
On the Collision and Preimage Security of MDC-4
in the Ideal Cipher Model

Bart Mennink

Dept. Electrical Engineering, ESAT/COSIC and IBBT
Katholieke Universiteit Leuven, Belgium

bart.mennink@esat.kuleuven.be

Abstract. We present the first collision and preimage security analysis of MDC-4, a 24 years old construction
for transforming an n-bit block cipher into a 2n-bit hash function. We start with the MDC-4 compression
function based on two independent block ciphers, and prove that any adversary with query access to the
underlying block ciphers requires at least 25n/8 queries (asymptotically) to find a collision, and at least 25n/4

queries to find a preimage. These results then directly carry over to the MDC-4 hash function design. Next,
we consider MDC-4 based on one single block cipher, and confirm that the collision bound carries over to
the single block cipher setting. In case of preimage resistance we present a more negative result: for a target
image with the same left and right half, a MDC-4 preimage in the single block cipher setting can be found in
approximately 2n queries. Yet, restricted to target images with different left and right halves, the preimage
security bound of 25n/4 queries is nevertheless retained.
Keywords. MDC-4; double block length; hash function; collision resistance; preimage resistance.

1 Introduction

The focus of this work is the classical block cipher based hash function MDC-4. MDC-4 and its related
hash function MDC-2 have first been described by Meyer and Schilling in 1988 [20], and have been
patented by Brachtl et al. in 1990 [4]. MDC-2 has been standardized in ISO/IEC 10118-2 [10] and is
used in numerous applications (see [11, 23]). In their original specification, MDC-2 and MDC-4 are
instantiated using the block cipher DES. In this work, we step away from this design criterion and
consider the designs based on any block cipher E : Zn2 × Zn2 → Zn2 with key and message length n bits
(throughout, the first input to the block cipher is the key input).

MDC-2 is a Merkle-Damg̊ard (MD) hash function design [5, 19] using a compression function fMDC-2 :
Z3n
2 → Z2n

2 that internally calls the block cipher E twice. It additionally employs two mappings v and
w, applied on the key inputs to the two block cipher calls. As v and w are originally constructed so as
to have a distinct range1, we can consider MDC-2 to be based on two block ciphers E1(·, ·) = E(v(·), ·)
and E2(·, ·) = E(w(·), ·). The compression function fMDC-2 : Z3n

2 → Z2n
2 is defined as follows.

fMDC-2(A,B,C)

W ← E1(A,C)⊕ C, X ← E2(B,C)⊕ C,
Y ←W l‖Xr, Z ← X l‖W r,

return (Y, Z).

Here, for a bit string X of even length we denote by X l and Xr its left and right halves. fMDC-2 can
be considered as a parallel evaluation of two Matyas-Meyer-Oseas (MMO) constructions [18] followed
by a swapping of the right halves of both states. Consequently, fMDC-2 does not achieve the desired
level of security: finding a collision or a preimage for fMDC-2 is as hard as finding it for the two MMO
constructions independently, hence requires about 2n/2 or 2n block cipher calls, respectively. For the full
MDC-2 hash function, Knudsen et al. [11] demonstrated that roughly 2n/n block cipher calls suffice for
finding a collision, and about 2n calls for finding a preimage. In 2007, Steinberger derived a non-trivial
security lower bound on MDC-2 [23]. Steinberger considers the MDC-2 hash function using one single
block cipher E modeled as a random cipher, and proves that any adversary with query access to E
requires at least 23n/5 queries (asymptotically) to find a collision. His proof relies on the observation

1 The original specification (using block cipher DES) defines v and w as mappings from the ciphertext space to the key
space, where the parity bits are omitted, and the second and third bits are set to 10 and 01, respectively.

fMDC-4(A,B,C)

S ← E1(A,C)⊕ C,
T ← E2(B,C)⊕ C,
U ← T l‖Sr,
V ← Sl‖T r,
W ← E2(U,A)⊕A,
X ← E1(V,B)⊕B,
Y ← X l‖W r,

Z ←W l‖Xr,

return (Y, Z).

Fig. 1. The fMDC-4 compression function. For convenience, we swapped the left and right block ciphers
of the second fMDC-2 evaluation.

that a collision for MDC-2 implies a collision for the last two rounds of MDC-2, except for some special
cases. These results on MDC-2 are summarized in Table 1; all of these results hold for the case E1 and
E2 are different block ciphers as for the case they are the same.

The MDC-4 hash function differs from MDC-2 in the sense that its underlying compression function
fMDC-4 makes four calls to the underlying block cipher rather than two. fMDC-4 is defined as two
consecutive evaluations of fMDC-2, where the message inputs to the MMO executions in the second
evaluation are B for E1 and A for E2. The definition of fMDC-4 : Z3n

2 → Z2n
2 is given in Fig. 1. Knudsen

and Preneel [12] showed that approximately 23n/4 block cipher executions suffice to find a collision for
fMDC-4. With respect to preimage resistance, the same authors report that 23n/2 calls suffice for finding
a preimage for fMDC-4 and 27n/4 calls result in a preimage for MDC-4. These results are summarized
in Table 1. Since their introduction in [4, 20], the MDC-4 hash function has always been considered
the more secure variant of MDC-2. Although mainly a matter of theoretical interest (given that MDC-
2 is twice as fast as MDC-4), formal security lower bounds for MDC-4 or fMDC-4 that confirm this
longstanding claim have never been derived. In particular, for years the MDC-4 structure has not been
thoroughly analyzed, which makes it impossible to classify MDC-4 among other double block length
constructions known in literature (see “Related Work”).

Our Contributions

In this work, we formally analyze the collision and (everywhere) preimage security of MDC-4 and its
underlying fMDC-4 compression function of Fig. 1. We start with the original double block cipher setting,
where fMDC-4 is built on two block ciphers E1 and E2. Then, we generalize our findings to the single
block cipher setting where E1 = E2.

Double block cipher setting. In the setting of two independent block ciphers, our starting point is
the collision and (everywhere) preimage security of the fMDC-4 compression function. At the first glance,
as fMDC-4 roughly consists of two evaluations of fMDC-2, one is inclined to say the results of Steinberger
[23] directly carry over. However, this is not true due to the differences at the second fMDC-2 evaluation
where the inputs are swapped and the message inputs differ for the left and right cipher. Instead, we
conduct a new collision resistance proof for fMDC-4, and although it shows some similarities with the
proof of Steinberger, it differs in many aspects and uses several new ideas to facilitate the analysis. We
formally prove that any adversary with query access to E1 and E2, which are modeled as independent
random ciphers, needs at least 25n/8 queries (asymptotically) to find a collision for fMDC-4. This is far
beyond the best known bound so far, namely the trivial bound of 2n/2 queries.

For the preimage resistance of fMDC-4 we prove that at least 25n/4 queries (asymptotically) are
required, hence security beyond the birthday bound is achieved. In order to achieve security beyond 2n

Table 1. Known security results for the MDC-2 and MDC-4 compression and hash functions. The security bound gives
a lower bound and the attack bound gives an upper bound on the number of queries in order to find an attack. By “(triv)”
we note that the bound is trivial; these bounds come from the security of the MMO construction [3], or correspond to
generic attacks. The results printed in bold are derived in this work.

collision preimage ideal
primitivessecurity attack security attack

fMDC-2 2n/2 (triv) 2n/2 (triv) 2n (triv) 2n (triv)
E or (E1, E2)

MDC-2 23n/5 [23] 2n/n [11] 2n (triv) 2n [11]

fMDC-4 25n/8 23n/4 [12] 25n/4 23n/2 [12]
(E1, E2)

MDC-4 25n/8 2n (triv) 25n/4 27n/4 [12]

fMDC-4 2n/2 (triv) 2n/2 (triv) 2n (triv) 2n (triv)
E

MDC-4 25n/8 2n (triv) 2n (triv) 2n

queries, we employ the ideas of free queries and wish lists. These proof tools have been used before by
Armknecht et al. and Lee et al. [2, 17] for compression functions based on two block cipher calls (see
“Related Work”), but because MDC-4 makes four block cipher calls rather than two, and additionally
the corresponding wish lists are much harder to bound, the security proof has become considerably more
complex.

Because MDC-4 is a MD transform, it preserves collision and (everywhere) preimage resistance [1],
which means that if the compression function satisfies these security notions, then so does the hash
function. Therefore, the results for fMDC-4 directly carry over to the MDC-4 hash function. We have
included these findings in Table 1.

Single block cipher setting. In this work we also consider the generalized MDC-4 design where the
two block ciphers are the same, E = E1 = E2. Note that in this setting collisions and preimages for
fMDC-4 can be found in at most 2n/2 and 2n block cipher calls, respectively: one focuses on state values
with the same left and right half (for Fig. 1 this means A = B and Y = Z, and consequently S = T ,
U = V , and W = X), and the security boils down to the security of two subsequent MMO evaluations.
For the preimage resistance, these type of target images (with Y = Z) can be considered as weak images,
these give the adversary significantly more power. In any case, the security preservation approach does
not help us out here, and instead we consider the security of the MDC-4 hash function design directly.

Starting with the collision resistance, we prove that the above-mentioned bound of 25n/8 queries still
holds for the MDC-4 hash function with E1 = E2. The proof combines previous result and the fact that
in a MDC-4 evaluation the state values always consist of two different halves except with a sufficiently
small probability.

For (everywhere) preimage resistance, we demonstrate that the bound of 25n/4 queries does not carry
over. In more detail, we show that when the target image satisfies Y = Z, a preimage for MDC-4 can
be found in approximately 2n queries. The attack resembles ideas from the preimage attack on MDC-2
by Knudsen et al. [11] and from above-described preimage attack on fMDC-4 in the single block cipher
setting. We stress that the attack does not apply to the original MDC-4 design due to the domain
separation by the functions v and w. Also, restricted to target images with different halves (Y 6= Z) we
prove that the bound of 25n/4 queries still applies, to both fMDC-4 as MDC-4. We remark that target
images with the same left and right half are rather rare, 2n out of 22n target images satisfy this property.
If we had opted for preimage resistance where the challenge is randomly generated, we obtain in the
single block cipher setting a security bound of approximately 25n/4 queries for fMDC-4 and MDC-4,
rather than the bound of 2n queries.

The findings on MDC-4 based on one block cipher E are included in Table 1.

With these results we formally confirm the widespread believe that MDC-4 offers a higher level of
security compared to MDC-2. Despite that this security gain is obtained at the price of efficiency loss,
it is an interesting and important result that allows us to make a fairer comparison among the double
block length hash functions and that gives us more insight in the possibilities and impossibilities of

block cipher based hashing. In particular, to our knowledge this is the first time the preimage resistance
of a double block length compression function design with more than two block cipher evaluations is
analyzed. Given that MDC-4 is originally constructed from an efficiency rather than a security point
of view, more elaborate designs with more than two block cipher calls may likely offer a higher level of
security; our work is a good starting point for this research direction. Although our findings improve the
existing bounds on MDC-4 significantly, large gaps between the security bounds and the best known
attacks remain. A more technical and elaborate analysis may result in better bounds, and it remains an
interesting open problem to improve the security bounds or the generic attacks for MDC-2 and MDC-4.

Related Work

Closely related to this work are the classical double block length compression functions Abreast-DM
and Tandem-DM [13] and Hirose’s compression function [9], as well as the general compression function
designs by Hirose [8] and Özen and Stam [21]. And in fact, these constructions all beat MDC-2 and
MDC-4 with respect to collision and preimage resistance. Each of these constructions is provided with
almost optimal collision security (see Fleischmann et al. [7] and Lee and Kwon [14] for Abreast-DM,
see Lee et al. [16] for Tandem-DM). With respect to preimage resistance, Armknecht et al. and Lee et
al. [2, 17] prove security of Abreast-DM, Tandem-DM and Hirose’s compression function up to almost
22n queries (as mentioned, our preimage resistance proof of MDC-4 employs some proof ideas from
[2, 17]). These double block length constructions, however, all fundamentally differ from MDC-2 and
MDC-4 in the sense that their underlying block ciphers have a double key size, i.e. they use a block
cipher E : Z2n

2 × Zn2 → Zn2 that clearly allows for higher compression and that renders a much stronger
underlying assumption.

A part of our work, namely the collision resistance security of MDC-4, has been independently
analyzed by Fleischmann et al. [6]. Our bound of 25n/8 queries, however, beats their bound of 23n/5

queries significantly.
The observation that MDC-2 and MDC-4 (with a single key size block cipher) do not achieve optimal

collision and preimage resistance, while constructions like Abreast-DM, Tandem-DM and Hirose’s com-
pression function (with a double key size block cipher) do, results in an interesting research question,
namely whether it is possible to construct a double block length 3n-to-2n compression function on a
single key size block cipher that achieves optimal collision and preimage security.

Outline

In Sect. 2, we introduce some mathematical background and the security model used in this work. The
security result on the collision resistance of fMDC-4 (based on two block ciphers E1, E2) is given in
Sect. 3, along with the formal security proof in Sect. 3.1. In Sect. 4, we present our security result on
the preimage resistance of fMDC-4 (based on E1, E2), the proof of which is given in Sect. 4.1. In Sect. 5
the results are then generalized to the setting where the two block ciphers are the same.

2 Preliminaries

For n ∈ N, by Zn2 we denote the set of bit strings of length n. For two bit strings X,Y , by X‖Y we
denote their concatenation and by X ⊕ Y their bitwise XOR. If X is of even length, we denote by X l

and Xr its left and right halves. Throughout, we assume n is even. We denote by Bloc(n) the set of all
block ciphers E : Zn2 × Zn2 → Zn2 , where the first input corresponds to the key input.

An adversary A is a probabilistic algorithm with oracle access to two block ciphers E1, E2
$← Bloc(n)

randomly sampled from Bloc(n). We consider the adversary to be information-theoretic, which means
that it has unbounded computational power, and that its complexity is measured by the number of
queries made to its oracles. The adversary can make forward and inverse queries to E1 and E2. The
queries are stored in a query history Q as elements (ki,Ki, xi, yi), where i is the index of the query,
ki ∈ {1, 2} indicates the corresponding block cipher, Ki is the key input, and xi and yi denote the
(plaintext) input and (ciphertext) output of the block cipher. By xi⊕yi, we define its XOR-output. The

index i and the parameter k are omitted if they are irrelevant or clear from the context. For q ≥ 0, by
Qq we define the query history after q queries. We assume that the adversary never makes queries to
which it knows the answer in advance. In this work, we consider two types of adversaries, namely one
that aims at finding collisions and one that aims at finding preimages for fMDC-4.

We say that adversary A finds a collision for fMDC-4 if it obtains a query history Q that al-
lows it to output two distinct tuples (A1, B1, C1), (A2, B2, C2) ∈ Z3n

2 such that fMDC-4(A1, B1, C1) =
fMDC-4(A2, B2, C2) and for which Q contains all block cipher queries required to compute the two
evaluations of fMDC-4. We define by

advcol
fMDC-4

(A) = Pr
(
E1, E2

$← Bloc(n), (A1, B1, C1), (A2, B2, C2)← AEi,E
−1
i :

(A1, B1, C1) 6= (A2, B2, C2), fMDC-4(A1, B1, C1) = fMDC-4(A2, B2, C2)
)

the probability that A succeeds in finding such query history, and define by advcol
fMDC-4

(q) the maximum
collision advantage taken over all adversaries making q queries.

With respect to preimage resistance, we opt for the notion of everywhere preimage resistance [22].
This security notion intuitively guarantees preimage security for every range point. Before making
queries to its oracles, the (preimage finding) adversary A decides on a range point (Y, Z) ∈ Z2n

2 . We
say that A finds a preimage for fMDC-4 if it obtains a query history Q that allows it to output a tuple
(A,B,C) ∈ Z3n

2 such that fMDC-4(A,B,C) = (Y,Z) and for which Q contains all block cipher queries
required to compute the evaluation of fMDC-4. We define by

advepre
fMDC-4

(A) = max
(Y,Z)∈Z2n

2

Pr
(
E1, E2

$← Bloc(n), (A,B,C)← AEi,E
−1
i (Y,Z) :

(Y,Z) = fMDC-4(A,B,C)
)

the maximum probability that A succeeds in finding such query history, and define by advepre
fMDC-4

(q) the
maximum (everywhere) preimage advantage taken over all adversaries making q queries.

The security definitions for the full MDC-4 hash function, advcol
MDC-4 and advepre

MDC-4, are defined simi-
larly. Here, rather than tuples from Z3n

2 the adversary outputs messages of arbitrary length. Throughout,
we denote the initial state value of MDC-4 by (F0, G0). In the single block cipher setting, we consider
one block cipher E to be generated randomly from Bloc(n) rather than two, and the definitions follow
immediately. In the remainder of this work, it is clear from the context which of the security models we
consider.

3 Collision Resistance of MDC-4 with Two Block Ciphers E1, E2

We derive a collision resistance lower bound for the fMDC-4 compression function of Fig. 1. The result
directly carries over to MDC-4 as it is a MD transform, which preserves collision resistance [1].

Theorem 1. Let n ∈ Zn2 and q < 2n−1. Let t1, t2, t3 > 0 be any integral values. Then,

advcol
fMDC-4

(q) ≤ 2(t1 + 4t1t2 + 3t1t2t3 + 4t22)q

2n
+

2q2

t12n
+ 2 · 2n/2

(
2eq

t22n/2

)t2
+ 2n

(
2eq

t32n

)t3
. (1)

The proof of Thm. 1 is given in Sect. 3.1. It shows similarities with the proof by Steinberger [23] of
collision resistance of the MDC-2 hash function, but its structure is entirely different so as to facilitate
the proof.

One can divide the bound of (1) into two parts. The first term forms the first part and increases
for increasing parameters t1, t2, t3. The remaining three terms form the second part that decreases for
increasing t1, t2, t3. For obtaining a sharp bound, we need to fine tune the integral positive parameters
t1, t2, t3. The trick is to take parameters t1, t2, t3 minimal so that the second part of (1) still goes to 0
for n → ∞. We will show that the advantage of any adversary making slightly less than 25n/8 queries
approaches 0 when n goes to infinity. To this end, let ε > 0 be any parameter, we consider any adversary
making at most q = 25n/8/nε queries to its oracle. We set t1 = 22n/8, t2 = 2n/8, and t3 = 3. Here, for

60 65 70 75 80
log2HqL

0.2

0.4

0.6

0.8

1.0

Collision Resistance

Fig. 2. The function advcol
fMDC-4

(q) of (1) for n = 128, in comparison with the best known bound
q(q + 1)/2n (dashed line).

simplicity we assume t1, t2 to be integral. If n is no multiple of 8, one sets t1, t2 to the nearest integers.

Note that these parameters satisfy t1 >
q2

2n , t2 >
q

2n/2 and t3 >
q
2n , which are minimal requirements for

the second part of (1) to be < 1. Now, it is an easy exercise to verify that the bound of (1) approaches
0 for n→∞ when q = 25n/8/nε and t1, t2, t3 are as specified.

Corollary 1. For any ε > 0, we obtain limn→∞ advcol
fMDC-4

(
25n/8/nε

)
= 0.

The result means that for n→∞ the function advcol
fMDC-4

behaves as q8/25n. A graphical representation

of advcol
fMDC-4

for n = 128 is given in Fig. 2. In this graph, where we have slightly adjusted the parameters
t1, t2 to facilitate the analysis for smaller n and smaller q (the previously chosen values were set to
analyze limiting behavior for n, q), we see a significant improvement over the best known bound, the
trivial bound. For n = 128 the collision resistance advantage hits 1/2 for log2 q ≈ 77.7, which is smaller
than the threshold for q8/25n, 79.9. For larger values of n, by Cor. 1 the difference goes to 0 for n→∞.

3.1 Proof of Thm. 1

The collision resistance proof shows some similarities with the proof of Steinberger for MDC-2 [23], but
fundamentally differs in various aspects and is as such of independent interest. In particular, due to a
different and more structured case distinction we obtain a sharper bound (security up to 25n/8 queries)
than the bound of Steinberger for MDC-2 (security up to 23n/5 queries).

We consider any adversary making q queries to its oracles E1, E2, which tries to find a collision
for fMDC-4. Finding a collision corresponds to obtaining a query history Qq of size q that satisfies
configuration col(Qq) of Fig. 3. In other words,

advcol
fMDC-4

(q) = Pr (col(Qq)) , (2)

and we consider the probability of obtaining any query history Qq that satisfies configuration col(Qq).
Notice that in this configuration, we omit the shifting at the end: as this shifting is bijective, it does not
influence the collision finding advantage. In Fig. 3, as well as in all subsequent figures in this section,
we label the block ciphers as follows to uniquely identify their positions. In the left word of Fig. 3
(with inputs (A1, B1, C1)) the block ciphers are labeled 1tl, 1tr, 1bl, 1br, for top/bottom left/right.
For the right word the block ciphers are identified as 2tl, 2tr, 2bl, 2br. In the remainder, when talking
about “a query 1tl”, we mean “a query that in a collision occurs at position 1tl” (and the same for
the other positions). The labels “1” and “2” in the block ciphers correspond to the block cipher index.
The capitalized variables in the figures may take any value, and are simply used to accentuate relations
among the two words.

We need to evaluate the probability of the adversary finding a query history Qq that satisfies con-
figuration col(Qq) of Fig. 3. For this analysis we introduce a helping event help(Qq). Let t1, t2, t3 > 0 be

Fig. 3. Configuration col(Q). We require (A1, B1, C1) 6= (A2, B2, C2).

integral. Event help(Qq) is satisfied if either of the following sub-events helpk(Qq) (k = 1, . . . , 4) occurs.

help1(Qq) :
∣∣{(Ki, xi, yi), (Kj , xj , yj) ∈ Qq

∣∣ i 6= j ∧ xi ⊕ yi = xj ⊕ yj
}∣∣ > t1;

help2(Qq) : for some z ∈ Zn/22 :
∣∣{(Ki, xi, yi) ∈ Qq

∣∣ (xi ⊕ yi)l = z
}∣∣ > t2;

help3(Qq) : for some z ∈ Zn/22 :
∣∣{(Ki, xi, yi) ∈ Qq

∣∣ (xi ⊕ yi)r = z
}∣∣ > t2;

help4(Qq) : for some z ∈ Zn2 :
∣∣{(Ki, xi, yi) ∈ Qq

∣∣ xi ⊕ yi = z
}∣∣ > t3.

Note that we do not distinguish between queries to E1 or E2. This is done for simplicity of notation, it
has no affect on the security analysis. By basic probability theory, we obtain for (2):

Pr (col(Qq)) ≤ Pr (col(Qq) ∧ ¬help(Qq)) + Pr (help(Qq)) . (3)

For the analysis of the event col(Qq), it may be the case that a single query occurs at multiple positions
in the configuration. Therefore, we divide col(Qq) into sub-configurations. For two distinct positions
a, b ∈ {1tl, 1tr, 1bl, 1br, 2tl, 2tr, 2bl, 2br} and a binary value α ∈ {0, 1}, by a = b ≡ α we say that the same
query occurs at both positions a and b if and only if α = 1. Now, we define for αtl, αtr, αbl, αbr ∈ {0, 1}
the sub-configuration colαtlαtrαblαbr

(Q) as col(Q) of Fig. 3 with the restriction that

1tl = 2tl ≡ αtl, 1tr = 2tr ≡ αtr, 1bl = 2bl ≡ αbl, 1br = 2br ≡ αbr.

Clearly,

col(Qq)⇒
∨

αtl,αtr,αbl,
αbr∈{0,1}

colαtlαtrαblαbr
(Qq). (4)

It may be the case that the same query occurs at positions 1tl and 1br or 2br, but as becomes clear
these cases are included in the analysis. By (2-4), we obtain the following bound on advcol

fMDC-4
(q):

advcol
fMDC-4

(q) ≤
∑

αtl,αtr,αbl,
αbr∈{0,1}

Pr (colαtlαtrαblαbr
(Qq) ∧ ¬help(Qq)) + Pr (help(Qq)) . (5)

The probabilities constituting to the sum of (5) are analyzed in Lems. 1-6 as further set forth in Table
2. Probability Pr (help(Qq)) is analyzed in Lem. 7. In this section we only include the proof of Lems. 1.
The proofs of Lems. 2-7 are given in App. A.

Lemma 1. Pr (col0000(Qq) ∧ ¬help(Qq)) ≤ t1t2t3q
2n−q .

Proof. A visualization of configuration col0000(Qq) can be found in Fig. 4. In this figure, the queries
corresponding to locations a and !a are required to be different, and the same for the queries at positions
(b, !b), (c, !c) and (d, !d). For the analysis of col0000(Qq) ∧ ¬help(Qq), we say that the i-th query (i ∈
{1, . . . , q}) is successful if it makes configuration col0000(Qi) satisfied and ¬help(Qi) holds. Now, by

Table 2. For αtl, αtr, αbl, αbr ∈ {0, 1}, the probability bound on colαtlαtrαblαbr
(Qq) ∧ ¬help(Qq) (cf. (5))

is analyzed in the corresponding lemma.

αtlαtrαblαbr 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Lemma 1 2 2 3 4 5 6 6 4 6 5 6 6 6 6 6

basic probability theory, we can analyze the probability of the i-th query being successful, and sum over
i = 1, . . . , q.

Let i ∈ {1, . . . , q}. We will analyze the probability of the i-th query to be successful, i.e. to satisfy
col0000(Qi) ∧ ¬help(Qi). If help(Qi) holds, the i-th query can certainly not be successful, so we assume
¬help(Qi) and analyze the probability the i-th query makes col0000(Qi) satisfied.

Without loss of generality (by symmetry), the i-th query is a query to E1 and occurs at position 1tl
and/or 1br. We distinguish among these three cases. It may be the case that the i-th query also occurs
in the right word, but as becomes clear from the proof, these cases are automatically included.

Query occurs at 1tl but not at 1br. By ¬help1(Qi), there are ≤ t1 choices for queries at positions
(1br, 2br) (we note that the query at 2br may equal the i-th query, but this does not invalidate the
ongoing analysis). For any of these ≤ t1 choices, let K1br and K2br be the key inputs corresponding to
positions 1br and 2br. By ¬help2(Qi), there are ≤ t2 choices for 2tl. For any of these ≤ t1t2 choices 2tl,
the query at position 2tr and consequently the query at position 2bl is uniquely determined (if they
exist at all), and so is the XOR-output Y of 2bl. By ¬help4(Qi), there are ≤ t3 choices for 1bl. For any
of these ≤ t1t2t3 choices 1bl, let K1bl be the key input corresponding to position 1bl. The i-th query is
successful only if its XOR-output equals K l

1br‖Kr
1bl, which happens with probability at most 1

2n−q . The

total probability is at most t1t2t3
2n−q .

Query occurs at 1br but not at 1tl. By ¬help1(Qi), there are ≤ t1 choices for (1bl, 2bl). For any
of these ≤ t1 choices, let K2bl be the key input corresponding to position 2bl. By ¬help2(Qi), there are
≤ t2 choices for 2tr. For any of these ≤ t1t2 choices 2tr, the query at position 2tl and consequently the
query at position 2br is uniquely determined, and so is the XOR-output Z of 2br. The i-th query is
successful only if its XOR-output equals this value Z, which happens with probability at most 1

2n−q .

The total success probability is at most t1t2
2n−q .

Query occurs at 1tl and 1br. Let K be the key input for the i-th query. As the query occurs at
both positions, we require K l = Z l, which fixes Z l. By ¬help2(Qi), there are ≤ t2 choices for 2br. For
any of these ≤ t2 choices 2br, we obtain a different Z. The i-th query is successful only if its XOR-output
equals this value Z, which happens with probability at most 1

2n−q . The total success probability is at

most t2
2n−q .

The i-th query is successful with probability at most t1t2t3
2n−q . The claimed bound is obtained by summing

over i = 1, . . . , q. ut

Lemma 2. Pr (colαtlαtrαblαbr
(Qq) ∧ ¬help(Qq)) ≤

(t1t2+t22)q
2n−q for αtlαtrαblαbr ∈ {0001, 0010}.

Lemma 3. Pr (col0011(Qq) ∧ ¬help(Qq)) ≤ t1q
2n−q .

Lemma 4. Pr (colαtlαtrαblαbr
(Qq) ∧ ¬help(Qq)) ≤ t1t2t3q

2n−q for αtlαtrαblαbr ∈ {0100, 1000}.

Lemma 5. Pr (colαtlαtrαblαbr
(Qq) ∧ ¬help(Qq)) ≤

(t1t2+t22)q
2n−q for αtlαtrαblαbr ∈ {0101, 1010}.

Lemma 6. Pr (colαtlαtrαblαbr
(Qq) ∧ ¬help(Qq)) = 0 for αtlαtrαblαbr ∈ {11 ∗ ∗, 1 ∗ ∗1, ∗11∗}.

Lemma 7. Pr (help(Qq)) ≤ q2

t1(2n−q) + 2 · 2n/2
(

eq2n/2

t2(2n−q)

)t2
+ 2n

(
eq

t3(2n−q)

)t3
.

Fig. 4. Configuration col0000(Q) of Lem. 1. We require (A1, B1, C1) 6= (A2, B2, C2).

We are ready to finish the proof of Thm. 1. Lemmas 1-7 imply for advcol
fMDC-4

(q) of (5):

advcol
fMDC-4

(q) ≤ (t1 + 4t1t2 + 3t1t2t3 + 4t22)q

2n − q
+

q2

t1(2n − q)
+

2 · 2n/2
(

eq2n/2

t2(2n − q)

)t2
+ 2n

(
eq

t3(2n − q)

)t3
,

where t1, t2, t3 > 0 are integral. The result of Thm. 1 is obtained by observing that 2n − q > 2n−1 for
q < 2n−1.

4 Preimage Resistance of MDC-4 with Two Block Ciphers E1, E2

For the everywhere preimage resistance of the fMDC-4 compression function of Fig. 1, we derive the
following results. The findings directly carry over to MDC-4 as it is a MD transform, which preserves
everywhere preimage resistance [1].

Theorem 2. Let n ∈ Zn2 . Let t1, t2 > 0 be any integral values with t1 ≤ q. Then,

advepre
fMDC-4

(q) ≤ 4t32 + 4t1t2
2n

+
16t1t2

22n
+

8

2n
+ 2 · 2n/2

(
4eq

t12n/2

)t1/2
+

4q

2n/2

(
8eq

t12n/2

) t12
n

4q

+ 2n
(

4eq

t22n

)t2/2
+ 2q

(
8eq

t22n

) t22
n

4q

. (6)

The proof of Thm. 2 is given in Sect. 4.1. It employs ideas of the preimage resistance proof by Armknecht
et al. [2] and Lee et al. [15, 17] for double block length compression functions, namely the issuance of
free queries and the usage of wish lists. However, the analysis has become considerably more complex
because the MDC-4 compression function uses four block ciphers rather than two, and consequently the
derivation of bounds on the sizes of the wish lists has become more elaborate.

The bound of (6) can be analyzed in a similar manner as is done in Sect. 3, and we skip the details.
Let ε > 0 be any parameter, we consider any adversary making at most q = 25n/4/nε queries to its
oracle. We set t1 = 23n/4 and t2 = 2n/4/nε/2. Again, t1, t2 are assumed to be integral. Note that for
interesting values of ε, we have t1 ≤ q as desired. As before, it immediately follows that the bound of
(6) approaches 0 for n→∞ when q = 25n/4/nε and t1, t2 are as specified.

Corollary 2. For any ε > 0, we obtain limn→∞ advepre
fMDC-4

(
25n/4/nε

)
= 0.

The result means that for n→∞ the function advepre
fMDC-4

behaves as q4/25n. a graphical representation

of advepre
fMDC-4

for n = 128 is given in Fig. 5. As in the case of Sect. 3, we have slightly adjusted the
parameters t1, t2 to facilitate the analysis for smaller n and smaller q. For n = 128 the preimage resistance
advantage hits 1/2 for log2 q ≈ 151.9. Also in this case, the gap between this value and threshold for
q4/25n, 159.75, is caused by the choice for small n. By Cor. 2 the difference goes to 0 for n→∞.

120 130 140 150 160
log2HqL

0.2

0.4

0.6

0.8

1.0

Preimage Resistance

Fig. 5. The function advepre
fMDC-4

(q) of (6) for n = 128, in comparison with the best known bound q/2n

(dashed line).

4.1 Proof of Thm. 2

We consider any adversary making q queries to its oracles E1, E2, which tries to find a preimage for
fMDC-4. Let (Y, Z) ∈ Z2n

2 be the point to invert, chosen by the adversary prior to making any query.
Finding a preimage for (Y,Z) corresponds to obtaining a query history Qq of size q that satisfies
configuration pre(Qq) of Fig. 6. In other words,

advepre
fMDC-4

(q) = Pr (pre(Qq)) , (7)

and we consider the probability of obtaining any query history Qq that satisfies configuration pre(Qq).
As is done in Sect. 3.1, we again omit the bijective shifting at the end as it does not influence the
preimage security. We use the same convention for the figures as is used in Sect. 3.1, with the difference
that in Fig. 6 the variables Y, Z are underlined to denote that these are fixed. As we only consider one
word (rather than two, in Sect. 3.1), we label the block ciphers simply as tl, tr, bl, br for top/bottom
left/right.

Fig. 6. Configuration pre(Q).

The analysis in this section relies on the issuance of free super queries [2, 15, 17]. If the adversary
has made 2n−1 queries to either E1 or E2 under the same key, it will receive the remaining 2n−1 queries
for this key for free. As in [2, 17], we call this query a super query. Formally, these free queries can be
modeled as queries the adversary is forced to make, but at no charge. For convenience, we use Qq to
denote the query history after q normal queries. This query history thus contains all normal queries plus
all super queries made so far. A super query is a set of 2n−1 single queries, and any query in the query
history is either a normal query or a part of a super query, but not both. Notice that the adversary
needs 2n−1 queries as preparatory work to enforce a super query. As the adversary makes at most q
queries, at most q/2n−1 super queries will occur.

For the analysis of pre(Qq), we introduce a helping event help(Qq). Let t1, t2 > 0 be integral. Event
help(Qq) is satisfied if either of the following sub-events helpk(Qq) (k = 1, 2, 3) occurs.

help1(Qq) : for some z ∈ Zn/22 :
∣∣{(Ki, xi, yi) ∈ Qq

∣∣ (xi ⊕ yi)l = z
}∣∣ > t1;

help2(Qq) : for some z ∈ Zn/22 :
∣∣{(Ki, xi, yi) ∈ Qq

∣∣ (xi ⊕ yi)r = z
}∣∣ > t1;

help3(Qq) : for some z ∈ Zn2 :
∣∣{(Ki, xi, yi) ∈ Qq

∣∣ xi ⊕ yi = z
}∣∣ > t2.

These helping events are the same as the ones used in the proof of collision resistance in Sect. 3.1, but
are reintroduced for simplicity. Note that help3(Qq) particularly covers the values Y,Z as XOR-outputs.
By basic probability theory, we obtain for (7):

Pr (pre(Qq)) ≤ Pr (pre(Qq) ∧ ¬help(Qq)) + Pr (help(Qq)) . (8)

In Lem. 8, we bound Pr (pre(Qq) ∧ ¬help(Qq)) and probability Pr (help(Qq)) is analyzed in Lem. 9. The
proofs are given in App. B.

Lemma 8. Pr (pre(Qq) ∧ ¬help(Qq)) ≤
4t32+4t1t2

2n + 16t1t2
22n

+ 8
2n .

Lemma 9. Provided t1 ≤ q, we have

Pr (help(Qq)) ≤ 2 · 2n/2
(

4eq

t12n/2

)t1/2
+

4q

2n/2

(
8eq

t12n/2

) t12
n

4q

+ 2n
(

4eq

t22n

)t2/2
+ 2q

(
8eq

t22n

) t22
n

4q

.

With respect to Lem. 9, we note that help3(Q) is similar to the event Lucky(Q) analyzed by Armknecht
et al. [2] and Lee et al. [17]: the only difference is that help3(Q) is required to hold for any z ∈ Zn2 . In
their analysis of Lucky(Q), [2, 17] make a distinction between the normal and super queries (just as we
do in the proof of Lem. 9) but for the super queries their analysis is based on Markov’s inequality and
is consequently much simpler. However, because our helping events are required to hold for any z ∈ Zn2
(event help3(Q)) and for any z ∈ Zn/22 (event help1∨2(Q)), a similar approach using Markov’s inequality
would result in a trivial bound and a more elaborate treatment was required.

The proof of Thm. 2 is finished by adding the bounds of Lems. 8-9, as set forth in (7-8).

5 Security of MDC-4 with One Block Cipher E

In this section we consider the collision and preimage resistance of MDC-4 in the particular setting
where the two block ciphers are identical, i.e. E = E1 = E2. Although MDC-4 with two different block
ciphers E1, E2 is closer the original design specification, it is of general interest to see what security is
achieved when the two block ciphers are the same. In this setting, however, the security preservation
approach from Sects. 3 and 4 does not help us out: as is already explained in Sect. 1, in the single
block cipher setting the fMDC-4 compression function does not offer a sufficiently high level of security.
Therefore, we resort to collision and preimage security of MDC-4 in the iteration.

5.1 Collision Resistance

For collision resistance of MDC-4 using a single block cipher E, we obtain the following result.

Theorem 3. Let n ∈ Zn2 and q < 2n−1. Let t1, t2, t3 > 0 be any integral values. Then,

advcol
MDC-4(q) ≤ 2(2t1 + 4t1t2 + 3t1t2t3 + 5t22)q

2n
+

2q2

t12n
+ 2 · 2n/2

(
2eq

t22n/2

)t2
+ 2n

(
2eq

t32n

)t3
. (9)

The proof of Thm. 3 is similar to the one of Thm. 1 and is given in App. C. Here, we will only give the
intuition. Recall Fig. 3 of Sect. 3.1. The proof of Thm. 1 uses the independence of E1, E2 essentially to
guarantee that a block cipher query can never occur at both positions tl and tr (or at both bl and br)
for one of the two words. In the single block cipher setting, this cannot be guaranteed for the fMDC-4

compression function and the collision attack of Sect. 1 relies on this. However, for a full MDC-4 iteration,
the initial state value consists of two different halves, and in fact all intermediate state values consist
of two different halves, except with some small probability. Using this property, one can guarantee that
the state inputs (A1, B1) and (A2, B2) both consist of two different halves and thus that a query cannot

occur at both positions tl and tr (or bl and br). This probability results in the additional term
2(t1+t22)q

2n

in (9) compared to (1). For the same choice of t1, t2, t3 as in Sect. 3, this additional term is of order
O(2−n/8) for q < 25n/8 and thus of negligible size compared to the other terms. In particular, we obtain
the same corollary result for advcol

MDC-4(q) in the single block cipher setting.

Corollary 3. For any ε > 0, we obtain limn→∞ advcol
MDC-4

(
25n/8/nε

)
= 0.

5.2 Preimage Resistance

For preimage resistance, the trick of Sect. 5.1 does not work: a collision on the state halves (the additional
event) happens with a significantly higher probability then what we are aiming for. In fact, for some
class of target images this drawback turns out to be crucial and results in a preimage attack in 2n

queries. Let (Y, Z) be the target image. We distinguish between Y 6= Z and Y = Z.

Y 6= Z. We denote by adv
epre(6=)
fMDC-4

(q) the limitation of advepre
fMDC-4

(q) to Y 6= Z. Consider Fig. 6 of
Sect. 4.1 (and ignore the block cipher indices 1 and 2). If Y 6= Z, this necessarily implies that in the last
round of the MDC-4 iteration the queries at positions bl and br must be different, and similarly that
the queries at positions tl and tr are different. Consequently, the proof of Thm. 2 carries over, except for
some additional cases to be analyzed. We obtain the following result for fMDC-4 provided that Y 6= Z.

Theorem 4. Let n ∈ Zn2 . Let t1, t2 > 0 be any integral values with t1 ≤ q. Then, provided the image
(Y,Z) satisfies Y 6= Z,

adv
epre(6=)
fMDC-4

(q) ≤ 4t32 + 4t1t2 + 20 + 4 · 2n/2

2n
+

16t1t2 + 24t1t22
n/2

22n
+

64q

23n
+

2 · 2n/2
(

4eq

t12n/2

)t1/2
+

4q

2n/2

(
8eq

t12n/2

) t12
n

4q

+ 2n
(

4eq

t22n

)t2/2
+ 2q

(
8eq

t22n

) t22
n

4q

. (10)

Thm. 4 is proven in App. D. The findings directly carry over to MDC-4 as it is a MD transform, which
preserves everywhere preimage resistance [1]. Note that this bound of Thm. 4 is similar to the bound

of Thm. 2, except for an additional term 12+4·2n/2

2n + 24t1t22n/2

22n
+ 64q

23n
. For the same choice of t1, t2 as in

Sect. 4, this additional term is of order O(2−n/2) for q < 25n/4 and thus of negligible size compared to
the other terms. The further analysis is the same, and Cor. 2 still holds in the single block cipher setting
when Y 6= Z.

Y = Z. If the two halves of the image are the same, preimage for the compression function fMDC-4 can
be found in about 2n queries (cf. Sect. 1): one focuses on preimages with the same left and right halves
A = B, in which case it suffices to find A,C such that

E(E(A,C)⊕ C,A)⊕A = Y = Z.

We demonstrate that this weakness propagates through the iteration of the MDC-4 hash function,
resulting in an everywhere preimage attack for the MDC-4 hash function in 2n queries (on average). We
recall that everywhere preimage resistance is defined as the maximum advantage over all images, thus
including the weak images consisting of two identical halves. If we had opted for preimage resistance
where the challenge is randomly generated, this preimage attack succeeds only with small probability
as 2n out of 22n target images are weak.

The attack uses ideas from Knudsen et al. [11] to find preimages for MDC-2. It is a meet-in-the-
middle attack and at a high level works as follows. First, one constructs a tree with 2n leaves with root
(Y,Z). The edges in this tree correspond to evaluations of fMDC-4. In the general case, the construction
of this tree requires the adversary to find approximately 2n+1 preimages, but as turns out for fMDC-4

the workload is significantly lower. Then, starting from the initial value (F0, G0), one varies the message
input C to hit any of the 2n leaves. In more detail, the attack works as follows:

1. Fix any m0,m1 ∈ Zn2 such that X‖mb is a correct padding for any X ∈ Zn·n2 and b ∈ {0, 1};2
2. For b = 0, 1 operate as follows. For any A ∈ Zn2 query V ← E(A,mb) and W ← E(V ⊕mb, A). These

queries correspond to the evaluation fMDC-4(A,A,mb) = (W ⊕ A,W ⊕ A). Add the input-output
tuple ((A,A); (W ⊕A,W ⊕A)) to a list Lb;

3. Let (Z,Z) be the target image. On average, this item occurs once in each list L0, L1, which results in
two fMDC-4 preimages for (Z,Z). It may result in more than two fMDC-4 preimages if (Z,Z) occurs
multiple times in one of the lists. The same procedure can be iteratively executed for all resulting
preimages, until a tree of approximately 2n leaves is formed, with from each leave a path of n edges
to (Z,Z);3

4. Starting from initial value (F0, G0), vary m until fMDC-4(F0, G0,m) hits any of the 2n leaves.

Step 1 requires 2n+2 block cipher queries. Step 4 is a brute force attack and requires approximately
4 · (22n/2n) evaluations of E. In total, this attack requires approximately 2n+3 queries. The attack has
time and space complexity O(2n).

Acknowledgments. This work has been funded in part by the IAP Program P6/26 BCRYPT of
the Belgian State (Belgian Science Policy), in part by the European Commission through the ICT
program under contract ICT-2007-216676 ECRYPT II, and in part by the Research Council K.U.Leuven:
GOA TENSE. The author is supported by a Ph.D. Fellowship from the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

References

[1] Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving iterated hashing: ROX. In: Advances
in Cryptology - ASIACRYPT 2007. Lecture Notes in Computer Science, vol. 4833, pp. 130–146. Springer-Verlag,
Berlin (2007)

[2] Armknecht, F., Fleischmann, E., Krause, M., Lee, J., Stam, M., Steinberger, J.: The preimage security of double-
block-length compression functions. In: Advances in Cryptology - ASIACRYPT 2011. Lecture Notes in Computer
Science, vol. 7073, pp. 233–251. Springer-Verlag, Berlin (2011)

[3] Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions from
PGV. In: Advances in Cryptology - CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp. 320–335.
Springer-Verlag, Berlin (2002)

[4] Brachtl, B., Coppersmith, D., Hyden, M., Matyas, S., Meyer, C., Oseas, J., Pilpel, S., Schilling, M.: Data Authenti-
cation Using Modification Detection Codes Based on a Public One Way Encryption Function. U.S. Patent Number
4,908,861 (March 13, 1990)

[5] Damg̊ard, I.: A design principle for hash functions. In: Advances in Cryptology - CRYPTO ’89. Lecture Notes in
Computer Science, vol. 435, pp. 416–427. Springer-Verlag, Berlin (1990)

[6] Fleischmann, E., Forler, C., Wenzel, J., Lucks, S.: The collision security of MDC-4. Cryptology ePrint Archive, Report
2012/096 (2012)

[7] Fleischmann, E., Gorski, M., Lucks, S.: Security of cyclic double block length hash functions. In: IMA International
Conference 2009. Lecture Notes in Computer Science, vol. 5921, pp. 153–175. Springer-Verlag, Berlin (2009)

[8] Hirose, S.: Provably secure double-block-length hash functions in a black-box model. In: Information Security and
Cryptology 2004. Lecture Notes in Computer Science, vol. 3506, pp. 330–342. Springer-Verlag, Berlin (2005)

[9] Hirose, S.: Some plausible constructions of double-block-length hash functions. In: Fast Software Encryption 2006.
Lecture Notes in Computer Science, vol. 4047, pp. 210–225. Springer-Verlag, Berlin (2006)

[10] ISO/IEC 10118-2:2010. Information technology – Security techniques – Hash-functions – Part 2: Hash-functions using
an n-bit block cipher (1994, revised in 2010)

[11] Knudsen, L., Mendel, F., Rechberger, C., Thomsen, S.: Cryptanalysis of MDC-2. In: Advances in Cryptology -
EUROCRYPT 2009. Lecture Notes in Computer Science, vol. 5479, pp. 106–120. Springer-Verlag, Berlin (2009)

[12] Knudsen, L., Preneel, B.: Fast and secure hashing based on codes. In: Advances in Cryptology - CRYPTO ’97. Lecture
Notes in Computer Science, vol. 1294, pp. 485–498. Springer-Verlag, Berlin (1997)

[13] Lai, X., Massey, J.: Hash function based on block ciphers. In: Advances in Cryptology - EUROCRYPT ’92. Lecture
Notes in Computer Science, vol. 658, pp. 55–70. Springer-Verlag, Berlin (1992)

[14] Lee, J., Kwon, D.: The security of Abreast-DM in the ideal cipher model. Cryptology ePrint Archive, Report 2009/225
(2009)

[15] Lee, J., Stam, M., Steinberger, J.: The collision security of Tandem-DM in the ideal cipher model. Cryptology ePrint
Archive, Report 2010/409 (2010), full version of [16]

2 We assume the padding takes less than n bits.
3 Due to collisions in the lists L0, L1, the amount of 2n will usually not be reached. Elaborate statistical analysis shows

that the average number of leaves at distance n from the root (Z,Z) varies between 2n−1 and 2n.

[16] Lee, J., Stam, M., Steinberger, J.: The collision security of Tandem-DM in the ideal cipher model. In: Advances in
Cryptology - CRYPTO 2011. Lecture Notes in Computer Science, vol. 6841, pp. 561–577. Springer-Verlag, Berlin
(2011)

[17] Lee, J., Stam, M., Steinberger, J.: The preimage security of double-block-length compression functions. Cryptology
ePrint Archive, Report 2011/210 (2011)

[18] Matyas, S., Meyer, C., Oseas, J.: Generating strong one-way functions with cryptographic algorithm. IBM Techn.
Disclosure Bull. 27(10A), 5658–5659 (1985)

[19] Merkle, R.: One way hash functions and DES. In: Advances in Cryptology - CRYPTO ’89. Lecture Notes in Computer
Science, vol. 435, pp. 428–446. Springer-Verlag, Berlin (1990)

[20] Meyer, C., Schilling, M.: Secure program load with manipulation detection code. In: Proc. Securicom. pp. 111–130
(1988)

[21] Özen, O., Stam, M.: Another glance at double-length hashing. In: IMA International Conference 2009. Lecture Notes
in Computer Science, vol. 5921, pp. 176–201. Springer-Verlag, Berlin (2009)

[22] Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and separations for preim-
age resistance, second-preimage resistance, and collision resistance. In: Fast Software Encryption 2004. Lecture Notes
in Computer Science, vol. 3017, pp. 371–388. Springer-Verlag, Berlin (2004)

[23] Steinberger, J.: The collision intractability of MDC-2 in the ideal-cipher model. In: Advances in Cryptology - EU-
ROCRYPT 2007. Lecture Notes in Computer Science, vol. 4515, pp. 34–51. Springer-Verlag, Berlin (2007)

A Appendix to Sect. 3.1: Proofs of Lems. 2-7

In this appendix, we prove Lems. 2-6 and Lem. 7 of Sect. 3.1. The proofs of Lems. 2-6 are supported
by Figs. 7-10, and for these figures the same convention is used as for Fig. 4. In particular, the queries
corresponding to locations a and !a are required to be different, and the same for the queries at positions
(b, !b) and (c, !c).

Fig. 7. Configuration col0001(Q) of Lem. 2. We
require (A1, C1) 6= (A2, C2).

Fig. 8. Configuration col0011(Q) of Lem. 3. We
require C1 6= C2.

Fig. 9. Configuration col0100(Q) of Lem. 4. We
require A1 6= A2.

Fig. 10. Configuration col0101(Q) of Lem. 5. We
require A1 6= A2.

A.1 Proof of Lem. 2

The cases are equivalent by symmetry, and we consider col0001(Qq) only. A visualization of configuration
col0001(Qq) can be found in Fig. 7. For the basic proof idea, we refer to the proof of Lem. 1. Let
i ∈ {1, . . . , q}. As in Lem. 1, we assume ¬help(Qi) and analyze the probability the i-th query makes
col0001(Qi) satisfied.

Without loss of generality (by symmetry), the i-th query is either a query to E1 and occurs at position
1tl, or it is a query to E2 and occurs at position 1tr and/or 1bl. We distinguish among these four cases.
It may be the case that the i-th query also occurs in the right word, but these cases are automatically
included.

Query occurs at 1tl. By ¬help1(Qi), there are ≤ t1 choices for (1bl, 2bl). For any of these ≤ t1
choices, let K1bl and K2bl be the key inputs corresponding to positions 1bl and 2bl. By ¬help3(Qi), there
are ≤ t2 choices for 2tl. For any of these ≤ t1t2 choices 2tl, we obtain a different X. The i-th query is
successful only if its XOR-output equals X‖Kr

1bl, which happens with probability at most 1
2n−q . The

total success probability is at most t1t2
2n−q .

Query occurs at 1tr but not at 1bl. By ¬help1(Qi), there are ≤ t1 choices for (1bl, 2bl). For any
of these ≤ t1 choices, let K1bl and K2bl be the key inputs corresponding to positions 1bl and 2bl. By
¬help2(Qi), there are ≤ t2 choices for 2tr. For any of these ≤ t1t2 choices 2tr, we obtain a different Y .
The i-th query is successful only if its XOR-output equals K l

1bl‖Y , which happens with probability at
most 1

2n−q . The total success probability is at most t1t2
2n−q .

Query occurs at 1bl but not at 1tr: inverse query x ← E−12 (K, y). By ¬help3(Qi), there are
≤ t2 choices for 1tl. For any of these ≤ t2 choices, let K1tl be the key input corresponding to position
1tl. The i-th query is successful only if x = K1tl, which happens with probability at most 1

2n−q . The

total success probability is at most t2
2n−q .

Query occurs at 1bl but not at 1tr: forward query y ← E2(K,x). By ¬help2(Qi), there are
≤ t2 choices for 1tr. For any of these ≤ t2 choices 1tr, the query at position 1tl is uniquely determined
(it requires key input x and message input C1 defined by query 1tr), and so are the strings (B,X). By
¬help2(Qi), there are ≤ t2 choices for 2tl. For any of these ≤ t22 choices 2tl, the query at position 2tr is
uniquely determined (it requires key input B and message input C2 defined by query 2tl). Consequently,
the query at position 2br is uniquely determined, and so is the XOR-output Z of 2br. The i-th query
is successful only if its XOR-output equals this value Z, which happens with probability at most 1

2n−q .

The total success probability is at most
t22

2n−q .

Query occurs at 1tr and 1bl. Let K be the key input for the i-th query. As the query occurs at
both positions, we require K l = Z l, which fixes Z l. By ¬help2(Qi), there are ≤ t2 choices for 2bl. For
any of these ≤ t2 choices 2bl, we obtain a different Z. The i-th query is successful only if its XOR-output
equals this value Z, which happens with probability at most 1

2n−q . The total success probability is at

most t2
2n−q .

The i-th query is successful with probability at most
t1t2+t22
2n−q . The claimed bound is obtained by summing

over i = 1, . . . , q.

A.2 Proof of Lem. 3

A visualization of configuration col0011(Qq) can be found in Fig. 8. For the basic proof idea, we refer to
the proof of Lem. 1. Let i ∈ {1, . . . , q}. As in Lem. 1, we assume ¬help(Qi) and analyze the probability
the i-th query makes col0011(Qi) satisfied.

Without loss of generality (by symmetry), the i-th query is a query to E1 and occurs at position 1tl.
It may be the case that the i-th query also occurs in the right word, but this case is automatically
included.

Query occurs at 1tl. By ¬help1(Qi), there are ≤ t1 choices for (1tr, 2tr). For any of these ≤ t1
choices, as A is fixed (it equals the key input for the i-th query) the query at position 2tl is uniquely

determined, and so is the XOR-output Y of 2tl. The i-th query is successful only if its XOR-output
equals this value Y , which happens with probability at most 1

2n−q . The total success probability is at

most t1
2n−q .

The claimed bound is obtained by summing over i = 1, . . . , q.

A.3 Proof of Lem. 4

The cases are equivalent by symmetry, and we consider col0100(Qq) only. A visualization of configuration
col0100(Qq) can be found in Fig. 9. For the basic proof idea, we refer to the proof of Lem. 1. Let
i ∈ {1, . . . , q}. As in Lem. 1, we assume ¬help(Qi) and analyze the probability the i-th query makes
col0100(Qi) satisfied.

Without loss of generality (by symmetry), the i-th query is either a query to E2 and occurs at position
1bl, or it is a query to E1 and occurs at position 1tl and/or 1br. We distinguish among these four cases.
It may be the case that the i-th query also occurs in the right word, but these cases are automatically
included.

Query occurs at 1bl. By ¬help1(Qi), there are ≤ t1 choices for (1br, 2br). For any of these ≤ t1
choices, let K2br be the key input corresponding to position 2br. By ¬help2(Qi), there are ≤ t2 choices
for 2tl. For any of these ≤ t1t2 choices 2tl, the query at position 2bl is uniquely determined, and so is the
XOR-output Y of 2bl. The i-th query is successful only if its XOR-output equals this value Y , which
happens with probability at most 1

2n−q . The total success probability is at most t1t2
2n−q .

Query occurs at 1tl but not at 1br. We note that the query at position 1tr = 2tr is not depicted
in Fig. 9 but is defined as a query (2, B, C,W‖X⊕C). By ¬help1(Qi), there are ≤ t1 choices for queries
at positions (1br, 2br). For any of these ≤ t1 choices, let K1br and K2br be the key inputs corresponding
to positions 1br and 2br. By ¬help2(Qi), there are ≤ t2 choices for 2tl. For any of these ≤ t1t2 choices 2tl,
the query at position 1tr = 2tr and consequently the query at position 2bl is uniquely determined, and
so is the XOR-output Y of 2bl. By ¬help4(Qi), there are ≤ t3 choices for 1bl. For any of these ≤ t1t2t3
choices 1bl, let K1bl be the key input corresponding to position 1bl. The i-th query is successful only if
its XOR-output equals K l

1br‖Kr
1bl, which happens with probability at most 1

2n−q . The total probability

is at most t1t2t3
2n−q .

Query occurs at 1br but not at 1tl. By ¬help1(Qi), there are ≤ t1 choices for (1bl, 2bl). For any
of these ≤ t1 choices, let K2bl be the key input corresponding to position 2bl. By ¬help3(Qi), there are
≤ t2 choices for 2tl. For any of these ≤ t1t2 choices 2tl, the key input to the query at position 2br, say
K2br, is uniquely determined. Suppose the i-th query is a forward query y ← E1(K,x) (exactly the same
reasoning applies to inverse queries). If K2br = K, the queries at positions 1br and 2br must be the
same and the collision is invalid. Therefore, we assume K2br 6= K. For the key K2br, let (K2br, x2br, y2br)
be any query in the query history. The i-th query makes the configuration satisfied if x2br = x and
x2br ⊕ y2br = x⊕ y, or more concretely if

x2br = x and y2br = y. (11)

This means that, irrespectively of whether the i-th query is a forward or inverse query, the query at
position 2br is uniquely determined. The i-th query is successful only if it satisfies (11), which happens
with probability at most 1

2n−q . The total probability is at most t1t2
2n−q .

Query occurs at 1tl and 1br. Let K be the key input for the i-th query. As the query occurs at
both positions, we require K l = Z l, which fixes Z l. By ¬help2(Qi), there are ≤ t2 choices for 2br. For
any of these ≤ t2 choices 2br, we obtain a different Z. The i-th query is successful only if its XOR-output
equals this value Z, which happens with probability at most 1

2n−q . The total success probability is at

most t2
2n−q .

The i-th query is successful with probability at most t1t2t3
2n−q . The claimed bound is obtained by summing

over i = 1, . . . , q.

A.4 Proof of Lem. 5

The cases are equivalent by symmetry, and we consider col0101(Qq) only. A visualization of configuration
col0101(Qq) can be found in Fig. 10. For the basic proof idea, we refer to the proof of Lem. 1. Let
i ∈ {1, . . . , q}. As in Lem. 1, we assume ¬help(Qi) and analyze the probability the i-th query makes
col0101(Qi) satisfied.

Without loss of generality (by symmetry), the i-th query is either a query to E1 and occurs at position
1tl, or it is a query to E2 and occurs at position 1bl. We distinguish among these two cases. It may be
the case that the i-th query also occurs in the right word, but these cases are automatically included.

Query occurs at 1tl. By ¬help1(Qi), there are ≤ t1 choices for (1bl, 2bl). For any of these ≤ t1
choices, let K1bl and K2bl be the key inputs corresponding to positions 1bl and 2bl. By ¬help3(Qi), there
are ≤ t2 choices for 2tl. For any of these ≤ t1t2 choices 2tl, we obtain a different Y . The i-th query is
successful only if its XOR-output equals Y ‖Kr

1bl, which happens with probability at most 1
2n−q . The

total success probability is at most t1t2
2n−q .

Query occurs at 1bl. Let K be the key input for the i-th query. By ¬help3(Qi), there are ≤ t2
choices for 1tl. For any of these ≤ t2 choices, we obtain a different Y . By ¬help2(Qi), there are ≤ t2
choices for 2tl. For any of these ≤ t22 choices 2tl, the query at position 2bl is uniquely determined, and
so is the XOR-output Z of 2bl. The i-th query is successful only if its XOR-output equals this value Z,

which happens with probability at most 1
2n−q . The total success probability is at most

t22
2n−q .

The i-th query is successful with probability at most
t1t2+t22
2n−q . The claimed bound is obtained by summing

over i = 1, . . . , q.

A.5 Proof of Lem. 6

If 1tl = 2tl and 1tr = 2tr, we obtain (A1, B1, C1) = (A2, B2, C2) in the configuration of Fig. 3, and the
collision is invalid. The same observation applies if (1tl, 1br) = (2tl, 2br) or (1tr, 1bl) = (2tr, 2bl).

A.6 Proof of Lem. 7

It suffices to consider the events Pr (helpk(Qq)) (k = 1, . . . , 4) separately.
help1(Qq). We copy the approach of Steinberger [23]. For i 6= j, the two queries (Ki, xi, yi) and (Kj , xj , yi)
have the same XOR-output with probability at most 1

2n−q . Hence, the expected value E(xi⊕yi = xj⊕yj)
is at most 1

2n−q , and consequently

E
({

(Ki, xi, yi), (Kj , xj , yj) ∈ Qq
∣∣ i 6= j ∧ xi ⊕ yi = xj ⊕ yj

})
≤
∑
i 6=j

1

2n − q
≤ q2

2n − q
.

By Markov’s inequality, we obtain

Pr (help1(Qq)) ≤
q2

t1(2n − q)
. (12)

helpk(Qq) for k ∈ {2, 3}. The cases are equivalent by symmetry, and we consider help2(Qq) only.

Let z ∈ Zn/22 . Consider the i-th query (Ki, xi, yi). This query makes equation (xi ⊕ yi)l = z satisfied

with probability at most 2n/2

2n−q . More than t2 queries result in a solution with probability at most(
q
t2

) (
2n/2

2n−q

)t2
≤
(

eq2n/2

t2(2n−q)

)t2
, where we use Stirling’s approximation (t! ≥ (t/e)t for any t). Considering

any possible choice for z, we obtain for k = 2, 3:

Pr (helpk(Qq)) ≤ 2n/2

(
eq2n/2

t2(2n − q)

)t2
. (13)

help4(Qq). A similar analysis as for help2(Qq) results in the following bound:

Pr (help4(Qq)) ≤ 2n
(

eq

t3(2n − q)

)t3
. (14)

The claim is obtained by adding (12-14).

B Appendix to Sect. 4.1: Proofs of Lems. 8-9

B.1 Proof of Lem. 8

We consider the probability of the adversary finding a solution to configuration pre(Qq) of Fig. 6, in
such a way that Qq satisfies ¬help(Qq). For a set of solutions complying with configuration pre(Qq), it
may be the case that two queries are the same or belong to the same super query. We call a (normal or
super) query winning if it makes the configuration satisfied for any other queries in the query history
strictly before this winning query is made. Note that a winning query can contribute to at most two
positions, due to the usage of different block ciphers. We distinguish among the following cases.

1. The winning query contributes to exactly one position of configuration pre(Qq);
2. The winning query contributes to exactly two positions of configuration pre(Qq) (either positions

(tl, br) or (tr, bl)).

Case 1. In this case, the winning query may be a normal query or a super query. As in [15, 17],
we make use of “wish lists” for the analysis of this case. Intuitively, a wish list is a continuously
updated sequence of query tuples that would make configuration pre(Q) satisfied. During the attack
of the adversary, we maintain four initially empty wish lists Wtl, Wtr, Wbl, Wbr, corresponding to the
four positions of configuration pre(Q). If a query is made, the wish lists are updated according to the
following requirements:

– If the query fits pretl(Q) of Fig. 11 for any two other queries in the query history, the corresponding
tuple (1, A,C, (W‖X)⊕ C) is added to Wtl;

– If the query fits pretr(Q) of Fig. 11 for any two other queries in the query history, the corresponding
tuple (2, B,C, (W‖X)⊕ C) is added to Wtr;

– If the query fits prebl(Q) of Fig. 11 for any two other queries in the query history, the corresponding
tuple (2,W‖X,A, Y ⊕A) is added to Wbl;

– If the query fits prebr(Q) of Fig. 11 for any two other queries in the query history, the corresponding
tuple (1,W‖X,B,Z ⊕B) is added to Wbr.

Fig. 11. From left to right: configurations pretl(Q), pretr(Q), prebl(Q), and prebr(Q).

As in this case we consider the winning query to be different from all other queries made before, we
can assume a query never adds itself to a wish list. It is clear that the adversary finds a preimage for
MDC-4 (in this case) only if it makes a query that is already a member of any of the wish lists. Suppose
the adversary makes a query E1(K,x) (either as a normal query or as a part of a super query), and
suppose (1,K, x, y) ∈ Wtl ∪Wbr for some y. Then, we say that (1,K, x, y) is wished for, and the wish is
granted if the response of the block cipher is y. Similar naming is used for inverse queries to E1 and for
queries to E2. Notice that the adversary may wish for multiple queries at the same time, but this does
not invalidate the analysis. Additionally, each wish list element can be wished for only once. In order to
find a preimage, the adversary needs at least a wish to be granted. Let (k,K, x, y) be an element in any
of the wish lists, and suppose the adversary makes a query Ek(K,x) or E−1k (K, y). In case of normal

queries, the answer is generated from a set of size at least 2n−1, and the wish is granted with probability
at most 1

2n−1 . In case the query is a part of a super query, the answer is generated from a set of size
exactly 2n−1 and the wish is also granted with probability at most 1

2n−1 . Because each element of the
wish lists can be wished for only once, the adversary finds a preimage with probability at most

|Wtl|+ |Wtr|+ |Wbl|+ |Wbr|
2n−1

.

It remains to bound the sizes of the wish lists after q queries. Configuration pretl(Qq) of Fig. 11 has ≤ t2
solutions for each bl and br (by ¬help3(Qq)), and consequently ≤ t2 solutions for tr (by ¬help3(Qq)).
Thus |Wtl| ≤ t32, and similarly we obtain |Wtr| ≤ t32. Configuration prebl(Qq) of Fig. 11 has ≤ t2 solutions
for br (by ¬help3(Qq)), and consequently ≤ t1 solutions for tl (by ¬help1(Qq)). For any of these ≤ t1t2
choices, the query at position tr is uniquely determined (if it exists at all). Thus |Wbl| ≤ t1t2, and
similarly |Wbr| ≤ t1t2 (using ¬help2(Qq)). Hence, in this case a preimage is found with probability at

most
4t32+4t1t2

2n .

Case 2. We make the following distinction, and consider the two sub-cases separately.

1. The contributed queries are different for both positions;

2. The contributed queries are the same for both positions.

Case 2.1. In this particular case, the winning query must be a super query. Similar to case 1, we
make use of wish lists, but now for the specific case that a super query contributes two queries to a
configuration. Note that if a super query contributes to positions (tl, br), the left half of the XOR-output
of tl should equal the left half of the key input to br, which is the same as the key input to tl (similar
for super queries contributing to (tr, bl)). During the attack of the adversary, we maintain two initially
empty wish lists W1, W2, corresponding to super queries to the block ciphers E1 and E2. If a query is
made by the adversary, the wish lists are updated according to the following requirements:

– If the query fits pre1(Q) of Fig. 12 for any query in the query history, the corresponding tuple
(1, V ‖X,C, (V ‖W)⊕ C,B,Z ⊕B) is added to W1;

– If the query fits pre2(Q) of Fig. 12 for any query in the query history, the corresponding tuple
(2, V ‖X,C, (V ‖W)⊕ C,A, Y ⊕A) is added to W2.

Of these tuples, the first element identifies the corresponding block cipher, the second element the key
for which the super query is made, the third and fourth element define the input and output of the
cipher in the top row (either left or right), and the fifth and sixth element define the input and output
of the cipher in the bottom row (either right or left). A query trivially does not add itself to the wish
list as a query to E1 only affects W2 and a query to E2 only affects W1. Suppose the adversary makes
a super query to Ek for key K, and suppose (k,K, xtl, ytl, xbr, ybr) ∈ W1 for some xtl, ytl, xbr, ybr. This
wish is then granted if the response satisfies ytl = Ek(K,xtl) and ybr = Ek(K,xbr). In order to find a
preimage, the adversary needs at least a wish to be granted. As the answers are generated from a set of
size exactly 2n−1, a wish is granted with probability at most 1

2n−1(2n−1−1) . Because each element of the

wish lists can be wished for only once, the adversary finds a preimage with probability at most

|W1|+ |W2|
2n−1(2n−1 − 1)

.

It remains to bound the sizes of the wish lists after q queries. Configuration pre1(Qq) has ≤ t2 solutions
for bl (by ¬help3(Qq)), and at most ≤ t1 solutions for tr (by ¬help1(Qq)). Thus, |W1| ≤ t1t2 and similarly
|W2| ≤ t1t2. Hence, in this case a preimage is found with probability at most 16t1t2

22n
.

Case 2.2. In this case, the winning query may be a normal query or a super query. We first consider the
winning query to contribute to tl = br. Suppose the adversary makes a query y ← E1(K,x) (either as a
normal query or as a part of a super query). As it occurs at position br we require x⊕ y = Z (because
of this, the analysis for inverse queries is equivalent). Additionally, the query at position tr should have
key input as well as message input equal to x. This particularly means that the key input K to tl = br

Fig. 12. Configuration pre1(Q) (left) and pre2(Q) (right).

must satisfy K = Z l‖(E2(x, x) ⊕ x)r. By construction of the queries at positions bl, br, the adversary
can only succeed if it ever finds an x ∈ Zn2 that satisfies

E2((E2(x, x)⊕ x)l‖Zr, Z l‖(E2(x, x)⊕ x)r)⊕ Z l‖(E2(x, x)⊕ x)r = Y,

E1(Z
l‖(E2(x, x)⊕ x)r, x)⊕ x = Z.

As Y and Z are fixed, the adversary finds such x with probability at most 2n

2n−12n−1 = 4
2n . The same

probability bound is obtained for winning queries to appear at (tr, bl). Consequently, a preimage is found
in this case with probability at most 8

2n .

The claim is obtained by summing the bounds obtained for the two cases.

B.2 Proof of Lem. 9

It suffices to consider the events Pr (helpk(Qq)) (k = 1, 2, 3) separately.
helpk(Qq) for k ∈ {1, 2}. The cases are equivalent by symmetry, and we consider help1(Qq) only. Let

z ∈ Zn/22 . Denote by Q(n)
q the restriction of Qq to normal queries, and by Q(s)

q the restriction of Qq to
queries that belong to super queries. In order for Qq to have more than t1 solutions to (xi⊕ yi)l = z, at
least one of the following criteria needs to hold:

1. Q(n)
q has more than t1/2 solutions;

2. Q(s)
q has more than t1/2 solutions.

We consider these two scenarios separately. In case of normal queries, each query (Ki, xi, yi) is answered
with a value generated at random from a set of size at least 2n−1, and hence it satisfies (xi ⊕ yi)l = z

with probability at most 2n/2

2n−1 = 2
2n/2 . More than t1/2 queries result in a solution with probability at

most
(q
t1/2

) (
2

2n/2

)t1/2
≤
(

4eq
t12n/2

)t1/2
.

The analysis for super queries is more elaborate. In order for Q(s)
q to have more than t1/2 solutions,

as at most q/2n−1 super queries occur, at least one of the super queries needs to provide more than
t′1 := t1

2q/2n−1 = t12n

4q solutions. Consider any super query, consisting of 2n−1 queries. It provides more

than t′1 solutions with probability at most

(
2n−1

t′1

) t′1−1∏
j=0

2n/2

2n−1 − j
≤
(

2n−1

t′1

)(
2n/2

2n−1 − t′1

)t′1
≤

(
e2n−12n/2

t′1(2
n−1 − t′1)

)t′1
.

Provided t1 ≤ q, we have t′1 = t12n

4q ≤ 2n−2, and thus 1
2n−1−t′1

≤ 1
2n−2 . Consequently, this super query

adds more than t12n

4q solutions with probability at most
(

8eq
t12n/2

) t12
n

4q
. In order to cover any super query,

we need to multiply this probability with q/2n−1.

Considering any possibly choice for z, we obtain for k = 1, 2:

Pr (helpk(Qq)) ≤ 2n/2
(

4eq

t12n/2

)t1/2
+ 2n/2 · q

2n−1

(
8eq

t12n/2

) t12
n

4q

. (15)

help3(Qq). A similar analysis as for help1(Qq) results in the following bound:

Pr (help3(Qq)) ≤ 2n
(

4eq

t22n

)t2/2
+ 2n · q

2n−1

(
8eq

t22n

) t22
n

4q

. (16)

The claim is obtained by adding (15) (twice) and (16).

C Appendix to Sect. 5.1: Proof of Thm. 3

In this appendix, we will extend the proof of Thm. 1 to Thm. 3. To to so, as explained in Sect. 5.1 we
essentially only need to consider the probability that an adversary finds an fMDC-4 evaluation where the
input state consists of two different halves and the output state consists of two the same halves. The
formal treatment of this is more elaborate.

We consider any adversary making q queries to its oracle E = E1 = E2, which tries to find a collision
for MDC-4. Denote by (F0, G0) the initial state value of MDC-4, where F0 6= G0. Suppose the adversary
finds a collision, i.e. two lists

(F0, G0)
m1−−→ (F1, G1)

m2−−→ · · · mk−−→ (Fk, Gk),

(F0, G0)
m′1−−→ (F ′1, G

′
1)

m′2−−→ · · ·
m′k−−→ (F ′k′ , G

′
k′)

of internal state values of the two evaluations, where k, k′ ≥ 1 and (Fk, Gk) = (F ′k′ , G
′
k′). The collision

is non-trivial if k 6= k′ or if (Fi, Gi,mi) 6= (F ′i , G
′
i,m

′
i) for some i = 1, . . . , k = k′, and we consider

non-trivial collisions only. If the adversary finds a collision of this form, we can distinguish between the
following two cases:

(1) Fi 6= Gi for all i ∈ {1, . . . , k} and F ′i 6= G′i for all i ∈ {1, . . . , k′};
(2) Fi = Gi for some i ∈ {1, . . . , k} or F ′i = G′i for some i ∈ {1, . . . , k′}.

Suppose the adversary finds a collision in case (1). This implies (by basic collision security preservation
[1]) the adversary necessarily needs to obtain a query history Qq of size q that satisfies configuration
col′(Qq) of Fig. 13. Note that col′(Qq) differs from col(Qq) of Fig. 3 only in the fact that A1 6= B1 and
A2 6= B2 (and that the function employs one block cipher rather than two).

On the other hand, suppose the adversary finds a collision in case (2). Without loss of generality,
a state-half collision occurs in the first word. As F0 6= G0, there exists an i such that Fi = Gi but
Fi−1 6= Gi−1. This means that in this case the adversary necessarily needs to obtain a query history
Qq of size q that satisfies configuration statecol′(Qq) of Fig. 14. Here, Z represents Fi = Gi and (A,B)
represents (Fi−1, Gi−1).

Concluding, we find

advcol
MDC-4(q) ≤ Pr

(
col′(Qq) ∨ statecol′(Qq)

)
, (17)

and we consider the probability of obtaining any query history Qq that satisfies configuration col′(Qq)
or statecol′(Qq). As in Sect. 3.1, in these configurations we have omitted the shifting at the end. We
stress that this does not harm the security analysis. We use the same block cipher labeling as before,
i.e. in Fig. 13 the block ciphers are labeled 1tl, . . . , 2br and in Fig. 14 they are labeled tl, . . . , br.

To analyze the probability of the adversary finding a query history Qq that satisfies configuration
col′(Qq) or statecol′(Qq), we employ the helping event help(Qq) from Sect. 3.1. We obtain for (17):

Pr
(
col′(Qq) ∨ statecol′(Qq)

)
≤ Pr

(
col′(Qq) ∧ ¬help(Qq)

)
+

Pr
(
statecol′(Qq) ∧ ¬help(Qq)

)
+ Pr (help(Qq)) .

Fig. 13. Configuration col′(Q). We require (A1, B1, C1) 6=
(A2, B2, C2), A1 6= B1, and A2 6= B2.

Fig. 14. Configuration statecol′(Q). We
require A 6= B.

As before, col′(Qq) is separated into 16 sub-configurations col′αtlαtrαblαbr
(Q) for αtl, αtr, αbl, αbr ∈ {0, 1}

(cf. (4)), and we eventually obtain the following bound on advcol
MDC-4(q):

advcol
MDC-4(q) ≤

∑
αtl,αtr,αbl,
αbr∈{0,1}

Pr
(
col′αtlαtrαblαbr

(Qq) ∧ ¬help(Qq)
)

+

Pr
(
statecol′(Qq) ∧ ¬help(Qq)

)
+ Pr (help(Qq)) . (18)

Probability Pr (help(Qq)) is already bounded in Lem. 7 of Sect. 3.1. The evaluations of the probabilities
constituting to the sum of (18) are different from the analysis in Lems. 1-6 of Sect. 3.1, in the sense
that some additional cases need to be analyzed. In Lem. 10 we prove that the same bounds still hold
for col′(Qq). The probability bound on statecol′(Qq) ∧ ¬help(Qq) is analyzed in Lem. 11.

Lemma 10. Lems. 1-6 still hold for colαtlαtrαblαbr
(Qq) replaced by col′αtlαtrαblαbr

(Qq).

Proof. Configurations col′αtlαtrαblαbr
(Qq) are the same as colαtlαtrαblαbr

(Qq) of Figs. 4 and 7-10 with the
additional restriction that A1 6= B1 and A2 6= B2 (and that only one block cipher is used).

For the basic proof idea, we refer to the proof of Lem. 1. The idea is for the i-th query, for i ∈
{1, . . . , q}, to assume ¬help(Qi) and to analyze the probability the i-th query makes col′αtlαtrαblαbr

(Qi)
satisfied. Then, we consider the maximal success probability of the i-th query, maximized over all possible
(combinations of) positions this query can occur. Given that now the block ciphers E1, E2 are the same,
additional (combinations of) positions have to be analyzed, and we point out the differences.

– col′0000(Qq). Without loss of generality (by symmetry), the i-th query occurs in the left word. It
may be the case that the i-th query also occurs in the right word, but as becomes clear from the
proof, these cases are automatically included. Note that, as A1 6= B1, it can impossibly occur at
(1tl, 1tr) or (1bl, 1br). Therefore, without loss of generality it suffices to analyze the cases the query
occurs at the following positions: 1tl only, 1br only, (1tl, 1br) only, or (1tl, 1bl) only. For the first three
cases, the analysis is identical to Lem. 1. Remains to consider the case the query occurs at (1tl, 1bl)
but not at (1tr, 1br).
Let K be the key input for the i-th query. As the query occurs at both positions, we require Kr = Y r,
which fixes Y r. By ¬help3(Qi), there are ≤ t2 choices for 2bl. For any of these ≤ t2 choices 2bl, we
obtain a different Y . The i-th query is successful only if its XOR-output equals this value Y , which
happens with probability at most 1

2n−q . The total success probability is at most t2
2n−q .

– col′0001(Qq) and col′0010(Qq). Without loss of generality (by symmetry), the i-th query occurs
at the following positions: 1tl only, 1tr only, 1bl only, (1tr, 1bl) only, or (1tl, 1bl) only. For the first
four cases, the analysis is identical to Lem. 2. For the remaining case, the analysis for configuration
col′0000(Qq) can be copied with Y replaced by Z.

– col′0011(Qq). Configuration col′0011(Qq) is the same as col0011(Qq) of Fig. 7 with the additional
restriction that A 6= B. As a consequence, a winning query cannot occur at positions (1tl, 1tr) and
the proof of Lem. 3 directly carries over.

– col′0100(Qq) and col′1000(Qq). Without loss of generality (by symmetry), the i-th query occurs
at the following positions: 1tl only, 1bl only, 1br only, (1tl, 1br) only, or (1tl, 1bl) only. For the first
four cases, the analysis is identical to Lem. 4. For the remaining case, the analysis for configuration
col′0000(Qq) can be copied.

– col′0101(Qq) and col′1010(Qq). Without loss of generality (by symmetry), the i-th query occurs at
the following positions: 1tl only, 1bl only, or (1tl, 1bl) only. For the first two cases, the analysis is
identical to Lem. 5. For the remaining case, the analysis for configuration col′0000(Qq) can be copied
with Y replaced by Z.

– col′αtlαtrαblαbr
(Qq) for αtlαtrαblαbr ∈ {11 ∗ ∗, 1 ∗ ∗1, ∗11∗}. See Lem. 6.

In any case, the additional cases do not influence the obtained (maximized) bound, and the same final
bounds apply. ut

Lemma 11. Pr
(
statecol′(Qq) ∧ ¬help(Qq)

)
≤ (t1+t22)q

2n−q .

Proof. We consider configuration statecol′(Qq) of Fig. 14. The proof idea is the same as the proof of
Lem. 1. Let i ∈ {1, . . . , q}. As in Lem. 1, we assume ¬help(Qi) and analyze the probability the i-th
query makes statecol′(Qi) satisfied.

Recall that the positions in Fig. 14 are simply referred to as tl, tr, bl, br, without a leading 1. Without
loss of generality (by symmetry), the i-th query occurs at the following positions: tl only, bl only, (tl, br)
only, or (tl, bl) only. Note that, as A 6= B, it can impossibly occur at (tl, tr) or (bl, br).

Query occurs at tl but not at (tr, bl, br). By ¬help1(Qi), there are ≤ t1 choices for (bl, br). For
any of these ≤ t1 choices, let Kbl and Kbr be the key inputs corresponding to positions bl and br. The
i-th query is successful only if its XOR-output equals K l

br‖Kr
bl, which happens with probability at most

1
2n−q . The total success probability is at most t1

2n−q .
Query occurs at bl but not at (tl, tr, br). Let K be the key input for the i-th query. By ¬help2(Qi)

and ¬help3(Qi), there are ≤ t2 choices for tl and ≤ t2 choices for tr. For any of these ≤ t22 choices, the
query at position br is uniquely determined, and so is the XOR-output Z of br. The i-th query is
successful only if its XOR-output equals this value Z, which happens with probability at most 1

2n−q .

The total success probability is at most
t22

2n−q .
Query occurs at (tl, br) but not at (tr, bl). Let K be the key input for the i-th query. As the

query occurs at both positions, we require K l = Z l, which fixes Z l. By ¬help2(Qi), there are ≤ t2
choices for bl. For any of these ≤ t2 choices bl, we obtain a different Z. The i-th query is successful only
if its XOR-output equals this value Z, which happens with probability at most 1

2n−q . The total success

probability is at most t2
2n−q .

Query occurs at (tl, bl) but not at (tr, br). Let K be the key input for the i-th query. As the
query occurs at both positions, we require Kr = Zr, which fixes Zr. By ¬help3(Qi), there are ≤ t2
choices for br. For any of these ≤ t2 choices br, we obtain a different Z. The i-th query is successful only
if its XOR-output equals this value Z, which happens with probability at most 1

2n−q . The total success

probability is at most t2
2n−q .

The i-th query is successful with probability at most
t1+t22
2n−q . The claimed bound is obtained by summing

over i = 1, . . . , q. ut

We are ready to finish the proof of Thm. 3. From (18) and Lems. 7, 10, and 11 we find:

advcol
MDC-4(q) ≤

(t1 + 4t1t2 + 3t1t2t3 + 4t22)q

2n − q
+

(t1 + t22)q

2n − q
+

q2

t1(2n − q)
+ 2 · 2n/2

(
eq2n/2

t2(2n − q)

)t2
+ 2n

(
eq

t3(2n − q)

)t3
,

where t1, t2, t3 > 0 are integral. The result of Thm. 3 is obtained by observing that 2n − q > 2n−1 for
q < 2n−1.

D Appendix to Sect. 5.2: Proof of Thm. 4

The proof of Thm. 4 follows the analysis of Thm. 2 in Sect. 4.1. We consider any adversary making q
queries to its oracle E = E1 = E2, which tries to find a preimage for fMDC-4. Let (Y, Z) ∈ Z2n

2 with
Y 6= Z be the point to invert, chosen by the adversary prior to making any query. Finding a preimage
for (Y, Z) corresponds to obtaining a query history Qq of size q that satisfies configuration pre′(Qq) of
Fig. 15. In other words,

adv
epre(6=)
fMDC-4

(q) = Pr
(
pre′(Qq)

)
, (19)

and we consider the probability of obtaining any query history Qq that satisfies configuration pre′(Qq).
Note that pre′(Qq) differs from pre(Qq) of Fig. 6 only in the fact that Y 6= Z (and that the function
employs one block cipher rather than two). We use the same convention for the figures as is used in
Sect. 4.1.

Fig. 15. Configuration pre′(Q). We have Y 6= Z.

As before, we use the notion of free super queries, and we refer to Sect. 4.1 for a formalization of
them. We employ the helping event help(Qq) from Sect. 4.1. We obtain for (19):

Pr
(
pre′(Qq)

)
≤ Pr

(
pre′(Qq) ∧ ¬help(Qq)

)
+ Pr (help(Qq)) . (20)

Probability Pr (help(Qq)) is already bounded in Lem. 9 of Sect. 4.1. In Lem. 12, we bound probability
Pr (pre′(Qq) ∧ ¬help(Qq)).

Lemma 12. Pr (pre′(Qq) ∧ ¬help(Qq)) ≤
4t32+4t1t2+20+4·2n/2

2n + 16t1t2+24t1t22n/2

22n
+ 64q

23n
.

Proof. The proof follows the analysis of Lem. 8. We make the following distinction:

1. The winning query contributes to exactly one position of configuration pre′(Qq);
2. The winning query contributes to exactly two positions of configuration pre′(Qq);
3. The winning query contributes to exactly three positions of configuration pre′(Qq).

Note that a winning query cannot occur at all four positions: if this would be the case, we would have
A = B and thus Y = Z. In particular in the remainder of the proof we will use that a winning normal
query cannot occur at positions (bl, br), and a winning query (normal or super) cannot contribute at
positions (tl, tr).

Case 1. The analysis of Lem. 8 carries over; a preimage is found with probability at most
4t32+4t1t2

2n .

Case 2. We make the following distinction, and consider the two sub-cases separately.

1. The contributed queries are different for both positions;
2. The contributed queries are the same for both positions.

Case 2.1. We follow the analysis of case 2.1 for Lem. 8 (App. B). In this case, the winning query must
be a super query. As a super query cannot contribute to (tl, tr), it can only contribute to positions (tl, br),
(tr, bl), (tl, bl), (tr, br), or (bl, br). The first two cases are already covered in the two wish lists W1,W2

of Lem. 8, with the minor exception that the block cipher indices are redundant. We introduce three
extra wish lists for queries contributing in the latter three cases. Note that if a super query contributes
to positions (tl, bl), the key input to bl equals the key input to tl which equals the message input to
bl (similar for super queries contributing to (tr, br)). Also, note that if a super query contributes to
positions (bl, br), the XOR-outputs of tl and tr must be the same. If a query is made by the adversary,
the wish lists are updated according to the following requirements:

– If the query fits pre′3(Q) of Fig. 16 for any query in the query history, the corresponding tuple
(X‖W,C, (V ‖W)⊕ C,X‖W,Y ⊕ (X‖W)) is added to W3;

– If the query fits pre′4(Q) of Fig. 16 for any query in the query history, the corresponding tuple
(X‖W,C, (V ‖W)⊕ C,X‖W,Z ⊕ (X‖W)) is added to W4;

– If the query fits pre′5(Q) of Fig. 16 for any query in the query history, the corresponding tuple
(W‖X,A, Y ⊕A,B,Z ⊕B) is added to W5;

Of these tuples, the first element identifies the key for which the super query is made, the second and
third element define the input and output of the cipher in the top row (either left or right), and the
fourth and fifth element define the input and output of the cipher in the bottom row (either right or
left). For W5, the second and third element correspond to bl and the fourth and fifth element to br.
Because each element of the wish lists can be wished for only once, the adversary finds a preimage with
probability at most

|W1|+ |W2|+ |W3|+ |W4|+ |W5|
2n−1(2n−1 − 1)

,

where W1,W2 are already bounded in Lem. 8. It remains to bound the sizes of W3,W4,W5 after q
queries. Configuration pre′3(Qq) has ≤ t2 solutions for br (by ¬help3(Qq)), and at most ≤ t1 solutions for
tr (by ¬help2(Qq)). Additionally, there are 2n/2 possibilities for W . Thus |W3| ≤ t1t22

n/2 and similarly
|W4| ≤ t1t22

n/2. Configuration pre′5(Qq) has 2n/2 choices for W , for any of these choices it has ≤ t1
solutions for tr (by ¬help1(Qq)), and consequently ≤ t2 solutions for tl (by ¬help3(Qq)). Thus also

|W5| ≤ t1t22n/2. Hence, in this case a preimage is found with probability at most 16t1t2+24t1t22n/2

22n
.

Fig. 16. From left to right: configurations pre′3(Q), pre′4(Q), and pre′5(Q).

Case 2.2. We follow the analysis of case 2.2 for Lem. 8 (App. B). In this case, the winning query may be
a normal query or a super query. The winning query can only contribute to positions (tl = br), (tr = bl),
(tl = bl), or (tr = br). The first two cases are already covered in Lem. 8. Consider a query contributing
to tl = bl. By construction, this query must be of the form E(K,K) = y where K⊕y = Y and Kr = Y r.

As Y is fixed, the adversary finds such query with probability at most 2n/2

2n−1 = 2·2n/2

2n (either in case of
forward or inverse query). The same probability bound is obtained for winning queries to appear at

(tr, br). Consequently, a preimage is found in this case with probability at most 8+4·2n/2

2n .

Case 3. Recall that a query can never contribute to (tl, tr) at the same time. Therefore, we only need
to consider queries contributing at positions (tl, bl, br) or (tr, bl, br). We make the following distinction,
and consider the two sub-cases separately.

1. The contributed queries are different for all positions;
2. The contributed queries are the same at two positions.

Note that as the queries at (bl, br) cannot be the same, there is no need to consider the case all three
queries are the same.
Case 3.1. As before, we consider two wish lists Wtl, Wtr, corresponding to position to which the
winning query does not contribute. Note that if a super query contributes to positions (tr, bl, br), the
XOR-outputs of tl and tr must be the same, and equal to the key input to tr. In order words, any query
to tl fixes exactly one wish list tuple in Wtl. In more detail, if a query E(K,x) = y is made the wish
lists are updated as follows:

– The tuple (x⊕ y, x, y,K, Y ⊕K,x⊕ y, Z ⊕ x⊕ y) is added to Wtl;
– The tuple (x⊕ y, x, y, x⊕ y, Y ⊕ x⊕ y,K,Z ⊕K) is added to Wtr.

Of these tuples, the first element identifies the key, the second and third element define the input and
output of the cipher in the top row (either left or right), the fourth and fifth element define the input
and output of the cipher at bl and the sixth and seventh element the input and output of the cipher at
br. Because each element of the wish lists can be wished for only once, the adversary finds a preimage
with probability at most

|Wtl|+ |Wtr|
2n−1(2n−1 − 1)(2n−1 − 2)

.

Clearly, |Wtl|, |Wtr| ≤ q. Hence, in this case a preimage is found with probability at most 64q
23n

.
Case 3.2. Note that the same query can only occur at positions (tl = br), (tr = bl), (tl = bl), or (tr = br).
The analysis of case 2.2 carries over directly, but for the latter two scenarios we can do better. Consider
a query contributing to tl = bl. Note that, as the super query also contributes to position br, the key
inputs to tl, bl, br are the same. By construction, the query at tl = bl must be of the form E(K,K) = y
where K ⊕ y = Y and K = Y . As Y is fixed, the adversary finds such query with probability at most

1
2n−1 = 2

2n (either in case of forward or inverse query). The same probability bound is obtained for
winning queries to appear at (tr = br). Consequently, a preimage is found in this case with probability
at most 12

2n .

The claim is obtained by summing the bounds obtained for the three cases. ut

The proof of Thm. 4 is finished by adding the bounds of Lems. 9 and 12, as set forth in (19-20).

	On the Collision and Preimage Security of MDC-4in the Ideal Cipher Model
	Bart Mennink

