
On the Optimality of Lattices for the Coppersmith Technique

Yoshinori Aono∗ Manindra Agrawal† Takakazu Sato‡ Osamu Watanabe§

Abstract

We investigate the Coppersmith technique [6] for finding solutions of a univariate modular
equation within a range given by range parameter U . This technique converts a given equation
to an algebraic equation via a lattice reduction algorithm, and the choice of the lattice is crucial
for the performance of the technique. This paper provides a way to analyze a general type
of limitation of this lattice construction. Our analysis bounds the possible range of U from
above that is asymptotically equal to the bound given by the original result of Coppersmith.
It means that Coppersmith has already given the best lattice construction. To show our result,
we establish a framework for the technique by following the reformulation of Howgrave-Graham
[13], and derive a condition, which we call the lattice condition, for the technique to work. We
then provide a way to analyze a bound of U for achieving the lattice condition. Technically,
we show that (i) the original result of Coppersmith achieves an optimal bound for U when
constructing a lattice in a standard way. We then show evidence supporting that (ii) a non-
standard lattice construction is generally difficult. We also report on computer experiments
demonstrating the tightness of our analysis.

1 Introduction

Coppersmith [6] introduced a polynomial-time algorithm, which we refer to as the Coppersmith
technique, for finding solutions of a modular equation

F (x) = xD + aD−1x
D−1 + · · ·+ a0 ≡ 0 (mod N) (1)

within the range of |x| < N1/D−ε, and showed that it can be used to design an attacking algorithm
for RSA cryptography. (Here, for any A, 0 < A < N , the notation |x| < A under modulo N
means that x is an integer satisfying 0 ≤ x < A or N − A < x < N .) Since his work and
the reformulation by Howgrave-Graham [13], it has gained attention in relation to attack several
cryptographies; (e.g., [2, 3]). The technique has also been generalized for the multivariate case.

The outline of the Coppersmith technique is (i) converting a given modular equation to a cer-
tain algebraic equation keeping the same small solutions by using a lattice reduction algorithm and
(ii) solving the algebraic equation by a numerical method. One key point of this technique is con-
structing a good lattice for the lattice reduction algorithm. For instance, considering a bivariate
modular equation for RSA cryptanalysis the original result of [3] has been improved essentially by
defining better lattices [9, 1]. There should clearly be some limit in such improvements. Here, we
focus on the univariate case and investigate the optimality of the lattice construction for the Cop-
persmith technique. We demonstrate that for solving (1) the range of |x| < N1/D−ε Coppersmith
achieved based on his lattice construction is “in some sense” optimal.

Note that some investigations have shown the limit of polynomial-time algorithms. Konyagin
and Steger [16] gave an upper bound of the number of roots of (1) within the range of |x| < U ,

∗National Institute of Information and Communications Technology aono@nict.go.jp
†Dept. of Computer Science and Engineering, Indian Institute of Technology, Kanpur, India.
‡Dept. of Mathematics, Tokyo Institute of Technology, Tokyo, Japan.
§Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan.

1

which becomes exponential in logN when U = N1/D+ε. It is also shown [20] that the bound is
attained by an equation of the form xr ≡ 0 (mod pr) for a prime number p and integer r. This
clearly provides the limit of any algorithm that runs in polynomial-time in logN . That is, there
are some equations such that no polynomial-time algorithm works to find all solutions within the
range of |x| < N1/D+ε. However, their example is somewhat extreme, and insufficient for showing
the hardness of solving the particular equations defined for attacking cryptographies. In fact, for
most such equations, the number of solutions is easily shown to be quite small. Our objective is
to provide a technique to analyze the limit of the Coppersmith technique that is applicable for
equations for attacking cryptographies.

Our Results: In this paper, we show a general type limitation of lattices used in the Coppersmith
technique for solving any univariate equation (1), by which we can show that the Coppersmith’s
bound U = N1/D−ε is best (except for the choice of ε). Our result consists of two technical
results. We investigate a certain condition — the lattice condition — which is sufficient for the
Coppersmith technique to work. This condition is essentially determined by a set of polynomials
used for constructing a lattice. We first prove that this bound is not satisfied for U ≥ N1/D

if the lattice is constructed based on “standard” integer coefficient polynomials. This paper es-
tablishes the notion of standard polynomials, in short, it is a natural generalization of a way to
select polynomials that have been used in the previous work. We then consider a non-standard
lattice construction, that is, constructing a lattice based on non-standard integer coefficient poly-
nomials. We show that any non-standard construction indeed leads either (i) a reduction of the
original equation (1) to a strictly simpler one, or (ii) derives a non-trivial factor of the modulo
N that we assume difficult to compute. Moreover, neither reduction requires the Coppersmith
technique. That is, we show that such a non-standard construction will lead a better way to solve
the original problem than the Coppersmith technique. Thus, from these results, we can claim
that the range larger than N1/D cannot be achieved by the Coppersmith technique using any
lattice construction. Note that the lattice condition is sufficient, and the Coppersmith technique
sometimes works even if the lattice condition is not satisfied. We thus discuss the tightness of
the lattice condition for showing the limits of the Coppersmith technique. The lattice condition
is derived from two inequalities — one for a key algebraic property and one for the length of a
short lattice vector. While it seems difficult to show that they are tight, we justify our analysis
from the following two points: (i) we show that a limit similar to U < N1/D still holds unless
significantly better inequalities can be used, and (ii) we show computer experiments that indicate
that these inequalities cannot be significantly improved.

Another contribution of this paper is description of a method for improving lattices. To show
the limitations of standard lattice construction, we give a method for decreasing the determinant
of a given lattice, which can in fact be given as an explicit procedure. Thus, this method may
be used to improve lattices in the Coppersmith technique, providing a better solvable range
U < N1/D−ε with a smaller ε. It should also be noted that this method can be extended for
multivariate situations, though we state the procedure for the univariate situation.

Related Work: We first briefly survey applications of the univariate case of the Coppersmith
technique in cryptography. Before Coppersmith’s work, there were similar ideas for attacking
cryptographic schemes. Vallée, Girault and Toffin [25] proposed a lattice based attack for the
Okamoto-Shiraishi signature scheme [21] that uses a quadratic inequality. H̊astad [12] also pro-
posed a procedure for solving simultaneous modular equations by converting them to one modular
equation. Unfortunately, its solvable range is slightly weaker since lattice construction is extremely
simple. Based on such previous works, Coppersmith [6] proposed his method for solving general
univariate equations and its application for recovering an RSA message with its (1−1/e)-fraction
of MSBs. After his work, Howgrave-Graham [13] reformulated the technique, and many applica-
tions have been proposed in the cryptographic area. Shoup [24], for instance, gave an interesting
application for proving the security of the RSA-OAEP encryption scheme with e = 3. Our result

2

would show the limitations of these approaches. For example, the RSA message cannot be recov-
ered from its MSBs that have length of less than (1− 1/e) log2N by using the direct usage of the
Coppersmith technique.

While in this paper, we investigate the limit of the direct usage of the Coppersmith technique,
it should be noted here that several extensions of the techniques have been proposed for extending
the range |x| < N1/d−ε; see, for example, the survey papers by Coppersmith [7] and by May [20,
Chap. 10]. Unfortunately, though, the improvements of these extensions are relatively mild.

The rest of this paper is as follows. Section 2 provides some necessary technical background.
Section 3 follows [13] and precisely defines the Coppersmith technique and the lattice condition.
Section 4 derives a necessary condition for the solution range to achieve the lattice condition
under the standard lattice construction. Section 5 discusses what we are able to compute from
a non-standard construction. Section 6 discusses the tightness of our analysis and reports on
computer experiments. Finally, Section 7 concludes the paper with remarks. The Appendix gives
most of our technical arguments as well as some related topics.

2 Preliminaries

Here we introduce definitions and technical lemmas. For any positive integer n, let [n] to denote
the set {1, . . . , n}. A vector consisting of s ≥ 2 coordinates a1, . . . , as is denoted as [a1, . . . , as].
On the other hand, for polynomials f1(x), . . . , fs(x), we use (f1, . . . , fs) to denote their sequence.

Let Z[x] denote the ring of integer coefficient univariate polynomials. Denote by ZN the ring
Z/NZ, and let ZN [x] denote the ring of polynomials whose coefficients are in ZN . Use Z×

N to
denote the set of units; i.e., elements that have inverses, in ZN . Based on this, we denote the set
of units in ZN [x] by ZN [x]×. We also use MN [x] to denote the set of monic polynomials in ZN [x];
that is, the polynomials whose leading coefficients are one.

By ≡N we denote the equivalence between two polynomials under modulo N ; that is, for two
polynomials f(x) =

∑d
i=0 aix

i and g(x) =
∑e

i=0 bix
i, we write f(x) ≡N g(x) if ai ≡ bi (mod N)

for any i, 0 ≤ i ≤ max(d, e). Here we understand that ai = 0 (resp. bi = 0) for i > d (resp. i > e.)
For any polynomial f(x), we use deg(f) and lc(f) to denote its degree and the leading coeffi-

cient, respectively. For any positive integer c and any polynomial f(x), we define ordc(f) by the
largest integer r such that f(x) ≡cr 0 holds.

Howgrave-Graham [13] reformulated the Coppersmith technique and gave a lemma that plays
a key role in analysis of the technique. We first introduce the notion of U -norm for simplifying

notation. Define the U -norm of a polynomial f(x) =
∑d

i=0 aix
i by ||f ||U =

√∑d
i=0(aiU

i)2.

Thus, this is just the length of the coefficient vector of f(Ux).

Lemma 1. (Howgrave-Graham [13]) Consider any polynomial f(x) ∈ Z[x] consisting of w
monomials. Let W be a non-negative integer satisfying

||f ||U < W/
√
w. (2)

Then we have
∀v, |v| < U [f(v) ≡ 0 (mod W)⇔ f(v) = 0]. (3)

In the Coppersmith technique, we need to find a polynomial having a small U -norm via a
lattice reduction algorithm. First, we introduce a way to relate polynomials with vectors (and a
lattice). Consider any polynomial f(x) =

∑d
i=0 aix

i. Its vectorization is a vector V(f, U) defined
by [a0, a1U, . . . , adU

d]. On the other hand, as its inverse transformation, for a given vector v, we
define the functionalization of v as a unique polynomial f(x) such that v = V(f, U) holds, and
denote it by F(v, U). Note that this is undefined if no such f(x) exists. V(f, U) and F(v, U)
are clearly linear mapping w.r.t. polynomials and vectors, respectively. The Euclidean norm of v

3

(= V(f, U)) is equal to the U -norm of f(x) (= F(v, U)). This relation is the motivation for our
transformation.

For any k ≥ 1 and any w ≥ k, let b1, . . . ,bk ∈ Rw be linearly independent vectors. Then, the
lattice spanned by these vectors is defined by the set {a1b1 + · · · + akbk | a1, . . . , ak ∈ Z}. We
use the notation L(b1, . . . ,bk) to denote it. The set of vectors {b1, . . . ,bk} is called a basis of
this lattice. We sometimes omit the basis if it is clear from the context. An element of a lattice

is called a lattice vector. The determinant of the lattice is defined by det(L) =
k∏

i=1

|b∗
i |, where

{b∗
1, . . . ,b

∗
k} is the Gram-Schmidt basis. Here, the notation | · | denotes the standard Euclidean

norm.
We need to compute a non-zero short vector in a lattice, which can be computed by a lattice

basis reduction algorithm such as the LLL algorithm [17]. For a lattice L, let v1 denote the first
vector in the basis computed by the LLL algorithm. Then it has been known [17] that this length
is bounded by

|v1| ≤ A(k) det(L)1/k, (4)

where A(k) is a constant that only depends on k. It has been shown that (4) holds with A(k) =
2(k−1)/4. Note that this upper bound may not be tight, and that better algorithms have improved
this. On the other hand, it has been observed [10] that for any polynomial-time lattice reduction
algorithm, we have δ > 1 such that |v1| ≈ δk det(L)1/k holds. (Here by “polynomial-time” we

mean polynomial-time w.r.t. k and logB
def
= logmaxi |bi|.)

Remarks on the Problem Setting: We consider the problem of finding all solutions for (1)
within the range of |x| < U for a given parameter U . We call (1) the target equation and the range
|x| < U the target range. Throughout this paper, we fix the usage of symbols F , D, N , and U .
We use the standard unit cost time complexity, and we evaluate complexity measures in terms of
logN , because we can assume that D ≤ poly(logN) and U < N . Hence, by “polynomial-time”
we mean a time polynomial in logN unless otherwise stated.

We assume thatN is a large composite number whose non-trivial factor cannot be found during
the computation that we investigate. This is because the factor of N would give the complete
solution to the original problem in almost all applications of the Coppersmith technique. Thus,
we can assume that all numbers that appear during the computation are coprime to N . This is
used in the argument of Section 5. Because of this, we can assume that the coefficient aD of xD

of F (x) is one as stated in (1) since otherwise we can “divide” it by multiplying a−1
D modulo N

because aD must be coprime to N .

3 Framework for the Coppersmith Technique

This section introduces our framework for discussing the Coppersmith technique for a univariate
equation. As mentioned in the above section, for a given target equation (1) and a target range
specified by U , our task is to find all solutions within the target range. For this task, we formulate
the Coppersmith technique as an algorithm stated as Figure 1 by following Howgrave-Graham’s
reformulation [13].

Remarks may be necessary for some steps of the algorithm. First note that the algorithm
is given two parameters k ≥ 1 and m ≥ 2, which are chosen (often heuristically) for the target
equation. They are usually chosen as small because the time complexity of the original LLL
algorithm [17] is O(k5u log3B) (e.g., [20, Chapter 5]), where u and B are the dimension of each
vector, and logmaxi ||bi||, respectively. We can at least assume that these parameters relating
to time complexity are poly(logN), and this assumption is sufficient for our analysis. Thus,
throughout the following discussion, we will consider any k,m, u, logB ≤ (logN)c for c > 0 and
let them be fixed.

4

Input F (x), N , U ; Parameters k ≥ 1, m ≥ 2;
Output All solutions of F (x) ≡ 0 (mod N) satisfying |x| < U ;
Step 1: Based on the input, define a sequence of linearly independent polynomials

g1(x), . . . , gk(x) that satisfy (5);
Step 2: Define vectors b1, . . . ,bk by bi = V(gi, U) for i ∈ [k], and carry out the

LLL algorithm on L(b1, . . . ,bk); Denote the obtained reduced basis by
v1, . . . ,vk;

Step 3: Define a polynomial h(x) = F(v1, U), and solve the equation h(x) = 0
numerically; Output all integer roots within the target range satisfying (1);

Figure 1: Outline of Coppersmith technique

At Step 1, we define linearly independent polynomials g1(x), . . . , gk(x) ∈ Z[x], which we call
initial polynomials, that satisfy

∀v [F (v) ≡ 0 (mod N)⇒ gi(v) ≡ 0 (mod Nm)]. (5)

As we will see, the choice of these polynomials determines the lattice used in the algorithm, and
this is crucial for the performance of the algorithm. Again, they are defined somewhat heuristically
in each application of the technique. We can at least assume that their degrees are bounded by
poly(logN). From the role of the parameter m in the above, we refer to m as an initial exponent.

At Step 3, we enumerate all roots of h(x). Here, we simply assume that a numerical algorithm
achieves this task efficiently (which is the case in the reported applications). Note that the degree
of h(x) is poly(logN); hence, the number of roots is polynomially bounded. Finally, among all
obtained roots, output integers within the target range satisfying (1).

For designing an algorithm following the outline of Figure 1, the key point is the choice of
initial polynomials that determines the lattice L(b1, . . . ,bk) used to compute a final h(x).

Here, we follow [13] and derive a condition for initial polynomials that is sufficient for guar-
anteeing the correctness of the algorithm. Clearly, the algorithm works correctly when ∀v, |v| <
U [F (v) ≡ 0 (mod N) ⇒ h(v) = 0]. On the other hand, noting that v1 is an integer linear
combination of b1, . . . ,bk, we can show that h(x) (= F(v1, U)) is an integer linear combination
of initial polynomials. Then, from the requirement (5) for initial polynomials it follows that

∀v [F (v) ≡ 0 (mod N)⇒ h(v) ≡ 0 (mod Nm)].

Thus, our above goal is satisfied if we have

∀v, |v| < U [h(v) ≡ 0 (mod Nm)⇔ h(v) = 0]. (6)

By Lemma 1, we see that ||h||U < Nm/
√
dmax + 1 (< Nm/

√
deg(h) + 1) is sufficient for (6),

where dmax is the largest degree of initial polynomials. Then, our sufficient condition for the
algorithm to work is derived by evaluating ||h||U . First, by definition of h(x) and F(·, U), and
the bound (4), we have |v1| = ||h||U ≤ A(k) det(L)1/k, where L = L(b1, . . . ,bk). Therefore, (6)
is implied by

det(L)1/k/Nm <
(
A(k)

√
dmax + 1

)−1
. (7)

We call this the lattice condition (as a sufficient condition for the Coppersmith technique to work).
Note that this is a condition for initial polynomials because the basis of L is {V(gi, U)}i∈[k]. In
fact, by using the initial polynomials derived from the original work by Coppersmith [6], we can
show that this condition is satisfied if U ≤ N1/D−ε (for any ε > 0 if N and m are large enough),
thereby confirming in our framework that the original method [6] works for this range of U .

5

In this paper, we discuss when the condition (7) cannot be achieved by any lattice; i.e., any set
of initial polynomials, thereby showing the technique’s limit. Thus, for our following discussion,
we will use a somewhat stronger and much simpler condition

det(L)1/k/Nm < 1 (8)

for our target condition, which we refer as a simplified lattice condition (for discussing when the
lattice condition cannot be achieved). Recall that A(k) = 2(k−1)/4 for the LLL algorithm and it
has been believed that A(k) cannot be smaller than δk for δ > 1 for any polynomial-time lattice
reduction algorithm. Then, since (

√
dmax + 1A(k))−1 < 1 holds for any k, this simplified condition

is necessary for (7). See section 6 for analysis with a more relaxed condition.

4 Analysis for Canonical Initial Polynomials

We consider standard lattice construction and investigate its properties. Based on this investi-
gation, we derive a lower bound for U such that the simplified lattice condition (8) fails to hold,
which we may regard as the limit of U that the Coppersmith technique works under the standard
lattice construction.

Note that initial polynomials need to satisfy the condition (5). One trivial way to define such
polynomials g(x) is by

g(x) =
m∑
i=0

qi(x)N
m−i(F (x))i, where qi(x) ∈ Z[x]. (9)

This is an integer linear combination of polynomials that were usually called “shift polynomials”
in previous work. Formally, we introduce the following notion.

Definition 1. Consider the ideal a = ⟨F (x), N⟩Z[x] in the polynomial ring Z[x]. For any non-zero
polynomial f(x) ∈ Z[x], let ν(f) be the a-adic order of f(x), that is, an integer s that satisfies
f(x) ∈ as and f(x) ̸∈ as+1. For the zero polynomial, define ν(0) = ∞. We say f(x) is an
s-canonical polynomial if ν(f) ≥ s.

We simply say that f(x) is canonical if ν(f) ≥ m for the initial exponent m. Initial polynomials
(or similar ones) used in the previous work are all canonical and we can consider that using
canonical polynomials is a standard way to define initial polynomials. This section discusses the
case in which initial polynomials are all canonical.

Consider any initial polynomials g1(x), . . . , gk(x). Assume that they are all canonical and
linearly independent as requested in the algorithm. Consider a sequence (g1, . . . , gk) and denote
it by G. For any sequence F = (f1, . . . , fk) of linearly independent polynomials, we use L(F) to
denote a lattice L(V(f1, U), . . . ,V(fk, U)). Note that L(G) is L(b1, . . . ,bk) used in the algorithm
in Figure 1 for the initial polynomials g1(x), . . . , gk(x).

Our task is to provide a good lower bound of det(L(G)). For this, we transform G to a
polynomial sequence with some good properties for our analysis. Here, we explain the outline of
our transformations and give the proof outline of the first main theorem. Appendix A provides
technical discussions with necessary definitions and lemmas.

We say a polynomial sequence G̃ = (g̃1, . . . , g̃k) has a strictly increasing degree sequence if it
holds that deg(g̃1) < · · · < deg(g̃k). We first transform G to a sequence G̃ = (g̃1, . . . , g̃k) with
this property while maintaining that det(L(G)) = det(L(G̃)) and that all g̃i(x)’s are canonical.
This transformation is possible by the procedure described in Appendix A.1 (A.1 Lemma 2).
Next, we define a sequence H = (h1, . . . , hk) by defining each hi(x) = g̃i(x)/N

ri where we let

6

ri = ordN (g̃i); that is, ri is the largest integer r such that every coefficient of g̃i(x) is divisible by
N r. Let si = ν(hi). Then, since g̃i(x) is canonical, we have si + ri = ν(g̃i) ≥ m. Hence we have

det(L(G)) = det(L(G̃)) =

(
k∏

i=1

N ri

)
× det(L(H)) ≥

(
k∏

i=1

Nm−si

)
× det(L(H)). (10)

Finally, we transform H again to Ĥ with “everywhere linearly independent reduction” (see Ap-
pendix A.2 for the definition). This transformation is also possible (A.2 Lemma 3) in such a way
that (i) det(L(H)) ≥ det(L(Ĥ)) and (ii) Ĥ also has a strictly increasing degree sequence. Then,
by using A.3 Lemma 4, the determinant term of (10) can be bounded by

det(L(H)) ≥ det(L(Ĥ)) ≥
k∏

i=1

|âiU d̂i | ≥
k∏

i=1

U d̂i , (11)

where d̂i and âi are used for deg(ĥi) and lc(ĥi), respectively. On the other hand, by defining
ŝ1, . . . , ŝk as (20) in Appendix A.3, we can show (A.3 Lemma 5) that ŝi ≥ si and d̂i ≥ ŝiD. Thus,
from (10) and (11), we have

det(L(G)) ≥

(
k∏

i=1

Nm−ŝi

)
×

(
k∏

i=1

U d̂i

)

≥

(
k∏

i=1

Nm−d̂i/D

)
×

(
k∏

i=1

U d̂i

)
= Nmk ·

(
U

N1/D

)∑
d̂i

. (12)

It is then easy to see that if U ≥ N1/D, we have det(L(G)) ≥ Nmk. Thus, det(L(G))1/k ≥ Nm

and the simplified lattice condition (8) fails. This proves our first main theorem.

Theorem 1. If U ≥ N1/D, then the simplified lattice condition (8) fails to hold for any lattice
constructed from canonical initial polynomials.

5 Computation from Non-canonical Polynomials

This section considers the possibility of using non-canonical initial polynomials. Recall that in the
lattice construction for a given polynomial F (x) and an initial exponent m, an initial polynomial
g(x) is said to be canonical if ν(g) ≥ m holds. A non-canonical initial polynomial is defined
as a polynomial g(x) satisfying (5) and ν(g) < m w.r.t. F (x) and N . We discuss what we
are able to compute if we can indeed construct a non-canonical polynomial. We show technical
evidence supporting that there is no polynomial-time algorithm computing such a non-canonical
polynomial for any F (x), N , and m. Technically, we show that if F (x) and its derivative has no
common factor (a property we call “separability” following the polynomial theory over a field;
e.g., [11, Def. 2]), then by using such a non-canonical initial polynomial, it is possible to compute
either a non-trivial factor of N or a polynomial G(x) with deg(G) ≤ deg(F) − 2 that keeps the
same set of solutions. This computation can also be done in polynomial-time. One can also
show that a simpler polynomial G(x) (if it is obtained) also has separability; thus, if there were a
general polynomial-time algorithm for computing a non-canonical polynomial, we would be able
to continue to create simpler polynomials (unless a factor of N is obtained). Then, however, we
would eventually create a linear equation, which derives either a contradiction if F (x) has more
than one solution, or a way to compute F (x)’s unique solution in polynomial-time. Thus, if we
had such a general algorithm, we would be able to use this it to compute either the unique solution
of F (x) or a factor of N . Note that this does not rule out the possibility of having specific F (x)
and m for which non-canonical initial polynomials are easy to compute; but we think that the
above one-step reduction itself yields some remarkable consequences for many concrete cases.

7

5.1 Technical Preliminaries

Our investigation is based on arithmetic computations under modulo N . Since it was assumed
that N is not prime; there may be points at which we need to be careful. On the other hand, as
explained in the introduction, we can assume that no factor of N appears during these computa-
tions; that is, we can treat N as a prime number in the following analysis. Below, we clarify the
points where careful arguments are necessary.

We use standard arithmetics in ZN [x]. There is no problem with addition, subtraction, and
multiplication, which can be defined the same as in Z[x]. On the other hand, the division is
defined as follows. For any f(x), g(x) ∈ ZN [x], g(x) ̸≡N 0, consider polynomials q(x) ∈ ZN [x]
and r(x) ∈ ZN [x] such that satisfy f(x) ≡N q(x)g(x) + r(x) and deg(r) < deg(g) (recall that ≡N

means the polynomial equivalence under modulo N). Note that q(x) and r(x) are unique when
the leading coefficient of g(x) is coprime to N . Thus, under our assumption, we can consider q(x)
and r(x) the quotient and the remainder of f(x) divided by g(x), and denote them by quo(f, g)
and rem(f, g), respectively. We say that g(x) divides f(x) under modulo N or g(x) an N -divisor
of f(x) (and write it as g(x)|Nf(x)) if r(x) ≡N 0 in the above.

For any two polynomials f(x) and g(x), we say they are N -coprime to each other if h(x)|Nf(x)
and h(x)|Ng(x) implies that h(x) ∈ ZN [x]×. On the other hand, for a monic polynomial h(x) ∈
MN [x] satisfying h(x)|Nf(x) and h(x)|Ng(x), we say it is a greatest monic common N -divisor
if the quotients quo(f, h) and quo(g, h) are N -coprime to each other. We can use the standard
Euclidean algorithm to compute this divisor of given f(x) and g(x). This computation yields the
unique greatest monic common N -divisor unless a non-trivial factor of N is computed during the
computation.

5.2 From a Non-Canonical Polynomial

We discuss what we are able to compute from a non-canonical initial polynomial for given F (x), N ,
and m. We need to assume that F (x) is separable, that is, F (x) and its derivative are N -coprime
to each other. Our result is given by the following theorem. The proof is given in Appendix B.3.

Theorem 2. Assume that our target polynomial F (x) is separable. For F (x), N , and m, suppose
that we have a non-canonical initial polynomial g(x); that is, it satisfies both ν(g) ≤ m − 1 and
the condition (5). Then we can compute in polynomial-time w.r.t. logN and deg(g), either a
non-trivial factor of N or a polynomial G(x) with deg(G) ≤ deg(F)− 2 satisfying

∀v [F (v) ≡ 0 (mod N)⇒ G(v) ≡ 0 (mod N)]. (13)

Moreover, G(x) is an N -divisor of F (x), and hence, the separability of G(x) is immediate from
that of F (x).

Note that this theorem gives a polynomial-time algorithm that reduces a given target equation
to a simpler one based on any non-canonical initial polynomial for the target polynomial. We
expect that this reduction itself is impossible for various cases. Below, we show one example from
the RSA cryptography.

Application for Coppersmith’s Attack for RSA: We apply the above theorem for a Cop-
persmith’s attack [6] for RSA. Consider an RSA ciphertext c that is encrypted from a plaintext
p using a public key pair (e,N). Here, we use N for both the modulo of an RSA instance and
that of the target equation. The situation considered in [6] is that the attacker has a public key
pair, valid ciphertext, and a quantity of MSBs of the corresponding plaintext. Let C and P ′

denote integers respectively corresponding to the ciphertext c and the revealed part of p, and
let k denote the length of the unrevealed part of p. Then the unrevealed part Q is the unique

solution of fRSA(x)
def
= (x + 2kP ′)e − C ≡ 0 (mod N), which we call the RSA equation. The

8

attacker’s task is to compute Q. Clearly, Q satisfies 0 ≤ Q < 2k, and it can be easily shown that
x is the unique solution of the RSA equation. Coppersmith showed that the equation is solved
in polynomial-time w.r.t. logN when 0 < Q < N1/e, which corresponds to the situation in which
the bit-length of the unknown part is smaller than 1/e-times that of N .

From our result of Section 4, the length of the revealed part should be longer than (1 −
1/e) log2N bits in order to use the Coppersmith technique with the canonical initial polynomials.
Now suppose that we have a non-canonical initial polynomial for the target equation fRSA(x) (and
an initial exponent m). From the separability of fRSA(x) and by Theorem 2, we can compute
either (i) a non-trivial factor of N , or (ii) a polynomial G(x) with deg(G) ≤ e−2 that has the same
solutions with fRSA(x). Clearly the attack succeeds in the former case. Consider the latter case.
If e = 3, noting that G is a linear function, it is easy to see that the plaintext is computable from
G(x). In general, for any e = poly(logN), if we can repeat this argument, (either a non-trivial
factor of N is obtained, or) a trivial linear equation is derived to compute the plaintext. Note
also that the length of the revealed part does not matter in this case. From this example, we can
conclude that there is no general and efficient way to construct non-canonical initial polynomials.

6 Tightness of Our Analysis

In Section 3 we derive the (simplified) lattice condition (7) (and (8))

det(L)1/k/Nm <
(
A(k)

√
dmax + 1

)−1
< 1

as a sufficient condition that the Coppersmith technique works, and then in the following sections,
we show that this condition fails to hold for any initial polynomials when U ≥ N1/D, thereby
claiming that N1/D is the limit of U for the Coppersmith technique. Apparently this argument is
not mathematically correct, and it may be possible that the Coppersmith technique works using
initial polynomials that do not satisfy the lattice condition, from which we may need to revise the
limit N1/D. Here, we provide evidence supporting that this situation is quite unlikely to happen.

Recall that the lattice condition is derived by using two inequalities. We recall these inequali-
ties and state them by using the symbols from Section 3 used to derive the lattice condition. First
is the inequality (2) stated below. This is a sufficient condition to guarantee that (3) of Lemma 1
holds and that the algorithm works with the designed initial polynomials.

(2) ||h||U < Nm/
√
dmax + 1 (4) |v1| ≤ A(k) det(L)1/k

The second is the upper bound (4) for the length of a short lattice vector obtained by a lattice
algorithm (such as LLL) in a lattice L constructed from the initial polynomials. From these
inequalities, the lattice condition A(k) det(L)1/k < Nm/

√
dmax + 1 is immediately sufficient for

||h||U to satisfy (2), which guarantees that the algorithm yields a correct answer. We also assume
that (A(k)

√
dmax + 1)−1 < 1 for the simplified lattice condition.

We believe that the inequalities (2) and (4) are more or less tight for at least h(x) and L
appearing in the execution of the Coppersmith technique. But it is possible that they are not
as sharp as we expect. We first show that a similar limit N1/D+ε can be derived even if much
stronger inequalities could be used. For this, consider the following situation for a large β and
γ: (i) the property (3) holds if ||h||U < βNm, and (ii) a lattice algorithm obtains a short vector
satisfying ||v1||U ≤ det(L)1/k/γ. That is, the algorithm works so long as det(L)1/k/γ < βNm

(⇔ det(L)1/k/Nm < βγ) holds. Note that β and γ are big numbers that may grow depending
on parameters k, dmax, etc. Thus, the lattice condition is relaxed considerably. by this condition
Even for this relaxed condition, we can show that U < N1/D+ε is necessary to satisfy it. To see
this, we use the lower bound (12) for det(L(G)), where L(G) is the lattice constructed from any

9

given canonical initial polynomials. From this bound, it is easy to see that if U ≥ N1/D,

det(L(G))1/k/Nm ≥ Nmk ·
(

U

N1/D

)∑
d̂i

≥ Nmk ·
(

U

N1/D

)k(k−1)/2

holds, where the last inequality follows from the fact that d̂i ≥ i − 1 for all i ∈ [k] (because Ĥ
has a strictly increasing degree sequence), and hence,

∑
d̂i ≥ k(k − 1)/2. Thus, even the relaxed

lattice condition fails to hold if the right-hand side ≥ βγ, which is equivalent to

U ≥ N
1/D+

2 log(βγ)
(k−1) logN . (14)

Therefore, even if much stronger inequalities could be used, so long as βγ << N , we can claim
that the relaxed lattice condition fails if U ≥ N1/D+ε for any constant ε > 0 and any sufficiently
large N .

6.1 Justifications from Computer Experiments

We can provide evidence from computer experiments that supports tightness of (2) and (4).
First, consider (4), an upper bound for the length of a short vector given by a lattice reduction
algorithm. Due to the importance of obtaining a short lattice vector, the improvement of lattice
reduction algorithms and analysis of their performance have been studied extensively. Various
computer experiments have also been conducted (e.g., [19, 10]). From such investigation, it has
been believed that for any lattice algorithm P , there is δP > 1 such that ||v1||U ≈ δkP det(L)1/k

holds; that is, the coefficient A(k) of (4) is δkP . In particular, from a large number of computer
experiments, we can assume that the bound (4) holds with, at least, A(k) = 1.

Next consider the inequality ||h||U < β0W that is a sufficient condition for

(3) ∀v, |v| < U [h(v) ≡ 0 (mod W)⇒ h(v) = 0],

where β0 = (
√
dmax + 1)−1 and W = Nm in our analysis. Since this is only a sufficient condition,

it may be possible that (3) holds even if ||h||U is much larger. While it seems quite difficult to
show that this is unlikely, it is possible to relate ||h||U and a condition closely related to (3).

Note that if W∗
def
= max|x|<U,x∈Z |h(x)| < W , then (3) holds. On the other hand, (3) fails when

W = max|x|<U,x∈Z |h(x)|. This indicates that the condition max|x|<U,x∈Z |h(x)| < W and (3) are

closely related. On the other hand, letting β∗
def
= ∥h∥U/W∗, we have that max|x|<U,x∈Z |h(x)| < W

⇐⇒ ||h||U < β∗W . Thus, we investigate how large β∗ could become by computing it for randomly
generated polynomials h(x).

Here is the outline of our experiment. For a sufficiently large U (i.e., U = 1010 and = 10100)
and a degree parameter d (i.e., d = 5, 10, ..., 100), we generate a polynomial h(x) =

∑d
i=0 aix

i

by choosing coefficients ai randomly so that |aiU i| is located in [0.1BUd, 10BUd] for a large
B (i.e., B is an integer sampled from [U/2, U]). This random generation is motivated by our
observation that actual polynomials h(x) derived in the Coppersmith technique have coordinates
that usually satisfy |aiU i|/Ud+1 = Θ(1). We then compute W∗ := max|x|<U,x∈Z |h(x)|. Since h(x)
is a polynomial of a relatively small degree, this computation can be performed easily by examining
integer points near all ξ ∈ R satisfying h′(ξ) = 0. We then compute β∗ = ∥h∥U/W∗. For each
choice of parameters, such β∗’s are computed for 500 randomly generated polynomials. From this
experiment (see Figure 2), we can claim that β∗ ≤ 99 and ||h||U ≥ 99W =⇒ max|x|<U |h(x)| > W ;
in other words, it is unlikely that inequality (2) can be improved to ∥h∥U < 100Nm.

10

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

β *

degree of h(x)
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

β *

degree of h(x)

U = 1010 U = 10100

For each U = 1010 and = 10100, and d = 5, 10, ..., 100, the graph shows β∗’s computed
for 500 randomly generated polynomials. The horizontal axis is the degree d of
generated polynomials, and the vertical axis is β∗.

Figure 2: Experimental values of β∗

7 Concluding Remarks

We investigated the optimality of lattice constructions used in the Coppersmith technique for
finding small roots of a univariate modular equation (1). For this purpose, we provide a frame-
work of the technique and a sufficient condition, i.e., the lattice condition (7) (and its simplified
version (8)) in which the technique works. Then, for any lattice constructed from canonical initial
polynomials, we derive a way to estimate a lower bound for the lattice determinant and prove
that the condition fails to satisfy if U ≥ N1/d (Theorem 1). A similar limit can be shown unless
the Coppersmith technique works under a significantly relaxed condition, and we show a com-
puter experiments indicating that it is unlikely that the lattice condition is significantly relaxed.
Thus, these results are reasonable evidence of the limit of the standard lattice construction for
the Coppersmith technique.

We also discuss the possibility of constructing a better lattice by using polynomials constructed
in a non-standard way. We show that such a construction itself would lead to quite a strong method
for solving the original problem or factorizing a large number. For example, any non-standard way
of constructing a legitimate lattice for the Coppersmith’s attack of RSA can be used to decipher
messages encrypted by RSA with a small public key e.

From these results, we can claim that our bound U < N1/d is sharp for the direct usage of
the Coppersmith technique solving (1) for various target polynomials considered in, for instance,
cryptographic applications.

Coppersmith [7] employed a family of integer valued polynomials and Chebychev polynomial
representations to extend the range U < N1/d. Their approaches indeed increases the range by a
poly(logN) factor. Although our framework considers only polynomials with integer coefficients,
it can be adopted for the above framework and provide a similar limitation result. A detailed
argument is given in the full-version of this paper.

For a Multivariate Situation: The Coppersmith technique has been generalized to the mul-
tivariate case [4, 14]. This multivariate version has been used more actively in cryptographic
applications; for example, (i) the Boneh-Durfee [2] attack for an RSA short secret exponent, (ii)
the fault-based attack for the EMV signature scheme by Coron et al. [8], and (iii) the method
for factoring integers of the form pq2 by Castagnos et al. [5]. The framework and arguments in
Section 3 and 4 can be extended to the multivariate situation. In particular, the multivariate
version of our procedure in Section 4 and Appendix A can be used to convert a lattice to one
having a smaller determinant. Unfortunately, this extended argument is not strong enough to

11

prove some useful results in multivariate situations. The primary cause is that it fails to give
a sharp lower bound for the lattice determinant. We explain this point with the following ex-
ample. Consider the equation for recovering small RSA secret exponent by Boneh-Durfee [2]:
fBD(x, y) = −1 + x(N + y) ≡ 0 (mod e). We remark that the sequence (fBD(x, y)) consisting
of one polynomial has a strictly increasing degree sequence and everywhere linearly independent
reduction. Note that both properties are naturally extended for the multivariate situation by se-
lecting an appropriate monomial order. For range parameters X and Y , which are corresponding
to x and y, respectively, the converted vector is V(fBD, X, Y) = [−1, eX,XY] and the determinant
of the constructed lattice is about eX. On the other hand, a multivariate version of Lemma 4
provides a bound det(L(G)) ≥ XY since it ignores the polynomial coefficient. Hence, the gap
e/Y ≈ N0.5 blocks to provide a good limitation result in a multivariate situation. We expect that
our argument can be improved to overcome this problem in order to provide interesting analysis
for the limitation of several cryptographic applications that use the multivariate version of the
Coppersmith technique.

References

[1] Y. Aono, A new lattice construction for partial key exposure attack for RSA, in Proc. of
PKC 2009, LNCS, vol. 5443, pp. 34-53, 2009.

[2] D. Boneh and G. Durfee, Cryptanalysis of RSA with private Key d Less Than N0.292, in
Proc. of Eurocrypt 1999, LNCS, vol. 1592, pp. 389-401, 1999.

[3] J. Blömer and A. May, New partial key exposure attacks on RSA, in Proc. of CRTPTO
2003, LNCS, vol. 2729, pp. 27-43, 2003.

[4] J. Blömer and A. May, A tool kit for finding small roots of bivariate polynomials over
the integers, in Proc. of Eurocrypt 2005, LNCS, vol. 3494, pp. 351-367, 2005.

[5] G. Castagnos, A. Joux, F. Laguillaumie, and P. Q. Nguyen, Factoring pq2 with quadratic
forms: Nice cryptanalyses, Proc. of Asiacrypt 2009, LNCS, vol. 5912, pp. 469-486, 2009.

[6] D. Coppersmith, Finding a small root of a univariate modular equation, Proc. of Euro-
crypt 1996, LNCS, vol. 1070, pp. 155-165, 1996.

[7] D. Coppersmith, Finding small solutions to small degree polynomials, Proc. of CaLC
2001, LNCS, vol. 2146, pp. 20-31, 2001.

[8] J.-S. Coron, A. Joux, I. Kizhvatov, D. Naccache, and P. Paillier, Fault attacks on RSA
signatures with partially unknown messages, Proc. of CHES 2009, LNCS, vol. 5747, pp.
444-456, 2009.

[9] M. Ernst, E. Jochemsz, A. May, and B. Weger, Partial key exposure attacks on RSA up
to full size exponents, in Proc. of Eurocrypt 2005, LNCS, vol. 3494, pp. 371-386, 2005.

[10] N. Gama and P. Q. Nguyen, Predicting lattice reduction, in Proceedings of Eurocrypt
2008, Lecture Notes in Computer Science, vol. 4965, pp. 31-51, 2008.

[11] P. Gianni and B. Trager, Square-free algorithms in positive characteristic, in Applicable
Algebra in Engineering, Communication and Computing, Vol. 7, No. 1, pp.1-14, 1996.

[12] J. H̊astad, Solving simultaneous modular equations of low degree, SIAM Journal on
Computing, Vol. 17, No 2, pp. 336-341, 1988.

12

[13] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited,
Proc. of Cryptography and Coding, LNCS, vol. 1355, pp. 131-142, 1997.

[14] E. Jochemsz and A. May, A strategy for finding roots of multivariate polynomials with
new applications in attacking RSA variants, in Proc. of Asiacrypt 2006, LNCS, vol. 4284,
pp. 267-282, 2006.

[15] N. Kunihiro, Solving generalized small inverse problems, in Proc. of ACISP 2010, LNCS,
vol. 6168, pp. 248-263, 2010.

[16] S. V. Konyagin and T. Steger, On polynomial congruences, Mathematical Notes, Vol. 55,
No. 6, pp. 596-600, 1994.

[17] A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovász Factoring polynomials with rational
coefficients, Mathematische Annalen, vol. 261, pp. 515-534, 1982.

[18] J. S. Milne, Étale cohomology, Princeton Math. Series 33, Princeton Univ. Press, 1980.

[19] P. Q. Nguyen and D. Stehlé, LLL on the average, in Proc. of ANTS 2006, LNCS, vol.
4076, pp. 238-256, 2006.

[20] P. Q. Nguyen and B. Vallée, The LLL Algorithm: Survey and Applications, Springer-
Verlag, Berlin Heidelberg, 2009.

[21] T. Okamoto and A. Shiraishi, A fast signature scheme based on quadratic inequalities,
in Proc. of the Symposium on Security and Privacy, IEEE, pp. 123-132, 1985.

[22] G. Pólya and G. Szegő, Problems and Theorems in Analysis, Vol. II, Springer, 1976.

[23] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, vol. 21, No. 2, pp. 120-128,
1978.

[24] V. Shoup, OAEP Reconsidered, in Journal of Cryptology, vol. 15, No. 4, pp. 223-249,
2002. online version is available at http://shoup.net/papers/oaep.pdf.

[25] B. Vallee, M.Girault, and P. Toffin, How to Break Okamoto’s Cryptosystems by Reducing
Lattices Bases, in Proc. of Eurocrypt 1988, LNCS, vol. 330, pp. 281-291, 1988.

A Appendix: Technical Tools for Determinant Analysis

This section explains technical tools for our determinant analysis in Section 4. Below, by “polyno-
mial sequence,” we mean a sequence consisting of k linearly independent polynomials in Z[x], and
we use F, F, ... to denote such sequences. We consider a transformation from F = (f1, . . . , fk) to
F = (f1, . . . , fk) that can be specified by using a k × k integer matrix T as f1

...

fk

 = T

 f1
...
fk

 .

For simplifying the expression, we state this as F = TF. The following fact is clear from the
definition.

13

Fact 1. Consider any polynomial sequences F = (f1, . . . , fk) and F = (f1, . . . , fk) satisfying
F = TF with a regular k × k matrix T consisting of integer elements. Then we have

det(L(F)) = | det(T)| · det(L(F)) ≥ det(L(F)). (15)

In particular, if T is a unimodular matrix, we have det(L(F)) = det(L(F)).

A.1 Analysis for Strictly Increasing Degree Sequence

Recall that the notation deg(f) is the degree of a polynomial f(x), and it said that a polynomial
sequence F = (f1, . . . , fk) has a strictly increasing degree sequence if deg(f1) < · · · < deg(fk).

The following lemma shows that any polynomial sequence can be transformed to a polyno-
mial sequence with a strictly increasing degree sequence while keeping the corresponding lattice
determinant.

Lemma 2. For any polynomial sequence F, we can transform it to F̃ having a strictly increas-
ing degree sequence by a unimodular matrix T̃ ∈ GLk(Z); that is, F̃ = T̃F. Hence, we have
det(L(F)) = det(L(F̃)).

Proof. We first define two series of transformations Ci,j and Di,j(x
e) represented by k × k

unimodular matrices, respectively. Then we show that our T̃ can be written as a finite product
of them; hence T̃ is also a unimodular matrix because the product of unimodular matrices is also
unimodular. By this, det(L(F̃)) = det(L(F)) is clear by Fact 1.

For i, j ∈ [k] such that i ̸= j, Ci,j is defined as a transformation that swaps fi(x) and fj(x);
its matrix representation is given by [ci′,j′] where ci,i = cj,j = 0, ci,j = cj,i = 1, and ci′,j′ = δi′,j′

for other (i′, j′) ∈ [k]2. Here, δi′,j′ is the Kronecker’s delta that was defined as one if i′ = j′ and
zero otherwise. This is clearly a unimodular matrix since its determinant is −1. For the case
i = j ∈ [k], Ci,i is defined as the identity matrix of degree k.

Next we define Di,j(x
e) for i, j ∈ [k] such that i ̸= j and a monomial xe. It is roughly defined

as a transformation that deletes the monomial xe in fi(x) by a linear mapping. Let the monomial
expressions of fi(x) and fj(x) be

fi(x) = · · ·+ bi · xe + · · · , and fj(x) = · · ·+ bj · xe + · · · ,

respectively. Our objective here is to define a transformation by which the transformed polyno-
mials f i(x) and f j(x) respectively have the expressions

f i(x) = · · ·+ 0 · xe + · · · , and f j(x) = · · ·+ b′j · xe + · · · .

When bi = 0, no transformation is necessary, and we simply use the identity transformation for
Di,j(x

e). Next, for the case bi ̸= 0 and bj = 0, we can use Ci,j for Di,j(x
e). Finally consider the

situation that bi and bj are both non-zero. For integers d1, . . . , d4, i, j ∈ [k] and i ̸= j, consider

the integer matrix Di,j(x
e)

def
= [di′,j′] where (di,i, di,j , dj,i, dj,j) = (d1, d2, d3, d4), and di′,j′ = δi′,j′

for other (i′, j′) ∈ [k]2. The transformation creates the following functions at the corresponding
positions:

f i(x) = d1fi(x) + d2fj(x) = · · ·+ (d1bi + d2bj)x
e + · · · , and

f j(x) = d3fi(x) + d4fj(x) = · · ·+ (d3bi + d4bj)x
e + · · · .

Hence, for our purpose, it suffices to choose integers d1, . . . , d4 so that

d1bi + d2bj = 0 and d1d4 − d2d3 = 1 (16)

holds. First let g = gcd(bi, bj). Note that this is not zero since bi ̸= 0 and bj ̸= 0. Then
we let d1 = bj/g and d2 = −bi/g. By using them, we set that d3 and d4 are defined so that

14

d1d4−d2d3 = 1 holds. This is possible since d1 and d2 are coprime to each other. These d1, . . . , d4
define our desired transformation Di,j(x

e).

We now define a sequence of unimodular matrices such that T̃ is defined as their product.
As explained above, we specify them in terms of corresponding transformations. Let xL be the
maximum degree monomial (without coefficient) appearing in the sequence (f1, . . . , fk), and let i
be the index such that fi(x) contains x

L. Here, we take any one if two or more such polynomials
exist. First use Ci,k to swap fi(x) and fk(x); denote the transformed sequence (h1, . . . , hk).
Then, delete the monomial xL from h1(x), . . . , hk−1(x) by using Dk−1,k(x

L), . . . , D1,k(x
L); that

is, we apply a transformation by the matrix Dk−1,k(x
L) · · ·D1,k(x

L) · Ci,k. Let (f1, . . . , fk) be
the transformed sequence. Here, L = deg(fk) is the maximum degree in the new sequence and
deg(f j) < L holds for any j ∈ [k − 1]. Then apply similar transformations on the subsequence

f1, . . . , fk−1. A polynomial sequence (f̃1, . . . , f̃k) with a strictly increasing degree sequence is
obtained by repeating this process.

Note that if F is a canonical polynomial sequence, the converted sequence F̃ is also canonical
since the relation F̃ = T̃F.

A.2 Analysis for Everywhere Linearly Independent Reduction

We introduce a stronger notion of linearity. For any polynomial sequence F̂ = (f̂1, . . . , f̂k), we
say it has everywhere linearly independent reduction if we have for any integers a1, . . . , ak and any
integer B ≥ 2,

k∑
i=1

aif̂i(x) ≡B 0 ⇔ ∀i, 1 ≤ i ≤ k [ai ≡ 0 (mod B)].

Lemma 3. For any polynomial sequence F, there exists a sequence F̂ having everywhere linearly
independent reduction and a regular lower triangular integer matrix T̂ such that F = T̂ F̂ holds.
Note that from this relation, we have (i) det(L(F)) ≥ det(L(F̂)) and (ii) in particular, if F has a
strictly increasing degree sequence, then F̂ also has a strictly increasing degree sequence.

Proof. Suppose that a given sequence F does not have everywhere linearly independent reduction.
It can take the minimum i such that there exist a1, . . . , ai and B ≥ 2 satisfying

∑i
j=1 ajfj(x) ≡B 0

and B ̸ |ai. Define b = gcd(a1, . . . , ai, B). We can assume b = 1 without loss of generality; be-
cause if not, we can argue with a new polynomial

∑i
j=1(aj/b)fj(x) and the integer B/b. Letting

B′ = gcd(ai, B), it can also be assumed that B′ = 1 without loss of generality. Suppose oth-
erwise, there exists i′ < i such that ai′ is not divisible by B′ since gcd(a1, . . . , ai, B) = 1. Let
i′ be the largest index with this property. Then ai′+1, . . . , ai are divisible by B′, which yields
i′∑

j=1

ajfj(x) ≡B′

i∑
j=1

ajfj(x) ≡B′ 0, contradicting the choice of i.

Since gcd(ai, B) = 1, there exist integers c and c′ such that cai + c′B = 1. Consider the sum

c

i∑
j=1

ajfj(x) + c′Bfi(x) = fi(x) +

i−1∑
j=1

c · ajfj(x),

which is divisible by B by construction. Then, define the new sequence F = (f1, . . . , fk) by

f i(x) =

fi(x) +
i−1∑
j=1

c · ajfj(x)

 /B

15

and f j(x) = fj(x) for all j ∈ [k] \ {i}. Note that the relation between F and F can be written by
f1
...
fi
...
fk

 =

1 O

. . .

−ca1 · · · −cai−1 B
. . .

1

f1
...

f i
...

fk

 .

Therefore, we have F = TF with a regular lower triangular integer matrix.
Repeating this process defines a new polynomial sequence while it does not have everywhere

linearly independent reduction. Note that det(T) = B ≥ 2 by construction. We also have

det(L(F)) = det(T)−1 · det(L(F)) ≤ det(L(F))/2 (17)

by Fact 1. That is, the determinant of the matrix corresponding to a new polynomial sequence is
reduced by at least 2. On the other hand, the determinants of the matrices corresponding to such
polynomial sequences are integers. Thus, this process terminates in a finite number of steps, and
the final polynomial sequence must have everywhere linearly independent reduction. Therefore,
we let our T̂ by the product of each T in all repeats. It is easy to see that T̂ is regular and lower
triangular since a finite product of matrices having such properties also has the properties.

Here, the claim (i) is clear from (17). We next prove (ii). From the relation F = T̂ F̂, it holds
that F̂ = (T̂)−1F and it is easy to see that (T̂)−1 is also a regular lower triangular matrix (whose
entries may not be integers). Thus, it can be written f̂i(x) =

∑i
j=1 ai,jfj(x) where ai,j are the

entries of (T̂)−1, and deg(f̂i) = deg(fi) since F has a strictly increasing degree sequence. Hence
F̂ also has a strictly increasing degree sequence.

A.3 Bounding Determinant

In order to show (11), we bound below the determinant of a lattice constructed from a polynomial
sequence with a strictly increasing degree sequence.

Lemma 4. Let F = (f1, . . . , fk) be a polynomial sequence with a strictly increasing degree se-
quence. Then we have

det(L(F)) ≥
k∏

i=1

|aiUdi | ≥
k∏

i=1

Udi . (18)

Here, di is the degree of fi(x) and ai is the coefficient of xdi in fi(x).

Proof. Here we show the first inequality. The second one is clear from the relation |aiUdi | ≥ Udi

for ∀i ∈ [k].
For each i ∈ [k], let yi = V(fi, U). Recall that L(F) is the lattice L(y1, . . . ,yk). Let

{y∗
1, . . . ,y

∗
k} and µi,j be the Gram-Schmidt basis of {y1, . . . ,yk} and the corresponding Gram-

Schmidt coefficients, respectively. Hence, by definition we have det(L(F)) =
∏k

i=1 |y∗
i |. Then for

the claim, it suffices to show that |y∗
i | ≥ |aiUdi | for all i ∈ [k]. Fix any i ∈ [k]. Note that we have

y∗
i
def
= yi −

i−1∑
j=1

µi,jy
∗
j = yi −

i−1∑
j=1

αi,jyj (19)

for rational numbers αi,j . Since F has a strictly increasing degree sequence, deg(fj) < deg(fi)
holds for any j ∈ [i− 1]. Thus, in the vector yj for any j ∈ [i− 1], the coordinate corresponding

16

to xdi is zero. Then, the same coordinate of the vector

i−1∑
j=1

αi,jyj in (19) is also zero. Hence yi

and y∗
i both have the same value aiU

di at this coordinate. Hence we have
|aiUdi | = |(0, . . . , 0, aiUdi , 0, . . . , 0)| ≤ |(∗, . . . , ∗, aiUdi , 0, . . . , 0)| = |y∗

i |.

Next, we bound below the degree of canonical polynomial. This helps to show the last in-
equalities (12) in Section 4. Let F and F̂ be a pair of polynomial sequences given by Lemma 3.
Assume that both have strictly increasing degree sequences. W.r.t. F̂, we introduce a sequence
of integers ŝ1, . . . , ŝk, where each ŝi is defined by

ŝi = max
(∗)

ν

 i∑
j=1

aj f̂j(x)

 . (20)

Here the condition (∗) is that a1, . . . , ai ∈ Z, ai ̸= 0, and at least one aj is not divisible by N .
Then, we can show the following relations (recall that D is the degree of the target equation).

Lemma 5. Let F, F̂, and ŝ1, . . . , ŝk be those considered above. Assume that both F and F̂ have
strictly increasing degree sequences, and fi(x) ̸≡N 0 for all i ∈ [k]. Let s1, . . . , sk be the sequence
ν(f1), . . . , ν(fk), and let d̂1, . . . , d̂k be the degree sequence of F̂. Then for every i ∈ [k], we have
(i) ŝi ≥ si, and (ii) d̂i ≥ ŝiD.

Proof. Consider any i ∈ [k]. From the relation F = T̂ F̂, we have fi(x) =
∑i

j=1 bi,j f̂j(x) where

bi,j are the entries of T̂ ; note that bi,i ̸= 0. Moreover, there exists j ∈ [i] such that N/|bi,j since

fi(x) ̸≡N 0 and that F̂ has everywhere linearly independent reduction. Thus, the coefficients

b1,i, . . . , bi,i satisfy (∗) of (20). Therefore, we have ŝi ≥ si = ν
(∑i

j=1 bi,j f̂j

)
.

For showing (ii), let h(x) be a polynomial that attains ν(h) = ŝi; we take any one if two
or more such polynomials exist. Fix a1, . . . , ai ∈ Z so that h(x) =

∑i
j=1 aj f̂j(x) holds. Since

ai ̸= 0, we have deg(h) = d̂i (= deg(f̂i)). On the other hand, the polynomial can be expressed

as h(x) =

ŝi∑
j=0

qj(x)N
ŝi−j · (F (x))j by qj(x) ∈ Z[x]. Note that qŝi(x) ̸≡N 0 holds from h(x) ̸≡N 0.

Therefore, we have d̂i = deg(h) = deg(qŝi) + deg
(
(F (x))ŝi

)
≥ ŝiD.

B Appendix: Proof of Theorem 2

For proving Theorem 2, we first prepare several technical tools. Recall that f(x) and g(x) ∈ ZN [x]
are called N -coprime if h(x)|Nf(x) and h(x)|Ng(x) imply h(x) ∈ ZN [x]×. On the other hand, we
say that f(x) and g(x) are strictly coprime if f(x) and g(x) generate the unit ideal of ZN [x]. The
following example described in [18, p.32] would illustrate this: f(x) and x − a are N -coprime if
and only if f(a) ̸= 0 while they are strictly coprime if and only if f(a) ∈ Z×

N . Recall also that a
polynomial f(x) is said to be separable if f(x) and its derivative are N -coprime to each other.

B.1 Extended Euclidean Algorithm for Polynomials Under Modulo N

We first give the algorithm shown in Figure 3, which is a modification of the extended Euclidean
algorithm for polynomials. For given N -coprime polynomials f(x) and g(x) ∈MN [x], it computes
a pair of polynomials stated in the following lemma if the polynomial division under modulo N
is always defined throughout the execution of the algorithm. If otherwise, i.e., the division is not
defined in iteration, it returns a non-trivial factor of the modulo.

17

Input: f(x), g(x) ∈MN [x] which are N -coprime;
Output: Either a non-trivial factor of N or u(x), v(x) ∈ ZN [x] satisfying u(x)f(x) +

v(x)g(x) ≡N 1;
Step 1: Initialize as r0(x)← f(x); u0(x)← 1; v0(x)← 0;

r1(x)← g(x); u1(x)← 0; v1(x)← 1;
while (rem(r0, r1) ̸≡N 0) {

Step 2: q(x)← quo(r0, r1);
r2(x)← r0(x)− q(x)r1(x); u2(x)← u0(x)− q(x)u1(x);
v2(x)← v0(x)− q(x)v1(x);

Step 3: if (lc(r2) ̸∈ Z×
N then return gcd(N, lc(r2)); // a non-trivial factor of N

Step 4: r0(x)← r1(x); u0(x)← u1(x); v0(x)← v1(x);
c← lc(r2)

−1 (mod N); r1(x)← cr2(x); u1(x)← cu2(x); v1(x)← cv2(x);
}

Step 5: return (u1(x), v1(x));

Figure 3: Extended Euclidean algorithm for two polynomials in MN [x]

Lemma 6. Let f(x) and g(x) ∈ MN [x] be N -coprime. Then, the algorithm in Figure 3 com-
putes either a non-trivial factor of N , or a pair of polynomials (u(x), v(x)) satisfying u(x)f(x) +
v(x)g(x) ≡N 1 in polynomial-time w.r.t. deg(f), deg(g), and logN . In particular, in the latter
case, f(x) and g(x) are strictly coprime.

Proof. As in the case of the standard Euclidean algorithm, the ideal ⟨r0(x), r1(x)⟩ZN [x] is equal
to ⟨f(x), g(x)⟩ZN [x] at the beginning of the while loop. Suppose the algorithm terminated with
returning a pair (u1(x), v1(x)) of polynomials. Then, ⟨f(x), g(x)⟩ZN [x] = ⟨r1(x)⟩ZN [x]; hence,
both r1(x)|Nf(x) and r1(x)|Ng(x) hold. Since f(x) and g(x) are N -coprime, r1(x) ∈ ZN [x]×.
Moreover, it is monic by the construction. Hence r1(x) ≡N 1 and (u1(x), v1(x)) has the required
property. The assertion on time complexity follows from the same argument as the one for the
standard Euclidean algorithm.

In the proof of Theorem 2, we give a procedure to compute either G(x) stated in the theorem,
or a non-trivial factor of N . If the procedure fails to compute the desired G(x), it gives a way to
convert a given non-canonical polynomial to a pair of polynomials having special properties. The
following proposition shows that the algorithm in Figure 3 always outputs a non-trivial factor of
N from such a polynomial pair.

Proposition 1. Let f(x) and g(x) ∈ MN [x] be N -coprime. Fix an integer s ≥ 1. Then, by the
algorithm in Figure 3, we can obtain either a non-trivial factor of N , or a pair of polynomials
(u(x), v(x)) satisfying u(x)f(x) + v(x)(g(x))s ≡N 1 in polynomial-time w.r.t. deg(f), deg(g), s,
and logN . Particularly, if f(x) and (g(x))s are not N -coprime, a factor of N is always obtained.

Proof. Consider the execution of the algorithm on f(x) and g(x). In the case we obtain a
non-trivial factor of N , we have finished. Otherwise, we obtain u(x), v(x) ∈ ZN [x] satisfying
u(x)f(x) + v(x)g(x) ≡N 1. Hence, we have

1 ≡N

(
u(x)f(x) + v(x)g(x)

)s ≡N

(
s∑

t=1

(
s

t

)
(u(x))t(f(x))t−1(v(x)g(x))s−t

)
f(x) + (v(x))s(g(x))s

which implies f(x) and (g(x))s are strictly coprime. A fortiori, f(x) and (g(x))s are N -coprime.
Thus, if f(x) and (g(x))s are not N -coprime, it must return a non-trivial factor of N .

18

B.2 Derivative of Polynomials

We use the derivative of polynomials that are defined in the standard way in Z[x] (even if they are
sometimes treated as polynomials in ZN [x]). For s ∈ N, use f (s)(x) to denote the s-th derivative
of a polynomial f(x).

Proposition 2. For f(x), g(x) ∈ Z[x] and s ∈ N satisfying gcd(s!, N) = 1, if it holds that

∀v
[
f(v) ≡ 0 (mod N)⇒ g(v) ≡ 0 (mod N s+1)

]
, (21)

we then have
∀v
[
f(v) ≡ 0 (mod N)⇒ g(s)(v) ≡ 0 (mod N)

]
.

Proof. Considering the Taylor expansion of g(x), we have for each i ∈ [s+ 1],

g(x+ iN) = g(x) + (iN) · g(1)(x) + (iN)2 · 1
2!
· g(2)(x) + · · · .

Thus, under modulo N s+1, the following polynomial relation holds.
g(x+N)
g(x+ 2N)
g(x+ 3N)

...
g(x+ (s+ 1)N)

 ≡Ns+1

1 1 1 · · · 1
1 2 3 · · · s+ 1
1 22 32 · · · (s+ 1)2

...
. . .

...
1 2s 3s · · · (s+ 1)s

g(x)

N · g(1)(x)
(N2/2!) · g(2)(x)

...

(N s/s!) · g(s)(x)

 (22)

We can easily see the matrix is invertible under modulo N s+1 since it is the transpose of a van
der Monde matrix and gcd(s!, N) = 1. Then, for constants ci ∈ Z/N s+1Z, we have

(
N s/s!

)
· g(s)(x) ≡Ns+1

s+1∑
i=1

cig(x+ iN).

On the other hand, we have for any integer i,

∀v
[
f(v) ≡ 0 (mod N)⇒ f(v + iN) ≡ 0 (mod N)⇒ g(v + iN) ≡ 0 (mod N s+1)

]
.

Thus, combining them we have

∀v
[
f(v) ≡ 0 (mod N)⇒ N sg(s)(v) ≡ 0 (mod N s+1)

]
,

and the claim holds.

Consider any s-canonical polynomial g(x) that is defined by g(x) =
∑s

i=0 qi(x)N
s−i(F (x))i

where qi(x) ∈ Z[x]. Then, it is easy to see that g(s)(x) ≡N s! · qs(x) · (F (1)(x))s+ r(x) ·F (x) holds
for r(x) ∈ ZN [x]. Thus, by using the above proposition, if (21) holds for F (x) and g(x), and we
then have

∀v
[
F (v) ≡ 0 (mod N)⇒ qs(v)(F

(1)(v))s ≡ 0 (mod N)
]
. (23)

19

B.3 Proof of Theorem 2

We are now ready to prove Theorem 2 of Section 5, stated again as follows.

Theorem 2. Assume that our target polynomial F (x) is separable. For F (x), N , and m, suppose
that we have a non-canonical polynomial g(x), that is, it satisfies ν(g) ≤ m− 1 and the condition
for an initial polynomial (5). We can then compute in polynomial-time w.r.t. logN and deg(g),
either a non-trivial factor of N or a polynomial G(x) with deg(G) ≤ deg(F)− 2 satisfying

∀v
[
F (v) ≡ 0 (mod N)⇒ G(v) ≡ 0 (mod N)

]
. (13)

Moreover, G(x) is an N -divisor of F (x), and hence, the separability of G(x) is immediate from
that of F (x).

Proof. Put h(x) = N−rg(x) where r = ordN
(
g
)
and s = ν(h). (Recall that ordN (g) is the

largest integer r such that g(x) ≡Nr 0, and ν(h) is the ⟨F (x), N⟩Z[x]-adic order of h(x).) Then,
s ≤ m− r − 1 and it holds that

∀v
[
F (v) ≡ 0 (mod N)⇒ h(v) ≡ 0 (mod N s+1)

]
. (24)

Express h(x) as h(x) = qs(x)(F (x))s + · · · + N sq0(x). by using qs(x), . . . , q0(x) ∈ ZN [x].
It can be assumed that qs(x) ̸≡N 0 and each qi(x) satisfies deg(qi) < deg(F) without loss of
generality. If the latter case fails, we reconstruct h(x) by replacing current qi(x) by rem(qi, F).
Next suppose the former case fails to hold, i.e., qs(x) ≡N 0. Removing such zero terms, we would
have h(x) = Naqs−a(x)(F (x))s−a + · · · and qs−a(x) ̸≡N 0 for a > 0. Then, dividing h(x) by Na,
we obtain t (= s− a)-canonical polynomial h(x) satisfying

∀v
[
F (v) ≡ 0 (mod N)⇒ h(v) ≡ 0 (mod N t+1)

]
.

Thus, by renaming h(x) and t to h(x) and s, we again have (24) with qs(x) ̸≡N 0.
Now consider the s-th derivative of h(x). Note that we have (23) for F (x) and this h(x) =

qs(x)(F (x))s + · · · . Define monic polynomials q(x) and F̄ (x) from qs(x) and F (1)(x) by dividing
their leading coefficients, and define Q(x) = q(x) · (F̄ (x))s. It clearly satisfies

∀v
[
F (v) ≡ 0 (mod N)⇒ Q(v) ≡ 0 (mod N)

]
. (25)

Noting that for s = 0, it can directly take Q(x) by q(x) (= q0(x)/lc(q0).)
Consider two cases: F (x)/|NQ(x) and F (x)|NQ(x). For these cases, we show our claim.

The case F (x)|NQ(x): In this case, a non-trivial factor of N is always obtained efficiently from
F (x) and F̄ (x).

Note first, that s ≥ 1. Because otherwise, i.e., s = 0, we have F (x)|Nq0(x) which derives
q0(x) ≡N 0 by deg(q0) < deg(F), this contradicts the assumption that qs(x) ̸≡N 0.

Then, write Q(x) ≡N p(x)F (x) by using p(x) ∈ MN [x]. Apply the first half of Proposition 1
to F (x) and F̄ (x); if we obtain the desired factor, we have finished. Hence, suppose that we obtain
a pair of polynomials u(x), v(x) ∈ ZN [x] satisfying 1 ≡N u(x)F (x) + v(x)(F̄ (x))s. Multiply q(x)
to both sides, we have

q(x) ≡N q(x)u(x)F (x) + v(x)Q(x) ≡N q(x)u(x)F (x) + v(x)p(x)F (x)
≡N (q(x)u(x) + v(x)p(x))F (x),

which implies that deg(q) ≥ deg(F) since q(x) and F (x) are monic polynomial. This contradicts
the assumption that deg(q) < deg(F).

20

The case F (x)/|NQ(x): Let G(x) denote the greatest monic common N -divisor of F (x) and
Q(x). Note that the divisor is computed by the standard Euclidean algorithm for polynomials
under modulo N ; from the problem-setting in the preliminary section, the polynomial division
throughout the execution of the algorithm is always defined.

We show that G(x) satisfies the sentence of this theorem. Since it can be written G(x) ≡N

u(x)F (x) + v(x)Q(x) by u(x), v(x) ∈ ZN [x], (25) implies (13). Hence, it suffices to show that
deg(G) ≤ deg(F)−2. It is clear that G(x)|NF (x) by definition, and write F (x) ≡N w(x)G(x) for
w(x) ∈MN [x]. We show that deg(w) ≥ 2. Clearly deg(w) ≥ 1; thus, assume that deg(w) = 1, that
is, w(x) = x− v0 for v0 ∈ ZN . By (13), F (v0) ≡ G(v0) ≡ 0 (mod N); thus, (x− v0)|NG(x) holds
by the factor theorem. Hence, we have (x − v0)

2|NF (x), which implies that (x − v0)|NF (1)(x).
This contradicts the separability of F (x). Therefore, it needs that deg(w) ≥ 2 and deg(G) =
deg(F)− deg(w) ≤ deg(F)− 2.

C Extending Our Framework

We provide a detailed explanation to extend our framework based on his survey paper [7]. By
the following two frameworks, it increases the bound of U by a factor in polynomial in logN , but
can not achieve an exponential factor.

C.1 Using Integer Valued Polynomials

Lenstra and Howgrave-Graham proposed using an integer valued polynomial, which is defined
as a rational coefficient polynomial taking on integer values for all integer points. For example,
x(x+1)

2 ∈ Q[x] is such a polynomial. Use Int to denote the set of integer-valued polynomials.
Pólya and Szegő [22] proved that bi(x) = x(x− 1) · · · (x− i+ 1)/i! for i = 0, 1, . . . are the integer
basis of Int, i.e., any h(x) ∈ Int can be expressed as

h(x) =

deg h∑
j=0

ajbj(x), aj ∈ Z.

We introduce an idea for improvement. For fixed F (x), N , and m, consider the Coppersmith’s
standard polynomial selection: gj(x) = xj

′
Nm−i′(F (x))i

′
for j = 0, . . . , Dm+(D−1), where we let

i′ = ⌊j/D⌋ and j′ = j mod D. For each j, define a new integer valued polynomial satisfying (5) by
g′j(x) = Ajgj(x)+BjN

mbj(x) where Aj and Bj are integers such that satisfy Aj · j!+BjN
m = 1.

This is possible since N was assumed to be hard to factor. Noting that the leading monomial of
g′j(x) is x

j/j!, which is decreased by the factor j! comparing to the original polynomial. Hence, the

determinant of the constructed lattice is decreased by the factor
∏DM+(D−1)

j=0 j!, and [7] claimed
that this extends the bound by a factor around Dm/4.5, which is proportional to the degree of
polynomials used in the technique.

Following this idea, we extend our framework to allow use of the integer-valued polynomials as
the initial polynomials. Thus, w.r.t. F (x), N and m, we say a polynomial g(x) ∈ Int is rational
canonical if it satisfies

g(x) =

m∑
i=0

ri(x)N
m−i(F (x))i (26)

where ri(x) ∈ Int. It is easy to see that the polynomial satisfies (5), the condition for an initial
polynomial in our standard framework. Then, we also extend the notion of everywhere linearly
independent reduction. For a sequence of integer valued sequence F = (f1, . . . , fk), we say it has

21

rational everywhere linearly independent reduction if for any integers a1, . . . , ak and any integer
B ≥ 2,[

v!

k∑
i=1

aif̂i(x) ≡B 0 for v = max{deg fi|ai ̸= 0}

]
⇔ ∀i, 1 ≤ i ≤ k [ai ≡ 0 (mod B)].

Following the proof of Lemma 3, it can be shown that any sequence in Intk can be converted
to a sequence having this property and a strictly increasing degree sequence. Let the converted
sequence be Ĥ = (ĥ1, . . . , ĥk). The leading coefficient of ĥi(x) is a multiple of 1/(deg(ĥi))! by the
result of Pólya and Szegő.

Hence, by letting w = maxdeg gi, we adopt the inequalities (10) and (11) to the sequence of
integer-valued polynomials. For U ≥ w ·N1/d, we have

det(L(G)) ≥

(
k∏

i=1

Nm−ŝi

)
×

(
k∏

i=1

U d̂i

d̂i!

)
≥

(
k∏

i=1

Nm−ŝi+d̂i/D

)
×

(
k∏

i=1

wd̂i

d̂i!

)
≥ Nmk.

Since we assumed the degrees of considered polynomials are bounded in polynomial in logN , the
new framework could increase the range by a polynomial factor, but not in exponential.

Next, suppose we have a “rational” non-canonical polynomial, i.e., g(x) ∈ Int such that
satisfies (5) and does not have the form (26) w.r.t. F (x) and m. Then, the polynomial (deg(g))! ·
g(x) is an integer coefficient non-canonical polynomial and derives the same result as in Section 5.

C.2 Using Chebychev Polynomials

Another improvement was achieved by changing representation of polynomials by Boneh. Again
we assume that the initial polynomials are selected from Z[x]. Consider the Chebychev polyno-
mials Ti(x) = cos(i cos−1 x) ∈ Z[x]; noting that the leading monomial is 2i−1xi, and for |x| ≤ 1,
|Ti(x)| ≤ 1. It is well known that Ti(x) is the degree i polynomial that maximizes the leading
coefficient under the condition that |Ti(x)| ≤ 1 for |x| ≤ 1.

Using these polynomials, we rewrite the framework of the Coppersmith technique. For fixed
bound U and a polynomial f(x), write f(x) as

∑d
i=0 ciTi(x/U)U i. Then, define the C-vectorization

and C-U-norm of the polynomial by

VC(f ;U) = [c0, c1U, . . . , cdU
d] and ||f ||2C−U =

d∑
i=0

c2iU
2i,

respectively. Adopting the Howgrave-Graham lemma to this norm as follows, we can provide
another framework for the Coppersmith technique.

Lemma 7. (Adopted Howgrave-Graham) Consider any polynomial f(x) ∈ Z[x] that is a
sum of w Chebychev polynomials. Let W be a non-negative integer satisfying

||f ||C−U < W/
√
w. (27)

Then, we have

∀v, |v| < U
[
f(v) ≡ 0 (mod W)⇔ f(v) = 0

]
. (28)

The proof is provided by the fact that |Ti(x/U)| ≤ 1 holds for |x| < U . For a sequence of initial
polynomialsG = (g1, . . . , gk), use LC(G) to denote the lattice L(VC(g1;U), . . . ,VC(gk;U)). We can
then prove that if det(LC(G))1/k < Nm/A(k)

√
dmax + 1, the technique works as the framework in

Section 3. Here we recall that A(k) and dmax are the constant that satisfies (4), and the maximum
degree of initial polynomials.

22

Using the Coppersmith’s standard polynomial selection, let G = (g1, . . . , gk), it can be shown
that det(LC(G)) = det(L(G))× 2−(k−1)(k−2)/2. Then it also shown that the range U increases by
a factor of (2(k−1)(k−2)/2)2/k(k−1) ≈ 2.

Following this idea, we define our new framework based on that in Section 3. Only ex-
pression of polynomials differs from the original one. Fix a series of rational coefficient poly-
nomials T = (t0, t1, . . .) such that deg(ti) = i and |ti(x)| ≤ 1 for |x| ≤ 1 and i = 0, 1,
Using these polynomials, express a polynomial f(x) as

∑d
i=0 citi(x/U)U i and define the T -

vectorization and T -U -norm by VT (f ;U) = [c0, c1U, . . . , cdU
d] and ||f ||2T −U =

d∑
i=0

c2iU
2i respec-

tively. As per the above argument, w.r.t. the series T , the adopted Howgrage-Graham lemma
holds. Then, for a sequence of initial polynomials G = (g1, . . . , gk), define LT (G) to denote the
lattice L(VT (g1;U), . . . ,VT (gk;U)). We can then prove that the adopted Coppersmith technique
works if det(LT (G))1/k < Nm/A(k)

√
dmax + 1.

We prove the impossibility result in this framework. Define ℓi as the leading coefficient of ti(x).
Under the condition that |ti(x)| ≤ 1 holds for |x| ≤ 1, we have |ℓi| ≤ 2i−1 for i ≥ 1 and |ℓ0| ≤ 1;
recall that for each i, the equality holds iff ti(x) = Ti(x). The relation between T -vectorization
and the standard vectorization is

V(f ;U) = VT (f ;U)×

ℓ0
∗ ℓ1
...

. . .

∗ ∗ · · · ℓd

 , where d = deg(f).

Particularly, we have bd = ℓ−1
d ad for f(x) =

∑d
i=0 aix

i =
∑d

i=0 biti(x/U)U i. Then, for a sequence

Ĥ = (ĥ1, . . . , ĥk) having everywhere linearly independent reduction and strictly increasing degree
sequence (w.r.t. T) that was converted from G, we have by a similar argument to Section 3,

det(LT (Ĥ)) ≥
k∏

i=1

|b̂i|U d̂i =

k∏
i=1

|âiℓ−1

d̂i
|U d̂i ≥

k∏
i=1

21−d̂iU d̂i

where d̂i = deg(ĥi), âi and b̂i are the leading coefficient of ĥi(x) and the coefficient of T
d̂i
(x/U)U d̂i ,

respectively. Hence, it can be shown that for U ≥ 2N1/d,

det(LT (Ĝ)) ≥

(
k∏

i=1

Nm−ŝi

)
×

k∏
i=1

21−d̂iU d̂i ≥

(
k∏

i=1

Nm−ŝi+d̂i/D

)
k∏

i=1

(
21−d̂i · 2d̂i

)
≥ Nmk.

Thus, we can increase the range by the factor two compared to the original bound. This is the
adopted result for canonical initial polynomials.

We remark that in this framework, the result on the non-canonical polynomials holds in the
same way same as Section 5.

As mentioned in [7], two ideas can apply simultaneously. Thus, for the combined framework,
the impossibility result is also given for U ≥ 2w ·N1/d.

23

