , yi−1, zi, yi+1, . . . , y`) ≡p
∏̀
i=1

e(gr11 , . . . , g
ri−1

i−1 , g
riX[si,i]
i , g

ri+1

i+1 , . . . , g
r`
` )

≡p
∏̀
i=1

e(gr11 , . . . , g
r`
` )X[si,i]

≡p e(gr11 , . . . , g
r`
` )

∑`
i=1X[si,i] mod p

≡p e(y1, . . . , y`)α

and so the distinguisher outputs 1 in this case.
Next, consider the case that the distinguisher uses the all zeros oracle. In this case we yet

again have yi = grii but now zi = g
ri·X[0,i]
i and so we have:

∏̀
i=1

e(y1, . . . , yi−1, zi, yi+1, . . . , y`) ≡p
∏̀
i=1

e(gr11 , . . . , g
ri−1

i−1 , g
ri·X[0,i]
i , g

ri+1

i+1 , . . . , g
r`
` )

≡p
∏̀
i=1

e(gr11 , . . . , g
r`
` )X[0,i]

≡p e(y1, . . . , y`)
∑`

i=1X[0,i] mod p.

But, since the group GT is cyclic, it holds that:

Pr
[
e(y1, . . . , y`)

α ≡p e(y1, . . . , y`)
∑`

i=1X[0,i] mod p
]

= Pr

[∑̀
i=1

X[si, i] ≡p
∑̀
i=1

X[0, i]

]
≤ 2−` +

1

p
.

Hence, except with negligible probability, the distinguisher outputs 0 when given access to the
all zeros oracle and we conclude that our distinguisher breaks the circular security of the scheme
(with an overwhelming gap).
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4 Equivalence of KDM Notions for Bit-Encryption

In this section, we establish an equivalence between the three notions of circular security for
bit-encryption that were defined in Section 2.2.

Theorem 12. For every public-key bit-encryption scheme the following are equivalent:

1. The scheme is circular secure with respect to key recovery.

2. The scheme is circular secure with respect to message recovery.

3. The scheme is circular secure with respect to indistinguishability of oracles.

In particular, Theorem 12 implies that an adversary that merely distinguishes between a
KDM oracle and an all zeroes oracle with a non-negligible gap can be used to fully recover the
decryption-key.

Lemma 13. Every public-key bit-encryption scheme that is circular secure with respect to key
recovery is also circular secure with respect to message recovery.

We give a sketch of the proof, for the full proof see Appendix A.

Proof Sketch. Let (KeyGen,Enc,Dec) be a public-key bit-encryption scheme, and suppose
that there exists an adversary A that has access to the KDM oracle and is given as input an
encryption-key e and an encryption of a random bit b and manages to guess b with non-negligible
advantage. We use A to construct a key-recovery adversary (which also has access to the KDM
oracle).

Intuitively, it seems as though in order to find di (the i-th bit of the decryption-key d),
the key-recovery adversary can just invoke its KDM oracle on i to obtain ci = Ence(di) and
then run A on input (e, ci) (while answering A’s oracle queries using its own KDM oracle). The
intuition is that since A is a message recovery attacker, it should output the bit di. The problem
with this intuition is that A is only guaranteed to work when given an encryption of a random
bit that is independent of the decryption-key (which is obviously not the case for di).

We resolve this problem by restricting our attention to the set S of all keys (e′, d′) for which A
manages to recover messages with non-negligible advantage. We make two simple observations:

1. The set S contains a polynomial fraction of the keys (this follows from the fact that A
has a non-negligible advantage over all key pairs).

2. If a fixed key pair (e, d) is in S, then there should be a non-negligible gap between the
distribution A(e, Ence(0)) and the distribution A(e, Ence(1)).

Note that for a fixed (e, d), the distribution A(e, Ence(di)) is exactly A(e, Ence(0) if di = 0
and A(e, Ence(1)) if di = 1. Therefore, to find di we approximate the following probabilities:

• The probability µ0 that A outputs 1 when given an encryption of 0.

• The probability µ1 that A outputs 1 when given an encryption of 1.

• The probability ν that A outputs 1 when given an encryption of di. (To approximate this
probability we use fresh calls to the KDM oracle.)
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We guess that di is the bit b such that ν is closer to µb than to µ1−b and we are correct
with overwhelming probability (over the coins used for the approximations). By repeating
this procedure for every i ∈ [|d|] we obtain an overwhelming probability of finding d for every
(e, d) ∈ S. Since S is sufficiently large, this gives us a non-negligible probability of finding D
even for a random key-pair (e, d).

Lemma 14. Every public-key bit-encryption scheme that is circular secure with respect to mes-
sage recovery is circular secure with respect to indistinguishability of oracles.

We give a sketch of the proof, for the full proof see Appendix A.

Proof Sketch. Let (KeyGen,Enc,Dec) be a public-key bit-encryption scheme that is circular
insecure with respect to indistinguishability of oracles. That is, there exists an adversary A
that gets as input an encryption-key e and access to an oracle that is either the KDM oracle or
the all-zeros oracle and manages to distinguish between the two cases.16 We use A to construct
a circular security message recovery adversary A′ for the scheme.

For simplicity, assume that A is just given an encryption-key e and a list of ciphertexts
c1, . . . , c` (where ` is the length of the decryption-key d) and manages to distinguish between
the case that for every i the ciphertext ci is an encryption of the i-th bit of d and the case that
for every i the ciphertext ci is an encryption of 0.17

We use a hybrid argument to argue that there exists an i ∈ [`] such that A, given input
e, (c1, . . . , c`), distinguishes between the following two cases:

1. c1, . . . , ci−1 are encryptions of the first i− 1 bits of d and ci, . . . , c` are encryptions of 0.

2. c1, . . . , ci are encryptions of the first i bits of d and ci+1, . . . , c` are encryptions of 0.

The hybrid argument only tells us that A distinguishes the two cases for a random pair
of keys. The first step of our message-recovery adversary A′ is to find i (this can be done by
approximating the output distribution of A for every hybrid with respect to random key pair)
and to check that A distinguishes between the two cases for the specific keys (e, d) (where A′

uses the KDM oracle to generate the two neighboring distributions).
If A does not distinguish between the two cases then A′ just outputs 0 and 1 with probability

1
2 . If on the other hand, A does distinguish (and by the hybrid argument there is a non-
negligible probability for this event), then the i-th bit of d must be 1 (otherwise the two cases
are identically distributed), and therefore A′ can decrypt its challenge ciphertext c by running
A on c1, . . . , ci−1, c, ci+1, . . . , c` where c1, . . . , ci−1 are encryptions of the first i− 1 bits of d and
ci+1, . . . , c` are encryptions of 0. If c is an encryption of 0 then the input to A corresponds
to the (i − 1)-th hybrid whereas if c is an encryption of 1 then the input corresponds to the
i-th hybrid. The fact that A distinguishes between these two hybrids gives A′ a non-negligible
advantage in guessing the value of b.

To complete the equivalence theorem, we also need to show the following:

16Actually, since Definition 6 explicitly requires semantic security, we may instead have an adversary that
directly breaks semantic security. The same adversary also breaks circular security with respect to message
recovery.

17In the general case we need to handle an adversary that can ask for t encryptions of each bit of the decryption-
key, where t is a bound on the running time of the adversary. To handle this case, we construct an intermediate
adversary A′ that distinguishes between t encryptions of 0 and t encryptions of 1. We use an additional hybrid
argument to show how to convert A′ to a single message adversary (see the full proof in Appendix A for details).
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Lemma 15. Every public-key bit-encryption scheme that is circular secure with respect to in-
distinguishability of oracles is also circular secure with respect to key recovery.

Intuitively, given a key recovery adversary we can obtain an indistinguishability of oracles
adversary by running the key-recovery adversary using the alleged KDM oracle. If the oracle is
indeed the KDM oracle then with non-negligible probability the adversary finds the decryption-
key whereas if the oracle is the all zeros oracle then it should be infeasible to find the decryption-
key. Since it is easy to check whether the output of the key-recovery adversary is a “good”
decryption-key or not, we obtain a non-negligible advantage in distinguishing between the two
oracles. See Appendix A for the full proof.

5 A Black-Box Impossibility Result

In this section we show that the bit-encryption conjecture cannot be proved by a black-box
reduction. Actually, as discussed in Section 1.4, we prove a stronger result, that the circular
security of every CCA-2 secure bit-encryption cannot be proved using a black-box reduction.

We start off by defining what we mean by a black-box reduction of circular security of
bit-encryption to semantic security and to CCA-2 security:

Definition 16. A black-box reduction of circular security to semantic security for bit-encryption
schemes is a probabilistic polynomial-time algorithm R such that for every encryption scheme
(KeyGen,Enc,Dec) and every circular security adversary A for which there exists a polynomial
p and infinitely many n such that:∣∣∣∣ Pr

(e,d)←KeyGen(1n)
[AOe,d(e) = 1]− Pr

(e,d)←KeyGen(1n)
[AJe(e) = 1]

∣∣∣∣ > 1

2
+

1

p(n)

there exists a polynomial p′ such that for infinitely many n:

Pr
(e,d)←KeyGen(1n)

b∈R{0,1}

[R(KeyGen,Enc,Dec),A(e, Ence(b)) = b] >
1

2
+

1

p′(n)

where the probabilities are also over the coin tosses of all algorithms.

A black-box reduction of circular security to CCA-2 security is defined similarly except that
the reduction R also has oracle access to the oracle Dec′d that decrypts any message (using the
decryption-key d) except for the challenge ciphertext.

We prove the following theorem:

Theorem 17. There exists no black-box reduction of circular security to semantic security for
bit-encryption schemes. Furthermore, there also exists no fully black-box reduction of circular
security to CCA-2 security for bit-encryption schemes.

Note that the furthermore clause actually implies the theorem since CCA-2 security implies
semantic security. Therefore, to prove Theorem 17, it suffices to show a single encryption scheme
and a successful circular security adversary for the scheme such that the scheme is CCA-2 secure
even given access to the circular security adversary. Since we consider a reduction in which the
circular security adversary is used in a black-box manner, we may even consider an inefficient
circular security adversary.

For a given encryption-scheme, consider an inefficient circular security adversary A that
given an encryption-key e first finds the corresponding decryption-key d (suppose that d is
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uniquely determined by e), then asks its oracle for encryptions of all the key bits, decrypts

these ciphertexts to obtain d′1, . . . , d
′
n (where n = |d|) and outputs 1 if d′

def
= d′1, . . . , d

′
n equals

d and ⊥ otherwise. Indeed, A breaks circular security and therefore, as stated above, to prove
Theorem 17, it suffices to show a single encryption scheme for which it is infeasible to break
semantic security even given oracle access to A.

Intuitively, we would like to argue that the adversary A specified above cannot be used to
break the security of any CCA-2 secure encryption scheme (although to prove the theorem it
suffices to show a single such scheme). The intuition is that for such schemes, it is infeasible,
given only the encryption-key, to produce encryptions of all of the key bits.18 Therefore, it
seems as though the reduction cannot use the circular security adversary A in any meaningful
way and that A can be simulated by always returning ⊥. Thus, it seems as though the scheme
remains CCA-2 secure even given oracle access to A.

The problem with the foregoing argument is that the reduction may decide to query A not
on its own challenge encryption-key e but on some related key e′. In such a case we can no
longer argue that A can be simulated by just returning ⊥. While it seems strange for a generic
reduction (which should work for any CCA-2 encryption-scheme) to run A on keys other than
its own, we cannot rule out this possibility.

We overcome this difficulty by restricting our attention only to reductions that also use the
encryption-scheme as a black-box. Such reductions should also work when given an inefficient
encryption-scheme. We use this fact to construct a specific inefficient CCA-2 secure encryption
scheme that has the additional important property that its encryption keys are totally unrelated.
Therefore, intuitively, querying the adversary A on a key e′ 6= e cannot help the reduction break
semantic security.

Proof of Theorem 17. We construct an inefficient encryption scheme (KeyGen,Enc,Dec) and
an inefficient circular security adversary A for (KeyGen,Enc,Dec) such that no algorithm R
that makes only polynomially many oracle calls to (KeyGen,Enc,Dec) and A can break CCA-2
security. The encryption scheme that we construct has two main properties:

1. Given only the encryption-key it is infeasible to generate encryptions of all of the bits of
the private-key.

2. Encryption keys of the scheme are totally unrelated.

As is usual in black-box separations, our construction is randomized. That is, we construct
a family of encryption schemes and consider a random encryption scheme in the family. Specif-
ically, consider a totally random length tripling injective function G : {0, 1}n → {0, 1}3n and a

collection of 2n random injective functions E def
= {Ee : {0, 1}×{0, 1}n → {0, 1}3n}e∈G({0,1}n). We

define the following family of encryption schemes (indexed by G, E):

KeyGen(1n) : select at random d ∈ {0, 1}n and output (e, d) such that e = G(d).

Ence(σ) : select at random r ∈ {0, 1}n and output Ee(σ, r).

Decd(c) : output b ∈ {0, 1} if there exists an r ∈ {0, 1}n such that c = Ee(b, r), where e = G(d).
Otherwise output ⊥.

Note that (KeyGen,Enc,Dec) essentially form an idealized encryption scheme and that
there is no correlation between different encryption keys. Additionally, note that both the set

18If it were feasible to generate encryptions of all the key bits than a CCA attacker could use the decryption
oracle on these encryptions to find the decryption-key and break the security of the scheme.
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of encryption keys and the sets of ciphertexts are a random exponentially vanishing subset of
{0, 1}3n and therefore a polynomially bounded adversary only has probability poly(n)

22n
< 2−n to

produce a valid public-key or ciphertext without invoking the oracles KeyGen and Enc.
Consider the following inefficient circular security adversary for (KeyGen,Enc,Dec):

A(e, (c1, . . . , cn)) : output 1 if there exist r1, . . . , rn ∈ {0, 1}n and d ∈ {0, 1}n such that G(d) = e
and for every i ∈ [n], it holds that ci = Ee(di, ri). Otherwise output ⊥.

The attacker A indeed breaks the circular security (with respect to indistinguishability of
oracles) of (KeyGen,Enc,Dec) for every G, E . We proceed to show that the reduction cannot
utilize A to break CCA-2. That is, we will show that for every probabilistic polynomial-time
algorithm R and all sufficiently large n it holds that

Pr
G,E

(e,d)←G(1n)
b∈R{0,1}

[R(KeyGen,Enc,Dec),A,Dec′d(e, Ence(b)) = b] <
1

2
+ 2 · 2−n (3)

where the probability is also over the coin tosses of all the algorithms and Dec′d is the
aforementioned CCA-2 decryption oracle. The existence of a single G, E that is semantically
secure follows (from standard black-box techniques, see [IR89]).

Our main step is to show that R can essentially simulate A by itself. Once we get rid of A,
it is not hard to see that R cannot break semantic security.

Claim 18. There exists a probabilistic polynomial-time algorithm R′ such that for all sufficiently
large n it holds that∣∣∣∣∣ Pr

G,E
(e,d)←G(1n)
b∈R{0,1}

[
R(KeyGen,Enc,Dec),A,Dec′d (e, Ence(b)) = b

]

− Pr
G,E

(e,d)←G(1n)
b∈R{0,1}

[
R′(KeyGen,Enc,Dec),Dec

′
d (e, Ence(b)) = b

] ∣∣∣∣∣ < 2−n

Proof. Consider the reduction R′ that on input (e, c) just runs R(e, c) while monitoring R’s
calls to the oracles KeyGen and Enc. The new reduction R′ keeps a list SKEY S of all key-
pairs (e′, d′) that R got in response to calls to KeyGen and a list SENC of all pairs (σ, c) of
encryptions c of the bit σ that Enc returns with respect to e, the challenge encryption-key.

Consider an execution of R using the oracle A. There are three possible types of queries
e′, (c1, . . . , cn) made to A that R′ needs to simulate:

1. There exists a d′ such that (e′, d′) ∈ SKEY S : in this case R′ knows the decryption-key d′

corresponding to e′ and therefore can perfectly simulate the response of A by itself.

2. e′ 6= e and there exists no d′ such that (e′, d′) ∈ SKEY S : since the set of valid encryption
keys only contains an exponentially vanishing random subset of 3n-length strings, except
with probability poly(n)

2−2n , it holds that e′ is an invalid encryption-key and A should return
⊥. Thus, R′ simulates A by returning ⊥.

3. e′ = e: we separate into two cases. In the first case at least one of the ciphertexts c1, . . . , cn
does not appear in the list SENC . Since the set of ciphertexts with respect to the key
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e only contains an exponentially vanishing random subset of 3n-bit strings, except with
probability poly(n)

22n
, A returns ⊥ in this case and therefore R′ just returns ⊥.

The second case is when c1, . . . , cn all appear in SENC . In this case R′ can retrieve
from the list SENC the corresponding plaintexts b1, . . . , bn. Now R′ can simulate A by
checking whether KeyGen returns e when given the random string b1, . . . , bn. If so then
b1, . . . , bn = d, the decryption-key and therefore R′ perfectly simulates A by returning 1.
On the other hand if b1, . . . , bn 6= d then A can be simulated by returning ⊥.

Since R only makes polynomially many queries, we have that the output of R′ is poly(n)
22n

<
2−n-close to that of R.

Thus, R′ breaks the CCA-2 security of (KeyGen,Enc,Dec). However, the next claim shows
that no algorithm making polynomially many oracle queries can break the CCA-2 security of a
random instance of (KeyGen,Enc,Dec):

Claim 19. For any (computationally unbounded) algorithm R′ that makes at most polynomially
many oracle queries and for all sufficiently large n, it holds that

Pr
G,E,b∈R{0,1}

[R′(KeyGen,Enc,Dec),Dec
′
d(e, Ence(b)) = b] <

1

2
+ 2−n

See Appendix B for the straightforward proof.
From Claims 18 and 19 we obtain Eq. (3). Using standard techniques in black-box sep-

arations (specifically an application of Markov’s inequality and the Borel-Cantelli lemma, see
[IR89]), the latter implies that there exist specific oracles G and E for which the correspond-
ing encryption scheme (KeyGen,Enc,Dec) is CCA-2 secure. Thus, we have found an ad-
versary A that breaks the circular security of (KeyGen,Enc,Dec) but on the other hand
(KeyGen,Enc,Dec) is CCA-2 secure even given oracle access to A.

Remark. Our black-box impossibility result only considers reductions that treat both the
adversary and the primitive (in our case the encryption scheme) as black boxes. We note that
the discussion preceding the proof of Theorem 17 shows that a reduction that uses only the
adversary as a black-box must query the adversary on keys that are somehow related to the
challenge encryption-key. Since such a reduction should work for all bit-encryption schemes,
we view this as an additional obstacle to proving the bit-encryption conjecture.
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A Full Proofs of the KDM Equivalence Lemmas

A.1 Proof of Lemma 13

Let (KeyGen,Enc,Dec) be a public-key bit-encryption scheme that is circular secure with
respect to key recovery. Assume toward a contradiction that there exists an efficient adversary
A that breaks the circular security of (KeyGen,Enc,Dec) with respect to message recovery.
That is, there exists a polynomial p(·) and infinitely many n ∈ N for which:

Pr
(e,d)←KeyGen(1n)

b∈R{0,1}

[
AOe,d(e, Ence(b)) = b

]
>

1

2
+

1

p(n)
(4)

and therefore, using simple manipulations, we have:

Pr
(e,d)←KeyGen(1n)

[
AOe,d(e, Ence(1)) = 1

]
− Pr

(e,d)←KeyGen(1n)

[
AOe,d(e, Ence(0)) = 1

]
>

1

p(n)
(5)

Henceforth, we only consider n from the infinite set for which Eq. (5) holds. We use A to
construct an adversary A′ that breaks circular security with respect to key recovery.

For a fixed bit b ∈ {0, 1}, let

µb(e, d)
def
= Pr

[
AOe,d(e, Ence(b)) = 1

]
(6)

and let S be the following set:

S =

{
(e, d) : µ1(e, d)− µ0(e, d) ≥ 1

2p(n)

}
.

By Eq. (5), we have Ee,d [µ1(e, d)− µ0(e, d)] ≥ 1
p(n) and therefore, by Markov’s inequality, the

set S contains at least a 1
2p(n) -fraction of all key-pairs.

Recall that the key-recovery adversary A′ is given an encryption-key e and access to the
KDM oracle Oe,d and needs to find d. We show how to recover d bit-by-bit but only in the case
that (e, d) ∈ S. Considering only keys that are in S suffices because S contains a polynomial
fraction of all key-pairs, and therefore succeeding only for keys in S gives us a non-negligible
probability to succeed in general.

Let (e, d) be a fixed key-pair in S. We proceed to describe an efficient procedure that
given e and oracle access to Oe,d, finds d. To do so, we begin by estimating µ0(e, d) and
µ1(e, d). This can be done by taking the average of O(p(n)2n) independent executions of A
(each execution is done with fresh randomness and fresh oracle responses). Since the key is
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fixed, each invocation is totally independent and by the Chernoff bound, with probability at
least 1− 2−n, our approximation µ̂b(e, d) will be 1

16p(n) -close to µb(e, d).
Once this initial preprocessing step is complete, we can recover d bit-by-bit. To recover the

i-th bit of d, the algorithm A′ attempts to approximate

νi(e, d)
def
= Pr

[
AOe,d(e, Ence(di)) = 1

]
. (7)

As before, this is done by invoking A with fresh oracle queries and with fresh encryptions
of di that are obtained by querying the oracle Oe,d(i). Invoking A independently O(p(n)2n)
times gives us an approximation ν̂i(e, d) that is 1

16p(n) -close to νi(e, d) (with probability at least

1− 2−n).

Claim 20. For every (e, d) ∈ S, except with exponentially vanishing probability, ν̂i(e, d) is closer
to µ̂di(e, d) than to µ̂1−di(e, d).

The claim follows from the following straightforward calculation.

Proof. Clearly νi(e, d) = µdi(e, d) and as argued above (except with exponentially vanishing
probability) |ν̂i(e, d)− νi(e, d)| < 1

16p(n) and |µ̂b(e, d)− µb(e, d)| < 1
16p(n) . Thus, we have:

|ν̂i(e, d)− µ̂di(e, d)| ≤ |ν̂i(e, d)− νi(e, d)|+ |νi(e, d)− µdi(e, d)|+ |µdi(e, d)− µ̂di(e, d)|

<
1

8p(n)
.

And on the other hand we have:

|ν̂i(e, d)− µ̂1−di(e, d)| ≥ |µ̂di(e, d)− µ̂1−di(e, d)| − |ν̂i(e, d)− µ̂di(e, d)|

> |µ̂di(e, d)− µdi(e, d) + µdi(e, d)− µ1−di(e, d) + µ1−di(e, d)− µ̂1−di(e, d)| − 1

8p(n)

≥ |µdi(e, d)− µ1−di(e, d)| − |µ̂di(e, d)− µdi(e, d)| − |µ1−di(e, d)− µ̂1−di(e, d)| − 1

8p(n)

≥ 1

2p(n)
− 1

16p(n)
− 1

16p(n)
− 1

8p(n)

=
1

4p(n)

where the last inequality follows from the fact that |µdi − µ1−di | ≥ 1
2p(n) (since (e, d) ∈ S).

Therefore, we guess that the i-th bit of d is the bit b such that νi is closer to µb than to
µ1−b and by Claim 20 we are correct (for a particular i) except with exponentially vanishing
probability. Taking a union bound over all i we find all of d except with exponentially vanishing
probability.

We showed that if (e, d) ∈ S, we find d with overwhelming probability and since S contains a
polynomial fraction of all valid keys, in the general case, we find d with non-negligible probability.

A.2 Proof of Lemma 14

Let (KeyGen,Enc,Dec) be a public-key bit-encryption scheme that is circular secure with re-
spect to message recovery. Assume toward a contradiction that there exists an efficient adversary
A that breaks the circular security of (KeyGen,Enc,Dec) with respect to indistinguishability
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of oracles. As remarked in Footnote 16, it may be the case that A directly breaks semantic
security, however this directly contradicts our circular security with respect to message recovery
assumption. Otherwise, there exists a polynomial p(·) and infinitely many n ∈ N for which:∣∣∣∣ Pr

(e,d)←KeyGen(1n)

[
AOe,d(e) = 1

]
− Pr

(e,d)←KeyGen(1n)

[
AJe(e) = 1

]∣∣∣∣ ≥ 1

p(n)
(8)

and without loss of generality19 we have:

Pr
(e,d)←KeyGen(1n)

[
AOe,d(e) = 1

]
− Pr

(e,d)←KeyGen(1n)

[
AJe(e) = 1

]
≥ 1

p(n)
. (9)

Henceforth, we only consider n ∈ N from the infinite set for which Eq. (9) holds.
Let t(n) be a polynomial bounding the number of queries that A makes to its KDM oracle for

security parameter 1n. We use A to construct an adversary A′ that gets as input t(n) ciphertexts
and using access to the KDM oracle, distinguishes between the case that the ciphertexts are
all encryptions of 0 and the case that they are all encryptions of 1. Using a standard hybrid
argument A′ can be transformed into a standard message-recovery adversary.

For simplicity, we assume (without loss of generality) that for every security parameter n,

all decryption keys have the same (polynomially-bounded) length `
def
= `(n). For 0 ≤ i ≤ `, let

H
(i)
e,d be the following hybrid oracle:

H
(i)
e,d(j) =

{
Ence(0) if j ≤ i
Ence(dj) otherwise

.

Observe that H
(0)
e,d ≡ Oe,d and that H

(`)
(e,d) ≡ Je. For i ∈ {0, . . . , `} let:

µi(e, d) = Pr

[
AH

(i)
e,d(e) = 1

]
. (10)

By Eq. (9) we have Ee,d [µ0(e, d)− µ`(e, d)] ≥ 1
p(n) . Therefore, by a hybrid argument, there

exists 0 ≤ i∗ ≤ `− 1 such that:

E
e,d

[µi∗(e, d)− µi∗+1(e, d)] ≥ 1

p(n)`

We will attempt to find i∗. To do so, note that by the Chernoff bound, except with negligible
probability, for every i we can find a 1

4p(n)` -approximation of Ee,d[µi(e, d)] by repeating the

following process O((p(n)`)2n) times and taking the average:

1. Select random (e′, d′)← G(1n).

2. Output A
H

(i)

e′,d′ (e′) (note that we can implement the oracle since we have d′).

Therefore, except with negligible probability, we can efficiently find an i∗ such that:

E
e,d

[µi∗(e, d)− µi∗+1(e, d)] ≥ 1

2p(n)`
(11)

19We do the standard trick: if Eq. (8) holds for infinitely n then either Eq. (9) holds for infinitely many n as-is
or it holds if we complement A’s output.
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Recall that our goal is to construct an adversary A′ that is given an encryption-key e
and ciphertexts c1, . . . , ct(n) as well as oracle access to Oe,d and needs to decide whether the
ciphertexts are all encryptions of 0 or all encryptions of 1. The second step of A′ (after finding
i∗) is to test if the gap specified by Eq. (11), which holds for a random key-pair, also holds in
practice for the specific keys given as input.

Fix ε = 1
8p(n)` and let S

def
= {(e, d) ← G(1n) : µi∗(e, d) − µi∗+1(e, d) ≥ ε}. Note that by

Eq. (11) and Markov’s inequality, the set S contains at least an ε fraction of keys. Our next
step is to attempt to ascertain whether (e, d) ∈ S. To do so we approximate the values of
µi∗(e, d) and µi∗+1(e, d). This approximation can be done by taking the average output of A(e)

over O(1ε
2
n) trials while answering A’s oracle calls as necessary (by either returning Ence(0)

or using the KDM oracle that A′ has access to) giving us an ε
8 approximation µ̂i∗(e, d) and

µ̂i∗+1(e, d) of µi∗(e, d) and µi∗+1(e, d) (respectively).
If the gap between µ̂i∗(e, d) and µ̂i∗+1(e, d) is less than ε

4 then A′ outputs 0 and 1 with
probability 1

2 . However, except with negligible probability, this only happens if (e, d) /∈ S.
Therefore, there is non-negligible probability that the gap between µ̂i∗(e, d) and µ̂i∗+1(e, d) is
larger than ε

4 .
If we are in the case that the gap between µ̂i∗(e, d) and µ̂i∗+1(e, d) is in fact larger than ε

4 ,
then (except with negligible probability) for the fixed keys (e, d) it holds that:

µi∗(e, d)− µi∗+1(e, d) >
ε

2
. (12)

Notice that this gap also implies that the i∗-th bit of d must be 1 (since d is fixed, having di∗ = 0
would imply that the two experiments are identical).

We will show that Eq. (12) allows A′ to distinguish between c1, . . . , ct(n) which are all either
encryptions of 0 or all encryptions of 1 (recall that t(n) is a polynomial bounding the number
of oracle queries that A makes). To do so, A′ invokes A(e) while answering A’s oracle queries
for bit location 1 ≤ j ≤ ` of the decryption-key as follows:

• If j < i∗ then A′ just answers with Ence(0).

• If j > i∗ then A′ queries its own KDM oracle Oe,d(j) and returns its answer.

• If j = i∗ and this is the k-th query, then A′ returns ck.

To complete the proof, notice that if c1, . . . , ct(n) are encryptions of 0 then the input to
A is precisely the i∗-th hybrid and therefore A′ outputs 1 with probability µi∗(e, d). On the
other hand, if c1, . . . , ct(n) are encryptions of 1 then the input to A is the (i∗+ 1)-th hybrid (by
our observation that di∗ = 1). By Eq. (12) there is a non-negligible gap between A’s output
distribution in these two cases and therefore A′ manages to distinguish between t(n) encryptions
of 0 and t(n) encryption of 1 with non-negligible probability. Using a standard hybrid argument,
A′ can be transformed into an adversary that distinguishes between a single encryption of either
0 or 1 which in turn can be easily transformed into a message-recovery adversary.

A.3 Proof of Lemma 15

Let (KeyGen,Enc,Dec) be a public-key bit-encryption scheme that is circular secure with
respect to indistinguishability of oracles. Assume toward a contradiction that there exists an
efficient adversary A that breaks the circular security of (KeyGen,Enc,Dec) with respect to
key recovery.

We use A to construct an adversary A′ that on input an encryption-key e, distinguishes
between a KDM oracle and the all-zeros oracle. The adversary A′, on input an encryption-key
e, works as follows:
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1. Invoke A(e) to obtain a potential decryption-key d′ while answering A’s oracle queries
with A′’s oracle (which is either the KDM oracle or the all-zeros oracle).

2. For i = 1, . . . , n:

(a) Choose a random b ∈R {0, 1}.
(b) If Decd′(Ence(b)) 6= b output 0 and halt.

3. Output 1.

If the oracle is the KDM oracle Oe,d, then with non-negligible probability A outputs the
correct decryption-key d and then A′ outputs 1. On the other hand, if the oracle is the all-zeros
oracle Je then A′ outputs 0 except with negligible probability. To prove the latter we first need
to show the following claim:

Claim 21.

Pr
(e,d)←KeyGen(1n)

d′←AJe (e)

[
Pr

b∈R{0,1}
[Decd′(Ence(b)) = b] >

2

3

]
< neg(n)

Proof. We say that a key pair (e, d′) is good if Prb∈R{0,1} [Decd′(Ence(b)) = b] > 2
3 . To prove

the claim, consider a semantic security adversary for the encryption scheme that on input e runs
A(e) while answering A’s queries with fresh encryptions of 0 to obtain d′. Then, the semantic
security adversary approximates whether the key pair (e, d′) is a good key pair. If so then then
the adversary uses d′ to decrypt the challenge ciphertext and if (e, d′) is not a good key pair
then the adversary outputs 0 and 1 with probability 1

2 .
If the claim is false then the probability that (e, d′) are good is non-negligible and the

proposed adversary breaks the semantic security of the scheme.

Therefore, if the oracle is the all-zeros oracle, then except with negligible probability, in each
iteration the adversary has a 2

3 probability to halt and output 0 in step (2b) (which implies an
exponentially vanishing probability to output 1). Hence, A′ distinguishes between the KDM
oracle and the all-zeros oracle with a non-negligible gap.

B Proof of Claim 19

To proof the claim, we consider first the following simplification. Let f : {0, 1} × {0, 1}n →
{0, 1}3n be a random injective function. We will show that for every algorithm A that makes
at most polynomially many oracle queries:

Pr
f,b∈R{0,1},r∈R{0,1}n

[Af,g(f(b, r)) = b] <
1

2
+ 2−n

where g inverts f in the following sense: on input c ∈ {0, 1}3n the function g outputs b′ ∈ {0, 1}
if there exists an r′ ∈ {0, 1}n such that c = (b′, r′) and (b′, r′) 6= (b, r) and otherwise outputs ⊥.

To prove the simplified case, notice that since f is chosen uniformly at random, with prob-
ability poly(n)

22n
the adversary A never queries the oracles f or g on r. In this case, conditioned

on the view of A, the value of b is an independent random coin flip which can only be guessed
with probability 1

2 . Thus,

Pr
f,b∈R{0,1},r∈R{0,1}n

[Af,g(f(b, r)) = b] ≤ poly(n)

22n
· 1 +

(
1− poly(n)

22n

)
· 1

2
<

1

2
+ 2−n.
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The general claim actually follows by a reduction to the simplified case. Specifically, an
adversary for the general claim can be used to obtain an adversary for the simplified case by
answering oracle queries of the form Ence(b; r) with f(b; r) and queries of the form Dec′d(c)
with g(c). If the adversary successfully guesses b in the general case then we get an adversary
for the simplified case.
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