
Chosen-Ciphertext Secure Efficiently Searchable Encryption
in the Standard Model

Yang Cui1 and Kirill Morozov2

1 Beijing Research Institute, Huawei Technologies Co Ltd, China
2 Institute of Mathematics for Industry, Kyushu University, Japan

E-mail: morozov@imi.kyushu-u.ac.jp

Abstract. In the standard model, deterministic public-key encryption (PKE) secure against
chosen-ciphertext attacks by privacy adversary (PRIV-CCA) is known to be built only from lossy
trapdoor functions as demonstrated by Boldyreva et al at Crypto 2008. We show that the method
of achieving IND-CCA security via correlated products, recently introduced by Rosen and Segev
at TCC 2009, can be used to achieve PRIV-CCA secure PKE of uniform messages from any trap-
door permutation (TDP) in the standard model. Our schemes are not deterministic as a whole,
however randomness is only applied to a particular part of the ciphertext - an one-time signature
used for validity check. This allows efficient (logarithmic in the database size) search on encrypted
data. In a nutshell, our first construction (which is generic) departs from any IND-CPA secure
PKE (implied by TDP), builds its k-correlated version, transforms it into the k-correlated PRIV-
CPA encryption, and finally lifts it up to PRIV-CCA security. In contrast to Rosen and Segev’s
correlated products method, we do not assume one-wayness under correlated inputs, thus any
IND-CPA secure PKE can be used in our construction. In addition, we present the second con-
struction – which is more efficient, than the first one – based on assumptions from coding theory
and any TDP. Note that for the price of allowing some limited use of randomness, we achieve
PRIV security for multiple messages, which is strictly stronger than the single-message notion
PRIV1 achieved by the scheme of Boldyreva et al at Crypto 2008.

1 Introduction

Background. Bellare et al [4] introduced the notion of security against privacy adversary
(denoted as PRIV). This notion requires that the ciphertext does not leak any predicate on
the corresponding plaintext. In order to satisfy this notion, the plaintext must: 1) Come from
a large domain and have a smooth (i.e. high min-entropy) distribution; 2) Be – along with the
target predicate – independent of the public key. PRIV-security was defined for deterministic
encryption (DE) and (not necessarily deterministic) efficiently searchable encryption, featuring
an upgrade from the basic notion of one-wayness.

Two flavors of PRIV-security were presented in [4], similarly to the standard indistinguisha-
bility notions: against chosen-plaintext attacks (CPA) and against chosen-ciphertext attacks
(CCA). Constructions in the random oracle (RO) model were presented in [4, 12], while schemes
in the standard model as well as new security notions were treated in [6, 10].

CCA security guarantees protection even against an adversary who has access to a de-
cryption oracle. In other words, the adversary is allowed to decrypt a polynomial number of
(arbitrary) ciphertexts, except for the target one. CCA security is a de facto standard for
modern public-key encryption. It guarantees protection against a lot of attacks, which may
not be covered by weaker security notions – perhaps, the most famous example of the latter is
Bleichenbacher’s attack [2].

Application. Our schemes allow for efficient search on encrypted data in database applica-
tions, since a (known) part of the ciphertext is deterministic. By “efficient” we refer to the
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search which is logarithmic in the database size. This is in sharp contrast with the (random-
ized) public-key encryption with keyword search (PEKS) – the line of works initiated in [8] –
where the search time is linear.

We employ an approach similar to correlated products, recently introduced by Rosen and
Segev [24] in TCC 2009, in order to construct PRIV-CCA secure PKE in the standard model.
Security under correlated products means that a product of one-way functions remains one-
way, even though their inputs might be correlated. If an injective trapdoor function is used, it
was shown in [24] that the correlated products construction yields IND-CCA secure PKE in
a natural manner. To the best of our knowledge, trapdoor functions secure under correlated
products can only be built from lossy trapdoor functions [23].

Motivation. Our main motivation is to build PRIV-CCA secure efficiently searchable PKE
from generic assumptions in the standard model. Constructions in the standard model may
be preferable, since there exist cryptographic schemes which can be proven secure in the RO
model, but become insecure when idealized RO’s are substituted by any implementation. This
was first shown by Canetti et al [11] as a proof-of-concept, and later extended to practical
scenarios such as hybrid encryption by Bellare et al [5] (for other examples, see references
therein).

From now on, we focus on the constructions in the standard model, unless stated otherwise.

Our Contribution. We present two efficiently searchable PKE [4] schemes achieving PRIV-
CCA security. The efficiently searchable property comes from the fact, that the ciphertext,
except for an attached one-time signature, used for validity check, is deterministic. The first
one enjoys generality as it can be based on any trapdoor permutation. The second one is more
computationally efficient as compared to the first scheme, but it uses additional assumptions
from coding theory.

Both of our constructions require the messages to be distributed uniformly and indepen-
dently. It is indeed a strict requirement, however these schemes can be viewed as the first step
towards achieving efficiently searchable PRIV-CCA secure PKE from generic assumptions.

It is worth noting that the above requirement is inherited by our construction from PRIV-
CPA secure TDP-based deterministic encryption, which – being a part of schemes – needs
uniform plaintexts [6] to be secure. In fact, this requirement can be dropped [7, Sec. 6] to the
(standard) high entropy requirement as long as the assumption is strengthened to TDP being
one-way for high-min entropy distributions. We believe, but do not prove formally here, that
our constructions generalize in a similar manner.

Our generic scheme consists of the following three main steps:

1. Transform the IND-CPA secure PKE Π into k-correlated IND-CPA secure PKE Πk as in
the work of multiple user setting by Bellare et al [3].

2. Convert the latter into k-correlated PRIV-CPA secure deterministic encryption Πk, with
the help of trapdoor permutations as in PRIV-CPA secure scheme by Bellare et al [6].

3. Lift Πk up to PRIV-CCA secure Πcca using the method of correlated products [24].

The merits of our method are two-fold: 1) k-correlated one-wayness is implicitly achieved by
IND-CPA security, thus do not need the assumption on one-wayness under correlated inputs
as it appears in Rosen-Segev’s construction; 2) PRIV security under multiple user (public-key)
setting is obtained. Note that there is in general no guarantee that PRIV security in the single
user setting also holds in the multiple user setting, as observed in [4].

In order to obtain pseudorandomness with help of trapdoor permutation, we make use of
Goldreich-Levin [17], Blum-Micali-Yao [9, 26] pseudorandom generator (PRG). As the corre-
lated products construction requires k instances of encryption, it will be costly to adopt the
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PRG in each instance. Our second scheme based on coding-theoretic assumptions (code-based)
is designed to avoids the above mentioned overhead. It is more efficient compared to the generic
one, since we use the (relatively heavy) scheme with pseudorandom coins from [6] only for the
first of k-Correlated Products. The security of this scheme is based on syndrome decoding,
indistinguishability of the Randomized McEliece encryption [21], and any TDP.

Related Work. To the best of our knowledge, only the work by Boldyreva et al [10] achieves
PRIV-CCA secure PKE in the standard model. Their generic scheme is based on lossy trap-
door functions, while our generic scheme only uses trapdoor permutations. Efficiency of these
schemes is comparable. At the same time, any of instantiations in [10] is more efficient than our
code-based scheme. We achieve the (standard) PRIV-security [4] for multiple messages, while
the schemes of [10] are PRIV-secure for single message (PRIV1), or – equivalently [10, Sec. 4]
– for block-sources i.e. each message must have high min-entropy conditioned on the values of
the other messages. In this respect, these schemes are not easily comparable, as we require the
messages to be uniform. At the same time, our schemes use one-time signatures for validity
checks, which is similarly as the “encrypt-then-sign fashion” to obtain PRIV-CCA security in
the random oracle model [4, Sec.7]. While on a different approach, it is not the case in [10] –
target collision resistant hash functions is proven to work in their case.

It is worth noting that our second scheme is inspired by [15] in that we use k-Correlated
Products of [24], substituting the injective one-way functions with another primitive of our
convenience (i.e. IND-CPA secure encryption).

Organization. The paper will be organized in the following way: Sec. 2 presents basic notation
and definitions. Sec. 3 is devoted to the generic construction of PRIV-CCA PKE from trapdoor
permutations. The code-based construction is presented in Sec. 4.

2 Preliminaries

Denote by x the vector, and by “|x|” the cardinality of x. Denote by x[i] the i-th component of

x (1 ≤ i ≤ |x|), and by “|x|” the bit length of x. Let x
$← X denote the operation of selecting

x from the set X uniformly at random. Denote by z
$← A(x, y, ...) the operation of running

algorithm A with input (x, y, ...) and fresh random coins, to output a result z. We also write

Pr[A(x) = y : x
$← X] the probability that A outputs y corresponding to input x, which is

sampled from X. We say a function ε(k) is negligible, if for any constant c, there exists k0 ∈ N,
such that ε < (1/k)c for any k > k0.

A public key encryption scheme Π consists of a triple of algorithms (K, E ,D). The key
generation algorithm K outputs a pair of public and secret keys (pk, sk) taking on input 1λ,
a security parameter λ in unitary notation. The encryption algorithm E on input pk and a
plaintext x outputs a ciphertext c. The decryption algorithm D takes sk and c as input and
outputs the plaintext message x. We require that for any key pair (pk, sk) obtained from K,
and any plaintext x from the plaintext space of Π, x← D(sk, E(pk, x)).

2.1 Security Definitions

Definition 1 (PRIV-CPA, PRIV-CCA [4]). Let a probabilistic polynomial-time (PPT)
adversary ADE against the privacy of the public-key encryption Π = (K, E ,D), be a pair of
algorithms ADE = (Am,Ag), where Am,Ag do not share any random coins or state. The
advantage of adversary is defined as follows,

Advpriv-atk
Π,ADE (λ) = Pr[Exppriv-1

Π,ADE (λ) = 1]− Pr[Exppriv-0
Π,ADE (λ) = 1]
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where experiments are described as:

Experiment Exppriv-1
Π,ADE (λ) : Experiment Exppriv-0

Π,ADE (λ) :

(pk, sk)
$← K(1λ), (pk, sk)

$← K(1λ),

(x1, t1)
$← Am(1λ), (x0, t0)

$← Am(1λ), (x1, t1)
$← Am(1λ),

c
$← E(1λ, pk,x1), c

$← E(1λ, pk,x0),

g
$← ADO(·)g (1λ, pk, c); g

$← ADO(·)g (1λ, pk, c);
return 1 if g = t1, else return 0 return 1 if g = t1, else return 0

We say that Π is PRIV secure, if Advpriv-atk
Π,ADE (λ) is negligible, for any PPT ADE with

high min-entropy, where ADE has a high min-entropy µ(λ) means that µ(λ) ∈ ω(log(λ)), and

Pr[x[i] = x : (x, t)
$← Am(1λ)] ≤ 2−µ(λ) for all λ, all 1 ≤ i ≤ |x|, and any x ∈ {0, 1}∗. The

encryption is done in a component-wise way, i.e. c[i]
$← E(1λ, pk,x[i]), 1 ≤ i ≤ |x|.

If atk = cpa, then DO(·) = ε,
If atk = cca, then DO(·) = D(1λ, pk, sk, ·),

where DO(·) = ε means that DO is a function on any input returning an empty string ε;
DO(·) = D(1λ, pk, sk, ·) means DO is a function on input of a ciphertext returning a message
or⊥. Any string can be queried to decryption oracle, except what have appeared as a component
of c.

Another way to define the advantage of privacy adversary, in the underlying definition, is
written as follows:

Advpriv-atk
Π,ADE (λ) = 2 Pr[Exppriv-b

Π,ADE (λ) = b]− 1

where b ∈ {0, 1} and probability is taken over the choice of all of the random coins in the
experiments.

It has been proven that PRIV security can be built from non-deterministic encryption
algorithms such as, indistinguishability (IND) secure PKE, as observed in [4]. In the following,
we recall the notion of IND security.

Definition 2 (IND-CPA, IND-CCA). We say a scheme Π = (K, E ,D) is IND-secure, if
the advantage Advind-atk

Π,A of any PPT adversary A = (A1,A2) is negligible, (let st be the state

information of A1, and b̂ ∈ {0, 1}):

Advind-atk
Π ,A (λ) = 2 · Pr


b̂ = b : (pk, sk)

$← K(1λ),

(x0, x1, st)
$← ADO(·)1 (1λ, pk),

b
$← {0, 1}, c $← E(1λ, pk, xb),

b̂
$← ADO(·)2 (1λ, c, st)

− 1

and if atk = cpa, then DO(·) = ε; if atk = cca, then DO(·) = D(1λ, pk, sk, ·), and DO(·) is the
same as in Def. 1. Any ciphertext except the target ciphertext c output by encryption oracle,
can be queried to decryption oracle.

Definition 3 (Strongly unforgeable one-time signature). SIG = (SG,SS,SV): Key
generation algorithm SG(1λ) outputs a verification key vk and signing key sigk randomly. Sign-
ing algorithm SS(1λ, sigk,m) takes as input a signing key sigk and a message m from message
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space, and outputs a signature σ. Verification algorithm SV(1λ, vk,m, σ) takes as input a ver-
ification key vk, a message m and a signature σ, and output 0 for invalid or 1 for valid.

Advsuf-cma
SIG,F (λ) = Pr

SV(1λ, vk,m∗, σ∗) = 1 ∧ (m∗, σ∗) 6= (m,σ) :

(vk, sigk)← SG(1λ), (m,σ)←FSIG(sigk,·)(1λ, vk),
st← (m,σ), (m∗, σ∗)← F(1λ, vk, st)


Forger F outputs (m∗, σ∗) after invoking signing oracle SIG(sigk, ·) only once, with the re-
striction that (m∗, σ∗) 6= (m,σ). We say SIG is strongly unforgeable one-time signature, if the

Advsuf-cma
SIG,F (λ) is negligible.

For generic construction of CCA security, a strongly unforgeable one-time signature [1] SIG =
(SG,SS,SV) is often employed, which could in principle be built from the existence of one-
way function. Since we already make use of secure PKE scheme which implies the existence of
one-way function, this will not introduce additional assumptions.

2.2 Correlated Products

Rosen and Segev [24] proposed a simple and general construction in order to obtain CCA-
secure PKE, namely Correlated Products (CP), from injective trapdoor functions. Their scheme
is built in a black-box way and achieves a direct proof of security, widely used by recent
proposals [22, 15, 16].

Definition 4 (k-wise product). For integer k and a collection of one-way functions Fn =
(G,F) which is efficiently computable, define the k-wise product Fk = (Gk,Fk) as follows.

– On input 1λ, the key generation algorithm Gk(1
λ) invokes k independent instances of G(1λ),

and outputs: (f1, . . . , fk).
– On input (f1, . . . , fk, x1, . . . , xk), the evaluation function Fk invokes function F to evaluate

each function fi to xi (1 ≤ i ≤ k), i.e. Fk(f1, . . . , fk, x1, . . . , xk) = (F(f1, x1), . . . ,F(fk, xk)).

If the inputs (x1, . . . , xk) are randomly and independently chosen from a sufficiently large
domain, then it is easy to see that one-wayness of k-wise product holds if Fn is a family of
one-way functions. However, when the inputs are correlated, it is known that the above result
is in general unavailable, as many examples have shown including H̊astad’s attack [19] on
RSA broadcast encryption. As a consequence, to secure the one-wayness of k-wise product, the
following definition is required especially when the inputs are correlated.

Definition 5 (One-wayness under correlated inputs [24]). Let Fn = (G,F) be a collec-
tion of efficiently computable one-way functions with domain of {Dλ}. Distribution C(1λ) is
over Dk

λ = Dλ × · · · × Dλ for some integer k = poly(λ). We say that Fn is one-way under
C-correlated inputs, if Fk is one-way on input distribution C.

Similar as Rosen-Segev’s paper [24] and others [22, 15, 16] did, we also focus on the distribution

represented by k copies of x, where x is chosen uniformly from the domain, x
$← Dλ. We define

it as k-correlated inputs.

Remark. We refer to Appendix A for the concrete construction of Correlated Products. That
construction requires the assumption that one-wayness under k-correlated inputs is difficult to
invert for any PPT adversary A, i.e.

Pr[A(1λ,F(f1, x), . . . ,F(fk, x); f1, . . . , fk) = x] < ε(λ)
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Note that following [24], we describe a simplified version of the Correlated Products prim-
itive, omitting application of the universal one-way hash function to the verification keys (as
it is done in [14]). We note that if this function is applied, then we only need k(λ) = λε for a
constant 0 < ε < 1.

It worth nothing that the Correlated Products primitive has so far been instantiated only
from lossy trapdoor functions and specific algebraic assumptions, and it is not known to be
obtained from generic assumptions. In the following section, we propose our scheme which
uses the basic idea of the Correlated Products construction, and yet it is based on trapdoor
permutations.

3 Generic Construction of PRIV-CCA via Correlated Products

In this section, we provide our generic construction of PRIV-CCA secure encryption from
trapdoor permutations. In fact, we depart from IND-CPA secure encryption, but it is implied
by the latter.

Our scheme is inspired by Rosen-Segev’s Correlated Products [24], but it takes a shot at
PRIV-CCA security rather than IND-CCA security, so that we are able to rely on more general
assumptions and adapt to various concrete schemes. In fact, any IND-CPA PKE, which is secure
when the input comes from a high min-entropy distribution, is admissible for our scheme.
Compared to [24], we do not need the one-wayness under correlated inputs (Def. 5).

Our scheme consists of three main steps. These steps are described in details in the corre-
sponding subsections as shown in the following figure:

IND-CPA
Sec.3.1
=⇒ k-IND-CPA

Sec.3.2
=⇒ k-PRIV-CPA

Sec.3.3
=⇒ PRIV-CCA

3.1 k-correlated IND-CPA PKE from IND-CPA PKE

It has been proven by Bellare et al. [3] that for indistinguishability, the security in a single user
setting implies that in a multiple user setting. Hence, it immediately leads to the following con-
struction in Table 1, which is secure even for k-correlated input. Given an IND-CPA secure PKE
scheme Π = (K, E ,D), it builds k-correlated IND-CPA secure PKE scheme Πk = (Kk, Ek,Dk).
In the following, define k = k(λ) where k(·) is a polynomial. At first, invoke the key generation
algorithm k times independently, and output (PK,SK). Next, use the encryption algorithm E
to encrypt the uniformly chosen x with k different public-keys {pki}(1≤i≤k). Decryption D is
done with respect to corresponding secret key.

Algorithm Kk(1λ) :

(pk1, sk1)
$← K(1λ)

...
...

(pkk, skk)
$← K(1λ)

PK← {pk1, . . . , pkk}
SK← {sk1, . . . , skk}
Return (PK,SK)

Algorithm Ek(1λ,PK, x) :

{pk1, . . . , pkk} ← PK

ci
$← E(1λ, pki, x), (1 ≤ i ≤ k)

c← (c1, . . . , ck)
Return c

Algorithm Dk(1λ,SK, c) :

{sk1, . . . , skk} ← SK
(c1, . . . , ck)← c

xi ← D(1λ, ski, ci), (1 ≤ i ≤ k)
If x1 = · · · = xk, return x
Otherwise, return ⊥

Table 1. k-correlated IND-CPA Construction from IND-CPA.

Theorem 1. [3] Let Ak be any PPT adversary against k-correlated IND-CPA scheme Πk,
then there exists a PPT adversary A who can break the IND-CPA secure Π, with the following
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probability,
Advk-ind-cpa

Πk,Ak
(λ) ≤ qek ·Advind-cpa

Π,A (λ)

where A asks at most qe queries to any of its k encryption oracles.

Proof. Refer to [3] for details.

The above result can be proven to work for CCA security as well. But it is only effective
to indistinguishability notion of PKE, and can hardly be extended to the case of deterministic
encryption in general, as [4] observed. More precisely, unlike conventional IND-CPA/CCA PKE
scheme, PRIV security in single public-key (message, respectively) case does not imply security
in multiple public-keys (messages, respectively) case (see the discussion on the difference be-
tween PRIV and PRIV1 security in [4, Sec. 3] and [10, Sec. 3]). This fact provides an evidence
that CCA security for the PRIV security notion is difficult to obtain in the standard model.

3.2 k-correlated PRIV-CPA DE from k-correlated IND-CPA PKE

In the paper by Bellare et al [6], a standard model construction of PRIV-CPA deterministic
encryption has been proposed. The main idea of their scheme is to replace the random coins
of encryption algorithm, with a “pseudorandom coin” output by pseudorandom generators
(PRG), such as Blum-Micali-Yao [9, 26], Goldreich-Levin [17]. The next construction for PRIV
secure deterministic encryption is inspired by Bellare et al’s scheme [6], but works in a more
general setting, where k independent instances of encryption are employed with the correlated
input.

Given a k-correlated IND-CPA secure PKE scheme Πk = (Kk, Ek,Dk), and a family of trap-
door permutations P = (G,F,D), it is possible to build the following scheme Πk = (Kk, Ek,Dk)
that is composed of Π = (K, E ,D), where Πk is k-correlated PRIV-CPA secure determinis-
tic encryption, for uniformly chosen x ∈ {0, 1}λ. Before explaining Πk, let us look at each
component of Πk and Πk. In Table 2, each component Π = (K, E ,D) of Πk is built from
Π = (K, E ,D). For input of vector x, F(x) denotes the vector whose i-th component is F(x[i]).

Both PG(1λ, 1n(λ), φ,x, s) and F
n(λ)
φ (x) described below are component-wise operations as well.

Algorithm K(1λ) :

(φ, τ)
$← G(1λ)

s
$← {0, 1}λ

(pk, sk)
$← K(1λ)

pk← (φ, pk, s)

sk← (τ, sk)
Return (pk, sk)

Algorithm E(1λ, pk, x) :

(φ, pk, s)← pk

y ← F
n(λ)
φ (x)

ω ← PG(1λ, 1n(λ), φ, x, s)

c← E(1λ, pk, y;ω)
Return c

Algorithm D(1λ, sk, c) :

(τ, sk)← sk
y ← D(1λ, sk, c)

x← D
n(λ)
τ (y)

Return x

Table 2. PRIV-CPA Construction from IND-CPA

In the above, the random coin ω of the IND-CPA scheme Π is not directly generated at
random but built from a random string s and uniform input x of high min-entropy µ. More
precisely, on input 1λ, the key generation algorithm G randomly generates an index (φ, τ) of
trapdoor permutation family P, where Fφ(·) = F(φ, ·), Dτ (·) = D(τ, ·) and Dτ (Fφ(x)) = x.
Define a permutation f i: {0, 1}λ → {0, 1}λ inductively from f by f0(x) = x and f i+1(x) =
f(f i(x)) for i ≥ 0 and x ∈ {0, 1}λ. Then, a pseudorandom coin ω is generated by Blum-Micali-
Yao [9, 26], and Goldreich-Levin [17] generator PG, s.t. on input (1λ, 1n(λ), φ, x ∈ {0, 1}λ, s ∈
{0, 1}λ), where h denotes the hard-core predicate,
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ω = PG(1λ, 1n(λ), φ, x, s)

= h(F0φ(x), s) ◦ h(F1φ(x), s) ◦ . . . ◦ h(Fn−1φ (x), s).

Lemma 1. [6, Theorem.5.3] Given an IND-CPA encryption Π, and a family of trapdoor per-
mutations P = (G,F,D), let A be an adversary against the associated deterministic encryption
Π = (K, E ,D) with advantage Advpriv-cpa

Π,A and number of messages v(·), then there exists an
IND-CPA adversary B and an inversion adversary J against trapdoor permutations P, s.t. for
any λ ∈ N,

Advpriv-cpa
Π,A (λ) ≤ 2 ·Advind-cpa

Π,B (λ) + 16n(λ)v(λ) ·AdvowP,J (λ)

where, n(λ) is the length of the randomness of encryption algorithm E.

In our construction, k-correlated PRIV-CPA secure deterministic encryption is essential
for obtaining CCA security via Correlated Products. Hence, we need the following Πk to be
PRIV-CPA secure as well. The whole scheme Πk = (Kk, Ek,Dk) is composed of Π as Table 3.

Algorithm Kk(1λ) :

(pk1, sk1)
$← K(1λ)

...
...

(pkk, skk)
$← K(1λ)

PK← {pk1, . . . , pkk}
SK← {sk1, . . . , skk}
Return (PK,SK)

Algorithm Ek(1λ,PK, x) :
{pk1, . . . , pkk} ← PK

ci
$← E(1λ, pki, x),

(1 ≤ i ≤ k)
c← (c1, . . . , ck)
Return c

Algorithm Dk(1λ,SK, c) :
{sk1, . . . , skk} ← SK
(c1, . . . , ck)← c

xi ← D(1λ, ski, ci),
(1 ≤ i ≤ k)

If x1 = · · · = xk, return x
Otherwise, return ⊥

Table 3. k-correlated PRIV-CPA Construction.

Since the algorithms (F,D) of P are both deterministic, it is easy to see that given the
input of pk and x, the output ciphertext is uniquely determined. Next, we show that the
pseudorandom coin is sufficient to transform IND-CPA PKE scheme Πk = (Kk, Ek,Dk) to
PRIV-CPA deterministic encryption scheme Πk = (Kk, Ek,Dk).

Theorem 2. Given a family of trapdoor permutations P = (G,F,D) and IND-CPA secure
PKE scheme Π = (K, E ,D). Let A be an adversary against the associated scheme of Πk =
(Kk, Ek,Dk) with advantage Advpriv-cpa

Πk,A and number of correlated messages v(·), then there is
an IND-CPA adversary B and an inversion adversary J against trapdoor permutations P, s.t.
for any λ ∈ N,

Advpriv-cpa
Πk,A (λ) ≤ 2qek(λ) ·Advind-cpa

Π,B (λ) + 16k(λ)n(λ)v(λ) ·AdvowP,J (λ)

Proof. We refer to Appendix B for the proof of Theorem 2.

3.3 PRIV-CCA Security via Correlated Products

In the following, we finally lift up the underlying k-correlated CPA-secure deterministic encryp-
tion scheme Πk to PRIV-CCA secure efficiently searchable (but not deterministic) scheme Πcca.
The following scheme Πcca = (Kcca, Ecca,Dcca) is obtained from k-correlated scheme Πk, which
is built from PRIV-CPA secure scheme Π = (K, E ,D). The encryption/decryption algorithms
are component-wise operation, as well.

In Table 4, Π is built from IND-CPA secure Π with the help of trapdoor permutations
to fix the random coin with respect to pk and input x. Therefore, each encryption algorithm
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Algorithm Kcca(1λ) :

(pk01, sk
0
1)

$← K(1λ)
...

...

(pk0k, sk
0
k)

$← K(1λ)

(pk11, sk
1
1)

$← K(1λ)
...

...

(pk1k, sk
1
k)

$← K(1λ)
PK← {pk01, .., pk0k;

pk11, .., pk
1
k}

SK← {sk01, .., sk0k;
sk11, .., sk

1
k}

Return (PK,SK)

Algorithm Ecca(1λ,PK, x) :

(vk, sigk)
$← SG(1λ)

wlog, set |vk| = k,
vk = vk1 ◦ vk2 ◦ · · · ◦ vkk
{pkvk11 , . . . , pkvkkk } ← PK

ci
$← E(1λ, pkvkii , x),

(1 ≤ i ≤ k)
c← (c1, . . . , ck)

σ
$← SS(1λ, sigk, c)

C ← (vk, c, σ)
Return C

Algorithm Dcca(1λ,SK, C) :
(vk, c, σ)← C

If 0← SV(1λ, vk, c, σ)
Return ⊥ and halt.
Otherwise,
(c1, . . . , ck)← c

{skvk11 , . . . , skvkkk } ← SK

xi ← D(1λ, skvkii , ci),
(1 ≤ i ≤ k)

If x1 = · · · = xk,
Return x = x1
Otherwise, return ⊥

Table 4. PRIV-CCA Construction from k-correlated PRIV-CPA

E(1λ, pki, ·) in our proposed construction is an injective mapping under certain pki, which can
be re-encrypted to have a validity check as in Rosen-Segev’s construction [24]. Since its one-
wayness under k-correlated inputs has been naturally inherited in our transformation, we do
not need to an extra assumption that all the correlated inputs are one-way. This helps us
to encrypt a message which is longer message than one bit. A strongly unforgeable one-time
signature (vk, σ) is generated as well in order to thwart CCA attack, which reminiscently follows
the seminal construction of DDN [14].

To provide some intuition on the security of this scheme, we note even though all the
ciphertexts contain the same input message x ∈ {0, 1}λ, the randomness used by each encryp-
tion algorithm E could still be considered fresh because it is obtained via Blum-Micali-Yao,
Goldreich-Levin PRG from each pk and x. Note that in the scheme Π = (K, E ,D) described
in Table 2, pk = (φ, pk, s) has sufficient high min-entropy, where pk is the encryption key of
IND-CPA scheme Π, φ and s are randomly generated. Next, we look at the CCA security proof
of the proposal scheme Πcca in Table 4.

Theorem 3. Given a k-correlated PRIV-CPA secure deterministic encryption Πk, and a strongly
unforgeable one-time signature SIG, the associated encryption scheme Πcca is PRIV-CCA se-
cure. More precisely, if there exists any PPT adversary A against the encryption scheme Πcca

with advantage of Advpriv-cca
Πcca,A , then there is a PRIV-CPA adversary B and a forger F against

one-time signature SIG, s.t. for any λ ∈ N,

Advpriv-cca
Πcca,A (λ) ≤ Advpriv-cpa

Πk,B (λ) + 2Advsuf-cma
SIG,F (λ) +

1

2k(λ)−1

Proof. We refer to Appendix C for proof of Theorem of 3.

Corollary 1. Given IND-CPA secure PKE with input from a high min-entropy domain, and
trapdoor permutations, it is possible to obtain PRIV-CCA security.

Proof. It is clear to see that from Theorem 1,2,3, IND-CPA security can be converted to PRIV-
CCA security. ut

Corollary 2. Given trapdoor permutations solely, it is possible to achieve PRIV-CCA security.

Proof. According to Goldwasser-Micali [18] and Yao [26], since trapdoor permutations imply
semantic security (IND-CPA), the condition of Corollary 1 can be re-written as “trapdoor
permutations” instead of “IND-CPA security”. ut
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Remark. We have proposed the general construction of PRIV-CCA security, from IND-CPA
security, by first building k-correlate PRIV-CPA and then lifting up to CCA. A question may be
raised whether it is possible to change the order of our transformation, such that, first building
IND-CCA via Correlated Products and then derandomizing to PRIV-CCA? The answer seems
to be negative, because Correlated Products work well only with injective trapdoor function
as a building block and it is not known how to adapt IND-CPA PKE to Correlated Products
setting, in general. This fact also indicates that our result is not trivial to obtain from the
Correlated Products, although our security goal is different from the one in [24].

4 Efficiently Searchable Encryption from Coding-Theoretic Assumptions

Our proposal achieves PRIV-CCA security from IND-CPA PKE, in a general way. However,
since it employs Blum-Micali-Yao, Goldreich-Levin PRGs repetitively, the general construction
is not so efficient. Note that PRIV security is developed mainly for the practical purpose of
searchable encryption, it is highly desired to get more efficient PRIV-CCA secure scheme. For
most of the applications, it is good to search a certain field of the data with a universal format,
instead of the whole data. In other words, there is a way to obtain more efficient searchable
encryption by setting the encrypted data contain a certain field for searching particularly,
rather than generate the whole ciphertext in a deterministic way.

In this section, we propose a more efficient PRIV-CCA secure searchable encryption, by
(wlog.) setting the searching tag as the first component of the ciphertext. Our construction
is more efficient than the scheme in Sec.3.3 but relies on a specific assumption of syndrome
decoding, thus is not generally achievable anymore.

The following scheme Πs = (Ks, Es,Ds) in Table 5 is obtained by trapdoor permutations
P = (G,F,D) and k instances of IND-CPA PKE scheme Π = (K, E ,D) instantiated by McEliece
encryption [21, 15], in addition to a strongly unforgeable one-time signature SIG = (SG,SS,
SV). According to Sec.3.2, IND-CPA PKE and trapdoor permutations generate PRIV-CPA
secure deterministic encryption Π = (K, E ,D). We set the first component of the ciphertext
c as the searching tag, which is generated by a PRIV-CPA secure scheme Π, indicated in the

boxed statement in Table 5. Let c1 be generated by PRIV-CPA encryption, i.e., y ← F
n(λ)
φ (x),

ω ← PG(1λ, 1n(λ), φ, x, s), c ← E(1λ, pk, y;ω); and (c2, . . . , ck) are normally output by the
encryption algorithm of IND-CPA scheme.

Since repetitive operations to generate pseudorandom coin by PRG are costly, we simply
employ one PRIV-CPA encryption for searching, and make use of other k − 1 IND-CPA en-
cryptions instead of PRIV-CPA encryptions. Unfortunately, this replacement, in general, will
fail the security proof because the k − 1 instances of (probabilistic) IND-CPA encryptions are
no longer injective mapping, thus can not be verified by re-encrypting the message with cor-
responding public-key. Thanks to the bounded distance decoding property of code-based PKE
we are able to verify the ciphertext, without knowing all randomness in encryption algorithm.

Randomized McEliece PKE. To obtain IND-CPA security, a randomized McEliece encryp-
tion in the standard model has been proposed [21, 15], which requires that input to be m padded
with random r. In our construction, the input is uniformly chosen from a high min-entropy
domain, so it actually satisfies the above requirement, for example, x = xm ◦xr, where xr could
be built from a bijective encoding from xm. And the ciphertext validity could be checked as that
the Hamming weight of (possible) ciphertexts of the same input must be in a Hamming ball
with radius of t, s.t. t is the error-correcting capability of error-correcting code that McEliece
encryption uses, say, binary Goppa code.
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More precisely, look at the McEliece encryption: xG⊕ e, where G is the public key, e with
Hamming weight at most t is the random coin in encryption algorithm, and input x = xm ◦ xr
are padded and uniformly chosen. Then, with the knowledge of x, it is possible to check in
c = x′G ⊕ e whether x′ = x by computing the Hamming distance of (x′G ⊕ e) to xG. If the
distance is no more than t, then according to bounded distance decoding, they are decoded
to the same x. Otherwise, x 6= x′. This fact has also been used by [15] to obtain the first
CCA-secure McEliece encryption in the standard model.

Algorithm Ks(1λ) :

(pk
0

1, sk
0
1)

$← K(1λ)
...

...

(pk
0

k, sk
0
k)

$← K(1λ)

(pk
1

1, sk
1
1)

$← K(1λ)
...

...

(pk
1

k, sk
1
k)

$← K(1λ)

(φ, τ)
$← G(1λ), s

$← {0, 1}λ

pk01 ← (pk
0

1, φ, s), sk
0
1 ← (sk

0
1, τ)

pk11 ← (pk
1

1, φ, s), sk
1
1 ← (sk

1
1, τ)

PK← {pk01, pk
0

2, . . . , pk
0

k;

pk11, pk
1

2, . . . , pk
1

k}
SK← {sk01, sk

0
2, . . . , sk

0
k;

sk11, sk
1
2, . . . , sk

1
k}

Return (PK,SK)

Algorithm Es(1λ,PK, x) :

(vk, sigk)
$← SG(1λ)

wlog, set |vk| = k,
vk = vk1 ◦ vk2 ◦ · · · ◦ vkk
{pkvk11 , . . . , pk

vkk
k } ← PK

c1
$← E(1λ, pkvk11 , x),

ci
$← E(1λ, pk

vki
i , x),

(2 ≤ i ≤ k)
c← (c1, . . . , ck)

σ
$← SS(1λ, sigk, c)

C ← (vk, c, σ)
Return C

Algorithm Ds(1λ,SK, C) :
(vk, c, σ)← C

If 0← SV(1λ, vk, c, σ)
Return ⊥ and halt.
Otherwise,
(c1, . . . , ck)← c

{skvk11 , . . . , sk
vkk
k } ← SK

x1 ← D(1λ, skvk11 , c1),

xi ← D(1λ, sk
vki
i , ci),

(2 ≤ i ≤ k)
If x1 = · · · = xk,
Return x = x1
Otherwise, return ⊥

Table 5. One PRIV-CPA + (k − 1) IND-CPA Construction

In the construction of Table 5, Randomized McEliece encryption Π = (K, E ,D) is IND-CPA
secure for input xm proven by [21], but could be re-encrypted to verify the pair of plaintext
and ciphertext given x = xm ◦ xr. Thanks to this property, we can use one instance of PRIV-
CPA encryption (boxed statement) as described in Sec. 3.2, and leave the k − 1 IND-CPA
secure encryption as it is. For efficient searching over encrypted data, it is sufficient to find and
compare c1 part. And for the security of the scheme, we prove in the following theorem.

Theorem 4. Given IND-CPA secure Randomized McEliece encryption Π, a collection of trap-
door permutations P and a strongly unforgeable one-time signature SIG, the associated scheme
Πs is PRIV-CCA secure. More precisely, if there exists any PPT adversary A against Πs with
advantage of Advpriv-cca

Πs,A , then there is an IND-CPA adversary B, an inverter J against trap-
door permutations P and a forger F against signature SIG, s.t. for any λ ∈ N,

Advpriv-cca
Πs,A (λ) ≤ 2qek(λ) ·Advind-cpa

Π,B (λ) + 16n(λ)v(λ) ·Advow
P,J (λ) + 2Advsuf-cma

SIG,F (λ) +
1

2k(λ)−1

Proof. We refer to Appendix D for the proof of Theorem 4.

5 Conclusion

In this paper, we have proposed a general construction to build PRIV-CCA secure efficiently
searchable encryption from IND-CPA secure public-key encryption (also say, from trapdoor
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permutations). Our approach is employing Rosen-Segev’s Correlated Products, but has removed
its strong assumption of one-wayness under correlated inputs, thus has capability in general use.
In addition, we have provided a more efficient searchable encryption, which satisfies PRIV-CCA
security, by using Randomized McEliece encryption.
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A Rosen-Segev’s Correlated Products

Now we recall the Rosen-Segev’s construction for building CCA security, s.t. given a family of
injective trapdoor function Fn = (G,F,D), the following scheme provides CCA security.

– Key Generation: On input 1λ the algorithm invokes G independently for 2k times to gen-
erate indexes of functions (f01 , f

1
1 ), . . . , (f0k , f

1
k ), with corresponding trapdoors (d01, d

1
1), . . . ,

(d0k, d
1
k). The public and secret key pair (PK,SK) is output,

PK = (f01 , f
1
1 ), . . . , (f0k , f

1
k ) SK = (d01, d

1
1), . . . , (d

0
k, d

1
k)

– Encryption: On input security parameter λ and a single-bit messagem ∈ {0, 1} and a public-

key PK, sample a strongly unforgeable one-time signature (vk, sigk)
$← SG(1λ). Define ◦ as

bit concatenation, wlog, |vk| = k and vk = vk1 ◦ · · · ◦ vkk. Choose a uniformly distributed
x ∈ {0, 1}λ, output (vk, y1, . . . , yk, c1, c2), where h is a hard-core predicate of F.

yi = F(f vkii , x) for (1 ≤ i ≤ k)

c1 = m⊕ h(f vk11 , . . . , f vkkk , x)
c2 = SS(sigk, (y1, . . . , yk, c1))

– Decryption: On input a ciphertext (vk, y1, . . . , yk, c1, c2), decryption algorithm first checks
the validity of the ciphertext and then outputs messagem: If SV(1λ, vk, (y1, . . . , yk, c1), c2) =
0, then output ⊥. Otherwise, output xi = D(dvkii , yi) for (1 ≤ i ≤ k). If x1 = · · · = xk, then

set x = x1 and output m = c1 ⊕ h(f vk11 , . . . , f vkkk , x), otherwise output ⊥.

B Proof of Theorem 2

It is possible to take the total k-correlated IND-CPA scheme as one IND-CPA scheme, and
employ the trapdoor permutations to generate the pseudorandom coins for that encryption
algorithms need. Next, we build pseudorandom coins and show their security requirements.

Note that indexes of trapdoor permutations are independently and randomly generated

(φ1, τ1)
$← G(1λ), . . . , (φk, τk)

$← G(1λ), and random seed is independently generated s1
$←

{0, 1}λ, . . . , sk
$← {0, 1}λ, as well. Change the format to vectors (φ, τ )

$← G(1λ), s, it is obvious
to see that the scheme Πk is PRIV-CPA secure, according to Lemma 1. But for the k-correlated
security, there is a reduction loss. Because in the following transformation, each row on the right
side constitutes a PRIV-CPA secure deterministic encryption as proven in [10], for one row of
the pseudorandoness employed, the advantage of distinguisher is 4n(λ)v(λ) ·AdvowP,J (λ)(based
on the analysis of Lemma 1). Using the same x with k instances of encryption, but with distinct
and independent public keys and random seeds, it takes k(λ) times more than the single case.
Hence, the advantage bound gets worse to 4k(λ)n(λ)v(λ) ·AdvowP,J (λ).

 E1(pk1, x;ω1)
...

Ek(pkk, x;ωk)

⇒

E1(pk1,F

n(λ)
φ1

(x);h(F0φ1(x), s1) ◦ h(F1φ1(x), s1) ◦ . . . ◦ h(Fn−1φ1
(x), s1))

...

Ek(pkk,F
n(λ)
φk

(x);h(F0φk(x), sk) ◦ h(F1φk(x), sk) ◦ . . . ◦ h(Fn−1φk
(x), sk))


In the transformed scheme, if there exists any PPT adversary A against Πk with public key

{pki} = {(pki, φi, si)}, then there must be a Ak against any one of k scheme Πk, whose security
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can be reduced to IND-CPA security of E with public key pki. Meanwhile, for the k-correlated
IND-CPA security, there is a security reduction loss.

Advpriv-cpa
Πk,A (λ) ≤ 2 ·Advk-ind-cpa

Πk,Ak
(λ) + 16k(λ)n(λ)v(λ) ·AdvowP,J (λ)

Substitute the advantage of IND-CPA security to k-IND-CPA security, we can get the reduction
and complete the proof. ut

C Proof of Theorem 3

The proof is provided by a sequence of games Gi, which method is formalized by Shoup [25].
According to the “Difference Lemma” [25], suppose that the events A, B, and F are events
defined over some probability distribution, s.t. A|¬F ⇔ B|¬F , then there is |Pr[A]−Pr[B]| ≤
Pr[F ]. This fact can be used to prove that Pr[A] and Pr[B] are negligibly close if Pr[F ] is
negligible.

Define a simulator who simulates the PRIV-CCA interaction to privacy adversary A, with
the help of the encryption oracle of Πk scheme. On input (1λ, pk1, . . . , pkk, c1, . . . , ck), the
simulator first sets the public and secret key pair (PK,SK) as follows: generate a strongly

unforgeable one-time signature at random, (vk∗, sigk∗)
$← SG(1λ), where vk∗ = vk∗1◦vk∗2◦· · ·◦vk∗k.

Set the pk
vk∗i
i = pki, and sample another k pairs of (pk

1−vk∗i
i , sk

1−vk∗i
i )

$← K(1λ), independently
for each 1 ≤ i ≤ k. In this way, the simulator outputs PK,

PK = (pk01, pk
1
1), . . . , (pk

0
k, pk

1
k)

in which, for each (pk0i , pk
1
i ), simulator knows one corresponding secret key, but has no idea of

the other because it comes from its challenge.
Denote by Forge the event that for one of A’s decryption queries, s.t. (vk, (c1, . . . , ck), σ),

there is SV(1λ, vk, (c1, . . . , ck), σ) = 1 and vk = vk∗. Denote by Succ the event that privacy

adversary A successfully guess b in the privacy experiment Exppriv-cca-b
Πcca,A (λ)(see Definition 1.)

In the following, denote by Pr[Gi ⇒ 1] the event that Gi outputs 1. The game G0 is defined as
the original PRIV-CCA attack, and suppose PPT adversary A can break it with non-negligible
probability Pr[Exppriv-cca-b

Πcca,A (λ) = b]. Thus, Pr[Succ] = Pr[G0 ⇒ 1]. We have the following
inequality, s.t.

1

2
+

1

2
·Advpriv-cca

Πcca,A (λ) = Pr[Exppriv-cca-b
Πcca,A (λ) = b]

= Pr[Succ]
= Pr[G0 ⇒ 1]
≤ Pr[G1 ⇒ 1] + Pr[Dist[{vk}, {vk∗}]]
≤ Pr[G2 ⇒ 1] + Pr[Forge] + Pr[Dist[{vk}, {vk∗}]]
= Pr[G3 ⇒ 1] + Pr[Forge] + Pr[Dist[{vk}, {vk∗}]]
≤ Pr[Exppriv-cpa-b

Πk,B (λ) = b] + Pr[Forge] + Pr[Dist[{vk}, {vk∗}]]

=
1

2
+

1

2
·Advpriv-cpa

Πk,B (λ) + Advsuf-cma
SIG,F (λ) + 2−k(λ)

The game G1 is modified from the game G0 by replacing real (PK,SK) by those output
by the simulator. Thus, G1 and G0 are the same except that the distribution of vk and can be
distinguished by A. Denote by Dist[{vk}, {vk∗}] the event that adversary manages to distinguish
the distributions of {vk} and {vk∗}. Note that vk∗ is randomly generated and |vk| = k, where
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k = k(λ) and k(·) is a polynomial, it is easy to see this probability Pr[Dist[{vk}, {vk∗}]] is at
most 2−k(λ).

The game G2 is defined as the same as the game G1, except that event Forge occurs.
Thus there is |Pr[G1 ⇒ 1] − Pr[G2 ⇒ 1]| ≤ Pr[Forge]. Next we will show that Pr[Forge] is
negligible. Note that at the beginning of the game, the simulator is given a randomly gen-
erated vk∗ from the strongly unforgeable one-time signature scheme SIG and accordingly
sets the (PK,SK). Simulator later invokes the signing oracle to build the challenge cipher-

text (vk∗, (pk
vk∗1
1 , . . . , pk

vk∗k
k , c∗1, . . . , c

∗
k), σ

∗), using the input from Πk’s oracle. In the decryption
query phase, A submits a query s.t. (vk, (c1, . . . , ck), σ) to the simulator. If Forge happens,
i.e. SV(1λ, vk, (c1, . . . , ck), σ) = 1 and vk = vk∗, then the simulator halts the game and out-
puts (vk∗, (c1, . . . , ck), σ) as the forgery of SIG. Because according to CCA game, the decryp-
tion query cannot be equal to the challenge ciphertext, i.e. vk = vk∗ and {(c∗1, . . . , c∗k), σ∗} 6=
{(c1, . . . , ck), σ}, then {(c1, . . . , ck), σ} must be a new forgery against the SIG. It is easy to see
that Pr[Forge] = Advsuf-cma

SIG,F (λ), and due to the security definition of SIG, this probability is
negligible.

The game G3 simulates the decryption oracle in the following way. When A submits a query
(vk, (c1, . . . , ck), σ), if vk = vk∗ or SV(1λ, vk, (c1, . . . , ck), σ) = 0, it outputs ⊥. Otherwise, then
vk 6= vk∗, there is at least one different bit in vk and vk∗. Wlog, set the index j of this position

(1 ≤ j ≤ k), there is pk
vkj
j = pk

1−vk∗j
j . Note that in the beginning, (pk

1−vk∗j
j , sk

1−vk∗j
j ) has been

generated by the simulator, thus he can make use of sk
1−vk∗j
j to decrypt cj and recover xj . For

{ci}i 6=j , it is convenient to compute c′i = E(1λ, pkvkii , xj), because the encryption algorithm of Π
is an injective mapping under certain public key and input, due to the property of deterministic
encryption. For any 1 ≤ i ≤ k, if there is c′i 6= ci, simulator outputs ⊥. Otherwise, send A x = xj
as the answer to decryption query. From the above explanation, it is obvious to see that if Forge
does not happen, the simulation of decryption oracle is perfect. Then, G3 is the same as G2.

Since from the game G3, the adversary A cannot get help from the decryption oracle, the
privacy attack can be bounded by the success probability of PRIV adversary without decryption
query, who is the PRIV-CPA adversary B. Thus, Pr[G3 ⇒ 1] ≤ Pr[Exppriv-cpa-b

Πk,B (λ) = b].

Summarizing all above, we get the underlying inequality, and simplify it to the following,

1

2
·Advpriv-cca

Πcca,A (λ) ≤ 1

2
·Advpriv-cpa

Πk,B (λ) + Advsuf-cma
SIG,F (λ) + 2−k(λ)

which completes the proof. ut

D Proof of Theorem 4

Following Theorem 3, we can use the same setting and simulate the CCA decryption interaction
in a similar way. The game G1,G2 keep unchanged. The game G3 changes a little, since the sim-
ulation of decryption oracle needs a coding-theoretic property to have the plaintext-ciphertext

verification, where the simulator takes advantage of the sk
1−vk∗j
j to recover not only message

but also randomness: xj = xjm ◦ xjr, where both of xjm and xjr are uniformly distributed.
Thanks to the bounded distance decoding of linear error-correcting codes, simulator can use
xj = xjm ◦ xjr to re-encrypt with all public keys {pki}. If ciphertexts are valid, which must
have ∀i, Hw(xiG⊕ ci) ≤ t, where Hw(·) means the Hamming weight. Otherwise, output ⊥ and
halt. In this way, even without using Blum-Micali-Yao, Goldreich-Levin PRGs, we can still
check the validity of the ciphertext and run the simulation. Thus, we get the following as in
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Theorem 3,

Advpriv-cca
Πs,A (λ) ≤ Advpriv-cpa

Πk,Ak (λ) + 2Advsuf-cma
SIG,F (λ) +

1

2k(λ)−1

In addition, we can see that using (k − 1) real IND-CPA secure Π to replace PRIV-CPA
secure Π will not decrease the security, because the random coin used in encryption algorithm
changes to real randomness. Thus, for k−1 instances of E , PRIV adversary cannot get advantage
with non-deterministic encryption. According to Lemma 1 and Theorem 2, we can get the
following,

Advpriv-cpa
Πk,Ak (λ) ≤ 2qek(λ) ·Advind-cpa

Π,B (λ) + 16n(λ)v(λ) ·AdvowP,J (λ)

Note that the first part of right side has k(λ) because the scheme starts from the k IND-CPA
secure Π, and the second part does not have k(λ) because for k− 1 IND-CPA encryption, the
advantage of distinguisher of pseudorandomness is zero. This finishes the proof. ut


